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Abstract. In this paper, we shall develop the linear causal analysis for the
system consisting of two flows in a real inner product space and give an algorithm for
calculating the non-linear filter for a discrete stochastic system which is given by two
discrete time stochastic processes, to be called a signal process and an observation
process, based upon the theory of KM2O-Langevin equations.

1. Introduction.

In [16] and [5], we have solved some problems arising from Masani and Wiener’s
work ([4]) on the non-linear prediction problem for discrete time stochastic processes
under Dobrushin-Minlos’ regularity condition, based upon the theory of KM2O-Langevin
equations for discrete time stochastic processes.

After the Kalman-Buchy’s works for the linear filtering problem for a Gaussian
system of Markovian type ([2], [3]), the extended Kalman filter has been derived based
upon Taylor approximations of the non-linear system of Markovian type ([18]). However,
it is said that the linearization of the non-linear system by Taylor approximations provides
an insufficiently accurate representation in many cases ([7]).

The purpose of this paper is to develop the linear causal analysis for the system
consisting of two flows in a real inner product space W . By a d-flow Z = (Z(n); 0 ≤ n ≤
N) in W , we mean a function Z : {0, 1, . . . , N} → W d, where d,N ∈ N ≡ {1, 2, . . .}.
As its application, we shall obtain an algorithm for calculating the non-linear filter for
a discrete stochastic system consisting of a signal process and an observation process
without Dobrushin-Minlos’ regularity condition.

In Section 2, for any d1-flow X and any d2-flow Y in W , we shall introduce the first
kind of the minimum filtering matrix function D0(X|Y) = (D0(X|Y)(n, k); 0 ≤ k ≤ n ≤
N), by using the theory of weight transformations developed in [5]:

PMn
0 (Y)X(n) =

n∑

k=0

D0(X|Y)(n, k)Y (k) (0 ≤ n ≤ N). (1.1)
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Moreover, we shall obtain an algorithm for calculating the filtering matrix function
D0(X|Y).

In Section 3, we shall consider any d1-dimensional square integrable stochastic pro-
cess X = (X(n);n ∈ N∗) and any d2-dimensional stochastic process Y = (Y (n);n ∈ N∗),
where N∗ ≡ {0, 1, 2, . . .}. We shall construct a generating system for the stochastic
process Y, by modifying the idea in [16], where we have constructed a generating system
for multi-dimensional stochastic process with time parameter space {`, ` + 1, . . . , r} (`,
r ∈ Z, ` < r) under Dobrushin-Minlos’ regularity condition. Applying the results in Sec-
tion 2 to the generating system, we shall obtain a formula for calculating the non-linear
filters E(X(n)|Bn

0 (Y)).
The authors would like to express their gratitude to the referees for their constructive

and valuable advice.

2. The minimum filtering matrix functions.

[2.1] Let X = (X(n); 0 ≤ n ≤ N) and Y = (Y (n); 0 ≤ n ≤ N) be any d1-flow and
any d2-flow in the real inner product space W , respectively. We define the covariance
matrix function R(X,Y) = (R(X,Y)(m,n); 0 ≤ m,n ≤ N) by

R(X,Y)(m,n) ≡ (X(m), tY (n)), (2.1)

where (?, t∗) denotes the inner product matrix of (d1, d2)-type of the vectors ? and ∗. In
particular, we put R(Y) ≡ R(Y,Y).

For each integer n (0 ≤ n ≤ N), we define a closed subspace Mn
0 (Y) of W by

Mn
0 (Y) ≡ [{Yj(m); 1 ≤ j ≤ d2, 0 ≤ m ≤ n}], (2.2)

where for any subset S of W , [S] stands for the closed subspace of W which is gener-
ated by all elements in S and Yj(m) is the jth component of Y (m). Projecting each
component of X(n) onto the subspace Mn

0 (Y), we can get a matrix function D(X|Y) =
(D(X|Y)(n, k); 0 ≤ k ≤ n ≤ N) such that

PMn
0 (Y)X(n) =

n∑

k=0

D(X|Y)(n, k)Y (k) (0 ≤ n ≤ N). (2.3)

This matrix function is uniquely determined through relations (2.3) if the flow Y is non-
degenerate, that is, {Yj(n); 1 ≤ j ≤ d2, 0 ≤ n ≤ N} is linearly independent in W . But
this is not the case in general. We denote by LMF (X|Y) the set of all such matrix
functions. Let us fix any element D(X|Y) of LMF (X|Y). For each n (1 ≤ n ≤ N + 1),
we define a symmetric matrix T+(Y)(n) of order nd2, two matrices ∆(X|Y)(n) and
S(X,Y)(n) of (nd2, d1)-type by

T+(Y)(n) ≡ (R(Y)(k − 1, `− 1))1≤k,`≤n, (2.4)

∆(X|Y)(n) ≡ t(D(X|Y)(n−1, 0), D(X|Y)(n−1, 1), . . . , D(X|Y)(n−1, n−1)), (2.5)

S(X,Y)(n) ≡ t(R(X,Y)(n−1, 0), R(X,Y)(n−1, 1), . . . , R(X,Y)(n−1, n−1)). (2.6)
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Taking the inner product of the both-hand sides in (2.3) and Y (`) (0 ≤ ` ≤ n), we get

Lemma 2.1. For each n (1 ≤ n ≤ N + 1), T+(Y)(n)∆(X|Y)(n) = S(X,Y)(n).

A converse statement of Lemma 2.1 can be proved by using the same method as we
used in the proof of Lemma 3.3 in [5].

Lemma 2.2. Let H(n) (1 ≤ n ≤ N + 1) be any matrix of (nd2, d1)-type such that
T+(Y)(n)H(n) = S(X,Y)(n). Devide H(n) into submatrices as H(n) = t(h(n − 1, 0),
h(n − 1, 1), . . . , h(n − 1, n − 1)), where h(n, k),s are matrices of (d1, d2)-type. Then the
matrix function h ≡ (h(n, k); 0 ≤ k ≤ n ≤ N) belongs to LMF (X|Y).

We shall find a constructive way to obtain a nice element of LMF (X|Y). Let
ξ = (ξ(n); 0 ≤ n ≤ N) be any non-degenerate d2-flow in W such that

R(X, ξ) = 0 and R(Y, ξ) = 0. (2.7)

For each w > 0, we define a d2-flow Yw = (Y w(n); 0 ≤ n ≤ N) by

Y w(n) ≡ Y (n) + w ξ(n). (2.8)

We call the transformation from Y to Yw and the flow ξ the weight transformation with
weight w and the additive noise flow, respectively. Then we can easily verify the following
Lemma 2.3.

Lemma 2.3.

(i) R(Yw) = R(Y) + w2R(ξ) (w > 0)
(ii) R(X,Yw) = R(X,Y) (w > 0)
(iii) T+(Yw)(n) = T+(Y)(n) + w2T+(ξ)(n) (w > 0, 1 ≤ n ≤ N + 1)
(iv) S(X,Yw)(n) = S(X,Y)(n) (w > 0, 1 ≤ n ≤ N + 1).

Let η = (η(n); 0 ≤ n ≤ N) be any non-degenerate d2-flow in W . We define a norm
‖ · ‖η on the set LMF (X|Y) as follows:

‖D(X|Y)‖η ≡
( N∑

n=0

d1∑

j=1

∥∥η
D(X|Y)
j (n)

∥∥2

W

)1/2

, (2.9)

where ‖ · ‖W denotes the norm on W induced by the inner product (?, ∗) and ηD(X|Y) =
(ηD(X|Y)(n); 0 ≤ n ≤ N) is the d1-flow in W defined by

ηD(X|Y)(n) ≡
n∑

k=0

D(X|Y)(n, k)η(k). (2.10)

By a direct calculation, we have

Lemma 2.4. ‖D(X|Y)‖η =
( ∑N+1

n=1 ‖T+(η)(n)1/2∆(X|Y)(n)‖2)1/2, where ‖ ∗ ‖
stands for the Euclidean norm of the matrix ∗.
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We are now in a position to state one of the main theorems in this paper.

Theorem 2.1. Let ξ be any additive noise flow for the flow Y satisfying (2.7) and
let Yw be the flow defined by (2.8). Then

(i) D(X|Yw) converges as w → 0 and the limit D0(X|Y; ξ) belongs to LMF (X|Y).
(ii) D0(X|Y; ξ) is the unique element of LMF (X|Y) minimizing the norm ‖ · ‖ξ.

To prove this theorem, we show the following theorem on linear algebra.

Theorem 2.2. Let A and B be any symmetric matrices of order n, and let C be
any matrix of (n,m)-type such that

(a) A ≥ 0 and B > 0,

(b) there exists a matrix X of (n,m)-type for which AX = C.
For each ε > 0, define a matrix Fε of (n,m)-type by Fε ≡ (A + εB)−1C. Then

(i) Fε converges as ε → 0, and the limit F0 ≡ limε→0 Fε satisfies AF0 = C,
(ii) F0 is the unique element of {X;AX = C} minimizing the norm ‖B1/2X‖.
Proof. We have already proved (i) for more general case, and (ii) for the case

where B = In in Theorems 4.2 and 4.6 of [5], respectively. We put Ã ≡ B−1/2

AB−1/2 and C̃ ≡ B−1/2C. Then we see that Ã, B = In and C̃ fulfil the assumptions (a)
and (b). So the general case is reduced to the case B = In. ¤

Proof of Theorem 2.1. Let A≡T+(Y)(n), B≡T+(ξ)(n) and C≡S(X,Y)(n).
Then A and B satisfy Theorem 2.2(a). By Lemma 2.1 we see that C satisfies Theorem
2.2(b). So we can apply Theorem 2.2 to obtain Theorem 2.1. ¤

Immediately from Theorem 2.1, we have

Corollary 2.1. Let ξ,Y and Yw be as in Theorem 2.1. Then

lim
w→0

PMn
0 (Yw)X(n) = PMn

0 (Y)X(n) (0 ≤ n ≤ N).

The following theorem gives a converse statement of Theorem 2.1 in a sense.

Theorem 2.3. Let us fix any d1, d2 ∈ N and any N ∈ N∗. Let ξ and η be
any non-degenerate d2-flows in W satisfying dim (MN

0 (ξ,η))⊥ ≥ 1. Then the following
conditions are equivalent :

(i) R(ξ) = λR(η) for some λ > 0;
(ii) D0(X|Y; ξ) = D0(X|Y;η) for any d1-flow X and any d2-flow Y in (MN

0

(ξ,η))⊥.

For the proof of Theorem 2.3, we need the following Lemma 2.5 and Theorem 2.4.

Lemma 2.5. For any matrix T11 of order (N +1)d2, any matrix T12 of ((N +1)d2,

d1)-type and any matrix T22 of order d1 such that the matrix T ≡
(

T11 T12
tT12 T22

)
is non-

negative definite and rankT ≤ dimW , there exist a d1-flow X and a d2-flow Y in W

such that T+(Y)(N + 1) = T11, S(X,Y)(N + 1) = T12 and R(X)(N, N) = T22.
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Proof. Let r ≡ rankT . Since T is non-negative definite, there exist a matrix
Q of order (N + 1)d2 + d1 and a positive definite matrix Dr of order r such that T =
Q

(
Dr 0
0 0

)
tQ. We put M ≡ Q

(
D1/2

r 0
0 0

)
. Then M

(
Ir 0
0 0

)
tM = T . We define a d2-

flow Y = (Y (n); 0 ≤ n ≤ N) in W and a vector X(N) ∈ W d1 by (tY (0), tY (1), . . . ,
tY (N), tX(N)) ≡ (ξ1, ξ2, . . . , ξr, 0, . . . , 0) tM , where {ξj ; 1 ≤ j ≤ r} is an orthonormal
system in W . We also define a d1-flow X in W by choosing X(0), X(1), . . . , X(N − 1)
arbitrarily. Then we can see that Lemma 2.5 holds. ¤

Theorem 2.4. Let B and G be any positive definite matrices of order n. Then
the following conditions are equivalent :

(i) B = λG for some λ > 0;
(ii) F0 in Theorem 2.2 is the unique element of {X;AX = C} minimizing the norm

‖G1/2X‖ for any matrices A,C with rank(A) = 1 and the conditions in Theorem 2.2.

Proof. By Theorem 2.2, we have only to prove that (ii) implies (i). We have
already proved it in Theorem 4.8 in [5] for the case where G = In, which deduces the
general case by putting Ã ≡ G−1/2AG−1/2 and C̃ ≡ G−1/2C. ¤

Proof of Theorem 2.3. We assume (i). For any d1-flow X and any d2-flow
Y in (MN

0 (ξ,η))⊥, Lemma 2.4 shows that ‖D(X|Y)‖ξ = λ1/2‖D(X|Y)‖η (D(X|Y) ∈
LMF (X|Y)). This combined with Theorem 2.1(ii) implies that D0(X|Y; ξ) minimizes
the norm ‖ · ‖η. Replacing ξ with η in Theorem 2.1(ii), we find that (ii) holds.

We now assume (ii). Let A and C be as in Theorem 2.4. We define a matrix TAC of
order (N + 1)d2 + d1 by TAC ≡

(
A C

tC tCF

)
, where F is a matrix of ((N + 1)d2, d1)-type

for which AF = C holds. Then TAC is non-negative definite and rankTAC = 1, because
t
(

I −F
0 I

)
TAC

(
I −F
0 I

)
=

(
A 0
0 0

)
. By Lemma 2.5, we see that there exist a d1-flow X and a

d2-flow Y in (MN
0 (ξ,η))⊥ that satisfy T+(Y)(N +1) = A and S(X,Y)(N +1) = C. Let

B ≡ T+(ξ)(N +1). Then B is positive definite because the noise ξ is non-degenerate. We
see A,B and C satisfy the conditions in Theorem 2.2 with m = d1 and n = (N + 1)d2.
Here Theroem 2.2(b) is ensured by Lemma 2.1. It follows from Lemma 2.1 that the
corresponding F0 in Theorem 2.2 equals ∆(X|Y)(N + 1), which is defined by taking
D(X|Y) ≡ D0(X|Y; ξ) in (2.5). We now take G ≡ T+(η)(N + 1) and show G satisfies
Theorem 2.4(ii). Since D0(X|Y; ξ) = D0(X|Y;η), D0(X|Y; ξ) minimizes the norm
‖ · ‖η. Hence by Lemma 2.4, A,C, F0 and G thus defined satisfy Theorem 2.4(ii). So by
Theorem 2.4 we obtain T+(ξ)(N + 1) = λT+(η)(N + 1), which implies (i). ¤

We shall analyze the special case where the additive noise flow satisfies the white
noise property. For that purpose, we define a norm ‖ · ‖ on the set LMF (X|Y) by

‖D(X|Y)‖ ≡
( N∑

n=0

n∑

k=0

d1∑

j=1

d2∑

`=1

Dj`(X|Y)(n, k)2
)1/2

. (2.11)

Immediately from (2.9) and (2.11), we have

Lemma 2.6. If a d2-flow η satisfies the white noise property, that is, T+(η)(N +
1) = I(N+1)d2 , then ‖D(X|Y)‖η = ‖D(X|Y)‖ for any D(X|Y) ∈ LMF (X|Y).
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Combining Theorems 2.1, 2.3 and Lemma 2.6, we obtain

Theorem 2.5. Let us fix any d1, d2 ∈ N, N ∈ N∗ with (N + 1)d2 < dimW and
let ξ be any non-degenerate d2-flow in W . Then, the following conditions are equivalent :

(i) T+(ξ)(N + 1) = λI(N+1)d2 for some λ > 0;
(ii) For any d1-flow X and any d2-flow Y in (MN

0 (ξ))⊥, the matrix function
D0(X|Y; ξ) minimizes the norm ‖ · ‖ in LMF (X|Y).

By Theorem 2.3, the minimum norm element of LMF (X|Y) with respect to the
norm ‖ · ‖ does not depend upon the white noise ξ. We denote it by D0(X|Y) and
call it the first kind of the minimum filtering matrix function of the flow X based upon
the flow Y. We remark D0(X|Y) satisfies (1.1) by construction. Further, we note that
D0(X|Yw) = D(X|Yw) (w > 0).

[2.2] In order to get an algorithm for calculating the matrix function D0(X|Y), we
define the flow ν+(Y) = (ν+(Y)(n); 0 ≤ n ≤ N) by

ν+(Y)(n) ≡ Y (n)− PMn−1
0 (Y)Y (n), (2.12)

where M−1
0 (Y) ≡ {0}. We define a matrix function V+(Y) = (V+(Y)(n); 0 ≤ n ≤ N)

by

V+(Y)(n) ≡ R(ν+(Y))(n, n). (2.13)

Then we know that the flow ν+(Y) satisfies the orthogonality property (2.14) and the
causality relation (2.15) with the flow Y:

R(ν+(Y))(m,n) = δm,nV+(Y)(n) (0 ≤ m,n ≤ N), (2.14)

Mn
0 (Y) = Mn

0 (ν+(Y)) (0 ≤ n ≤ N). (2.15)

Replacing Y by Yw in (2.15) and noting that Yw is non-degenerate for each w > 0,
we can uniquely find two matrix functions γ+(Yw) = (γ+(Yw)(n, k); 0 ≤ k < n ≤ N)
and P+(Yw) = (P+(Yw)(n, k); 0 ≤ k ≤ n ≤ N) such that

Y w(n) = −
n−1∑

k=0

γ+(Yw)(n, k)Y w(k) + ν+(Yw)(n), (2.16)

Y w(n) =
n∑

k=0

P+(Yw)(n, k)ν+(Yw)(k). (2.17)

We know from Theorems 4.1, 4.5 and 7.3 in [5] that these matrix functions γ+(Yw)
and P+(Yw) converge as w → 0 and that respective limits γ0

+(Y) and P 0
+(Y) satisfy

(2.16) and (2.17) with the replacement of Yw by Y. In particular, the former equation
is the forward KM2O-Langevin equation describing the time evolution of Y:
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Y (n) = −
n−1∑

k=0

γ0
+(Y)(n, k)Y (k) + ν+(Y)(n). (2.18)

By Theorems 4.5 and 7.3 in [5], γ0
+(Y) and P 0

+(Y) do not depend upon the white
noise flow ξ. We note that γ0

+(Yw) = γ+(Yw) and P 0
+(Yw) = P+(Yw) (w > 0). Further,

we know that





P 0
+(Y)(n, n) = Id2 (0 ≤ n ≤ N),

P 0
+(Y)(n, k) = −

n−1∑

`=k

γ0
+(Y)(n, `)P 0

+(Y)(`, k) (0 ≤ k < n ≤ N).
(2.19)

For each w > 0, by (2.15) with replaced Y by Yw, we can find the unique matrix
function C(X|Yw) = (C(X|Yw)(n, k); 0 ≤ k ≤ n ≤ N) such that

PMn
0 (Yw)X(n) =

n∑

k=0

C(X|Yw)(n, k)ν+(Yw)(k). (2.20)

Multiplying (2.20) by ν+(Yw)(k), we see from (2.14) that

Theorem 2.6. For each n, k (0 ≤ k ≤ n ≤ N),

C(X|Yw)(n, k) =
(

R(X,Yw)(n, k) +
k−1∑

`=0

R(X,Yw)(n, `) tγ+(Yw)(k, `)
)

V+(Yw)(k)−1.

Next, we shall obtain an algorithm for calculating the matrix function D0(X|Y) in
terms of the matrix functions C0(X|Y) and γ0

+(Y).

Theorem 2.7. For each n, k (0 ≤ k ≤ n ≤ N),
(i) A limit C0(X|Y) ≡ lim

w→0
C(X|Yw) exists,

(ii) D0(X|Y)(n, k) = C0(X|Y)(n, k) +
n∑

`=k+1

C0(X|Y)(n, `)γ0
+(Y)(`, k),

(iii) C0(X|Y)(n, k) =
n∑

`=k

D0(X|Y)(n, `)P 0
+(Y)(`, k).

Proof. By (2.16), ν+(Yw)(k) = Y w(k) +
∑k−1

`=0 γ+(Yw)(k, `)Y w(`) (0 ≤ k ≤
N). Hence, by (2.20), D(X|Yw)(n, k) = C(X|Yw)(n, k) +

∑n
`=k+1 C(X|Yw)(n, `)γ+

(Yw)(`, k) (0 ≤ k ≤ n ≤ N). Next, substituting (2.17) into (1.1) with Y replaced by
Yw, we see that C(X|Yw)(n, k) =

∑n
`=k D(X|Yw)(n, `)P+(Yw)(`, k). Thus, letting w

tend to 0, we find from Theorem 2.1 that Theorem 2.7 holds. ¤

By virtue of Theorems 2.6 and 2.7, we can obtain an algorithm for calculat-
ing the matrix function D0(X|Y) from the matrix function R(X,Y) and the system
{γ0

+(Y), V+(Y)}. We note that the latter can be obtained from the matrix function
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R(Y) ([6]).

[2.3] We shall consider any d1-flow X = (X(n);n ∈ N∗) and d2-flow Y = (Y (n);
n ∈ N∗) in a Hilbert space W . For each N ∈ N, we restrict the time domain of
both flows X and Y to the set {0, 1, . . . , N} and apply the results above. Then, by
virtue of Theorem 2.1(ii), we can construct the first (resp. second) kind of the minimum
filtering matrix function D0(X|Y) = (D0(X|Y)(n, k); 0 ≤ k ≤ n < ∞) (resp. C0(X|Y) =
(C0(X|Y)(n, k); 0 ≤ k ≤ n < ∞)) of the d1-flow X based upon the d2-flow Y such that

PMn
0 (Y)X(n) =

n∑

k=0

D0(X|Y)(n, k)Y (k) (n ∈ N∗), (2.21)

PMn
0 (Y)X(n) =

n∑

k=0

C0(X|Y)(n, k)ν+(Y)(k) (n ∈ N∗). (2.22)

We note that the same relations as in Theorems 2.6 and 2.7 hold for the d1-flow X
and d2-flow Y with time domain N∗.

3. A formula for calculating the non-linear filter.

We shall consider in this section any d1-dimensional square integrable stochastic
process X = (X(n);n ∈ N∗) and any d2-dimensional stochastic process Y = (Y (n);n ∈
N∗) defined on a probability space (Ω, B, P ). For any n ∈ N∗, we define the non-linear
information space Nn

0 (Y) for the stochastic process Y by

Nn
0 (Y) ≡ {Y ∈ L2(Ω, B, P );Y is Bn

0 (Y)-measurable}, (3.1)

where Bn
0 (Y) stands for the smallest σ-field generated by Yj(m) (0 ≤ m ≤ n, 1 ≤ j ≤ d2).

As an application of Section 2, we shall give a formula for calculating the non-
linear filters E(X(n)|Bn

0 (Y)), which are equal to the projection of the vector X(n) on
Nn

0 (Y) (n ∈ N∗):

E(X(n)|Bn
0 (Y)) = PNn

0 (Y)X(n). (3.2)

By taking account of Theorem 10.2 in [5] and Theorem 2.2 in [16], we shall give

Definition 3.1. A system {Y(q); q ∈ N} of multi-dimensional stochastic processes
is said to be a generating system of Nn

0 (Y) (n ∈ N∗) if
(a) each Y(q) = (Y (q)(n);n ∈ N∗) is a square integrable stochastic process (q ∈ N),
(b) {Y(q); q ∈ N} has a nest structure, that is, Y(q+1)(n) = t(tY(q)(n), ∗),
(c) Nn

0 (Y) = [{1}]⊕ [
⋃∞

q=1 Mn
0 (Y(q))] (n ∈ N∗).

Without Dobrushin-Minlos’ condition in [16], we shall prove the following theorem.

Theorem 3.1. There exists a generating system of Nn
0 (Y) (n ∈ N∗).

Proof. Define a d2-dimensional stochastic process arctan(Y) = (arctan(Y)(n);
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n ∈ N∗) by arctan(Y)(n) ≡ t(arctan(Y1(n)), . . . , arctan(Yd2(n))). Since it is a bounded
process, we can use the same idea as in [16] to construct a generating system for the
process arctan(Y). Noting that Nn

0 (Y) = Nn
0 (arctan(Y)) (n ∈ N∗), we find that the

above system is a desired one. ¤

Remark 3.1. If the process Y is square integrable, we can construct a generating
system such that Y(1) = Ỹ, where Ỹ = (Ỹ (n);n ∈ N∗) is defined by Ỹ (n) ≡ Y (n) −
E(Y (n)).

In the sequel, we shall fix any generating system. Applying the results in [2.3] of
Section 2 to the d1-dimensional flow X and the (dq + 1)-dimensional flow Y(q) in the
real Hilbert space L2(Ω, B, P ), we can construct the minimum filtering matrix functions
D0(X|Y(q)) and C0(X|Y(q)). Applying (2.21) and (2.22) to the flows X and Y(q) and
letting q tend to ∞, we obtain from the property (b) and (c) of generating system that

Theorem 3.2. For any n ∈ N∗,

(i) PNn
0 (Y)X(n) = E(X(n)) + lim

q→∞

n∑

k=0

D0(X|Y(q))(n, k)Y (q)(k) in L2(Ω, B, P ),

(ii) PNn
0 (Y)X(n) = E(X(n))+ lim

q→∞

n∑

k=0

C0(X|Y(q))(n, k)ν+(Y(q))(k) in L2(Ω, B, P ).

For each n ∈ N∗, we define the non-linear filtering error matrix e
(nl)
+ (X|Y)(n) of

the random variable X(n) conditioned on the σ-field Bn
0 (Y) by

e
(nl)
+ (X|Y)(n) ≡ E((X(n)− E(X(n)|Bn

0 (Y)) t(X(n)− E(X(n)|Bn
0 (Y)))). (3.3)

We shall give the following formula for calculating the non-linear filtering error matrix.

Theorem 3.3. For any n ∈ N∗,

e
(nl)
+ (X|Y)(n) = R(X)(n, n)− E(X(n)) tE(X(n))

− lim
q→∞

{ n∑

k=0

C0(X|Y(q))(n, k)V+(Y(q))(k) tC0(X|Y(q))(n, k)
}

.

Proof. By Theorem 3.2(ii), we see that e
(nl)
+ (X|Y)(n) = R(X)(n, n) −

E(X(n)) tE(X(n)) − limq→∞
∑n

k=0 C0(X|Y(q))(n, k)E(ν+(Y(q))(k) tX(n)). Further,
noting that ν+(Y(q))(k) ∈ Mn

0 (Y(q)) for any k (0 ≤ k ≤ n), we see from (2.22) that
E(ν+(Y(q))(k) tX(n)) = V+(Y(q))(k) tC0(X|Y(q))(n, k), which proves Theorem 3.3. ¤
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