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Abstract. Popa proved that strongly amenable subfactors of type I11; with the
same type II and type III principal graphs are completely classified by their standard
invariants. In this paper, we present a different proof of this classification theorem
based on Connes and Haagerup’s arguments on the uniqueness of the injective factor
of type I11;.

1. Introduction.

One of main problems in subfactor theory, initiated by V. F. R. Jones ([18]), is
classification of subfactors, and significant contribution to this problem has been made
by S. Popa from an analytic viewpoint. The main theorem in [32] says that strongly
amenable subfactors of type II; possess the generating property, showing especially that
such subfactors are completely classified by their standard invariants. Furthermore,
in [31], [33], he considered notions of approximate innerness and central freeness for
subfactors to obtain classification from a different viewpoint and indeed showed that
strongly amenable subfactors with these two properties can be classified by the same
invariant (see [31] for the type II; case and [33] for the type III case).

The most important application of the main result in [33] is classification of strongly
amenable subfactors of type III;. In fact, Popa proved the approximate innerness and
central freeness for inclusions of approximately finite dimensional (AFD) type III; sub-
factors with the identical type II and type III principal graphs. We remark that the
assumption on the graphs here is automatic for subfactors of finite depth as was shown
in [16] for example.

The main purpose of this paper is to present an alternative proof for the above-
mentioned classification result for subfactors of type III; by a different approach (al-
though Popa’s classification of strongly amenable subfactors of type II; in [32] also plays
a crucial role in our arguments). Our approach is based on [6] and [11] instead, where the
uniqueness of an injective factor of type III; is shown. More precisely, in [6] A. Connes
showed that an injective factor of type III; with the trivial bicentralizer is necessarily
isomorphic to the Araki-Woods factor of type III;. Then, in [11] U. Haagerup proved
the triviality of the bicentralizer for every injective factor of type III; (and hence the
desired uniqueness). Roughly speaking, this property means the existence of states with
large centralizers. Also see [41], or [37, Chapter XVIII] for their theory.
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To be able to employ the arguments in [6], [11] in the subfactor setting, we have to
begin by formulating a “relative bicentralizer” and its triviality. In [33] as a crucial step
Popa proved the existence of states with large centralizer for a certain class of subfactors
of type III;. His method is similar to that in [11], and this result corresponds to the
triviality of the relative bicentralizer in the current approach.

In [6], after reducing the uniqueness problem to the approximate innerness of modu-
lar automorphisms, Connes established the latter (under the triviality assumption of the
bicentralizer). In our classification problem (for subfactors of type I11;) it is also possible
to reduce the problem to the approximate innerness (in the subfactor sense) of modular
automorphisms (see the last part of §3).

The key fact for the proof for the above-mentioned approximate innerness in [6] is
the equivalence between the semi-discreteness introduced by Effros and Lance ([8]) and
the injectivity ([5], see also [38]). Though a notion of semi-discreteness is missing in the
subfactor setting, the Effros-Lance type characterization of amenability for subfactors
of type II; was worked out by Popa. His characterization is in terms of symmetric
enveloping algebra ([35]) and was used to study various aspects of amenability and
rigidity results for subfactors. What we need here is a similar characterization in the
type III; subfactor setting, and the so-called Longo-Rehren construction ([26]) as well as
symmetric enveloping algebras will be used. These will be used to show the approximate
innerness of modular automorphisms in the subfactor setting.

The paper is organized as follows: In §2 basic facts on classification results on
subfactors and their automorphisms are collected. In §3 our classification problem (for
subfactors of type I11) is reduced to that for torus actions on subfactors of type III (0 <
A < 1). More precisely, we observe: what is really needed is the approximate innerness of
modular automorphisms. In §4 we consider a relative version of the bicentralizer together
with its fundamental properties. In §5 construction of symmetric enveloping algebras for
type I1I; subfactors is discussed, where the relationship to the Longo-Rehren construction
has to be clarified. In §6 a (type III;) analogue of the Effros-Lance type characterization
for strongly amenable subfactors is obtained in terms of symmetric enveloping algebras.
In §7 the desired approximate innerness of modular automorphisms is established based
on this characterization and hence the main result (Theorem 2.2) is proved.
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Kawahigashi, Professor Kosaki and Professor Ueda for helpful suggestions on this work.
He is also grateful to the editor and the referee for various comments on this paper.
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2. Preliminaries and notations.

Let Zo, Zx, %~ be the injective factors of type I3, type III, (0 < A < 1) and type
III; respectively. (However we remark that we never use the uniqueness of an injective
factor of type III; in our argument.) Our standard reference for general theory of von
Neumann algebras is [37], for subfactor theory, [9] and [22], and for sector theory, [15]
and [25].
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2.1. Main theorem.

First we recall Popa’s classification results on strongly amenable subfactors in [32],
[31] and [33].

Let .4 C .# be an inclusion of factors with [.# : A4 < oo, & the minimal
conditional expectation for A C #, and N C M (=: My) C M1 C My C --- the
Jones tower for A4 C .# with the k-th Jones projection ey € .#j. (Throughout this
paper, we only deal with minimal conditional expectations in the sense of [13], and
inclusions of type II factors are always extremal in the sense of [32] by either assumptions
or constructions.) By definition, the standard invariant for 4" C .# is the lattice of its
relative commutants {#Z N A }i<;.

Take a tunnel --- C A, C --- C M = N C M for & C #. We define
N C M =N\ (M OAN) TN (A N A, and call it the model inclusion.

Popa introduced several properties related to amenability of subfactors. In this
paper, we say the standard invariant of .#° C .# is amenable if its principal graph
satisfies the Fglner type condition in [31, Definition 3.1], ergodic if A45' and .Z5* are
factors, and strongly amenable if it is amenable and ergodic.

Let A C . be an inclusion of AFD factors of type 1I; with a strongly amenable
standard invariant. In [32], Popa showed that .#° C .# has the generating property,
i.e, there exists a choice of a tunnel --- C A, C --- C M = A C .# such that
N C M = N C . Especially, this means that strongly amenable inclusions of
AFD factors of type II; can be classified by their standard invariants.

In [31] and [33], Popa gave another classification theorem as follows.

THEOREM 2.1 ([31, Theorem 4.1], [33, Theorem 5.1]).  Let A C # be an ap-
prozimately inner, centrally free, strongly amenable subfactor with N = N ® Xy. Then
N C M is isomorphic to (N C M) @ N .

When A4 and .# are AFD factors of type II;, the above theorem gives an alternative
proof of the main theorem in [32]. (In fact, it is easily shown that 45" C .Z*' has the
generating property (see [32, Remark 1.4.4]), and A5 C .45 = N5 @ By C M @ R
by the relative McDuff type theorem [2].) In the rest of this paper, if we say a strongly
amenable subfactor, we always assume involved factors are injective (hence AFD).

If /7 C A is an inclusion of AFD type I1I; factors with identical type II and type
IIT principal graphs, then .4 C .# is shown to be approximately inner and centrally free
in [33]. These facts imply

THEOREM 2.2. Let A C M be a strongly amenable subfactor of type 11, with

the identical type II and type III principal graphs. Then A C A is isomorphic to
N QR C M™ R Ko -

As explained in Introduction, the aim of this paper is to show Theorem 2.2 based
on the arguments in [6] and [11] instead.

2.2. Automorphism groups of subfactors.

Let Aut(.#,./4") be the set of automorphisms of .# preserving the inclusion globally.
Every a € Aut(#,./") can be extended to Aut(.#};) canonically by setting a(ey) = ex.
The inner automorphism group of A" C 4 is defined by Int(#, #") := {Adu|u €
U(A)}. Tt is easy to see that the extension of Adu € Int(.#Z, .A") to .4 is also given by
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the same unitary Ad u. We denote by N C Ml =N xyoRC M X y0060 R the common
continuous crossed product of a subfactor A4~ C .Z of type III. For « € Aut(.#), we
denote by & the canonical extension of « in the sense of [12].

DEFINITION 2.3 ([24, Section 5]). Define ¢(«) := {a|.zn.u, }72o- We call &(a)
the Loi invariant for a.

DEFINITION 2.4 ([3, Definition 1], [30, Definition 1.5.1]). For a € Aut(.#,./),
we say « is strongly outer if a satisfies the following property; if a € |J, .}, satisfies
a(x)a = ax for every x € ., then we have a = 0.

The strong outerness of automorphisms can be characterized by the language of
sector theory as follows.

THEOREM 2.5 ([3, Theorem 2], [20, Theorem 3]). Let A C .# be an inclusion of
factors of type III, and v Longo’s canonical endomorphism. Then a is non-strongly outer
if and only if o appears as an irreducible component of ¥* for some k > 1.

DEFINITION 2.6 ([39, Definition 3.1]). Let .#° C .# be a subfactor of type III.
For aw € Aut( A, V), we say « is strongly free if « satisfies the following property; if
a € |, A satisfies &(x)a = ax for every x € .4, then we have a = 0.

We denote by Cut, (A, A") (resp. Cnte(4,.4")) be the set of all non-strongly outer
(resp. non-strongly free) automorphisms. Both sets are normal subgroups in Aut(.Z, .4").

When A = 4, we have Cnto (A, #) = Int(#) and Cnts( A, #) = Cnt,(A). Tt
is well-known that every element in Cnt,(.#) is expressed as the composition of an inner
automorphism and an (extended) modular automorphism. A subfactor analogue of this
fact has been obtained by Kosaki as the following theorem.

THEOREM 2.7 ([21, Theorem 19]). Let .4 C .# be a subfactor of type III, A # 0,
and « a non-strongly free automorphism for A4 C .#. Then a = 3o o{ for some non-
strongly outer automorphism (.

We recall several important definitions. The approximately inner automorphism
group Int(.#,./") is the closure of Int(.#, /") in Aut(.#) equipped with the usual
u-topology. Define C(, N) := {{x,} € (N, N)|lim,_ ||[¢, z,]]] = 0 for every
Y € My}. By definition, an automorphism « € Aut(.#,.4") is centrally trivial if and
only if {a(z,,) —x,} converges to 0 o-strongly* for any {z,,} € C(.#,.#"). We denote by
Cut(.#,.4") the set of all centrally trivial automorphisms. Note that for a IT; subfactor
N C M, {xy}isin C(A,N) if and only if {||[xn,a]||2} converges to 0 for every a € .

2.3. Automorphism groups of strongly amenable subfactors of type II.

In the study of automorphism groups of operator algebras, the most important
classes of automorphisms are approximately inner ones and centrally trivial ones. For
strongly amenable subfactors of type II, these two classes are characterized in the terms
of the Loi invariant and non-strong outerness.

THEOREM 2.8 ([24, Theorem 5.4]). Let A C .# be a strongly amenable subfactor
of type II,. Then Ker® = Int(.4,.¥).
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COROLLARY 2.9 ([40, Theorem 4.6]). Let A C .# be a strongly amenable sub-
factor of type Il.. Then Ker ® N Kermod = Int(.#,.+).

THEOREM 2.10 ([30, Theorem 1.6]). Let A C .4 be a subfactor of type II,. Then
we have Cuty (A, N) C Cot( M, N). Moreover if N C M is strongly amenable, then
we also have Cnto (A, N ) = Cat( A, N).

Here we give a proof of Theorem 2.10 for reader’s convenience, which is different
from one in [30]. First we prepare

LEMMA 2.11. Let # DN DD N D - be a tunnel, and o € Aut(A, N).
If sup{||a(u) — u||2ju € U(A%)} < 1 for some k, then a is non-strongly outer.

PROOF. Set K := conv{a(u)u*|u € U(A%)}, where the closure is taken in the o-
weak topology. Then K is a o-weakly compact set. By the lower semicontinuity of || - ||2
in the o-weak topology, there exists a unique a € K such that ||a||2 := min{||b||2|b € K}.
Moreover by the assumption, 0 ¢ K, and hence a # 0. Since [|a(v)av*|2 = a2,
a(v)a = av holds for every v € U(A%) by the uniqueness of a. This implies that « is
non-strongly outer. O

PROOF OF THEOREM 2.10. First assume that o € Aut(.#,.4") is non-strongly
outer. Then we can find a non-zero a € .#), such that o(xz)a = azx holds for every
x € M. Take {x,} € {>°(N,.#) which is central in .#. Then ||[x,,a]|l2 — 0 as n goes
to infinity. Then {o(z,)a — xna} = {ax, — z,a} converges to 0 strongly, and so does
{o(xn)aa* — zyaa*}. Since aa* € A’ N My, E_4(aa*) is a non-zero scalar, where E 4 is
the minimal conditional expectation. Hence we get lim,, o o(z,) — 2, = 0 strongly.

Next we assume that A4~ C . is strongly amenable. We fix a tunnel --- C A C
coo C M =N C A with the generating property.

Let o be a strongly outer automorphism. For every k, we can choose uy € U (M%)
such that ||o(ur) — ugll2 > 1/2 by Lemma 2.11. By the generating property, {ux} is
central in .#. Then liminf ||o(ug) — ugll2 > 1/2, showing that o is not centrally trivial.

(]

COROLLARY 2.12 ([39, Theorem 3.4]). Let A C .# be a strongly amenable sub-
factor of type Il. Then Cuto (A, N) = Cot(A,.N).

2.4. Inclusions of factors of type IIIx, A # 0.

Let 2 C & be an inclusion of factors of type IIIy, A # 0. When 0 < X\ < 1,
we assume that 2 C &2 has the common discrete decomposition, i.e., there exists an
inclusion of factors B C A of type Il, and an automorphism 6 € Aut(A4, B) with
mod (#) = A such that 2 C & is isomorphic to B xg Z C A xg Z. We refer to Yp o
(resp. 9¥p.a) as the type III standard invariant (resp. type II standard invariant) for
2 C Z. We also use the notation g797 2 to denote the type II standard invariant for
2 C &. For subfactors of type III;, we use similar notations by considering the common
continuous decomposition.

We need to clarify the relationship between ¥4 o and ?!7@ 9.

PROPOSITION 2.13.  We have 2' N P, = (B' N A)? for every k > 0. Hence
Yp. 2 =94 p holds if and only if § acts trivially on B' N Ay, for every k > 0.
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See [24, Proposition 3.1] for 0 < A < 1 case and [23, Corollary 6] for A = 1 case.

REMARK. The type Il standard invariant and the type III one coincide if and only
if 2 C & has the same type II principal graph and type III principal graph.

The coincidence of the type II principal graph and type III one is characterized by
Longo’s canonical endomorphism v for 2 C 2.

THEOREM 2.14 ([16, Theorem 3.5]). The type II principal graph and type III prin-
cipal graph of P C Py coincide if and only if of never appears as an irreducible com-
ponent of ¥¥ for any k > 1 and t ¢ T(2?).

By combining the above theorem with Theorem 2.5, we get

COROLLARY 2.15.  The type II principal graph and type III principal graph of
P C Py coincide if and only if of is strongly outer for every t € T(2P).

By Corollary 2.9 and Corollary 2.12, we get the following classification result for
strongly amenable subfactors of type III, 0 < A < 1.

THEOREM 2.16 ([24, Theorem 61~}) Let 2 C & be a strongly amenable subfactor
of type III, 0 < A < 1, with 9% 9 = Y5 9. Then 2 C & is isomorphic to 25 @ Z) C
Pt ® R.

We have the following characterization of Int(#, 2) and Cnt(Z, 2).

THEOREM 2.17 ([39, Theorem 3.8], [40, Theorem 4.6]). Let 2 C & be as in The-
orem 2.16. Then we have Int(2, 2) = Ker #NKermod and Cnt(Z, 2) = Cnt;(Z2, 2).

2.5. Longo-Rehren construction.

The Longo-Rehren construction was introduced originally in [26], but we need the
crossed product type approach worked out in [27].

Here we collect basic definitions. Define Sect (.#) := End(.#)/ ~, where ~ is the
usual unitary equivalence. We denote by [p] the equivalence class of p. The statistical
dimension d(p) is defined by /[# : p(.#)]. Then d(p) is additive and multiplicative. For
p,0 € End(#), the intertwiner space (p, o) is defined by {a € A|o(x)a = ap(z),z €
M. T pis irreducible, ie., p(#) N .# = C1, then (p,o) has an inner product by
(v,w)y = w*vl(e C1). Let [p] be the conjugate sector of [p]. Then there exist two
isometries v € (id, pp) and o € (id, pp) such that v*p(v) = 1/d(p) and v*p(v) = 1/d(p).
The standard left inverse ¢, of p is given by ¢, () = v*p(x)v.

Let A = {[ps]}ier be a set of irreducible sectors of .# closed under conjugation
and irreducible decomposition of multiplication. We assume that I is at most countable.
The index set I is a fusion algebra in the sense of [14, Definition 1.1]. Let j 4 be the
canonical conjugate linear isomorphism from .# onto .#Z°PP. Put p:= p®j 40 poj;/ll €

End(.4 ® .4°PP).

. . oA NS
Set NJ'; = dim(pg, pip;), and d(i) := d(p;). Let {v(};)}.21 € (pk,pip;) be an
orthonormal basis, and define the canonical intertwiner "Df ; € (Px, pipj) as follows.
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o
@ﬁj — d(;)(Z()J) ezzlv(ﬁj)e ®j///(v(?,j)e)'

k

The canonical intertwiner ¢;’; is independent from the choice of an orthonormal basis.

LEMMA 2 18.  The canonical intertwiners satisfy the following relations.
(1) 3o 050 e = Do P (073)0 im (€ (Pv, pipjbr))-
(2) 2, 0501 —Z pi(0 ml) 07 (€ (Prp1; pibj))-
(3) okl = 5kl )d(J)Nk

4,5 71,] (k)

See [26] for proof.

COROLLARY 2.19.  We have 0}, = pZ(A )0 fl— and 01 = 0% p (0 (Afl)
Proor. If we put j = 0 in Lemma 2.18(2), we get the first equation. In a similar
way, we get the second one by putting k£ = 0. (|

In what follows, we use Lemma 2.18 and Corollary 2.19 frequently.
Set A := .# @ #°°°, H; := L?(A), j € I, and define an action 7 of A and an

operator V; on H := @ .., H; as follows

jerl

(m(2)€) (@) = = pi(x)€(3), = € A,

PILANC

k

By using Lemma 2.18 and Corollary 2.19, we get the following relations.

LEMMA 2.20. We have the following relations.
(1) ViV =224 W(@f,j)vk'
(2) Vim(a) = m(pi(a))Vi, a € A.
(3) Vi = m(077)Vs.

DEFINITION 2.21. Let A(A) be the von Neumann algebra generated by m(A) and
{Viticr. We call m(A) C A(A) the Longo-Rehren inclusion associated with A.

In fact, A(A) is a factor. In what follows, we identify m(A) with A, and often
omit w. When A is arising from the irreducible decomposition of 4™, n > 1, where
~ is Longo’s canonical endomorphism for a subfactor A4 C #, we say A C A(A) as
the Longo-Rehren inclusion for .4 C .#. By Lemma 2.20, {}_m(a;)V;|a; € A, a; =
0 except for finitely many i} is a dense x-subalgebra in A(A).

Let P be the projection from H onto Hy, and define &4(x) := PxP* for z € A(A).
Then &4 is a conditional expectation from A(A) onto A as in the case of usual crossed
product construction. Set a; 1= &4(aV;*), a € A(A). Then we have the formal expansion
formula a =}, 7(a;)V;.

Next we discuss on an operator valued weight from A @ B(¢2(I)) to A(A). (Note
A(4) is a subalgebra of A ® B(¢2(I)).) To do so, it is convenient to express m(a)V; in
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the “matrix form”. Let {e;;}; jes be the matrix units for B(¢%(I)). Then it is easy to
see m(a) =3 ;cr pia) ®ezi, and Vi =37, 0%, @ ejx by the definition of m(a) and V;.
Then we have the expression 7(a)V; =3_,; p; (a)ﬁfl ® ej- )

Let 9 be a #-subalgebra of A ® B(¢%(I)) generated by {z ® e;j|z € A}. Set V; :=
ZNE ﬁfj ® eg,j, and define .F 44 as follows.

Faa)(x ZVpZ®1d Wik r e M.

Then .Z4(4) is a normal operator valued weight from A @ B(¢*(I)) to A(A) with the
domain 9. For example, we have the following for y ® e;; € M.

J A(A ®61] ka Pk ®6”)

_ Ix ~ m
= § Vi PR (Y) VL @ eim
k,l,m

=Y @)k (Y)Y © em
k,l,m

= S it (k) e
k
—Zm Dby (Zpl (05 6lk>®elm

A k ~m
= g oi( Hl)z 07 )0k @ eim
k,l,m

It is not difficult to show F4a)(a(y ® eij)b) = a.Fa(a)(y @ ei)b for a,b € A(A). The
special case y = 1, i = j implies F4(a)(1®ey) = d(i)*. In fact A® B(¢*(I)) is the basic
construction for 7(A) C A(A), and F4(,) is the dual operator valued weight for &4.

We will construct a common Jones projection e 4 for A4 C .# and A °PP C .#°PP
inside of A(A). Let ¢ be the inclusion map A4 — #. Let Iy := {i € I|p; < 7},
{af} C (¢, pst) an orthonormal bases, and d; := >, af ® j z(a$). Then e 4 is expressed
as ey =M : N cq Vd(i)ar Vi, See [27], or Append1x A.

Conversely, let {w§} C (pi,7) be an orthonormal basis, and set w; := > w§ ®
Jaw(wg). Then we have V; = Cw;*e_ywy for some 0 # C € C. These relations show
Nlg( A, M7, {Vi}) = Alg( A, PP e ).

Next we recall the extension of automorphisms of a subfactor to the Longo-Rehren
inclusion discussed in [28]. Let o € Ker®. Then we can find a half braiding u(«, p) €
U(A) in the sense of [17]. Namely u(a, p) satisfies the following.

(i) aopoat = Adu(a,p)p,
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(it) u(af, p) = a(u(B, p))u(a; p),
(iif) For v € (p3, p1p2), u(ev, p1)p1(u(a, p2))v = a(v)u(a, ps). B
We briefly sketch how to find u(w,p). Fix isometries R € (id_4,vy) and R €
(idy,y|l.4) such that R*R = [.#, 4] 2 and R*y(R) = [#, #] 2. Next we fix
u € U(A) such that a« o yoa™! = Aduy and u*a(R) = R. Then w'a(R) = R
holds automatically. Set uy, := uy(u)---v*~1(u). Then a0 v* 0 o=t = Aduyy holds.
Take an isometry v € (p,v*), and define u(a, p) by u(a, p) = a(v*)ugv. Then
a € Ker @ assures that u(a, p) is well-defined. We can verify u(cq, p) satisfy the above
conditions (i), (ii) and (iii) in a similar way as in [28].
We can extend o ® id € Aut( A4 @ .#°PP) to a Mid € Aut(A(A)) by setting

a Bid(V) = (u(a, pi) ® DV

In fact, let U, € B(L?(.#)) be the standard implementing unitary for a, and define
V e U(H) by

(VE)(i) := (ula, pi)"Ua @ 1)E(0).

Then AdV gives an automorphism of A(A), and satisfies the above property.
In a similar way, we can extend a®a°PP € Aut(A# @.4°PP) to aaPP € Aut(A(A))
by

alaP(V;) = (u(a, pi) @ j.a(ula pi))) Vi

Both extensions fix the common Jones projection e_y .
We mainly apply the above extension to the modular automorphism ¢;. In this
case, u(of, p) is given by dp="(Dy : Dp o ¢,);.

3. Torus actions on III, subfactors.

In this section, we will discuss how to reduce our classification theorem to that of
torus actions on strongly amenable subfactors of type III,.

PROPOSITION 3.1.  Let A C A be a subfactor of type III with 9 4 v = gzvj{“/i/.
Fiz T >0 and set 0 :=of. Then 2 C P := N %9 Z C M %9 Z 1is a subfactor of type

I, T = =2, withGg.x =990 =92 0.

PROOF. By [6, Lemma 1.1], & and 2 are type III, factors. Since 4 4, » = gﬁ7ﬂ,
0¥ is strongly outer for any non-zero T' € R by Corollary 2.15. We also have o¥ € Ker®.
Thus Gy v = %gz 2 holds. Next we investigate E{@ 2. By standard argument, we can
identify 9 C P with N X5 Z C M X5 Z. In this case, 0 is inner. Hence

DCP2NxGZC M x5Z=N @ L>T)C .M L™T),

showing Y 4 v =Y o = fg@,g- -
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PROPOSITION 3.2. (i) Let 2 C £ be a strongly amenable subfactor of type III,
withY» o = Eggo,g, and 0 € Aut(Z2,2) an automorphism such that 2 x9 Z C P X9 Z
is a subfactor of type I\ with Y» 9 = Gpuyz, 2%,z = g@NeZ,QXeZ- If the dual action
0, is strongly free for every 0 £t € T, then 0 is outer conjugate to id e ® o, where o is
an aperiodic automorphism of the injective type II; factor Zy.

(ii) Let 2 C &2 be as in (i), and 6 a strongly free action of T such that 2 x¢T C P xyT
is a subfactor of type I\ with Y9 2 = Gpu,T,2%,T = ?gxeﬂgwrp. Then 6 is cocycle
conjugate to idgp ® 7.

PRrROOF. (i) If the approximate innerness and central freeness of the action (0, Z) is
known, then we can apply [24, Theorem 4.3(2)]. By Theorem 2.17, we have Int(#?, 2) =
Ker® N Kermod and Cnt¢(Z2, 2) = Cnt(#,2). Hence we only have to prove 6" ¢
Cnts (2, 2) for 0 #n € Z and 6 € Ker #NKermod. Since £ xg Z and & Xy Z are type
III, factors, € is an outer action of Z, and mod @ = id. (See [37, Lemma XVIII.4.18],
for example.) Next we compute 2’ N (), xg Z). Then it is elementary to see

2N (P, xg Z) = {Zakukak € P, za = ap0* () for every z € Q},
k

where u is the implementing unitary. Set I := {a € 2,|ra = af*(z) for every z € 2}.
Then I} is a finite dimensional Hilbert space, and 6 acts on I}’ as a unitary operator in
the natural way. We claim that the action of § on I} is trivial. Suppose the converse
holds. Then we can find an eigenvalue 0 # ty € T of 8, and an eigenvector a for
to. Hence #(a) = e°a holds. We will show that 6, is non-strongly outer. We have
0, (z)au® k= qubz for z € 2. We also have 0, (u)au® k=
e~ f(a)utu = auFu. Hence Oy, (z)au* = auFz holds for every z € 2 xg Z, and this
implies that éto is non-strongly outer, and hence non-strongly free by [21, Theorem 17].
This contradicts the assumption on 6. Hence 6 acts on 17} trivially. This holds for every
k and n, and hence this especially implies 6 € Ker @ if we consider the case k = 0.

Next we compute (2 xg Z)' N (P, X9 Z). Since 0 acts on I} trivially, (2 xg Z)' N
(Pn x9 Z) = {3, aruflay € I}, Since we assume Yo o = Ypw,2,9x,2, We have
I = {0} for every non-zero k € Z and n > 0. Hence 6 is a strongly outer action of Z.
In a similar way as above, we can show that 6 is a strongly free action of Z.

(ii) This can be shown by using (i) and the Takesaki duality [36]. O

= zau® = ab*(x)u = e oyqu

k

REMARK. In Proposition 3.2(i), we assume strong freeness of 0,. If we do not have
this condition, then Proposition 3.2(i) may fail. If 6 is a non-strongly outer action such
that ~,(6)™ # 1 for all non-zero n € Z, where ~,(0) is the higher obstruction in [19],
then the standard invariant does not change by taking the crossed product. However the
author does not know whether such subfactors exist or not.

Let A4 C A and 2 C £ be as in Proposition 3.1. Let .Z be a type III; factor,
and g a faithful normal state of .Z. Set 00 .= o7 and L = Xy Z. Then

o = ét ® éﬂ) is a strongly free action of T on 2 ® ¥ C & ® .Z with mod oy = id.

LEMMA 3.3. The crossed product (2@ L) xo T C (P @ L) %, T is a subfactor
of type III, and the standard invariant of this subfactor is equal to that of 2 C .
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PROOF.  As in the proof of [6, Lemma I.1], we can identify (2 ® &) x, T C
(2@ L) %o T and (N @ L) X _evvo Z C (M @ L) N _voe Z, which is a subfactor of
type III. Moreover since A ® % TC M R L has the same type III and type II standard
invariants, so does (A ® .Z) X gz %0 ZC (ML) X g2 @%0 Z. (See Proposition 3.1) O

When A C .# is strongly amenable and . = %, in Lemma 3.3, we can apply
Proposition 3.2 since a4 is strongly free for ¢t # 0. Hence « is cocycle conjugate to id » ®4.

PRrROPOSITION 3.4. Let A C A be a strongly amenable subfactor of type III;, and
2 C & as in Proposition 3.1. If 6, is cocycle conjugate to 6, ® idg, ® 6y, then N C A
is isomorphic to N Q@ Boo C M @ Roo

Proor. By Theorem 2.16, 2 C £ is isomorphic to At @ Zy C A" @ #Z,. On
one hand, idg, ® 6, is cocycle conjugate to 9(0) ® 9(0). On the other hand 6, ® é@t)
is cocycle conjugate to idg ® 64, and hence cocycle conjugate to id gz« ® idg, ® 6¢.
Therefore

0 ~ 0, ®idgp, ® 64
~ b 200 @6
o A A0)
~id_yst ®1dg)\ X o ®9t

holds. By the Takesaki duality, we get A C M = N5 Q@ Roo C M** @ R O

Thanks to Proposition 3.4, all we need for classification of type III; subfactors is the
cocycle conjugacy of 0, to 0, ® idg, ® 6. However, this follows from the following two
conditions by the same argument as in [6].

) N CH =N QA C MR RN,

(2) of € Int(A,.N).

According to [37, Chapter XVIII], a subfactor satisfying the condition (1) is called
a relatively A-stable subfactor.

We sketch how to deduce ét = ét ® idg, ® 04 from the above conditions.

Let ¢ be a periodic state on Zy. By (1), we may assume 6 = 05 Q07" = 0r ®idg, .
This implies 6; ~ 6, ®idg, . Also by (1), we have N C A = N @Ay C M @Hy. Hence
we can find a centralizing sequence {u,,} such that u2 = 0 and u}u, + u,u’ = 1. Since
uy, can be chosen in %, we can assume oy (uy,) = up. By (2), there exists {v,} C U(A)
such that of. = lim,, oo Adv,,. Let U be the implementing unitary in (A ® %) X9 Z.
Define wy, := u, (v @ 1)U € (</V ® o) Xg Z. Then {w,} is a centralizing sequence of
(///@%0) xg Z. We have w? = 0, w,w}, + wiw, = 1 and Hf(wn) = e'*w,,. Thus we get
0, = 0, ® 6, in a similar way as in [37, Lemma XVIIL.4.22].

Moreover the condition (1) follows from the condition (2). In [6, Theorem II.2],
Connes gave the “local” characterization of property L [1]. It is not difficult to translate
[6, Theorem II.2] to subfactor case. For readers’ convenience we prepare a subfactor
version of [6, Theorem II.2].



970 T. MASUDA

THEOREM 3.5. Let A C M be a subfactor of type III. Then N C M is rela-
tively A-stable if and only if the following holds. For any € > 0, faithful normal states
P11, 5 on on M, there exists a non-zero x € N such that

I(AZ, = AD)ag|? < e pila™a),

where £; € L2(M )4 is the representing vector for ¢, i.e., pj(x) = (x&;,&;).
The arguments in [6, Theorem II.4] together with this result yield

THEOREM 3.6. Let A C B be a subfactor of type III, (0, Z) an approximately
inner, outer action on A C B. If A xg Z C B xg¢ Z is relatively A-stable, then so is
ACB.

In our case, 2 C & = N X9 Z C M Xy Z is obviously relatively A-stable due to
Theorem 2.16, thus so is .4 C .# under the condition (2). Therefore the rest of this
paper is devoted to show the approximate innerness of modular automorphisms (i.e., the
condition (2)).

4. Relative bicentralizer.

Let A4 C .# be a subfactor of type III; with finite index and &y the minimal
expectation.
As an analogue of [11], we introduce a notion of the relative bicentralizer for .4 C

M.

DEFINITION 4.1. (i) Let ¢ be a faithful normal state of .Z with ¢ o &y = . Set
Cl0) 1= {{n} € (N, N )| limy oo s 9]l = O
(ii) Define B(¢p) as the set of a € .# such that x,a — ax,, converges to zero o-strongly
for every {z,} € C(p). We call B(p) the relative bicentralizer of ¢.

It is clear that A" N.# C B(p). It is also easy to see B(p) C A N4 since A, is
embedded in C(p) as constant sequences. Hence if A" N.# = A N .4, then we have
B(p) = A" N This condition is satisfied as long as A4~ C .# is the tensor product of
a type II; subfactor and %, for example.

We collect basic facts on the relative bicentralizer.

Set Cy(a,0) = conv{u*aulu € U(A), ||[u, ]| < d}, where the closure is taken in
the o-weak topology.

LEMMA 4.2.  Fora € .4, a € B(p) if and only if {a} = 55 Cyx(a,d).
PROOF. The same proof as in [11, Lemma 1.2] works with obvious changes. O

As in [11, Proposition 1.3], it is shown that B(y) is a von Neumann subalgebra in
A by the above lemma.

PROPOSITION 4.3.  Following four conditions are equivalent.
(i) Blo)=A"NA.
(if) Cpla, )N A" N A # D for every a € A and every § > 0.



Classification of subfactors of type I 971

(iil) E%,, 4 (a) € Cy(a,d) for every a € A and 6 > 0.
(iv) Yo E¥,, , € comv{upu*|u € U(N), ||[u, ¢]|| < &} for every o € My and 6 > 0.

PrOOF. (i)=(ii). Put Cy(a) := N5 Cp(a,d). Then Cy(a) is a o-weakly compact
convex set, and Cy,(a) # & since a € C,(a,d) for every §. Let HH, be the completion
of .# with ¢-norm. Then Cy(a) is a norm closed convex subset of §),. Hence there
exists a unique element b € Cy,(a) with [[b,| = min{||z{, |||z € Cy(a)}. If o’ € Cy(a,d),
then Cy(a’,0) C Cy(a,20). Hence Cy(b) = NssCop(b,0) C Nsso Copla, 20) = Cpla). If
([, ][ <6, then [lu*bul?, < ||b]|Z + [|b]|2. By the lower semicontinuity of p-norm in
the o-weak topology, ||z||2 < [|b]|2 + d[b]|2 for every x € C,(b,8). Hence [lz[|?, < [[b]]2
holds for z € Cy(b). Since x € Cy,(b) C Cy(a), we get = b, and hence C,(b) = {b}
holds. By Lemma 4.2 and the assumption, we have b € B(p) = A" N ..

(ii)=-(iii). First note that .4/ N.# is finite dimensional. So the sets Cy(a,d)NA"N
M, 6 > 0, form a decreasing family of nonempty compact sets. Thus their intersection
is also non-empty. Hence there exists b € C,(a) N A" N .. For every u € U(A") with
l[u, ]| <6 and x € A" N.A, we have

|p(u”aur) — p(az)| = |(upu® — p)(az)|
< Jlugu” — olf||az|

< 6 jax|],

and we get |p(bx) — p(ax)| = 0 for every x € A N .. Since 0 = p(bx) — p(az) =
o((b—E%,~ 4(a))x) holds, we get b = E¥,, ,(a), where E¥,, , is the p-preserving
conditional expectation on A N ..

(iii)=(i). We have a — E¥,, ,(a) € conv{a — v*aulu € U(A), ||[u, ¢]|| < §}. By
the lower semicontinuity of p-norm in the o-weak topology, we get |la — EY,, ,(a)|l, <
supdJla — u*aullyu € U(H), [, o]l < 5}.

Here if a € B(yp), then the right hand side of the above inequality converges to 0 as
d — 0. Hence we get a = E¥,, ,(a) and B(g) C A" N.A.

(iii)<(iv). This follows from the duality argument. O

COROLLARY 4.4. If B(p) = A" N .4 holds for some ¢ with ¢ o & = ¢, then
B() = A" N holds for every normal faithful state ¢ with ¢ o & = .

PRrROOF. The same proof as in [11, Corollary 1.5] works by using Proposition 4.3
and the Connes-Stgrmer transitivity [7]. O

PROPOSITION 4.5.  Let A C .4 be a subfactor of type IIL, with [A : N] < oo,
and assume B(p) = A" N .. Then for any e > 0, § > 0 and any 1, ,¥n € M,
there exist uy, -+ ,upm € U(A) and Ay, -+, Ay > 0 such that >0y N; = 1, ||[ui, ¢]|| < 6
and ||Yj 0o E¥,, , — ;o P| <e, j=1,---,n, where P(x) =Y, \julzu;.

PROOF. We prove by induction. When n = 1, the proposition follows from Propo-
sition 4.3(iv). Assume that the proposition holds for n — 1. Take 1, -+ , ¢, € M. By
the induction hypothesis, for any ¢’ > 0 and ¢’ > 0, we can find uq,- -+, u,, € U(A") and
A1, 5 A > 0 satisfying the conclusion of proposition for ¢/, §" and 1)1, - ,¥,_1. Apply
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Proposition 4.3(iv) to ¢, o P. Then we can find vy, - ,v; € U(A) and py,--+ ,p > 0
such that > p; = 1, ||[vi, ]| < ¢ and ||, o Po E¥,, , —tn o Po Q| < &, where
Q(x) = > pjvjrv;. It is clear that Po E¥,  , = E%.,. , holds, and hence we get
Ym0 E%n 4 —tnoPoQ| <€’ By the choice of {u;} and {v;}, ||[uivj, ¢]|| < 26" holds.
Next we will estimate |[¢; 0 B, , — ;o PoQ|, 1 <i<mn—1. Since we have

i 0o E%, 4 —Wio PoQ)|
<50 (B = B Q) + [0 By 0 Q = w0 Po Q)
< [[¥io (EfV’m,//z - EfV'm//z 0 Q)| + e,

we have to estimate |E¥,, , —E%, ,0Q|. Let || -||1 be the L' norm on A4 N.# for
ol vn.x- (Note that the restriction of ¢ on A7 N .4 is a tracial state.) Then we have

sup{lo(yz)llzr € A" N, |z <1} =lylh, y e A" N A
On the other hand, we have the following inequality.
[oWES W) = Efin g 0 Q))x)| = leo(yr — Qy))]
<o o)
< D milelyz) = vigvi (ya)|

=3 pil(p — vigv)) (yz)]
< lyz|.

Combining these, we get |E¥,, - ,(y) — E%~ , © Q)1 < &'||y||. Since A" N4
is finite dimensional, there exists a constant 0 # C' such that || - |3 > C|| - ||. Hence we
get 15500 (4) — By 0 Q)| < & /Cllyll, and | E%yr g — E¥ypr g 0 QI < 8/C.
Finally we get [¢; 0 EY,, , — i o Po Q|| < max |[¢]|6'/C +&’. If we take &’ and ¢’ in
such a way that 20’ < ¢ and max ||¢;]|6’/C + ¢’ < ¢, then {\;p;} and {w;v;} satisfy the
conclusion of the proposition for n. O

Let A" C .4 be an inclusion of AFD factors of type III; with 4 4 _» = g},J, and
&% the minimal conditional expectation from .#} onto .#j_1. We extend ¢ to .} by
podyo---0d8y, and denote by ¢ for simplicity.

Popa proved the following theorem in [33, Theorem 4.2].

THEOREM 4.6. Let N C A be an inclusion of AFD type III; factors, and pq be
a dominant weight for A with poo &y = po. If we have N, NAM = N'NAM, then there
ezists a faithful normal state ¢ such that ¢ 0 6y = ¢ and NN M = NN M .

Here is an important corollary.
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COROLLARY 4.7. Let N C M be as above. Then we have N N My, = B(p) for
every k and every faithful normal state ¢ of M} such that p = podyo---0 8.

PROOF. Since Yy v = gzv//[7</y, we have A N M), = N, O (M), for every k
and a dominant weight ¢g. By combining this with the relative commutant theorem
Ny OV My, = Ny O (Mr)p, ([33, Theorem 4.3]), we get A, N My = N' 0 M).. By
the above Popa’s theorem, there exists a faithful normal state ¢ on .#} such that ¢ =
pod&lo---08, and N N .M = Jl{; N #y,. By Corollary 4.4, we get the conclusion. [

Set Moo := (U, A1)~ , where the closure is taken in the GNS representation with
respect to ¢.

PROPOSITION 4.8.  We can find {uk}7'", C U(A) and {\E}]'", C RY such that
Sorm A =1 for each n, supy ||[uf, ¢]|| < 1/n and o P, — o Efy,m/”w, n — oo, for
every ) € (Moo)s, where Py(z) = > 1 AEul*zul .

Proor. Let E7° be a ¢ preserving conditional expectation from .#., onto .#}. By
the martingale convergence theorem [4, Lemma 1.2], we have limy_. ||¢) —¢ 0 E°|| = 0.
Let Vj be a dense countable subset of (#).. We regard ¢ € (#y). as the element
of (Me)x via o — o ES . Set V :=J, V. Then V is a dense countable subset of
(Mo)«. We index V as {1;}32,. By the definition of V, there exists & > 0 such that
Yo BE° =, 1 <1 < n. We regard 1; as a normal functional on .#j, and apply
Proposition 4.5. Then we can find A} € RY, >°, A} =1, and {u}} C U(A4") such that
i 0 P, —thi 0 E%iy 4 | < 1/mand [|[4, up]l| < 1/n, where P, = 3=, AAduy. Then
we get [ o P, — i 0 E%,, , || < 1/n since EY,, , o B = ExXoEY,  , and
EX o P, = P, o EY. These {\}'} and {u}'} are desired ones. O

By Proposition 4.8, P,(x) converges to EfV’m//lk () o-strongly* for x € .#),. This
fact is crucial in later sections.

5. Symmetric enveloping algebras and Longo-Rehren inclusions.

Now we discuss how to construct the symmetric enveloping algebra for a subfactor
N C M of type 111y, since details of construction in type III case is not presented in
35].

First we fix a tunnel 4 D AN = M1 D M_5 D --- for & C A. Let
ex € M be the Jones projection for A1 O My_2, and & the minimal condi-
tional expectation from .#) on .#;_,. We assume .# acts on L?(.#), and iden-
tify #°PP with A’ = JMJ via j4(x) < JxJ. Set ey := jylea_y) for k > 2.
Then # C M C -+ C My = Alg{My_1,er) C M1 C --- is algebraically
isomorphic to the Jones tower, and each .}, is o-weakly closed in B(L?*(.#)). Set
By := Upso A PP M MPP C By := C*(M ey, M) C B(L*(A)). Then By is a
dense *-subalgebra in By. See [35]. In fact, we have By = Alg(.#, #°? ¢y ).

We recall the construction of the symmetric enveloping algebra for type II; case, so
assume A C . is of type II; for a moment. The relative Dixmier property [34] (also
see [35, Appendix]) enable us to construct a conditional expectation E from By on .#°PP
by xyz € MPP My MP° — TE y0.m,(y)z € A°PP. Indeed assume 0 = ) x;y;2; €
M PP My, M °PP. Then we can choose {A\*}" C RY, Y, A =1, and {uk}]2* C U(A)
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such that P, (y;) := S, Meul " y;uk converges to E_gn.z, (yi) in the norm topology for
every . (In fact, o-strong convergence is enough in the following argument since .#}, is
o-weakly closed.) Tt follows that

Z i E g0, (Yi)zi = 1iTILn Z xi Py (yi) 2

lim Y, ( 3 Aﬁuﬁ*yiufi) .
i k
= hmz/\k K Z (ziyizi )ul
7

:O’

so E is well-defined. Then it is shown that tr_gorr 0 E is a unique tracial state for Bj.
Then by GNS construction, we get the symmetric enveloping algebra as .# X .#°PP :=
e

mr‘ﬂoppoE(Bl)”, which is a II; factor due to the uniqueness of a tracial state.

In the type III case, it is not clear if we have such a projection F. However when
A C M is a strongly amenable subfactor of type III; with ¢ 4 4 = gz/,#y, we can
use Proposition 4.8 instead of the relative Dixmier property. Namely, let P, be as in
Proposition 4.8. Then xyz — xE%, , (y)z = lim, o 2P, (y)2 is shown to be a well-
defined map from By onto .Z°PP in a similar way as above. This map can be extended
to a conditional expectation FE from Bj onto .#°PP. Then we get a state 1) on By by
P(x) = (E(x)&,, &), where &, € L?(# )4 is the representing vector for (.

DEFINITION 5.1. Define the symmetric enveloping algebra for A C .4 as .# X
e
AMOPP = 7, (B1)", where my, is the GNS representation for .

Though the symmetric enveloping algebra for a strongly amenable subfactor of type
II1; is defined, it is not clear that this construction produces indeed an factor, or inde-
pendent on the choice of ¢. Here we already have (another) similar construction, the
Longo-Rehren construction. We compare these ones.

To do so, we recall the canonical implementation for endomorphisms of .#Z. Let W,
be the canonical implementing isometry for p defined as in [10, Appendix A]. Namely
fix a faithful normal state ¢ € M., and we define W, by W,(z€,) = p(x){p0q, for
p € End(.#). Indeed, W, is an isometry. See [10, Appendlx A] for more properties of
W,.

Denote W,, by W, for simplicity for ¢ € I. Then {d(j)W;}jer satisfy the
same relations as {V} in the Longo-Rehren construction by [10, Proposition A.4],
Le., di)W;d(j)W; = Y, oF d(k)Wy and WizdyJ = pi(x)p°P(j.a(y))W, hold for

z,y € M. (Of course, oF. = >, )d 7) ( )¢ Jv( ;)¢J, in this case.) We can

identify d(z)W; € B(LQ(///)) and V; € A(A). Hence we have a *-homomorphism
Alg( A , #°PP {V;}) — B(L*(M)) by m(z @ ju(y)Vi — xJyJd(i)W;, which we call
the canonical map.

We also have the formula ey = [.# : A1 3, V/d(i)atd(i)W; for the common
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Jones projection with the same notations as in §2.5. (Also see Appendix A.) As a
consequence we have By = Alg( A, J.# J,e ) = Alg(M , J M T, {W;}).

Let (A :=).# @ #°P° C A(A) be the Longo-Rehren inclusion for A4 C .#. As was
explained §2.5, we can construct the common Jones projection e 4 in A(A). Once we
have the common Jones projection, we can construct a Jones tower for A4 C .# within
A(A) as in the symmetric enveloping algebra case, and we have J, .#°PP 4,4 °PP° =
Alg(cAl .M, {V,}).

LEMMA 5.2.  We have the following.
(1) p @ PP o Ex(wyz) = PP (2B 4 (Y)2), T,2 € MPP, y € M(C A(Q)).
(2) v(>2; aiWi) = p @ p°PP(ag) for Y-, a;W; € Alg( A, J M j,{W;}).

PrOOF. (1) Note that since .#' N A(A) = #°°°, EY,. , (y) € 4°P. Then we
have

lo @ PP o Ea(zyz) — 0 ® PP 0 Ex(xPr(y)2)]

- ’90 ® PP 0 Ealayz) — ) Ahp © ¢ 0 Ealauy yur2)
k
<Y Ao ® PP o Ea(wyz) — ubpul” @ PP o Eawyz)|

k
=3 A(p — ubpubt) ® PP o Ea(2yz2)|
k

IN

1
)8 a2l — 0

if n — oo. O

To prove (2), we begin with the following lemma. (In the following, we use notations
in §2.5.)

LEMMA 5.3. Foreveryx € # and 0 # j € Iy, we have Ef/{’n//fl (mw;f*e”wg) =0.

PrOOF. We verify ¢ o &1 (yxw]e-*eﬂwg) = 0 for every y € .#’ N .4, which implies
the conclusion since ¢ o éal(yij*e(/ng) = 0o &iYE 4, (ij*e(/ng)). First note
that there exists a unique z € A4 N.# such that ze_y = ye_y» by the push-down lemma.
Then we have

ex

¢ 0 &1 (yrw; eswl)=po& (xw;*yeﬂwg)

ex 5

= po & (2w ze ywy

= [ : N (xS 2w]).

J

It is easy to see w]e*zwg € (id, pj). Hence wje-*zw{; =0 for j #0. O
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PROOF OF LEMMA 5.2(2). We compute ¢(xJyJW;) for z,y € #. As was ex-
plained in §2.5, we have

W; = Cw;ewwo = Cij*Jw;‘*JengJwgJ
e f

for some nonzero constant C.
Hence for 0 # j € Iy, we have

Yz JyJW;) = Cip (nyJ > witJws Jeywd Jwh J>
e, f
=C Z w(Jyw;/*waj*edngJwgJ)
e,f
= CY P (Tyw TEY g, (w05 ey w) Jud )
e,f
=0.

In a similar way, we can show (zJyJW;) = 0 for all 0 # j € I by considering .#_;, C
M C My, instead of N C M C M. Note that Y(zJyJ) = ¢(x)e°PP(JyJ) = ¢ Ralg
PP (z @ JyJ).

Take Y x;W; € Alg(M,JMIAW;}jca), ;i € Alg(M,J#J), and assume
> xiWi =0. We have (3, z;W3)* (32, 2;W;) =32, 54 ’Ogjpg(zij)ﬁéjwk. By the above
argument, 0 = (32, x:Wi)* 32, 23 W;) = ¢ ®alg PP (32, 005 pa( i) 07;). Thus we get

0.) = 0. Hence

32

pa(@i)80, = 0 for every i, and we get @; = 2,00%p;(0,) = 00%py (ps(:)0
the map &

& Alg( M, JMITAW;}) 5> a;W; — ag € Alg(A, J.MJ)

is well-defined. Thus we have
¢(Z aiWi) = ®PP(ag) =@ TP o &

on Alg( M, JMIT AW, }jer) = Alg( M, MPP e 4 ). O
Now we can state the main result in this section.

THEOREM 5.4.  Let v be a state on C*(M,e,J M J) defined as above. Let
my be the GNS representation of C*( M, e, JMJT) via tp. Then H B HPP =
e

Ty (C* (M, MPP e 4 )" is isomorphic to A(A) in the canonical way.
PROOF. By Lemma 5.2, the canonical map Alg(.#, #°P* {V;}) —

Alg( A, J .M J,{W;}) can be extended to a unitary V between L2(A(A),p @ p°PP o &4)
and L?(Bi,). Then it is easy to see A(A) = my(B)" via V. O
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6. Approximation property for Longo-Rehren inclusion and Effros-
Lance type characterization.

Let A C .# be a strongly amenable subfactor of type 111y, and 7w(A) C A(A) the
Longo-Rehren inclusion for A C .#. (We write an isomorphism 7 from A into A(A)
explicitly for a while, and freely use notations in §2.5.) We often write x ® j 4(y) €
M Q@ M°PP as xj 4 (y) for simplicity.

LEMMA 6.1.  Let .# be an injective factor of type I1I;. Then there exist finite
dimensional factors M, unital completely positive maps Sy, : # — M, and T,, : M,, —
A such that lim,,_,, T,, 0S5, (x) = z in strong* topology and lim,,_, |0 T, oS, —¢|| =0
for every ¢ € M.

PrRoOOF. Fix T > 0, set 6 := o7, for some faithful normal state ¢ on .#. Then & :=
M xg¢ Z is an injective type III, factor, (T'= —27/log ), and hence we can identify &
with the infinite tensor product factor @~ (M2(C), ¢x), where px () = 195 + 2%
Set M,, := Q;_, M2(C), and let E,, be the @;-, ¢ preserving conditional expectation
from & on M,. Then E,(x) (resp ¢ o E,) converge to x (resp. ) in strong® (resp.
norm) topology for x € & (resp. ¥ € #,). Let E 4 be the conditional expectation from
P on M. Define S, := E,|.4 and T, := E 4|u,. Then these T,, and S,, are desired
ones. Indeed we have

lim T, 0S,(x)= lim EyoE,(z) =FE 4(z)==

n—oo n—oo

in strong* topology and

Jim ([0 Ty 08, =4l = lim [0 EgoEnlw =0 Eglal

< lim ||[poEygoE, —toE 4| =0. O

To state the following lemmas, we need some definitions and results on amenable
fusion algebras in [14]. Let u be a measure on I given by u({i}) = d(i)?>. We denote the
pairing between ¢! (I, p) and ¢>°(I) by (-, ).

A right convolution operator A7 on ¢*(I, ) is defined by

NG =3 %Nﬁiﬂk), f et .
k

In [14, Theorem 4.6], Hiai and Izumi proved that the amenability of 4 4 _» in the sense
of Popa, i.e., the principal graph of A4 C .# satisfies the Fglner type condition in [31,
Definition 3.1], is equivalent to the existence of an almost invariant finite subset in I.
Namely, for any finite set J C I and € > 0, there exists a finite subset F' C I such that

17 (xr) = xFllue < elixrll

for any i € J.
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LEMMA 6.2. Let F C I be a finite set, and set ep := > ;. p1® ey € AR B((3(I)).
Define Sp : A(A) — A®@ Mp|(C) by Sp(x) = epzer, and Tr : AR M|p)(C) — A(4A) by

Tr(x) = m«%m)(@- Let ¥ be a completely positive map from A into itself. Then
. 1 0% » NP
Tr oW ©ido Sp(r(@V) = —r— 3 wli%a 7)) itV
XFWLw j veFier
holds.

PROOF. First note ||xr|l1,, = Za(a)(er). Hence T is unital. The above lemma
is shown by the following computation. (Recall matrix form representation in §2.)

Tr o (¥ ®id) o Sp(r(a)Vi)

= ) Tro(¥@id)(p;(a)if; ®ejr)
J,keF

S Vi (pi()8h,) © eju) Vi

|XF||1’” j.keFlel

1 i . . .
= W Z 'UlT,nj pl(gl(pj(a)vf,i))vlvfk ® €m,n
XFLi ke pimmel
1 e Okl A R . .
= i (05507, 501 (F (5 ()05 )]s, @ €mn
IXFllLw | e i ner
JkE€FLm, (by Corollary 2.19)
1 o DN A A R . N
N m Z pM<U§‘)’j)pmpj<g/(pj(a) ?,i))vi;@,j”ﬁk @ em,n
g keFl,mmnel
1 A0k A R
=T D A @) 5,000 © o
o
jkeFl,mnel (by Lemma 2.18(1))
1 0% . . .
= Yo w0555 (i (a)0f )05 ) Vi O

s jkeFlel

LEMMA 6.3. There exist finite dimensional factors Ny, unital completely positive
maps Sy, : A(A) - AQN,, and T,, : AQN,, — A(A) such that T,,0S,(x) — x o-strongly*
for @ € Alg(n(4), {Vi}).

PROOF. At first we compute (A} (xr), xr),. Then we have

OO xed = 30X () ) T Ve (e ()

JeI kel
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By Hiai-Izumi’s Fglner type condition, we can find a sequence {F,} of finite subsets
in I such that

o I 0e) = X

=0
n=o0 IxF.

1,p

for every i € I. Set N,, := M|, |(C). Let T), := TF,, Sy, := S, be the unital completely
positive maps constructed in Lemma 6.2.
By Lemma 6.2 and the above computation, we have

1

Twe Sa(m@Vi) =
n 13

G kEF, lET
1 A0% A (nk \al

= X7 1 7T(ijijpj(vj,i) j7k)‘/l
SR G keF, leT

1

~ixe,

N EIN
(a7, 05.) Vi
Lt j keFn,lel

||XFn||1;U j,kEF, d(Z)

L s

||XFn ||1,,u j.kEF,

_ (A (XF,)s XFn>M m(a)V;.

Izl
Here
AN (Xr ) XF D 1‘ _ ‘(M(XFHLXFJH — (XFus XF
IxF 1 Ix ll1p
AT Or) = xpa llpllxee, [l

B X 1,0

— 0
as n goes to infinity. Hence lim,,_,oc T}, © Sp(7(a)V;) = 7(a)V; holds. O

Now we can present the Effros-Lance type characterization on the amenability of

N C M.

THEOREM 6.4.  Let (o, K) be a representation of Alg(., #°PP,{V;}) such
that ol.x and o|.goev are mormal. Then |o(x)|pk) < |zllaca) for every x €
Alg( A, 4P {V;}).

ProOoOF. Take a unit vector £ € K. Let Ty(ll), ST(LI) be as in Lemma 6.1, and Téz),
ST(LZ) as in Lemma 6.3. Set Tr(ll) = T,(ll) ® T,(ll)Opp and Sr(Ll) = Sﬁl) ® 57(11)0pp. Let we be a
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vector state associated with £ and define a normal state 1y, , on A(A) by
Ymp =weo0po0 T2 o (T @id,,) o (S ®1id,,) 0 S,

where id,, is the identity map on N,,.

Indeed, since (S}SP ®idy,) 057 is a normal unital completely positive map from A(A)
to My, @ MSPP @ Ny, and we oQoT,SQ) o (T,(nl) ®id,,) is a normal state on M,, ® MSPPQ N,,,
Ym.n is a normal state on A(A). Note that 7 o o (Tm T ®id n)(My, @ MPPP @ N,,) C
Alg(A , .4°PP,{V;}), and hence g o ¥ o o (T, e id,,) is well deﬁned. Hence we have
[Ymn ()| < |2l aca) for z € Alg(A, 4 °PP{Vi}).

We will verify lim, oo iMoo Umn(z) = we o o(z) for w(zjx(y)Vi €
Alg( A, #°PP,{V;}). By Lemma 6.2, we have

T o (T} ®@idy) o (S ®idy) 0 S7 (n (2.0 (y)) Vi)
1

||F ||1# ( j]p ( OS(l (pj(l‘j//[(y))f}k ))A;’,k)‘/l
ML G ke, el

1 0% . N
(00T (p TSV S pi () @ Ja (05T S pj () m (85 6L WA

J?
121, j,keF, lel

Then
1 0%
nlLp s er, ler

0(.a (o7 TV S pj () 0(F 0L ) o(VI)E, €)

holds. Since g| 4 and g|_gor» are normal, and {T#}) oS\ (a)}So_, converges to a strongly™
for every a € A,

lim t(2) =

(0(02%)0(p505 (x)) 0(f.a (305 ())) (0} 0% 1) 0(VI)E, €)

1 1.0 kR, el
=we 000 T} o S (n(xj.a(y))Vi)

for m(zj.4 (y))V; € Alg(A , #°PP,{V;}). By letting n — oo, we have

lim  lm Y (7(2).0 (y)Vi) = we 0 o(m () (y)Vi)

n—oo m—0o0

for m(zj.x(y))Vi € Alg(A , #°PP,{V;}). Thus lim,,_, oo lim,,— 00 P n(z) = we 0 o(z) for
every x € Alg(., #°P?,{V;}). It follows
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lo(@)é|* = we 0 o(z*x) < [la*z|acay = 2% a)-

This holds for any unit vector £, and hence we have ||o(z)||z(x) < [[Z]|a(a)- O
As a corollary to Theorem 6.4, we have

COROLLARY 6.5.  We have C*(M,J M J,ey) = Ck, (M, M e ) via the
natural isomorphism, where Ck, (M, M, ey )(= Ck; (M, PP, {V;})) is the C*-

subalgebra in A(A) generated by M , #°PP and e_y .

PROOF. Let W, € B(L*(.#)) be the canonical implementing isometry for p.
Then the canonical map 7(z ® jz(y))Vi € A(A) — zJyJd()W, € B(L*(#)) is a
representation of Alg(.#, #°PP,{V;}), which is normal on .# and .#°PP. By Theorem
6.4, | 32, aid(@)Wil pzcay) < 132 7(ai)Villaca), ai € Alg(A, A °PP).

On the other hand, |3, a;d(i)Willp2(ny) > |20 7(ai)Villacay by Theorem

5.4. Hence ||}, a;id())Willpr2cay = |l 22;m(ai)Villacay holds. It follows that the
canonical map is extended to the isomorphism between C*(.#,J.#J,{W;}) and
Crin (A, AP {Vi}). O

In the above argument, we approximate w¢ oo by a double sequence {1, , }. However
we would like to approximate by a sequence of normal states (Proposition 6.7), which
will be crucial in the proof of Lemma 7.6.

LEMMA 6.6. Fiz a faithful normal state p on M. Let & € L*>(# )4 be the repre-
senting vector for p. For any finite set {xk}1<k<m, {Uk}1<k<m C A, finite subset J C I
and € > 0, we can find a normal state ¢’ on A(A) such that
(1) | (wrja (yp)Vi) = (e Jye JVi, §)| <, 1 <k <m, i€ J,

@) [¥/escr - ol <<,
(3) ¥ |crg.aere — @°PP|| < e.
(From now on, we omit 7, and write aV; instead of w(a)V;.)

PrOOF. The argument in the proof of Theorem 6.4 shows the existence of a state
on A(A) satisfying (1). We see this more carefully. Set X := {zpj»(yx)Vi|]l < k <
m,i € J}. Let T,Si), 1 =1,2, be as in the proof of Theorem 6.4. Then we can find n € N
such that |[(z, &) — (TT(LQ) o Sﬁbz)(x)ﬁ,fﬂ <e/2forx e X.

By Lemma 6.1, we choose Ty(nl), and Sﬁ,}b) such that

(T 0 5P ()€, &) — (T o (T 0 5T @ id,) 0 SP(2)€,€)| < £/2, 2 € X

||<po¢ioTr(rzl)OSr(r}L)—<P0¢il‘ <e,i€J,

where ¢; is the standard left inverse for p;. Note ¢; is given by ¢;(z) = v(?,)*ps(x)v(},)
in the notation in §2.

Set 9" := 1y, . Then 1’ satisfies the condition (1). Next we will verify (2). (In the
following, we denote T,(f) and S,(,? by T and S for simplicity.)

By Lemma 6.2,
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T® o (TW 0 8W @id) o SP(a®1)

1 Ok A o A . .
T 075p3(T0 0 8 ((p;(a) ® 1)1f9))5 4 Vi
||XF||17H j.keF,lel

1 ~0%
=T % (p70TW 0 SW 0 pj(a) @ )8} Vi
IxFllL.

JEFJEI
! aG 6
S

jeF,leI,lgeSNJl,j

®j//z(v(?,j)*v(§,j)e)Vz
1

= d(j)*¢;0TM oS opi(a)®1
Ixrle 7

holds. Hence we have

Zd 2p0¢;0TWosWoap;.

1,“'

V'.wewc =

||X

By the choice of 7™M, §(1)

1

W Zd()(¢O¢JOT OS(IOPJ P o ¢jop;)
N

JEF
> d()llped; 0T 0 SM o p;—pog;op|

jEF

Y d(§) lleodioTosW —pog|

JEF

[¥'.eec — ¢l =

1

~ Ixrllu

1
< el
3 .
e 2 20
XFll1,u JEF

=E.

Hence we have the condition (2). The condition (3) can be shown in a similar way. O

PROPOSITION 6.7. Let ¢ and & be as in the previous lemma. Then there exists
a sequence {,} of normal states on A(A) such that lim,_,o ¥, (a) = (a&, &) for every
o € Alg( .4 (V).

PrROOF. First we prove V;*(z ® 1)V, = d(1)?¢;(z). This can be shown as follows.
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Vi (@@ Vi = Y5 Vile @ DV

= d(1)*v(7,) pr(x)v(F) @1

=d(1)%*¢(z) ® 1.

We also have Vi*(1® j.z (y)Vi = j.a(d1(y))-

Let {x;}5°, be a strongly dense countable subset in the unit ball (.#); of 4, {I,,}
an increasing sequence of finite subsets of I such that |J I, = I. Set ¥(a) = (a&,&). By
Lemma 6.6, for each n € N, there exists a normal state 1, on A(A) such that
(Ln) [(zija (25)Vi) — Yn(@ijoa (25)VI)] <1/n, 1 <dj <n, L€ Iy,

(2.n) [¥nl.w — el <1/n,
(3.1) [¥n].grore — 0P| < 1/m.

We will prove lim,_,oo ¥n(a) = ¥(a), a € Alg(A, #°°°,{V;}). Fix © € (MA),
Jj € N and [ € I. First we verify limy, oo ¥n(2j.z(2])V1) = (2. (2)V1). For e > 0,
choose z; such that d(1)||z — ;| p0g, < €. Choose N € N such that d(I)/vV'N < ¢, € Iy,
i,7 < N. Then we have (1.n), (2.n) and (3.n) for every n > N. Then

[on(@ja (x5)V1) — P(@ja (25)V1)]
< on((@ = 23)Joa (2F)VO)| + [Un (@idow (25)V0) — (@idow (25)V)]
+ (@ = zi)ja (x5)V1)]
< da(zi)llgll (@ — z:)Villy + % + . (@), [(@ = 2:) Villy,
<~ w)Villy + -+ @ — 2:)Vils,
holds. Here we have
I = zi)Vill}, = d(1)? ]|z — 2il|0g,
and
Iz = z)Vill3, = dD?llz = zill},,| o0,
since Vi(z* — x;)(z — z;)Vi = d(1)®¢y((xz — z;)*(x — x;)). We also have that ||z[,, <

]|y + V|| if lpr — @2l < 6 for @1, 02 € (M)
Hence we have
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1 2d(1
[ a)10) = V(o eV < 4 %+ Al — il + 250

< be

for any n > N. Hence we get lim, oo Yn(zjw(2})Vi) = ¥(xja(z})Vi). In other
words, for any € > 0, there exists an positive integer N = N(z,¢,7,1) such that if
n > N(z,¢€,j,1), then |Yn(zjq(2])Vi) — ¥(zj.a(2})Vi)| < € holds.

Next we prove lim,, .o ¥n(2jz(y)V)) = Y(zju(y)V)) for z,y € (A), and | € I.
For e > 0, fix z; such that d(1)||y* — ;| poe, < €. Fix N’ € N such that N’ > N(z,¢,j,1),
d(l)/VN' <e.

If n > N’, then

[n (@ (WIVI) = U(@)w (y) VD)
< [n(@jw(y — )Vl + [Wn (@) (25)V0) — (@fa (@5)V)| + [ (@) (y — 25) V1))
<l (y — 25)Villy + € + i (y — 25)Villg,
< e+ dDla(y — z5)lgorrogere + AW juar (Y = 25) gl gorposcor

. . . 2d(1)
<e+d(l)|ly" - mj”wdn +d(D) |7y — xj)||<poppo¢ypp + W

< be

holds. Hence lim,, o ¥n(a) = ¥(a) for all a € Alg(A, #°PP,{V;}). O

REMARK. Let us consider the single factor case, i.e., A(A) = A= .# & #°PP. In
[6, pp. 210], Connes claimed the existence of a normal state ¢’ on .# & .#°PP satisfying
Lemma 6.6(1), ¥'| z = ¢ and 9’| goee = @°PP instead of Lemma 6.6(2), (3). The author
cannot find a proof for this claim in the literature, and unable to prove this. However
Lemma 6.6(2), (3) are enough for our purpose.

At the end of this section, we discuss the extension of automorphisms to the symmet-
ric enveloping algebra. Let .4 C . be a strongly amenable subfactor of type III;. Take
a € Ker®. Then we can extend a®id € Aut(# ® 4 °PP) to aXid € Aut(A4Z X .#°PP)

exN

such that aXid(e_y) = e_y as explained in §2. It is clear that aXid is an automorphism
of Ck, (A ey, #°°P). Hence by Theorem 6.4, we have & € Aut(C* (A, ey, J M JT))
such that @ = @ on 4, @ = id on .#" and a(e ) = e 4. Especially since of € Ker @,
we can apply the above argument for modular automorphisms. Here we remark that
alep) = ex for k > 1 since & is trivial on J.#J. Hence & preserves .4}, and this
coincides with the usual extension of « to .#}. So we denote &| 4, by a.

7. Approximate innerness of modular automorphisms.

As an analogue of [6, Theorem III.1], approximately inner automorphisms of sub-
factors can be characterized as follows. (Also see Appendix B.)

THEOREM 7.1.  For § € Aut(#, /), 0 € Int(.4,.N) if and only if for any
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©1, ", on € (M)y and e > 0, we can find 0 # x € N such that

(*) ||x£§0j - U9(£<Pj)x||2 < ‘52 Z(pj(.%'*l'),
J

where &,, € L*(M )+ is the representing vector for p;, Ug € B(L*(.A)) the standard
implementing unitary of 6.

By using Theorem 7.1, we will prove the following theorem, which implies Theorem
2.2 as remarked at the end of §3.

THEOREM 7.2. Forany (0 # T € R and any faithful normal state ¥ with po&y = 1,
o;e is approximately inner.

PrROOF. Fixe > 0 and @1, - ,¢n € (MH:)+. We may assume ¢ is faithful. Set
o= [ N],;pjo&. Then pody = and ¢ > p; hold. For the last inequality, we
used the Pimsner-Popa inequality &y(x) > [.# : A]71z [29]. For simplicity, we denote
€, by &, and Uy by 6. Put a = o7. Since U? = Ad(Dv : Dp)ra, it suffices to show
that « satisfies Theorem 7.1(x). Define T; as T;xz{, = x{;. Then ||T;|| < 1, and T}
belongs to .#". Set b; := JT;J € /. Then bj{, = {,b; = &; holds by definition. We
have [|b;|| < 1. Set A :=C*(4 ey, J#J). Define X :=e. >, |Jb7J — biles € A

Fix f(z) € C°(R?) asin [6, p.205]. Then 0 < 1—e y +X +e|f(A,) —1%es <
4n+2 holds. Here note that e y&, = &,, X&, = 0 and ey |f(Ay) — 1|%e &, = 0. Hence
we get [dn+2— (1 —ey) — X —ey|f(Ay) — 12es || = 4n + 2.

Let & be the automorphism of A as in the end of the previous section. We actually
have [[4n+2—(1—e ) —a(X) —ex|f(Ay) —1%e.x || = 4n+2, whose proof is postponed
(see Lemma 7.8). Then we can find a unit vector n € L?(.#) such that
(1) (707 — a(bj)")esnll <&,

(i) [[(f(Ap) = Denll <e,
(iii) |(1 — e )nl <e.

Set m1 :=e_yn. Then 1y € ey L?(#) = L*(A). By (iii), 1 > |lm|| > 1 —e. Next
set mg == f(Ay)m. Then 1y € @(Aé) N L2(¥). By (ii), we have ||n2 — n1|] < ¢, and
hence we get 1 > |In2f| > 1 —2e. By (i), we get ||(Jb}J — a(b]))n2| < 3¢. By the choice

of f(x), ||(A$J —1)na|| <ellm]l < e. Since A&, is dense in _@(Aé) NL?(.4) in the graph

1 1
norm, we can choose z, € A, such that ||, — z&,|| < € and ||AZny — Az, || < e.
Then ||z€, | > |[n2]] — [|n2 — 2€,|| = 1 — 3¢ holds. Thus we get

[(Jb5J — au(b})) x| < |(JUFT — (D] ))mall + [|(Jb;T — (b)) (2 — x&p) ||
< 3e+ 2
= b¢e

A

oe
< 1—735||x§¢”

and
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1
||x£<p - fq:x” = ||ac§¢ - Aéz&,;”
1 1 1
<|[w€p — mall + [In2 — Adm2|l + | A2 — AZxEy ||

< 3¢

3e
< .
< Tl

Hence if we take a sufficiently small €, we can assume ||z§, — o] < 6¢||z€, | and
1(T65 T — a(b})) 2 || < Bzl |-
Finally we have

285 — al(&;)a]| = [lagpb; — a(bjé, )|l
= [|7bj Jw€, — (b))l
< |6 Ty — a(b7) x| + ||l (b]) (28 — Ep)|
< 12|28

Hence we have |z&; — a(&)z||? < 144228, ||* = 2p(z*x) = 1442 = N] dpio
So(z*x) = 144 = N >_;jpj(z*z). Hence o satisfies Theorem 7.1(x), and cr? is
approximately inner. O

It remains to show [[dn+2— (1 —e ) — a(X) — e |f(A,) — 12e s || = 4n+ 2. To
do this, we use the Effros-Lance type characterization (Theorem 6.4). To construct the
Jones tower in the symmetric enveloping algebra for A4 C .#, hence we fix a tunnel for
MON =MD Mo DMz D -, and denote by &_; the minimal conditional
expectation from .#_j onto .#_j_1. Note that of does not necessarily preserve .#_y,

(%)
however of ~ does, where o) = po & jy10---06.

LEMMA 7.3. Let K be a compact metric space, i a probability measure on K, a(k),
c(k) bounded o-strongly* continuous maps from K to .#’, and b(k) a bounded o-strongly*
continuous map from K to My, and consider [ a(k)b(k)c(k)du(k) € B(L*(4)).

(i) The set B C B(L*(#)) of all elements of the above form, (with K, ju, n varying), is
a *-subalgebra of B(L*(A)).
(i) B is invariant under Ad A¥f.

PrOOF. (i) It is easy to see that B is closed under summation and *-operation. We
verify that B is closed under multiplication. Let a;(k;),c;(k;) be bounded o-strongly*
continuous maps from K; to .#Z°PP, and b;(k;) a bounded o-strongly™® continuous map
from K; to .#,, 1 = 1,2, and consider le_ a;(ki)b;(ki)ei(ki)dui(k;), i = 1,2. Let f, €
A °PP be the Jones projection for 4%, C .#°YP C .4°PP, and choose v € .#°PP such
that v* f,v = 1. Note A, V {fn} = Maop. Then

c1(k1)az(ka) = c1(k1)az(k2)v™ frv
= [ NE govw (cr(kr)ag (k) 0™ fn) fu gove (f)
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holds by the push-down lemma. Set d(ki,ks) = [A4 : z/V]2g%EI;F’(Cl(kl)@Q(kg)U*‘fn),
and v' 1= & yovr (fyv). Then d(ki, k2) is a o-strongly™ continuous map from K x Kz to
A PP Then we have

(/Kl a1(kl)bl(kl)cl(kl)dul(k1)> (/}(2 a2(’f2)b2(/f2)02(k2)du2(/€2)>

:/ a1 (k1)b1(k1)cr (kr)az(ke)ba(k2)ca(k2)d(pr x p2)(ki, ko)
Kix Ko

=/ ay(k1)by (k1) d(k1, k2) fov'ba (ko) ca(k2)d(pn X p2) (K, k2)
Ky x K>

:/ a1 (k1)d(ky, k2)by (k1) frba(ko)v'ca(ka)d(pr X pi2) (K, k).
K1 x Ko

Here aq(k1)d(k1,ke) and v'ca(ks) are o-strongly* continuous maps from K; x Ks to
PP and by (k1) frba(ke) is a o-strongly™ continuous map from K; x Ky to .#5,. Hence
the above operator is in B.

(ii) First note that we have Ad Af;(n,l>//n = M, for every n > 0. We have Al =
u?Ju;’JAZ(n,I), where ul' := (D : Dp(»~D),. Let b(k) be a o-strongly* continuous
map from K to .#,. Then we have Ad A% (b(k)) = Jup Jup Ad A (b(k))u; JuiJ. Here
Ad u?AZ(n,l)(b(k)) is a o-strongly+ continuous map from K to .#,. Now it is easy to
see that Ad A&f preserves B. O

LEMMA 7.4.  Define o :={T € B|t — AYTA," is norm continuous} Il
(i) & is a C*-algebra.
(ii) 6, := Ad AZZ is a pointwise norm continuous action of R on <f .
(iti) For a € C*(M ey, M) and f € Cc(R), [g f(t)ALaA " dt is in o .

Proofs of (i) and (ii) are the same as those in [6, Lemma IV.3]. To prove (iii), we only
have to prove it for abc with a,c € .#°PP and b € .#,,. Here we use the notations in the
proof of Lemma 7.3. We have

Ad A% (abe) = Ad Al (a)Ad AY (b)Ad A% (c)
= Ad A (a)Juf Jup Ad AZ("‘” (b)up™ Jup* JAd A (c).

Here Ad Aif(a)JupJ, Jup* JAd Aif(c) € #°PP and Ad u?Af’f(n,l) (b) € A, are o-
strongly* continuous maps. Hence [ f(t)Ad Ag (abe)dt € B. Tt is clear that this opera-
tor is in &7. 0

By Lemma 7.4, (</,0) is a C*-dynamical system and (&, A¥) is a C*-covariant
representation for (&7, 0), say w. Set # := w(</ X9 R). Then any element of # is the
norm limit of operators of the form [ a(s)Aifds, where a(s) is a norm continuous map
from R to o/ with a compact support. Our next purpose is to construct 8 € Aut(Z%)
such that ([ a(s)A%ds) = [ a(a(s)) A% ds.

The next observation will be used in the proof of Lemma 7.6.
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LEMMA 7.5. For a given sequence {a;m}(i)n’m)eNxNXz C C withlim,_, a,, =
a;, one can find an increasing sequence {N,} C N satisfying lim, oo N, = 00 and

Nn
lim g ay,, =a; (for each i).
m=—Np+1

PROOF. By subtracting a; from each a',,, we may assume a; = 0. We construct
a strictly increasing sequence {Mj}7°, inductively as follows: We set M, := 0 and
assume My_; as been chosen. Since lim,,_, a’,, = 0 for each (i,m), we can certainly
choose My > Mj_; in such a way that as long as n > M}, we have |a},,| < k~! for
i1 =12,---,k,band m = —k+1,—k+ 2,--- ,k. For each n we set N,, = k with the
index k satisfying My < n < My41. We claim that these N;’s do the job. First we have
N,, /" oo from the construction. Secondly for each i we choose n satisfying i < N, (= k).
Note My < n < M1 by definition of N,, and consequently |a’,.| < 1/k for (i < k and)
eachm=—-k+1,—-k+2,--- k. We thus have

a =|— a - = —.
2N, nm 2k nm k N,
m=—N,+1 m=—k+1
Since N, 1\, 0, we are done. O

Let $ be the standard Hilbert space for .# X .#°PP. Note that L*(.# ® .4#°PP) =
e
L?() @ L?(.#°PP) is a subspace of §), and ¢ ® ¢°PP o &4 is given by a vector state

for £, @ Egomn. As was explained in §2, we have the extensions of Kid and of K o¥,
Let A Kid and A K A_SE, be the standard implementing unitaries for of Kid and

opp .
of ®o?, respectively.

LEMMA 7.6. (A) There exists a sequence {§,} C $ such that (1) HA?} &A;};EP v —
& — 0 for any t € R and (2) (abcé,, &) — (abck,,Ep) for any a,c € A°PP and
b e M.
(B) There exists a sequence {W, } of normal states on B(L?(.#)) such that (1) WV(AZf) —
1 for any t € R and (2) ¥, (abc) — (abck, ® Eporv, &y @ Epore) for any a,c € M °PP and
be .

PROOF. (A) Since C*(M,en,JMT) = CL. (M ey, #°PP), ¥(abc) :=
(abck,, €,) can be viewed as a state of Cf; (A, ey, #°PP), and can be extended to
a state on B()) by the Hahn-Banach extension Theorem. By Lemma 6.7, we can find a
sequence {¥,} of normal states on A(A) such that
(a) limy,— 00 U (a) = ¥(a) for every Alg(A, #°PP,{V;}),

O) [l = oIl < 1/n,
(©) [ |.arore — PP < 1/n.
We extend ¥, to a normal state on B($)).

Let {z;}32, be a countable strongly dense subset in the unit ball (.#);. For simplic-
ity we denote Ag &A;ﬁfm by v;. Since ¥ is invariant under Ad v, lim,— o (Ad v, ) (2) =
U (x) for every x € Alg(.4, #°PP,{V;}) and t € R. Define
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ai;ﬂ,’j = / vy (xzj//((azj)vl)dt

m—1

By the Lebesgue convergence theorem, lim,, ., %)l = U (x;j 4 (23)V1) holds. We choose
a sequence {N,,} for {a%}!} as in Lemma 7.5. We replace ¥,, by

A T \
v, = v, v; dt.
_Nn

2N,
Hence
1 Nn 1 Nn
N S e / i (i Vi)t = W (o) VE)
nmsznJrl nJ—=Nn

holds by Lemma 7.5. This means that lim,, oo ¥, (z:j.z (2})Vi) = ¥ (2ij.a (x})Vi). Since

N,
Ul = 5 SN, Unla 0 0%y,

1 Ny, 1
)y — ol < — Uy — 20 <=
ik =1 < g [ WL~ ) o0t <

holds. In a similar way, we can show ||¥/| zoee — ©°PP|| < 1/n. Then the same argument
as in Proposition 6.7 works in this case, and lim, . ¥/ (x) = ¥(z) holds for every
x € Alg(A, MPP {Vi}) (= Alg( M, M ey ) = Uy AMOPP My M PP).

Since lim,, . N,, = 0o we have |¥ — v,/ vf|| — 0 for every t € R. Let &, € § be
the representing vector for ¥/ | 4 = _zoer. Then {,} satisfies (1) and (2).

ewN

(B) By Proposition 4.8, we can find {\*}7"» C R* and {uf}/», C U(.#) such that
Dok Ao =1, |I[uk, ¢]|| < 1/n and S ey puk — Ef/('m//zk () o-strongly* for x € ..
Define a state ¥,, on B(L*(.#)) by W, (z) := >, N (zub &, uké,). Since ||[uk, o]|| < 1/n,
@, (A) — 1 for any t € R. (For example, see [37, Lemma.XVIIL.4.13].) For a,c € .4°*°
and b € M), Un(abe) — (@B 4 (0)c€p,Ep) = (abcly @ Eporn, Ep @ Eporn). (See 85 for
the last equation.) O

LEMMA 7.7. (1) With the notations in Lemma 7.3, there exists an automorphism
a € Aut(«) such that

i [ ape)etns) = [ aaleselsiancs)

(2) There exists an automorphism 3 € Aut(A) such that

ﬁ( / a<s>A:';ds) = [ atatsn aizas.
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PrROOF. (1) Let 4 be the subalgebra of B($)) formed by the operators
S5 a(k)b(k)c(k)dpu(k) with the notations in Lemma 7.3. To distinguish elements in
B and @, we use the notations [, pa(k)b(k)c(k)du(k) and [i ., a(k)b(k)c(k)dp(k).
Define p by

o [. . Rt ) = [ JECLCECTC)

By Lemma 7.6(A) and the Lebesgue convergence theorem,

V—00

Hence |(o(T)&,,&,)| < ||T|| holds for T' € 7. Since &, is cyclic for B, ¢ is a well-defined
by [6, Lemma IV.5].
By Lemma 7.6(B) and the Lebesgue convergence theorem, we have

Hence we get [(T¢ugporr, Epapere)| < |lo(T)|| for T € 7. Since &, ® {yorr is cyclic for
&, o is an isometry by [6, Lemma IV.5].
Then

a()a®)e®du®)|| = le( [ atk)abm)e)du)
K,B K, o,
-/ . a(k)a(b(k))c(k)de

= (A Xid) /

a(k)b(k)e(k)du(k) (A5 K id)H
K, o1

_ /K . a(k)b(k)c(k)du(k)H

_ /K ; a(k)b(k)c(k;)du(k)H.

Since & and 6; commutes, & € Aut(«).
(2) By (1), there exists an isomorphism 7 from & into B($)) such that

n( /. a(k)b(k)c(k)dm) -/ A

Then n(AZXA") = AYRAn(X) A KAY,,, holds. Let #; C B(L*(.#)) be
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the +-algebra of elements of the form T' = [ a(s)A%ds, a(s) € C.(R, «). Define n; by

o [ awazas) = [ ez mazas

Then by Lemma 7.6(B), lim, o ¥, (T) = (1 (T)&, ® Eporr, {p @ Eporr). Indeed we can
verify this as follows. First note that lim, .. ¥, (a) = (n(a)f, ® Eporr, &y @ Eporn) for
a € /. We have

w,(T) = Lvy</RY(s)Ai;ds>

= Wl,</RY(s)(Afj - 1)ds> + WV</RY(s)d5>

:/ %(Y(s)(Aif—l))ds+/ (Y (5))ds.
R R

Here

7 (Y (5)(AF = D) S T (Y(5)Y () )Tu((AF — 1)"(A7 ~ 1))

=0, (Y (s)Y (8)")W, (2 — AL — AZ™)

—0

as v goes to infinity. Hence

- /R Y ()€ © Eporms € © Eorn )
= </R?7(Y(s))Af§ R AL © Egorr, £ @ gwopp>

holds.
Hence we get

|<7]1 (T)fg0®@o°""’§w®<p°"l’>| < HTH

Since &, ® Epove is cyclic for 1n1(%1), m is a well-defined homomorphism by [6, Lemma
IV.5]. In a similar way, we have

</ a(s)A?ds§¢,§¢> _VILIIC}O</ n(a(s))A$®A¢f§pd3§V,§u>
R R
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by using Lemma 7.6(A). So [(T¢,,&,)| < |lm(T)| holds. Since &, is cyclic for %, n is
an isometry by [6, Lemma IV.5]. Then

o s

- / n(@(a(s)) A% B A, ds
R

H /R&(a(s))Ai;ds

= /R (AT Rid)n(a(s)) (A, Kid) AL KA, ds

= (AT id)(/Rn(a(s))Afj X Awfﬁpd8> (AT R id)H

= /n(a(s))Afﬁ&A;ﬁSpdS
R

= / a(s)Af;ds
R

Hence we get a desired isomorphism. O

LEMMA 7.8.  With the notations in the proof of Theorem 7.2, we have
[4n +2 — (1 —ex) — &(X) —ex|f(A,) — 1Pen| = 4n + 2.

PROOF. Let h(t) € C°(R) be a positive function with [ h(t)dt = 1. Then we
have [p ALXAZ"h(t)dt € o. Also

Z = </RA§,§(4n+2 I+ey+X—+en|f(Ay)— 1|2eﬂ)A¢ith(t)dt) /RAgh(t)dt € .

By Lemma 7.7,

B(Z) = (/I{Af:(4n+21+edy+d(X)+eJy|f(A¢)1|2e(/V)A¢”h(t)dt)/RAifh(t)dt,

and ||B(2)|| = ||Z]|. Here th(t)Af’fdt = B(A@)7 and ||lA”L(A<p)H < 1, where lAz()\) =
[ X*h(t)dt. Hence we have

IB)] < 140 +2 = (1 = ex) + G(X) + ex[f(Ap) = 1Per].

Since &, is an eigenvector of Z for an eigenvalue 4n + 2, ||Z|| > 4n + 2. Hence we get
[An+2— (1 —ex) +a(X) +en|f(Ay) — 1Pen| = 4n +2. a
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A. Common Jones projection in Longo-Rehren inclusion.

In [27], we constructed the common Jones projection in the Longo-Rehren inclusion
for a type II; subfactor. The proof in [27] is based on the computation of a biunitary
connection in paragroup theory. In the first appendix, we present a direct proof of the
existence of the common Jones projection in the Longo-Rehren inclusion for a subfactor
of type III.

Let N C M be a subfactor of type III with finite index, E' the minimal conditional
expectation, ¢ the inclusion map, and «f & @®;N,p; the irreducible decomposition. (Of
course, (7 is the canonical endomorphism for N € M.) Let {a$}Xi, C (¢,pt) be an
orthonormal basis.

We assume .# acts standardly on L?(.#). Let W; be the standard implement-
ing isometry for p;. Set a; := >, afJa$J, which is independent on the choice of an
orthonormal basis.

THEOREM A.l. Let ey be the Jones projection for N C M. Then
ex =[M:N|~ Z Vd(i)d(i)a; W

holds.

LEMMA A.2. Let o & ®,;0; be the irreducible decomposition for o € End(#), and
fix an isometry w; € (0;,0) with wiw; = 0; j. Let ¢, be the standard left inverse for o.
Then

d(0) ¢y (z) = Zd(%)% (w]zw;)

holds.

ProoF. Fix an isometry w; € (6;,6) with w}w; = 5” Let R; € (id, 0;0;) and
R; € (id,5;0) be isometries such that Rfo(R;) = d(o;)~! and R}5;(R;) = d(oy)~!
Define R:= )", d(a)) wyo (W) Ry, and R := Dok d(g)) Wrar(wy) Ry Tt is easy to see

that R and R are isometries such that R € (id,05), R € (id,50), R*0(R) = R*6(R) =
d(o)~1. Then ¢, () is given by R*5(z)R. Hence we have

bo(x) = R*5(z)R
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COROLLARY A.3. Let o, 0;, w; be as above. Let v be a faithful normal state of
M. Then \/d(0)€pop, wi = \/d(0i)wilpop,, holds.

PrROOF. By Lemma A.2, we get d(0)p,(wizw]) = d(0;)ds,(x). Hence d(c)p o
¢o(wizw}) = d(o;)pope, (x) holds. If we replace « by xw;, we get d(0)pod, (wzw;w)) =
d(o;)po ¢s, (zw;). Since w;w} € o(M) NM, and ¢, 0 E, = ¢,, wyw] is in the centralizer
of pog,. Hence we get d(o)pod,(w;x) = d(0;)po ¢y, (xw;). This implies the conclusion.

O

PrOOF OF THEOREM A.l. Let ¢ be a faithful normal state of M such that o F =
@. Then ey is given by en(z€,) = E(x){,. Fix v € (id, ) and v € (id, &) such that
v u(0) = v*1(v) = [M : N]72. Let {w¢} C (pi,tt) be an orthonormal basis. By the
Frobenius reciprocity, we may assume af = /[M : N|/d(i)w§*c(v). We have

17 3 VAR Wiate) = M NI 3 A0 )00,
Zﬁd ;" pi(2)€pog,, a5

_ZF Jwi pi()€p0s,, Wi 1(D)

—ZF (@)W§E pog,, wi 1(0).

By Corollary A.3, we have \/d(i)w§€pop,, = /[M : N|pop, w

Hence we get
Zw ()W Epog,, W Z¢ ()€ pog,wiwi"o(v)

= /[M : N|o(0")ei(2)€pop,, (D).

Here
Eo ¢,i(x) = (0 (du(x))v)
= o(0 (0" ) e (%) et () te(0)T(v) D)
= (¢ (x))
holds. So

[M : Nlp o ¢u(e(v)z) = [M : N]p o 1 (¢(v)x))

[M : N]p o u(¢n(v¢.(x)))
o u(d.(x)v)

= ¢(x(v))
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holds, and we have /[M @,o% (V) = 1(V)&p.
Finally we get \/[M Ux)pop,, t(0) = L(0*)et(2) (D)€, = E(x)Ep. O

B. Exhaustion trick.

In the second appendix we give a proof of a subfactor-version of [6, Lemma III.4],
since the proof was omitted in [6]. This lemma is a key for the proof of Theorem 7.1. As
mentioned in [6], idea is similar to that of [6, Theorem II.2].

LemMmA B.1. Let ¥/ C M, €, pj and 0 be as in the “if part” of Theorem 7.1, and
& € L2(AM )+ be the representing vector for ;. Let ¢ be as in [6, IIL.Lemma 2]. Then
there exist a projection E € A and non-zero y € A such that,
() lyll <1, y =0(E)yE,
(2) Y llyg; 11> = 27 3D IIEG 12,
(3) IE, &1I1” < e S I1EE )12,
(4) lly&; — 0(&)yll* < e 32 lly&s11*

A proof of this lemma is same as that of [6, IIl.Lemma 3]. Here note that since z € A4
in Theorem 7.1, F and y can be chosen in .4 by construction.

LEMMA B.2.  Let &/ C M, and 0 be as in the “if part” of Theorem 7.1. Then
there exists a bounded sequence {y,} C A such that {y,} does not converge to 0 strongly
and

Hyn(p - 9(@):%” —0,p€ M.

PrOOF. Fix o1, , 0, € 4. We may and do assume that ; is faithful. Let
£ > 0 be such that 276¢=! —ne? > 27 7¢c~! where c is a constant defined in [6, Lemma
IL.3]. Let & € L?(.#)+ be the representing vector for ¢, i.e., p;(x) = (x&;,&;). Let R
be the set of r = (E,z, a1, ,a,) € Proj () x A x L2(.#)" satisfying the following
conditions.

() O(E)aE = x, ||z < 1.

(ii) Baj = aj, mj ==& — aj — Jaj € L* ()4 and [E,n;] = 0.
(i) floy|I* < e 32, HEEJH2

(iv) 32, lwnyll? = 277e™" 32, (121

)l — Bnp)al” < 2 5 ot P

We define a partial ordering r = (E,z, a1, -+ ,ap) < 1 = (E',2',a), -+ ,al) as

follows.

() E<E.

B) 6(E)x'E = x.

7) E(a) —a;) = 0.

) e, = ol < 22 5, (B — By 2
We claim that this is indeed an order.

(1) It is trivial that r <.

(2) Assume r < v’ and v < r. By (o), E = E'. By (8) and (i), z = §(E)2'E =
O(E")x'E' = a'. By (8), aj = o;. Hence we get r =r'.

(
(
(



996 T. MASUDA

(3) Assume r < r/ and ' < ¢”. Tt is clear that F < E”. Next 8(E)x"FE
O(E)0(E)2"E'E = 0(E)x'E = x, so (3) holds. E(aff —a;) = E(a — o)+ E(a); —ay)
E’Eag’”— a%-) :/ 0. Hence (v) hOld/S,. To 2prove /(/6), firz:t not/e (o N a;,zog; — aj>”:
(B'(off —aj), o —a;) = 0. Then [[off —aj||* = [lof — of[|* + [laf — a5 <& 3, [ (E” -
ENG I+ ;5 I(E — E)g)1? =& 32, (B — E)g;1*.

Next we prove that R is an inductively ordered set. Let {r;};cs be a totally ordered
subset. Set r; = (Ej;,z;,a%,---,al). Then we can see that r; — ¢1(E;) € R is a
faithful map. Hence there exists a cofinal sequence {r;, }. So we may assume that {ry}
is an increasing sequence. Then { F}} is an increasing sequence of projections, and hence
F = limy, B, exists in the strong topology. By a similar reason, x = limy z;, also exists.
By (9), ] —e[* < <2, (B — )G By letting k.1 — o, we know that {al]} s
J
R by continuity. By construction r is an upper bound of {r;}. Hence R is inductive.

a Cauchy sequence. Hence a limit o; = limy, o exists. Then r = (F,z, a1, -+ , ) is in

By Zorn’s lemma, there exists a maximal element r = (F,z, a1, -+ ,ay) € R. Ac-
tually we have E' = 1. We assume E = 1 for a moment, and it will be proved at the end
of the proof. Then we get x € A", a; € L*(.#) satisfying the following conditions.

(1) flzfl < 1.

(2) llegll* < e 325 1€

(3) With n; = & — a; — Jay, 30 [lanyl| > 277 30, [Iny 1.
(4) [ln; —0(n)z|* < €2 320, 1111

Set a:= />, [|§[|*. Then [[a;]| < ea holds. By (4), we get

|2€; — 0(&;)x|| = llwn; — O(n)x + 2(a; + Jaj) + 0(a; + Jay)z||
< 5ea,

and

lzn; || = llz(§ — aj — Jay)||
< lz&ll + 2l eyl
< ||z&;]| + 2ea.

Hence we have the following.

> il < D (2]l + 22a)
j j
= S (I 12 + dcalz; | + 4c%a?)
J
%
< Z & )1* + dens (Z ||x§j||2> a + 4e*na®
J j

1

= ((Z ||x§j||2> 4 Qean%)z.
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On the other hand, we have the following.

S il =D lIE — oy — Jay?
i

J
> (g1 - 200
J

= > (I&1° — 4eallé; ]| + 4a?)
J

1
> a? —den?a® + 4¢%a®n

)2

Nl=

=a*(1 - 2en

So by (3), ((>; |2€;]12)% + 2ean?)? > 277¢ 1 a2(1 — 2en2)? holds. If we take
sufficient small ¢, then we get z € A4, ||z| < 1 such that |z&; — 6(&;)z| < ea and
> |z&;||* > d’'a® for some constant 0 # d’.

Since $) is separable, we can construct a bounded sequence {y,} C .4 such that
{yn} does not converge to 0 strongly and lim, .« ||yne — 0(p)y.|| = 0 for every ¢ € A,.

Now it remains to show £ = 1. To do so by contradiction, we assume F # 1. Let
u € .4 be a unitary such that uf(1 — E)u* = 1 — E, and consider § := Adubl g, -
Since Ea; = a;, we have (1 — E)a; = 0 and (Jo;)(1 — E) = J(1 — E)a; = 0, so that
(1-E);(1-FE)=(1-E)n;(1—-E)(=:(). By applying the above lemma to .#(;_p),
6 and {¢;}, we can find 0 £ y € N1-p) and F € Proj (=/V(1—E)) such that
1) O(F)yF =y, [yl <1,

2) 325 lyGlI? = 270 30 IR G 1%,
3 IEGIIP <& 5, IFG I
9 lyG; — Gl < 22 52, Gl

Set 2’ = x +u'y, B' = E+ F, o = a; + Fn;(1 — F). We claim that r’" =
(E',2',al, -+ ,a)) € R and 7’ majorizes r. Note that F'n; = F(; and n;F = (;F since
1—FE > F and (1 — E) commutes with n;.

(i) First note that §(F)y = y implies 8(F)u*y = u*y. Then ||z’ < 1 is clear from
the facts 0(F)zE = z, (F)u*yF = u*y.

(ii) E'a; = (E+F)(aj+Fn(1-F)) = Eaj+Fn;(1-F) = o). Set n; = §;—aj—Ja,.
Since

~ o~~~

n; =& — o —Jaj
=& —o —Fn(1-F) = Jaj — (1= F)n; F
=1 = Fnj(1=F) = (1= F)n; F
= FnF+ (1= F)n;(1 - F),
we have 7, € L*(A)4..

Next we verify [/, E'] = 0. Note that En; = n; E = En;E holds due to [E,n;] = 0.
Then we get the following.



998 T. MASUDA

[E', ;] = (E+ F)(Fn;F + (1 — F)n;(1 = F)) — (Fn; F + (1 = F)n;(1 = F))(E + F)
=FnF+Eni(1-F)— Fn;F' — (1 - F)n; B
=En;(1-F)—(1—F)n;E
=En;E(1-F)—(1-F)EnE
=0.

(iii) Since Faj = «j, aj and Fn;(1 — F) are orthogonal. Then

e 11* = llas [I* + [1Fm; (1 — )|

<Y NEGIP + 1F¢G (1 - F)|?
J

g Z IEE |1 + [|FF, ¢
J
e? Z | B + & Z IF¢?
3j J
& Z IEE |1 + € Z IFg;(1— B[
J J
522 I1E¢|1? +EQZ Pals
j J
- 522 I(E + F)& |

J
=) 1B
j

IN

IA

(iv) First we compute 7.
a'nj = (@ +uy)(Fn F+ (1= F)n;(1 - F))
=an;(1—-F)+u*yn F
= an; +u 'y F.

Hence ||z'n}||* = |lzn;[|* + ||lu*y¢; F||* holds. We also have

Iyl = Ny G F I + lly¢; (1 = F)]>
< lyGFI? + 11 = F)I?
= lyG FI* + 1 FLF, G112

< G FIP + &Y IFG)*
i
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Hence 3, [[yGiFll > 32, lyGlI* — en 325 [|F¢; || holds.
We will estimate > [|lz'nj]|.

n

Dol nflP =Y Mgl + Y My l* —en > IFG)?
= j j j
277 Y B P 4+ 2% —ne?) Y IIFG?
J J
27T Y B lP 4+ 27T Y IIFG)?
J J
- ‘1Z||E (1= F)n; (1= P[> +277e 'Y |FGF|?
J
-7 *1Z||E (1—F)n;(1—F)+ FGF|?
277 Y (B A+ F)(1 = F)ny(1 = F) + F F)|?
277y | E)P
J

(v) We compute 6(1;)z’

0(n;)a" = 0(Fn; F + (1 — F)n;(1 — F))(z +u"y)
=0(Fn;)u"y +6((1 — F)n;)x
= uwO(F¢)y +0((1 — F)ny)z
=w (FG)y +0((1 - F)n E)a
=w (FG)y +0((1 - F)Bny)a
= w*9(F¢)y + 0(En;)x
= uw'O(F¢;)y + 0(n;)z.

Then we have the following estimate.

lz'n; — 0(m))2'|* = [lan; + u*yG F — 0(n;)x — u*0(F )yl
= [lzn; — 0(n;)z + u*yGGF — u*0(F)0(¢)yl?
= |lan; — 6(n;)x||* + |u*0(F)y¢ F — u*0(F)0(¢;)yl?

<> N2l + lyGF — 0(¢)yF I

J
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<&y ll2 1% + Ny — 0(¢)yl?
J
<&y llzglP + 2D Nyl
J J
Y Nz + 2 Iyl — B)g; (1 - B)|?
J J
Y llx |1+ Y lluyg )
J J
g2 Z |(z +u*y)&]1*  (z€; and u*yé; are orthogonal,)
J

23 g ).
J

N

IA

Hence 7’ is in R. Next we verify v’ > r. («a) is obvious. Since 0(E)(z + u*y)E =

O(E)xE + 0(E)0(F)u*yFE = , so (3) holds. Next we verify (y). Then E(a) — ;) =
E(Fn;(1-F) = 0). Finally [la}—a;[|* = [|[Fn; (1=F)|]* = [F([F,n;])||? < e 32 [[1F¢)1? =
g2 > IFE(L = B)||? < ||[(E" — E)||?, so (§) holds. This contradicts the maximality of 7,

so we get £ = 1. O
References

[1] H. Araki, Asymptotic ratio set and property L/, Publ. Res. Inst. Math. Sci., 6 (1970), 443-460.

[2 D. Bisch, On the existence of central sequences in subfactors, Trans. Amer. Math. Soc., 321
(1990), 117-128.

[3] M. Choda and H. Kosaki, Strongly outer actions for an inclusion of factors, J. Funct. Anal., 122
(1994), 315-332.

[4] A. Connes, On hyperfinite factors of type IIIp and Krieger’s factors, J. Funct. Anal., 18 (1975),
318-327.

[5] A. Connes, Classification of injective factors, Ann. of Math., 104 (1976), 73—-115.

[6] A. Connes, Type III; factors, property Li\ and closure of inner automorphisms, J. Operator
Theory, 14 (1985), 189-211.

[7] A. Connes and E. Stgrmer, Homogeneity of the state spaces of factors of type III;, J. Funct.
Anal., 28 (1978), 187-196.

[8] E.G. Effros and E. C. Lance, Tensor products of operator algebras, Adv. Math., 25 (1977), 1-34.

[9] D.E. Evans and Y. Kawahigashi, Quantum symmetries on operator algebras, Oxford Press, 1998.

[10] D. Guido and R. Longo, The conformal spin and statistics theorem, Comm. Math. Phys., 181
(1996), 11-35.

[11] U. Haagerup, Connes’ bicentralizer problem and uniqueness of the injective factor of type IIIy,
Acta Math., 158 (1987), 95-148.

[12] U. Haagerup and E. Stgrmer, Equivalence of normal states on von Neumann algebras and the
flow of weights, Adv. Math., 83 (1990), 180-262.

[13] F. Hiai, Minimalizing indices of conditional expectations onto a subfactor, Publ. Res. Inst. Math.
Sci., 24 (1988), 673-678.

[14] F. Hiai and M. Izumi, Amenability and strong amenability for fusion algebras with applications
to subfactor theory, Internat. J. Math., 9 (1998), 669-722.

[15] M. Izumi, Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci.,

27 (1991), 953-994.



[16]

ww W
R=AeiNe s

N
S

[41]

Classification of subfactors of type I 1001

M. Izumi, On type II and type III principal graphs for subfactors, Math. Scand., 73 (1993),
307-319.

M. Izumi, The structure of sectors associated with Longo-Rehren inclusions, I, General theory,
Comm. Math. Phys., 213 (2000), 127-179.

V. F. R. Jones, Index for subfactors, Invent. Math., 72 (1983), 1-25.

Y. Kawahigashi, Classification of approximately inner automorphisms of subfactors, Math. Ann.,
138 (1997), 425-438.

H. Kosaki, Automorphisms in the irreducible decomposition of sectors, In: Quantum and Non-
commutative Analysis (eds. H. Araki, et al.), Kluwer Academic Publishers, (1993), 305-316.

H. Kosaki, Sector theory and automorphisms for factor-subfactor pairs, J. Math. Soc. Japan, 48
(1996), 427-454.

H. Kosaki, Type III factors and index theory, Res. Inst. of Math., Lecture Notes Series, Seoul
Nat. Univ., 43 (1998).

H. Kosaki and R. Longo, A remark on the minimal index of subfactors, J. Funct. Anal., 107
(1992), 458-470.

P. Loi, On automorphisms of subfactors, J. Funct. Anal., 141 (1996), 275-293.

R. Longo, Index of subfactors and statistics of quantum fields II, Comm. Math. Phys., 130 (1990),
285-309.

R. Longo and K.-H. Rehren, Nets of subfactors, Rev. Math. Phys., 7 (1995), 567-597.

T. Masuda, Generalization of Longo-Rehren construction to subfactors of infinite depth and
amenability of fusion algebras, J. Funct. Anal., 171 (2000), 53-77.

T. Masuda, T. Extension of automorphisms of a subfactor to the symmetric enveloping algebra,
Internat. J. Math., 12 (2001), 637-659.

M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. Ecole Norm., 19 (1986),
57-106.

S. Popa, Classification actions of discrete amenable groups on subfactors of type II, preprint,
1992.

S. Popa, Approximate innerness and central freeness for subfactors: A classification result, In:
Subfactors (eds. H. Araki, et al.), World Scientific, 1994, 274-293.

S. Popa, Classification of amenable subfactor of type II, Acta Math., 172 (1994), 163-255.

S. Popa, Classification of subfactors and their endomorphisms, Regional Conference Series in
Mathematics, 86 (1995).

S. Popa, The relative Dixmier property for inclusions of von Neumann algebras of finite index,
Ann. Sci. Ecole Norm., 32 (1999), 743-767.

S. Popa, Some properties of the symmetric enveloping algebra of a subfactor, with applications
to amenability and property T, Doc. Math., 4 (1999), 665-744.

M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type
ITI, Acta Math., 131 (1973), 249-310.

M. Takesaki, Theory of Operator Algebras, I, I1, II1, Springer, Berlin-Heidelberg-New York, 2002.
S. Wassermann, Injective W*-algebras, Math. Proc. Cambridge Philos. Soc., 82 (1977), 39-47.
C. Winslgw, Strongly free actions on subfactors, Internat. J. Math., 4 (1993), 675-688.

C. Winslgw, Approximately inner automorphisms on inclusions of type III, factors, Pacific J.
Math., 166 (1994), 385-400.

S. Wright, Uniqueness of the injective III; factor, 1413, Springer, Berlin, 1989.

Toshihiko MASUDA

Graduate School of Mathematics
Kyushu University

6-10-1 Hakozaki

Fukuoka, 812-5250

Japan



