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Abstract. Let 2 be a space of homogeneous type. Assume that L has a
bounded holomorphic functional calculus on L?(£2) and L generates a semigroup
with suitable upper bounds on its heat kernels where {2 is a measurable subset of 2.
For appropriate bounded holomorphic functions b, we can define the operators b(L)
on LP(£2),1 < p < co. We establish conditions on positive weight functions w, v such
that for each p, 1 < p < oo, there exists a constant ¢, such that

/ (L) () |Pu() () < cpllbl|E. / |F(@)IPo(@)du(z)
n 2

for all f € LP(vdp).

Applications include two-weight LP inequalities for Schrédinger operators with
non-negative potentials on R™ and divergence form operators on irregular domains
of R".

1. Introduction.

An unbounded linear operator L in a Banach space F is said to be of type w (where
0 < w < 7) if the spectrum of L is contained in the closed sector S, = {\ € C : |arg\| <
w}, and for all v > w, L satisfies the resolvent bounds

I =ADT N <alA™, A€ S,

We can define a functional calculus of L for suitable holomorphic functions b on SY,
the interior of S,, when v > w [Mc], [CDMY]. Examples of the operators b(L) are the
semigroups e~* and the complex powers L* (for suitable complex values z). We say
that L has a bounded Ho, functional calculus if the operators (L) are bounded on E
and satisfy the bound

1B(L) ]| < bl

for all b € Hy(SY) where Hoo(SO) denotes the space of all bounded holomorphic func-
tions on SY. When the Banach space E is an LP space, the existence of a bounded
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holomorphic functional calculus of L implies a number of interesting properties of L.
These include square function estimates which play an important role in harmonic anal-
ysis (see [CDMY]), and the maximal regularity property which is useful in estimates
for non-linear differential equations [DV].

Contributions to understanding the conditions on L for b(L) to be bounded come
from the work of Stein [St1], Seeley [Se], Cowling, Doust, McIntosh, and Yagi [Mc],
[CDMY], [Y] and many others. For L an elliptic partial differential operator with
smooth coefficients on a domain with smooth boundary, it was known in 1970’s that the
purely imaginary powers L, s € R, are bounded on LP spaces for 1 < p < oo ([Se]).
Under the same assumptions, L? boundedness of L was extended to b(L) for every
b€ Hy(SY) in [Du].

Let £2 be a measurable subset of a space of homogeneous type &£ . If we assume that
the operator L has a bounded holomorphic functional calculus in L?(§2) and generates
a semigroup with suitable upper bounds on its heat kernels, then L has a bounded
holomorphic functional calculus b(L) on LP({2) for 1 < p < co. See [DR], Theorem
3.1 when (2 itself is a space of homogeneous type and [DM2], Theorem 6 when (2 is a
measurable subset without regularity conditions on its boundary.

Note first that when L has only upper bounds on its heat kernels, the operator b(L)
which can be realised as a singular integral operator, may not be a Calderén-Zygmund
operator. The reason is that without assumption on the smoothness of the space variables
of the heat kernels, the kernel of b(L) may not be Holder continuous or even may not
satisfy the Hormander condition. Secondly, {2 may not satisfy the doubling condition,
hence it is not a space of homogeneous type. To obtain L? boundedness of b(L), a new
method beyond the standard Calderén-Zygmund theory was developed in [DR], [DM2].

A natural question is to obtain weighted norm inequalities for b(L). See, for exam-
ples, Chapter VI of [GR] for a discussion on weighted norms of singular operators and
[Ma] for L boundedness of b(L) with A, weights. For the class of Muckenhoupt A,
weights, see Chapter V of [St2]. In this paper, we study the more general problem of
the two-weight inequality for b(L), that is, for 1 < p < oo,

/ [b(L) f () [Pu(z)dp(z) < cp[|bl1E / |f (@) [Po(z)dp() (L.1)

for all f € LP(vdu) where u(x),v(z) are p-a.e. positive functions. More precisely, we
will give an answer to the following problem:

Find sufficient conditions on 0 < v < 0o p-a.e. (resp. u > 0 p-a.e.) such that
(1.1) is satisfied by some u > 0 p-a.e. (resp. 0 < v < 00 f-a.e.).

In the case when the heat kernels of L satisfy appropriate pointwise upper bounds
and possess Holder continuity on the space variables, this problem is solved by Theorem
3.4 of [GM], because the operators b(L) are standard Calderén-Zygmund operators.
See [Du] and [DM1]. However, the method in Theorem 3.4 of [GM] does not work
for the operators whose heat kernels satisfy pointwise bounds but not Holder bounds.
We will use the approach which is previously developed in [DR], [DM2] and [ADM] to
estimate singular integral operators on L? spaces in which the usual Hérmander condition
was replaced by a weaker condition which involves a generalised approximation to the
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identity. See Definition 2.1 below. This approach requires no assumption on regularity
of space variables and this allows us to obtain the desired results.

The paper is organized as follows. In Section 2 we recall some definitions regarding
spaces of homogeneous type, generalised approximations to the identity and singular
integral operators. In Section 3 we will obtain certain estimates on the kernel of b(L) and
also a representation of b(L). In Section 4, we use a vector-valued theorem of [ADM]
to prove the weak type (1,1) estimate and LP boundedness of b(L) for 1 < p < oo.
Our main result is Theorem 4.8 which gives weighted norm inequalities for b(L). We
conclude this article by giving some applications to weighted inequalities for holomorphic
functional calculi of Schrodinger operators on R™ and divergence form operators on
irregular domains of R™.

2. Preliminaries.

A space of homogeneous type (27,d, p) is a set 2" endowed with a quasi-metric d
and a non-negative Borel measure p such that the doubling condition

p(B(z,2r)) < Crp(B(z,7)) < 00

holds for all x € 2" and r > 0, where B(z,r) = {y € 2 : d(y,x) < r} is the ball with
center z and radius r. Since d is a quasi-metric, there exists Co > 1 such that

d(z,y) < Cold(z,2) +d(z,y)) forall x,y,z€ Z.

See, for example, Chapter 3 of [CW].
Note that the doubling property implies the following strong homogeneity property,

w(B(z, Ar)) < eX"u(B(x, 1)) (2.1)

for some ¢,n > 0 uniformly for all A > 1. The parameter n is a measure of the dimension
of the space. There also exist ¢ and N,0 < N < n so that

N
() < o1+ 222 ) u(B(en) (22

uniformly for all z,y € 2" and r > 0. Indeed, the property (2.2) with N = n is a direct
consequence of the triangle inequality of the quasi-metric d and the strong homogeneity
property. In the cases of Euclidean spaces R™ and Lie groups of polynomial growth, NV
can be chosen to be 0.

The following concept of generalised approximations to the identity was introduced
in [DM2].

DEFINITION 2.1. A family of operators {A;,t > 0} is said to be a generalised
approximation to the identity if, for every ¢ > 0, A; is represented by kernels a;(z,y) in
the following sense: for every function f € LP(27),1 < p < oo,
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Af(x) = /% aule, 9) F(@)dn(y);

and the following condition holds:
|at($7 y)‘ < ht(m? y)
for all z,y € 2" where hi(x,y) is given by

1

e A (23)

hi(z,y) =

in which m is a positive fixed constant and g is a positive, bounded, decreasing function
satisfying

lim r" TN Feg(rm) =0 (2.4)

T—00

for some € > 0, where n and N are the two constants in (2.1) and (2.2).

In this paper, we will study singular integral operators T satisfying the following
conditions:

(A1) T is a bounded operator on LY(Z") for some ¢ > 1, with kernel k(z,y) such
that for each continuous function f with compact support,

T(f)(x) = /% k(z,y)f(y)du(y) for p-almost everywhere, x & suppf.

(A2) There exists a generalised approximation of the identity {A;,¢ > 0} such that
the difference operator T'— T'A; has an associated kernel k;(x,y) which satisfies

/ ke y)ldu(e) < o, Wy e 2
d(:}c,y)chtl/m

for some constants ¢, co > 0.
(A3) There exists a generalised approximation of the identity {B;,¢ > 0} such that
the difference operator T' — B;T' has an associated kernel J#(z,y) which satisfies

1 ta/m

‘L%/t(x’yﬂ < C4u(B(x,d(x,y))) % d(xay)a,

when d(z,y) > cst*/™

for some constants c3, ¢4, @ > 0.

It was proved in [DM2] that if T satisfies (A1) and (A2), then T is of weak type
(1,1), hence by interpolation, it is bounded on L? for 1 < p < q. When (A3) is also
satisfied, the operator 7' is bounded on LP(Z") for all 1 < p < co.



Weighted inequalities for holomorphic functional calculi of operators 1133

We note that there is difference in estimates for singular integral operators when the
underlying space 2  has finite measure and when 2  has infinte measure. Throughout
this paper, we also assume that when the space 2" has infinite measure, all annuli in 2~
are not empty, that is, for all x € 2" and 0 < 11 < 79, B(z,r2)\B(z,71) # &. Under this
assumption, p satisfies the following reverse doubling property ([W]): there exist 6 > 0
and ¢ > 0 such that

w(B(a, \r)) > X u(B(x,r)) (2.5)
uniformly for all A > 1.

3. Singular integrals on spaces of homogeneous type.

3.1. Definitions.

We give some preliminary definitions regarding the holomorphic functional calculus
as introduced by McIntosh [Mc].

Let 0 < w < v < w. We define the closed sector in the complex plane C

So={z€C :|argz| <w}U{0}

and denote the interior of S,, by S2.
We employ the following subspaces of the space H(S9) of all holomorphic functions
on SY:

0o (8y) = {b € H(S) : [Iblloo < o0},
where [|b]| = sup{|b(z)| : z € SY}, and
w(Sy) ={v € H(Sy):3 s >0, [¢(z)] < cl*(1+[2[*) 7"}

Let 0 <w < w. A closed operator L in LP(2") is said to be of type w if o(L) C S,,, and
for each v > w, there exists a constant ¢, such that

I =AD" o S culA™ A€ S,
If L is of type w and ¢ € ¥(SY), we define ¢(L) € £ (LP, LP) by

0() = 5 [ (L=ADT e (3.1)

2
where I" is the contour {¢ = re*® : r > 0} parametrised clockwise around S, and
w < 6 < v. Clearly, this integral is absolutely convergent in Z(LP,LP), and it is
straightforward to show, using Cauchy’s theorem, that the definition is independent
of the choice of § € (w,v.) If, in addition, L is one-one and has dense range and if
b€ Hy(SY), then b(L) can be defined by
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b(L) = [Y(L)] " (by) (L), (3:2)

where 1(z) = z(1 + z)~2. It can be shown that b(L) is a well-defined linear operator in
LP(Z"). We say that L has a bounded Ho, calculus in LP,1 < p < oo, if there exists
¢v,p > 0 such that b(L) € Z(LP, LP), and

”b(L)”p,p < pr”blloo (3.3)

for b € Hoo(S9).

To prove a bounded H,, functional calculus, we can obtain the bound of b(L) for b
in the class ¥(S9), and then extend it to Hy(SY) by the following Convergence Lemma
which appeared in [Mc].

LEMMA 3.1. Let0<w<v<mandl <p<oo. Let L be an operator of type w
which is one-one with dense range. Let {by}a be a uniformly bounded net in Ho,(S9).
Let b € Hoo(SY), and suppose, for some M < oo, that

() [ba(L)llpp < M and

(ii) for each 0 < < A < o0,

sup {[ba () — b(&)|: €€ 5, and 6 < [¢] < A} — 0.
Then b(L) € £(LP,LP) and bo(L)u — b(L)u for allu € LP(Z"). Hence, ||b(L)||,, < M.

3.2. Estimates on singular integrals.

In this subsection, we assume that the space of homogeneous type 2  has infinite
measure with the reverse doubling property (2.5). Let L be a linear operator of type w
on L?(Z) with w < /2, so that (—L) generates a holomorphic semigroup e=*%,0 <
|Arg(z)| < 0,60 = /2 — w. Assume the following two conditions.

(a) The holomorphic semigroup e~ |Arg(z)| < 7/2 — w, is represented by kernels
a,(x,y) which satisfy upper bounds

|a2(xay)| < h\z\('rvy)

for x,y € 27, |Arg(z)| < 7/2 — 0 for § > w, and hy,| is defined on 2" x 2" by (2.3).
(b) The operator L has a bounded holomorphic functional calculus in L?(.27). That
is, for any v > w and b € H.(SY), the operator b(L) satisfies

[6(L)]]2,2 < e [[blloo-

It was proved in [DM2] that under the above assumptions (a) and (b), the operator
b(L) satisfies (A1), (A2) and (A3) of Section 2 for any b € ¥(S2), hence b(L) is bounded
on LP(Z") for 1 < p < co. The Convergence Lemma allows us to extend LP boundedness
of b(L) to all b € H..(S9), hence the operator L has a bounded holomorphic function
calculus in LP. For the details, we refer the reader to [Theorem 6, DM2]. However,
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it is not clear in [DM2] whether b(L) satisfies (A1), (A2) and (A3) of Section 2 when
b€ Hoo(SY) but b & w(S9).

In this section, we will give a positive answer to the above question, i.e., to prove
that for any b € Hu(S9), the operator b(L) satisfies conditions (A1), (A2) and (A3) of
Section 2. We will also give a representation of b(L) in Theorem 3.5.

Given w < v < 7/2, choose 0 and u such that w < 6 < u < v. First, we note that
for b € ¥(SY), we can choose the contour v = v4 +v_, where v, (t) = te’ if 0 < t < oo;
y_(t) = —te”™ if —0o <t < 0 with v > y, and write

b(L) = /(L — A" (M)A

~ omi

Assume A € 74, then we have
(L—X)~! :/ e *ldy
Iy

where the curve I (t) is defined by Iy (t) = te’ for t > 0 and 8 = 7/2 — 0. Let

by(L) = ;MA Uﬂ e’\zeZLdz]b(A)dA

:/ [1/ e’\zb()\)d)\]e_ZLdz
r. L2mi ).,

by a change in the order of integration. Define I'_(t) = —te™" for t < 0. Similarly, let

b_(L) = /r, [217” /7 eAzb(A)dA}e—ZLdz,

then
b(L) = by (L) +b_(L) = /F + eI, (2)dz + / ()
where
na(z) = QLM /7i e*b(N)dA. (3.4)

Therefore, the kernel %, (z,y) of b(L) is given by

Gy, ) = /F 0 (2, g (2)dz + / 0 (z, g (2)dz.
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Now, for b € Hy(S9), we define 4, : Hoo (SY) — Lioc (2" x 2 \{x # y}) by

gb(sc,y):/F az(x,y)n+(z)dz+/ a,(z,y)n_(z)dz, (3.5)

where the contour I'y (t) are defined as above (in the definition of by (L)). The functions
n4(z) are given by (3.4). Note that for all z,y in 2 and x # y, %(x,y) is well-defined
and independent of 6 and pu.

LEMMA 3.2. Given b € Hy(S9), there exists a constant ¢ > 0 such that

1

(@)l < elblloe Trmm a5

forallz,ye Z.

PROOF. From (3.4), we get the bound |n4(z)| < ¢/|b]|oo|2| . Hence

(2, 9)] < bl / las (2, )12 ~d]2]

o0 1 ot
<l | ey )
o0 1 _Ldt
=il || sy

It follows from (2.4) that one has g(t~1) < ct(*+<)/™ for some 0 < ¢ < e. Using the
properties (2.1) and (2.5), we obtain

s ! (&
o n(B(@, t7md(,y)) "

N (/01 +/100 ) ,u(B(x,tl/1Md(x, y)))g(tl)it
<, T [

e L o)

1
= B d@.y)

IN

In the above estimates, 6 is the constant in the reverse doubling property (2.5). The
proof of Lemma 3.2 is complete. O

LEMMA 3.3. Givenb € Hy(S9), we let by(z) = e7#b(2) and §;(2) = (1 —e~*)b(2)

v
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fort > 0. Then, there exist positive constants c,c1 and co such that

i) when d(x,y) < cltl/m, we have
(1) y

1
< -
ggbt (x’y) — C”b”oo/.t(B(l’,tl/m))

(ii) when d(z,y) > cot'/™, we have

1 te/m
(B(z,d(z,y))) d(z, y)~

gfst (l',y) S CHbHOO
12

for some a > 0.

Proor. We follow p. 262 of [DMZ2] to prove (i). Using the commutative property
of functional calculus, we write

e—tLb(L) _ €_tL/2b(L)€_tL/2.

Since e~f maps L'(2") into L'(2") with its operator norm bounded by a constant
(independent of t), and e~*F maps L'(.2") into L>(2") with its operator norm less than
(u(B(z,t=%/™)))~1, a standard interpolation and duality argument gives

le™ 2 mpz = ™3| L2 poe < c(u( B, t7H ™)) 712,
This estimate, together with the fact that b(L) is bounded on L?(2"), imply that the

kernel ¥, (x,y) of e *b(L) satisfies (i).
We now prove (ii). For d(z,y) > cot'/™, we have

|5, () SCHblloo/O Iaz(ﬂs,y)l/O |72 (1 = e7™)[d|Ald]2].

Observe that |1 — e 7| < ¢ since Re(\) > 0 and |1 — e | < ct|A| < ctA|]? for 0 < 8 <
min{e, 1} when ¢|A| < 1. Here € is the constant in (2.4). Using the inequality e=* < s77,
we then have

[e'e) t71 00
s, (2,9)] < clbl]oo / |az<x,y>|< / e eI + / eZ*|d|A|)d|z|

t—1

[e's) t_1
< bl [ |az<x,y>|< / e”/2||tx|ﬁ|zx|ﬁd|x|+|z|1eZ'/t)cuz

0

oo
<clpllt® [ laz(ellel el
0

Using the heat kernel bounds and elementary integration, as in Lemma 3.2 we obtain
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1 te/m
w(B(z,d(z,y))) d(z,y)"

|g6t (l‘, y)| S ClleOC

for « = mfB > 0, for 2,y € 2" and d(z,y) > cot’/™. Hence, the proof of Lemma 3.3 is
complete. 0

LEMMA 3.4. Let1 < p < co. Assume that b € W(S). Then the kernel k(z,y)
of the operator b(L) satisfies the following property: for almost all x,y € X, k(x,-) €
LYZ) and k(-,y) € LY(Z"). Moreover,

sl < sup { [ ety } u;{ | il >} " Il

where p' = ﬁ.

PROOF. We note that for b € ¥(SY), there exist 0 < 8 < 1 and cs such that
[b(\)] < ep| AP (1 + \)\|25)_1 for A € S9. By (3.1), the kernel k(z,y) of the operator b(L)
can be represented by

k:(a;y):/r az(x,y)n+(z)dz+/ a,(z,y)n_(z)dz,

where the contour Iy (t) are defined as in (3.5). The functions n (z) are given by (3.4).
Observe that for z € I'y and X € 4,

—co.v| 2|

|6)\z| < 67|)\Hz\sin(071/) —e

We have

[ aian < [ [T [ el idel d duty
A —C z
< ch||oo/ / H|_||>\|25 oMzl g|z) d|A|

< cllt] / 0 ds
S C 00 o (1+82B) s

< [blloo,

where ¢’ depends on n, 3, and (v — ) > 0.

This shows that for almost all z € 27, k(z,-) € L'(2"). The same argument shows
that for almost all y € 27, k(-,y) € L*(2"). Using the Hélder inequality, we then obtain
for 1 < p < oo,
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@l < sup { / k(x,yndu(y)}w sup { /. |k<x,y>|du<x>}1/p||f||p,

yeX

where p’ = ﬁ. The proof of Lemma 3.4 is complete. O
We now give a representation of the operator b(L) in LP(Z),1 < p < oo.

THEOREM 3.5.  Let J& be the class of all associated kernels k(x,y) of operators
which satisfy (A1), (A2) and (A3) of Section 2. We have the following properties:

(i) For any function b € Hy(SY), we have 9,(x,y) € KA .
(ii) For a fired arbitrary function b € Hso(SY), we denote k(z,y) = % (z,y). Then
there exist a sequence of positive functions €;(x) and a function n(z) € L*°(Z") such that

lim; o €;(z) =0 and for f € LP(XZ), 1 < p < o0,

b(L)f(x) = n(z)f(z) + lim k(z,y) f(y)duly) (3.6)

3700 Jd(z,y)>e;(x)

for almost every x € 2.

ProOOF. We choose ¢ € (1,00) such that % > = where %—&— % =1, and m is the
constant in (2.4). For ¢ > 0 and s > 0, we define by € Hoo(S0) and by s € ¥(S2) by be(z) =
b(z)e " and by 5(z) = 2%(142)72*b(z)e**. Then for fixed t > 0, lims_q br 5(2) = be(2) =

b(z)e~'* uniformly in any compact set contained in SO. Therefore by the Convergence

Lemma 3.1,
lim by (L)f = by(L)] (3.7
in L1(Z") norm for every f € LI(Z").

Since by, € ¥(SY), the kernel ky (x,y) of the operator by 4(L) equals to %, , (z,y).
Hence,

Fia(,y) = / 0. (&, y)ne (2)dz + /F 0, y)n_(2)dz,

where

_ 1 A? —tA Az
ny(z) = 57 /H (1+/\)2se eMb(N)dA,

where the contour vy (¢) and I'y(t) are defined as in (3.4) and (3.5). Note that

[18l]oo

nt(2)] <c .

For any s > 0, the same argument as in Lemma 3.2 shows that



1140 X.T. DUONG and L. YAN

( /%Ikt,s(x,yﬂq/ dﬂ(y)>1 p

) 1/4’
’ d‘Z|
gcbm/ </ a(z,y)]9d )
o [ (] e an)) 57

m [ / d|Z|
< bl | B, 2y v AL

t+ |z
1 ! 1 d|z| e — rd|z]
< ||b]|og ————— /%74_/ o|70(d' =1)/mq" 2171
I u<B<x71>>( o @ ¢t ), ]
1
< ct||bllooc—m—
el B 1)

since 0 < = < 1. Here ¢; is a positive constant independent of s.
So for any f € LUZ), |kis(z,y)f(y)| < cbr.F(y) where F(y) € LY(Z2'). By

Lemma 3.4 and Lebesgue’s dominated convergence theorem,

(¢'-1)
mq’

be(L)f(x) = gl_rf(l) bes(L)f(z) = 1ir% ” ki, s(2,y) f(y)du(y)

S—

— / lim k¢ (2, y) f(y)dp(y)
A

s—0

_ / ke(2,y) f (y)dp(y),
x

where
kt(xa y) = ilir(l) kt,é‘(m’ y) = gbt (.73, y)

Using the Convergence Lemma 3.1 again to the left hand side of the above equality, we
have

b(L)f(z) = lim by (L) f () = limy p ke(z,y)f (y)duly), [ e LY(Z).

t—0

In particular, by Lebesgue’s dominated convergence theorem we have that for each con-
tinuous function f with compact support,

ML) f(e) = lim [ o) f)dty) = [l () @)dn(o)
for all = & suppf, where the convergence is in LI(Z").

Note that for all z,y in £, and x # y, lim;_¢ k¢ (2, y) = % (x,y). Applying Theorem
6 of [DM2], the operator b(L) is bounded on L4(Z") such that
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W) f(x) = /% k(z,9)f(u)dpu(y) Ve & suppf,

where k(z,y) satisfies the properties (A1), (A2) and (A3) on 2" x Z\{z # y}. Hence,
k € & as in Theorem 3.5.

It follows from a standard argument of proving the existence of almost everywhere
pointwise limits as a consequence of the corresponding maximal inequality that there
exists a sequence of positive functions €;(x) such that lim;_, €;(2z) = 0 and a function

n(x) € L*(Z") such that for f € LP(Z") with 1 < p < o0,

b(L)f(x) = n(z)f(z) + lim k(z,y) f(y)duly)

3=00 Jd(ay)>e; ()

for almost every z € 2. See, for examples, [Me, Chapter 7, Theorem 6] for Euclidean
spaces 2" = R", and [CW], [Theorem 3, DM2] and [DY] for spaces of homogeneous

type.
Hence, the proof of Theorem 3.5 is complete. O

4. Vector-valued inequalities and weights.

4.1. Boundedness of vector-valued singular integral operators.

In this section, we assume that 2" is a space of homogeneous type equipped with a
quasi-metric d and a measure p. In the case u(2") = oo, we assume that the space 2~
has the reverse doubling property (2.5).

Let A, B be Banach spaces, and Z(A, B) the space of bounded linear operators
from A to B. Let 1 < ¢ < 0o, and L% (27), L5 (%) be the spaces of L? integrable func-
tions with values in A, B, respectively. Let T be a linear operator mapping boundedly
from L% (Z) into LL(2) with an associated kernel k : 2" x 2" — Z(A, B), such that,
for any f e LY(2),

T(f)(x) = /%k(w7y)f(y)du(y) for pae €2 \suppf. (4.1)

We assume there exists a class of integral operators A;,¢ > 0, from L% (Z2") into
L% (%) which plays the role of approximations to the identity. This means that the
operators A; can be represented by kernels a:(z,y) : 2" x 2~ — Z(A, A) in the sense
that

Avu(z) = /% as(z, y)u(y)du(y) (4.2)

for every function u € L% (27) N LY (%), and the kernels a;(z,y) satisfy the following
conditions:

llat(z,y)l| 2a,a) < he(z,y) (4.3)
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for all z,y € 2, where hi(x,y) is a function satisfying

1

Wg(d(% )"t (4.4)

ht(may) =

in which m is a positive constant and g is a positive, bounded, decreasing function
satisfying

lim 7"V eg(rm) =0

T™—00

for some € > 0, where n and N are two constants in (2.1) and (2.2).

THEOREM 4.1.  Let T be a bounded linear operator from L% () to L (Z") with
an associated kernel k(x,y) in the sense of (4.1). Assume there exists a class of operators
Ay, t > 0, which satisfy the conditions (4.2), (4.3) and (4.4) so that the composite opera-
tors T Ay have associated kernels ki(x,y) in the sense of (4.1) and there exist constants
C and ¢ > 0 so that

/ k(2. y) — ko(z,9) | iamdul) < C (4.5)
d(w,y)>ctt/m

forallye 2.
Then the operator T is of weak-type (1,1) from LY (Z") into L (Z"). Hence, T can
be extended to a bounded operator from LY (%) into L5 (Z") for all1 < p <g.

PrOOF. For the proof, we refer to Theorem 1 in [ADM]. O

REMARK 4.2. (i) In [RRT], Theorem 4.1 was obtained under the following
Hoérmander condition:

/ lk(z,y) — k(v 2amdule) < C.
d(z,y)>2d(y,y’)

See also [BCP]. In fact, for a suitable generalised approximation of the identity, it is
proved in [DM2] that in the case of scalar-valued functions, the condition (4.5) is weaker
than the above Hormander condition.

(ii) Theorem 4.1 can be modified so that it is still true when the space of homoge-
neous type 2 is replaced by one of its measurable subsets (2. In this case, it is sufficient
that condition (4.4) on the upper bound h¢(z,y) of the kernel a;(z,y) is replaced by

he(w,y) = (n(B” (2, 6'™)) " g(d(w, )™t ™), (4.6)

where B# (x;t'/™) is the ball of center z, radius '/ in the space 2 .

We now apply Theorem 4.1 to obtain vector-valued holomorphic functional calculi
of operators with heat kernel bounds. Let L be a linear operator on L?(.2") with w < /2
so that (—L) generates a holomorphic semigroup e *%,0 < |Arg(z)| < 7/2 — w.
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THEOREM 4.3. Let 1 <p,q < co. Assume the following two conditions.

(a) The holomorphic semigroup e~ *L, |Arg(z)| < 7/2 — w, is represented by kernels
a.(x,y) which satisfy upper bounds

‘a2($7y)| < hm(l‘,y)
forx,y e 2, |Arg(z)| < m/2 — 0 for 0 > w, and hy, is defined on X" x 2~ by (4.4).
(b) The operator L has a bounded holomorphic functional calculus in L*(%Z°). That
is, for any v > w and b € Hy(SY), the operator b(L) satisfies
16(L)]|2,2 < e [[blloo-

Then, for any o >0 and f = {f;}; € LqL%(%) we have

1/q

u&(;MWWWYZW%WM%ML(EM@@ dule),  (47)

and

(4.8)

(s mwsr)”

1/q
S%MMMZ%@
J

Lr () LP(Z)

PROOF. Let b € Hyo(Sy). For f = {f;}; € L}, () with compact support, we
(o]
define

W01 = 05, = { [ wensoanm ) = [ ke

for z € 2 \suppf, where the kernel ky, : 2" x 2~ — L (0L, 0L) is defined by

ky(x,y)a = {kp(x,y) a5}

for any o = {ej}; € . We take the Banach space A = B = (. By the argument of
the case of scalar-valued functions in Theorem 6 of [DMZ2], Theorem 4.1 gives

mmm%%zzéﬁmmwwm

<Ly [ 1@

_ q q
= clpIL NIy, o
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See also [RRT] and [BCP].
We now verify condition (4.5). Let A; = e7* and define

WD) Auf () = (D) A (o { [ mnelans ity } — [ Fusten 1 auty

for 2 € 2 \suppf, where the kernel ky; : 2" x 2 — L (%, (%) is defined by

l~cb7t(x, y)a = {kpt(z,y)a;};

for any a = {«o;}; € €&. Denote §;(z) = (1 — e **)b(z) for ¢t > 0. Then, estimate (4.5)
follows from (ii) of Lemma 3.3 since

ko () = ke (29l 2 e, ey < IRo(@,y) = Koz, 9)| = |%5, (2, 9)].

So, b/(VL) is a vector-valued operator satisfying all conditions in Theorem 4.1. Hence
Theorem 4.3 follows from Theorem 4.1 and a standard duality argument. O

As in (ii) of Remark 4.2, our method also works in the case that L is a linear
operator of type w on L?({2) with w < 7/2, where (2 is a measurable subset of a space
Z of homogeneous type. We have the following theorem.

THEOREM 4.4. Let 1 < p,q < co. Assume the following two conditions.
(ap) The holomorphic semigroup e *L, |Arg(z2)| < m/2—w, is represented by kernels
a,(x,y) which satisfy the estimate

‘az(xv y)' < 09h|z|(xa y)
for x,y € 02, |Arg(2)| < 7/2 =0 for 0 > w, and hy,| is defined on 2~ x 2" by (4.4).
(bg) The operator L has a bounded holomorphic functional calculus in L*(§2). That
is, for any v > w and b € Hoo(SY), the operator b(L) satisfies

[6(L)]|2,2 < ¢ [b]|oo-

Then for any oo >0 f ={f;}; € Lquc(%) we have

plas (Z Ib(L)fj(I)lq>1/q >ab <ol [ (Z Ifj(x)q)l/qdu(x%

and

1/q

(£2) LP(£2)

[ won™| <o (i)
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4.2. 'Weighted inequalities for H., functional calculi of operators with

heat kernel bounds.

In this section, we assume that (2 is a measurable subset of a space of homogeneous
type (2,d, ). Let L be a linear operator of type w on L?(2) with w < 7/2, so that
(—L) generates a holomorphic semigroup e, 0 < |Arg(z)| < 7/2 —w. We assume that
L satisfies the two conditions (agp) and (byg,) of Theorem 4.4.

For 1 < p < 0o, we now study the two-weight inequality for the operator b(L):

/ IB(E) f (@) Pu(x)dp(z) < eI, / 1 @) Po(@)du(z) (4.9)

for all f € LP(vdp) and u,v being p-a.e. positive functions. Throughout this section we
aim to give an answer to the following problem:

Find sufficient conditions on 0 < v < 0o p-a.e. (resp. u > 0 p-a.e.) such that
(4.9) is satisfied by some u > 0 p-a.e. (resp. 0 < v < 0 p-a.e.).

This problem was studied in [GR, pp. 5568-562] for Calderén-Zygmund operators in
R"™. See also [GM] for Calderén-Zygmund operators on non-homogeneous spaces. We
would like to combine ideas in these papers and Theorem 4.4 to prove similar results for
b(L) where b(L) has non-smooth kernels.

The following theorem in [FT] establishes the relationship between vector-valued
inequalities and weights.

THEOREM 4.5. Let (Y ,dv) be a measure space; F', G Banach spaces, and {Wi}rez
a sequence of pairwise disjoint measurable subsets of Y such thatY = J, Wj,. Consider
0<s<p<ooandT a sublinear operator which satisfies the following vector-valued
inequality

s}

1/p
< Ck{ > fj||’}} , keZz, (4.10)
j

L3 (Wy,dv)

where, for every k € Z, ¢i only depends on F',G,p and s. Then, there exists a positive
function u(xz) on'Y such that

[ mseiwam ) < dsie. (@11)

where ¢ depends on F,G,p and s. Moreover, given a sequence of positive numbers
{artrez with )", a} < oo, the weight u can be found such that |[u™ xw, |l Lo-1(wy,a) <

~1 1
(ay ck)?, where ; + 2 =1.

In our context, we choose (Y,dv) = (Z',du). Given 1 < p < oo and some fixed
point o € £2. Let us recall the definitions of the following classes of weights in 2 ([GR],
[GM]):
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= w 0 -a.€. w(m>1_p/ i 0
D”‘{OS <ocpne [ ) < }

and

= w o0 u-a.e. w(x) X (o]
Zp‘{“ <oopac: [t T < }

Here p’ is the dual of p, i.e., % i, = 1. Note that these classes D, and Z, do not depend
on the point xg.

REMARK 4.6. When the diameter of the space is finite, there exists R such that
N C Z C B(zo,R), hence u(Z) < oo. In this case, the classes D, and Z, are defined
as follows:

D, = {o <w < 00 prae. /Qw(a:)lfp’du(x) < oo}
and
Z, - {w >0 peace. /Qw(x)d,u(x) < oo}.

We now apply Theorem 4.5 to our operator b(L).

PROPOSITION 4.7. Take 0 < s <1 < p < oo and v € D,. Let L be a linear
operator of type w on L?(2) with w < m/2. Assume that L satisfies conditions (ag) and

(ba).
If the diameter of {2 is infinite, we have

1/p
< o8 1| S e ban

1/p
= wwsr)
j L#(Sk,du)
for k =0,1,---, where Sy = By = {x : d(z, 1) < 1}, S = {x : 2F71 < d(x,2¢) < 2},
and By, = B(x¢;2%) for k=1,2,---
If the diameter of {2 is finite, we have

1/p 1/p
{Zwwir < el Sl } - @13)
J J

L (dp)

PrROOF. Consider the case when (2 has infinite diameter. Fix k& > 0 and set
Bri1 = B(xo,2"1). We write f = IXBis1 T [X\Byy,- Forx € Sy and y € 2\Byy1,
we have 2d(z,y) > d(zo,y), and thus
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1 c
W(B(,d(,9))) ~ (B0, d(70,9)))

by the doubling property (2.1). By Lemma 3.2,

|b(L)fXQ\Bk+1(33)‘

el
Selblo [ de)

£ ()l
<elbl | B T

<] [ 1P} | [ )

< clblloo | f1l Lr (wap)

du(y)

v(y)Po(y) " Pdu(y)

by using v € D,,, where % + 1% = 1. Thus, we have

1/p ) 1/p
H{ 3 |b<L>fij\BM|p} < cu(By) bl {Z T }
7

L= (Sk,dp)

for k=0,1,---

We recall that the L*° norm of a function f is given by || || = supys Au{z :
|f(z)| > A}. For 0 < s < 1, by Kolmogorov’s inequality (see [GR], page 485) and
Theorem 4.4 we obtain

S pwss.r}”

L*(Sk,dp)

< cp( Sk B

1/p
{Z'b f]XBk+1| }

L1:00(Sy,du)

1/p
SCM(Sk)1/3_1||bHoo/ {ijXBka} v(x)l/l’v(m)—l/pdu(x)

Sk j

Vet 1/p e 1/p’
< ents) " lod [ Mmoo} { [ o0 dute)
j k

1/p
< Bl L5}
J

where the last inequality follows from % —1>0and
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, 1/p’ o) —P 1/p’
{/skv(x)l_p d”(x)} = C“(B’“){/sk (1+M(B<;o),d(a:o,x))>)l” d“(x)}

< cp(By)

by v € D,. So, (4.12) follows readily by combining the above estimates.

When the space {2 has finite diameter, the measure p(f2) < co. We then proceed
as with the case of functions f;xp,,,. Since 0 < s < 1, we can apply Kolmogorov’s
inequality and Theorem 4.4 to obtain

s mwsr)”

Ls(dp)

{Db mp}w

gcﬂ 1/8 1

L1-2°(dp)

1/p
<@ ol [ {150} o) rute) rduta)

SC“(ml/s_l”b'oo{/QZIfjlpv(x)du(a:)}l/p{/Qv(x)l—p'du(x)}l/p/

1/p
< C|b||oo{2||fj|;zp(vdu)} ’
J

because (2 has finite measure and v € D). This completes the proof of Proposition 4.7.
O

With these vector-valued estimates, we now prove the main theorem of this paper.

THEOREM 4.8. Glivenp, 1 <p < oo. Let L be a linear operator of type w on L*(12)
with w < 7/2, which satisfies the conditions (agn) and (bg). If u € Z, (resp. v € D)),
then there exists a weight 0 < v < 0o p-a.e. (resp. 0 < u < 00 p-a.e.) such that

/ IB(E) () Pula)du(z) < cpIbIE, / @) Po(@)du(z) (4.14)

for all f € LP(vdy). Moreover, for 0 < o < 1, v (resp. w) can be chosen such that
v € Z, (resp. u® € D,).

Proor. First, let us prove the case v € D, for {2 with infinite diameter. Fix
O<a<landput¢q=1+a(p’'—1). Then 1 < ¢ < p’ and we can find some 5,0 < s < 1,
such that o = (£)" > ¢.

We apply Theorem 4.5 with (Y,dv) = (2,du), F = LP(vdu), G = C, (Wi}, =
{81.}6°, ¢, = u(By)'/* and the sublinear operator T' = b(L). Estimate (4.12) of Propo-
sition 4.7 leads to the vector-valued inequality (4.10). Then, there exists a weight
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u such that (4.14) holds. Moreover, u can be chosen such that ||u™!| o-1(s,au) <

clay, 'u(By)Y*)P with ax > 0 and Y, ab < co. Let 3 = % and 3’ the conjugate
exponent of 3. As in [GR/], by the doubling property we have

u(z)10 ()1
/Q<1+N<B<xo,d<x07 ) Z/s xo,d<xo,x>>>>p'd“(z)
0o 1/8
écZu(Bkw’{ [ duo ) uso

<c Z a;P(q—l)u(Bk)(*PlﬂLerﬁ%).

Note that the first inequality follows from Hoélder’s inequality with exponent § = % > 1.
Observe that

Hence, we can choose ¢ > 0 such that ¢ — p" + ¢ < 0. The sequence {ax} can be

chosen to satisfy a, —pla=D) - = p(By)¢. Using the reverse doubling property (2.5), we have
w(By) > 29 for all 0 < k < oo, where 6 is the constant in (2.5). Therefore,

and

U(x)l_q x c 3 (g—p'+e€)
/n(1+M(B(a:o,d(xo,x)))p/dﬂ( ) < ];J;“(Bk) +

o0
<Y oHa-r+o
k=0

< < oo.

To finish the proof, we note that oo = 11__]3, and thus u® € D,,.

When the space 2 has finite diameter, we proceed analogously and the proof is even
simpler because we do not have to decompose the space. We leave the details to the
reader.

If u e Z,, then & = utr € D, . It follows that there exists some weight ¢ with
0 < ¥ < 00 p-a.e., such that the adjoint operator g(L)* satisfies

/ ()" F(@) P () dux) < e b1 / (@) ) dp(). (4.15)
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Take v so that o = v!™?". Since 0 < v < 00 p-a.e., a standard duality argument shows
that (4.15) implies (4.14). Furthermore, we can choose ¥ such that * € D,,, provided
that 0 < @ < 1. That is, we can find v such that v* € Z,. The proof of Theorem 4.8 is
complete. O

4.3. Applications.

Theorem 4.8 gives new results when we do not assume smoothness of heat kernels in
the space variables, or when {2 is a measurable set with no assumptions on smoothness of
its boundary. We give examples of operators L which satisfy the assumptions of Theorem
4.8.

(a) Let V be a nonnegative function on R"™. The Schrodinger operator with potential
V' is defined by

L=-A+V(x).

t

The Trotter formula shows that the kernel p;(z,y) of the semigroup e~*" satisfies a

Gaussian upper bound, that is, for some constants c1,co > 0,

z—yl|2
Cl ¢ l= fy\

0 <piz,y) < ek

for x,y € R™ and all t > 0. However, unless V satisfies certain additional conditions,
pe(x,y) can be a discontinuous function of the space variables and the Holder continuity
estimates may fail to hold.

(b) Let

) 0
Lf=- Z Txiaij(x)%jf

4,5=1

be an elliptic divergence form operator of real, symmetric coefficients with Dirichlet
boundary conditions on a domain {2 of R™ which is defined by the variational method.
More precisely, L is the positive self-adjoint operator associated with the form

Ao = [ Y w10 i

i,j=1 J

on V x V by (Lf,g) = Q(f,g), where V is the Sobolev space Hg(£2). It is known that
the operator L has Gaussian heat kernel bounds without any conditions on smoothness
of the boundary of (2.

More general operators on open domains of R™ which possess Gaussian bounds can
be found in [Da], [DM1] and [DMZ2].
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