(©2017 The Mathematical Society of Japan
J. Math. Soc. Japan

Vol. 69, No.1 (2017) pp.311-371

doi: 10.2969/jmsj/06910311

The analytic torsion of the finite metric cone
over a compact manifold

By Luiz HARTMANN and Mauro SPREAFICO

(Received Dec. 2, 2014)
(Revised Apr. 30, 2015)

Abstract. We give an explicit formula for the L? analytic torsion of the
finite metric cone over an oriented compact connected Riemannian manifold.
We provide an interpretation of the different factors appearing in this formula.
We prove that the analytic torsion of the cone is the finite part of the limit
obtained collapsing one of the boundaries, of the ratio of the analytic torsion
of the frustum to a regularising factor. We show that the regularising factor
comes from the set of the non square integrable eigenfunctions of the Laplace
Beltrami operator on the cone.

1. Introduction and statement of the main result.

Let (M, g) be a compact connected oriented Riemannian manifold without boundary
of dimension n with metric g. Let A denotes the Hodge—Laplace operator on M in the
metric g. Then, A has a non negative discrete spectrum SpA and the zeta function of A
is well defined by

(s, A0) = 3, A7

AeSp, AlD)

for Re(s) > n/2, and by analytic continuation elsewhere, and is regular at s = 0. The
analytic torsion T(M, g) of the pair (M, g) is defined by

n

logT(M,g) = Z (JCOA )

If the manifold M has a boundary 0M, the Laplace operator is assumed to be defined
by suitable boundary conditions BC [18, Section 3]. In such a case, it is convenient to
split the logarithm of the analytic torsion into two parts, the first being a global term and
the second a local one, defined on a neighborhood of the boundary [4, Section 3]. The
first term coincides with the Reidemeister torsion [14] of either M of the pair (M, M),
with the Ray and Singer homology basis [18], by the Cheeger—Miiller theorem [4], [15],
SO
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IOg Tabs(M7 g) = IOg T(M7 g) + IOg Tbound,abs(aM)y
log Tre1(M, g) = log 7((M,0M), g) + log Tbound,rel(aM)a

the second term splits as
1
log Tbound’BC(aM) = Zx(aM) log2 + ABM,BC (8M),

where y is the Euler characteristic, and the last term is called the anomaly boundary
term, and was described in the more general case in [1] and [2].

Tt is clear that what is necessary in order to define the analytic torsion T (M, g) is that
the spectrum of the Hodge—Laplace operator satisfies some assumptions that guarantee
the possibility of defining the zeta function and of proving its regularity at s = 0. It is
also clear that this follows by some spectral properties of the Hodge-Laplace operator.
There are several approaches to describe these properties. We will follow the one of
Spreafico, introduced in [21] and [22]: so we require that Sp, (A) is a graded regular
sequence of spectral type (of non positive order), as defined in [22, Definitions 2.1, 2.6].
The fact that this is true for the Hodge-Laplace operator on a compact manifold is well
know.

The given definition of the analytic torsion extends easily considering forms with
values in some vector bundle V, associated to some orthogonal representation p of the
fundamental group of W [18, Section 1]. Under our approach what is necessary is that the
spectrum of the resulting operator is a regular sequence of spectral type of non positive
order, and again this is well known. Since the results of this paper are independent of
these extensions, we will consider the simpler case of the Hodge—Laplace operator itself.

An other possible generalization of the given definition of analytic torsion, and this
is the case that we will consider here, is when the underlying space is no longer a compact
manifold, but some type of open manifold, or manifold with singularities. In this paper
we consider the case of the cone over a manifold C'(W), as defined below.

DEFINITION 1.1.  Let (W™ g) be an oriented compact connected Riemannian
manifold of dimension m without boundary with metric g. Let 0 < [} < Iy be real
numbers. Consider the space Cyy, 1,)(W) = [l1,l2] x W with the metric (defined for x > 0
when [; = 0)

dr @ dx + 2%g.

We call Cpj,50,,)(W) the finite metric frustum over W; we call Cg (W) the finite
metric cone over W, and we denote it by C;(W).

It is clear that in order to obtain a suitable extension of the definition of the analytic
torsion to the cone, we need first a suitable definition of the Hodge-Laplace operator.
Spectral analysis on cones was developed by Cheeger [5], [6], that in particular showed
that the formal Hodge-Laplace operator A has a self adjoint extension on the space of
square integrable forms. A complete set of solutions of the eigenvalues equation for A can
be described in terms of a complete discrete resolution of the Hodge—Laplace operator
on the section of the cone, see Lemma 3.1 [5, Section 3]. Considering square integrable
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forms and applying the boundary conditions, we obtain an explicit description of the
spectrum of A in terms of the spectrum of the Hodge-Laplace operator on the section,
see Lemmas 3.2.

REMARK 1.1. It is important to observe here that beside the usual (either absolute
or relative) boundary conditions, due to the presence of a non empty boundary, when
the section W has even dimension m = 2p, further boundary conditions, called ideal
boundary conditions, where introduced by Cheeger [5], as we recall here. Assume that
there exists a decomposition HP(W) = V, & V;, where V, and V, are maximal self
annihilating subspaces for the cup product paring. Then, a p dimensional form belongs
to the domain of the Laplace operator if its components in V, and V,. satisfy Neumann
and Dirichlet conditions respectively at z = 0 (see [5] pg. 580 for details). Observe
that our determination of the spectrum of the Laplace operator on the cone is obtained
assuming this decomposition and these conditions. Moreover, where ever not explicitly
stated, the above decomposition and the ideal conditions will be assumed. We conclude
this remark recalling that ideal boundary conditions are necessary to guarantee Poincaré
duality on the cone.

We can then prove that Sp_ (A) is a regular sequence of spectral type and therefore
the analytic torsion of the cone is well defined. We are in the position of extending the
above definition of the analytic torsion to this setting, and we call the resulting object
the L? analytic torsion of the cone, Thps ideal(Ci(W)) (we use the same notation and we
restrict to absolute BC, since the relative torsion follows by Poincaré duality [10, Section
4]). Of course it is not obvious at all if the invariant obtained in this way has some
geometric or topological meaning. Since the spaces of the L? harmonic forms on W are
proved to be isomorphic to the intersection cohomology of W, the natural candidate for
the L? analytic torsion is the intersection torsion. It was proved in [11] that indeed L2
analytic torsion and intersection torsion of the cone over an odd dimensional manifold
coincide. The case of an even dimensional section is not clear yet, due to some difficulty
in producing a natural definition for the intersection torsion in this case. There is work
in progress in this direction. Here we tackle the analytic side of the problem.

The main purpose of this work is to compute Typs ideal(C1(WV)), or more precisely
to give formulas for it in terms of other either geometric or spectral invariants, and
in particular invariants of the section (W,g). A key point here is the following. The
description of the spectrum of the Hodge-Laplace operator on the cone in terms of the
spectrum of the Hodge-Laplace operator on the section makes possible to express (or
decompose) all the spectral functions (in particular the zeta function and the logarithmic
Gamma function, see Subsection 5) on the cone in terms of the spectral functions on the
sections, and to apply the technique introduced in [22] in order to tackle the derivative
at zero of a class of double series. This is the main technical point, and in fact this is the
reason that permits to obtain the final results. We did follow the same approach first in
[9], where we gave the formula for the torsion of the cone over a sphere, and then in [10],
where we considered as section any compact connected manifold of odd dimension. These
results are superseded by the formulas obtained in the present work, where the section
can have any dimension. We stress the fact that, as observed in [10], the calculation
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are exactly the same and there is no more difficulty to deal with the even dimensional
section case that with the odd dimensional one. Moreover, while the formulas in the odd
dimensional section case have a clear geometric interpretation in terms of intersection
torsion, due to [12], the even dimensional section case is still quite obscure. However,
due to the recent interest in the subject (see [16]), we decided to present the formulas for
the general case and the details of the calculation. Indeed, the presentation followed in
this paper adds some insights in the possible interpretation of the result, as we explain at
the end of this section, but first we present our first main result in the following theorem.

THEOREM 1.1.  Let (W™, g) be an oriented compact connected Riemannian man-
ifold of dimension m with metric g. The L? analytic torsion Taps ideal(C1(W)) of the cone
over W with absolute and ideal boundary conditions is as follows, where rq = tkH (W),
and Meex,q,n, O and g n are defined in Lemma 3.1, p > 1:

152 1
log Tas(CL(WEP~1))) = 5 2_(=1)(2p — 2q)rglogl + 7 log T(W. g)
q=0
122
-3 (—=1)%r,log(2(p — q)) + ABM.abs(OC, (W),
q=0

1 1
10g Tabs,ideat (C1 (W 2P))) 3 (=1)%(2p —2q+ 1)ry + (_1)p47"p> log!

Il
VRN
[le)

Il
=)

- % > (=1)%rlog(2p — 2¢ + 1)((2p — 2¢ — D))?

- L+ ag/pgn
(—1)? Meex.q.n 108 - arrgn
,;1 ! 1= ag/tign

X(W)log2 + Apm,abs(OCI(W)).

Next, we give an interpretation of the formulas given in Theorem 1.1. This is done
in two steps. In the first, described in whole details in Section 2, we show that all the
sums appearing in the formula of the torsion in the odd case, and some of these sums in
the even case, coincide with the determinant of the change of basis between the basis of
the harmonic forms on the cone and the basis of the harmonic forms on the sections, see
Theorem 2.1 of Section 2. This is a classical geometric contribution in the Reidemeister
torsion of the cone (see [12]), and therefore this interpretation clarifies completely the
appearance of these sums. In particular, this describes completely the L?-analytic torsion
of a cone over an odd dimensional manifold, and also suggests that the Euler part of the
boundary contribution is anomalous in the analytic torsion (see Remark 2.1 at the end
of Section 2). In the other case, i.e. for a cone over an even dimensional manifold, other
sums appear in the formula for the analytic torsion. An interpretation of these further
sums, collected into the two terms B; and Bs in Theorem 2.1, is the second step of our
interpretation of the formula for the analytic torsion of the cone, and is presented in the
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final section of the paper. The interpretation is suggested after proving that the formula
for the torsion of the cone can be obtained as some limit case of the formula for the
torsion of the frustum. We postpone the discussion of these results to the last section.
We conclude this introductory section with a few remarks on the anomaly term
appearing in the even case. We observe that the anomaly term can be also written in
terms of residues of some spectral functions, see Subsection 8.1.2, or Theorem 1.1 of [9].
Formulas for particular sections, as spheres of discs, are given in [7] and [8], [9].

REMARK 1.2. By duality:

1221 Lt Qofttgn 1o & g
5 E ( E Meex,q,n 5 E (_1) E Mcex,q,n 10g 1+ .
=0 n=1 q=0 n=1 Haq,n

1_a(1/#(In

REMARK 1.3. Using Proposition 2.9 of [21] the first term in the last line of the
second formula in the theorem reads

11)2_:1( Z 1—|—Oéq/ﬂqn 1p_1( 1)[1 (CI(O ) CI(O ))
5 Meex, ,n P - y Qg ) — y &
2q:O n=1 o 1_aq/l”bq" 2q:0 ! ! ! !
Ry det ((A(Q) W) T )1/2 aq)
=35 (71)q10g )
2= det¢ ((Ag%g) +a2)l/2 + aq)

where A(yy,g) is the Hodge-Laplace operator on the section of the cone (W, g), and

o
Cq(sa IE) = Z mcex,q,n(ﬂq,n + 1')78~

n=1

2. A geometric interpretation of the analytic torsion.

The spaces of harmonic forms on the frustum (with absolute an mixed BC) were
computed in [11]. The space of harmonic forms on the cone (with absolute and relative
BC) were compute [12]. In particular, in the even case m = 2p the result changes if we
assume the Cheeger ideal BC, as described in the introduction. A simple calculation,
proceeding as in the proof of Lemma 4.1 of [12], gives the following result.

LEMMA 2.1.  We have the following isomorphisms of vector spaces induced by the
extension of the inclusion of the forms:
Hq(W)a qugpfla
{0}7 PSC]§2P_17

HI(W), 0<q<p,
{0}, p+1<qg<2p+1,

Haps (CL(W)) = { dimW =2p — 1,

Haps (CL(W)) dim W = 2p,
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HIW) if 0<q<p-—1,
(CW) =<KV, if ¢q=np, dim W = 2p,
0 if p+1<q<2p+1,
Hgbs(c[ll,b](w)) =HI(W).
Proceeding as in Section 3.5 of [11], we have the following commutative diagram of

isomorphisms of vector spaces (we give here the diagram for the cone, the one for the
frustum is in [11]), for 0 < ¢ < [m/2],

HI

abs,ideal

m—q+1

) qm= (W).re _ ——
A (CuW )~ (o (W)= (G (W), (W)} <—L—H, (G (W)
% T( 12— Q‘de (—1)7 7
Apa —~
HI(W)—— qym—a Hm=4 (W) P H,(W)

where A is the de Rham map on the cone, P Poincaré duality, x the Hodge isomorphism,
and the factor v, is the ratio between the L? norm of the constant extension of a form
w on the cone and the L? norm of w (the double dot indicates the constant extension):

_ ”CJJC';H%Z(W) _ /l 20y [m—2atl
T = T 0 m—2q+1

The same analysis on the frustum gives (see [11, Section 3.5] for all definitions and
details)

1
- 1|2 Lt [(im+1-2q m+172q) . B
_ N9pllGy, v /Zme2de 12 (12 7 ifm+1-2¢#0,
el 2, ifm-+1-2=0.
1
Note that for all ¢ < [m/2],
lim Ty =,

ll—>0+712:l

Recall that for a real vector space V we denote AY™VV by detV, and we call this
line the determinant line of V' (det0 := R). If v = {v1,...,vaim v } is a basis for V, we
use the notation detw for v1 A -+ A vgimv. For a finite dimensional graded vector space

Vo =(Vg)gez = @qEZ Vg, set

Det Ve = (X)(det V)1,
q=n
where V™ = V and V" = V. This one dimensional vector space is called the

determinant line of V.
With this notation, if « is a (graded) basis for the harmonic forms on W, we have
that the ratio between the determinant of the homology graded basis induced by an
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harmonic basis of the frustum and of its section, and of the cone and of this section are,
respectively:

Detéir 19
— T (=g 2 lute B
Dot H ¢ , absolute BC
q=0
[(m—1)/2] - [(m—1)/2]
Detg "¢, _ D /2, absolute BC
Detl" /g PR
Det?'a T a
% = A{EDIATT A2 m = 2p, absolute, ideal BC.
ety « q=0

For completeness we gave here also the result without ideal BC here, however in the
following the formulas are all given assuming ideal BC. A simple calculation completes
the proof of the following corollary of Theorem 1.1 (a similar formula holds in the case
m = 0).

THEOREM 2.1.  The analytic torsion of the cone reads:

1 Detlm=1/2] 5
l%ﬂm@ﬂmwwnz?%ﬂmm+MBﬁﬁmm*+ﬂ
€ 0 (%

(W)log2
+ Aps abs (0C1 (W) + BU™(CL(W) + BS™ (Cu(W)),

where BY/";(CZ(W) are the following anomaly terms (vanishing when m = 2p—1 is odd):

p—1 p—1 00
1 14+« n
BEQP) (CI(W)) = — Z(—l)qrqlog(2p— 2(] — 1)” + 5 Z(—l)q chex’q’nlog]ﬂ%,
q=0 q=0 n=1 arran

1
B (G(W) = x(W)log2.
The analytic torsion of the frustum reads:

10& Tatn (Ct, 1 (W) = 08T (W, g) +1og Dover 4 - (W) 10g2 + A ata(C, 1 (W),

REMARK 2.1. As announced in the introduction, the formula in Theorem 2.1 com-
pletely describes the analytic torsion of a cone over an odd dimensional manifold in terms
of topological and geometric quantities. In particular, the splitting between global and
boundary terms is evident (compare with the formula in Equation (1.1) for a regular man-
ifold, and with the discussion in Section 6). In the even case, the same analysis suggests
the description of the torsion given in the formula, with two new anomaly terms, called
By and Bs. If now we read the formula for the torsion in the even case looking for the
global and the boundary contributions, we find out that part of the boundary contribu-
tion can be interpret as anomalous. This is justified as follow. Recall that the boundary
term splits into two parts: one is the classical part, see the work of Liick [13] and depends
on the Euler characteristic of the boundary, the other is the anomaly boundary term,
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computed by Briining and Ma [1], [2]. Then, we realise that (collecting together all the
terms where the Euler characteristic appears) the classical boundary term in the cone
coincides with the one of the frustum, even if the boundary is different. In other words,
it seems that the analytic torsion of the cone does not see that the boundary at x = 0
collapses to a point. Following this interpretation, we split this boundary term into two
parts: the first is

1
and is the classical contribution of the boundary, the second one is By(W), and is un-
derstood as an anomaly boundary term.
3. Spectral properties of the Hodge—Laplace operator.

Consider the metric in Definition 1.1 either on the cone C;(W) or on the frustum
Cliy>0,1,)(W). Let w € Q1(C1(W)) (w € QU(Cppys0,,)(W))), set

w(z,y) = fi(z)wi(y) + fa(z)de A wa(y),

with smooth functions fi and fz, and w; € Q(W). Then (we denote operators acting on
the section by a tilde),

*w(@,y) = a2 fo(x)Fwa(y) + (—1)%™ 2 fr(z)dw A Fwi (y),

dw(z,y) = fi(x)dwi(y) + O fr(z)dx Awi(y) — fo(z)dz A dws(y),
diw(z,y) = 272 fi(z)d wi (y) — ((m—2q+ 2)z7 ! fo() + O fo(x)) waly)
— 272 fo(x)dz A Cﬁng(y),

Aw(z,y)= (—02f1(x) = (m—2q)a~ 0, fr(x)) wi(y) +a~ 2 fr(w) Awi (y) = 227" fa(x)dwa(y)
e (07 fal) B (y) +wa(9) (~02 falle) — (m =2+ 200 Du ()
+(m— 2q+2)z72f2(x)) —227%f1 (:z:)cﬁwl(y)) .

LEMMA 3.1 (Cheeger [5]). Let {@ﬁ?r,wﬁgz(}n,gagi)’n} be an orthonormal basis of
Q4(W) consisting of harmonic, coezact and exact eigenforms of AW, Let Ag,n denotes

the eigenvalue of @EZBW and Meex,q,n 1ts multiplicity. Let J,, be the Bessel function of
index v. Define

1
g = 5(1 +2q —m), Han = 1/ Aqn +ag.

Then, assuming that g, is not an integer, the solutions of the equation Au = A2,
with X # 0, are of the following six types:

wi{)lﬂh/\ =z Jiﬂqm (Ax)wg(éz{,n?
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G0y n = 2 T, )l Y 4 (2% Ty, () da A (Y

Wy = T 0 (@ T, ()Rl )

+ xo“’*l_lJiMan (A\x)dx A JTcﬁpgé;jl)
W) = 2%, (Or)de A dpl?

wf,)E,A = 2% Jg)q,) (MC)‘Pg;)r

w(iq,)o,A = 0p (¥ " Jx|a,_,|(AT))dx A cp(q_l).

har

When the index is an integer the — solutions must be modified including some loga-
rithmic term (see for example [23] for a set of linear independent solutions of the Bessel
equation).

Following [5] and [3], the formal Hodge-Laplace operator in Equation (3.2) defines
a concrete self adjoint operator with domain in the space of the square integrable forms
on the cone (see [9] for details). This operator (that we denote by the same symbol A)
has a pure point spectrum as described in the following lemmas, whose proof follows
applying BC and square integrability to the solutions described in Lemma 3.1 (see [12]
for details on the proof, and observe that more care is necessary in the even dimensional
case, where we must take into account also the ideal BC).

LeMMA 3.2.  The positive part of the spectrum of the Hodge—Laplace operator on
C1 (W), with absolute boundary conditions on 0C; (W) is as follows, where 0 < g < m+1.
Ifm=dmW=2p—-1,p>1:

(@) _ 32 2% .32 2%
Sp+Aabs =\ Meex,g,n * juq,n,aq,k:/l o — U Meex,q—1,n * ]uq,lyn,aq,l,k/l

n,k=1
00 00
.42 2 .42 2
U {mccx,q—l,n . Jﬂq—l,mk/l }n kel U {mccx,qfln . ]uq_Q,TL,k/l }n ke1

00 (oo}
Y 2 ) 2
- {mhar,q ']\uq\,aq,k/l }k—l - {mhar’q_l 'ﬂ%ﬂ‘a“qvk/l }k,1 '

Ifm=dmW =2p, p>1:

S A(Q#P’P+1) =Im .02 /l2 > Ulm .52 /12 >
P+ Rabs ideal  — cex,qsn * Jpug g,k k=1 cex,q—1n * Jug 1 aq-1.k n k=1
e} 00
.42 2 .42 2
U {mcex,qfl,n . ]ﬂq—l,nvk/l }n b1 U {mcex,q72,n . J#q_gvn,k/l }

n,k=1
o oo
) 2 .52 2
Y {mhar,q : ]\aq\,aqyk/l }k—1 Y {mhar’q_l "7|0¢q—1|v%*17k/l }k,1 ’

(p) _ ) 21> .52 21>
Sp+Aabs,ideal = Mecex,p,n - jp,pyn,ap,k/l - U Meex,p—1,n * -]Mp—l,nvapfhk/l n k=1

oo oo
.22 2 . a2 2
U {mcex,p—l,n : ]up,lm,lc/l }n b1 U {mCeXJ?—z)n : ij*Z,?L)k)/l }

n,k=1
u flm Y U flm Y
5 har,p * ,]1/2 2 har,p +.J 1/2

oo oo

k=1 k=1
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0o
.52 ?
U {mhar,p—l . .]|ap71‘a0‘p*17k/l }k*l ’

(p+1) .2 21 .52 2%
S+ Aupsideal = Meexpt1n * Iyt mapia k! ne1 = | Meexpn g g k1 nk=1

o0 o0

a2 2 a2 2
U {mcex,p,n k] } - U {mcex,p,l’n Y } -
n,k= ’ n,k=

o0

L2 21% 1 .52 2
- {mhar’p"'l 'Jlap+1|v%+1’k/l }k=1 - o' tharp * 2t k=1
o0

1 .
U {thar,p ]%/2/12} ’

k=1

where the j,, , are the positive zeros of the Bessel function J,(x), the jmak are the positive
zeros of the function J, .(x) = clu(z)+aJ) (z), c € R, ag and g, are defined in Lemma
3.1.

LEMMA 3.3.  The positive part of the spectrum of the Hodge—Laplace operator on
Cliy 1) (W), 1y > 0, with relative boundary conditions on 01CYy, ;1,1(W) and absolute bound-
ary conditions on 02Cy, 1,)(W) is (0 < g <m+1):

oo
(9)
Sp+Arel d1,abs 82 — {mcex,q n fuq n,aq,k(ll’ZQ)}n -

o0

. f2
U {mcex7q—1,n . /‘/qflyvuaqflyk(ll’lz)} k=1
n,k=

[eS)
. P2
U mcex,q 1,n - Hg—1,m,—Cq—1,k (l27ll)}n b1

. oo
. 2
U {mcexq 2,n - ,uq 2,m, " Qg— 2k(l2’ll)}n k=1

00
U Mhar,q * f|aq|,0¢q (ll’ZQ)}k=1

[e'S)
U {mhar,q—l : f\aq_1|,aq_1,k(11’12)} )

k=1
where the f,hc,k(a,b) are the zeros of the function
ch(x; L, o) = J,(liz)(cYy(lox) + lngk'L(lgx)) =Y, (lhz)(ed,(lox) + l2$¢]l/t(l2x)),
with real ¢ # 0, and agq and fiqn as defined in Lemma 3.1.

REMARK 3.1. Application of the BC in Lemma 3.1 would give the zeros of the
function

Tu(li) (e (o) + low ", (152)) = T (L) (e, (1o) + loa ), (1ow)
= — sin(ﬂu)ﬁu,c(l“; lla l2)a

however, for the following analysis, it is much more convenient to work with the function
Y instead that with the function J_.
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LEMMA 3.4.  The positive part of the spectrum of the Hodge—Laplace operator on
Cliy15)(W), 11 > 0, with absolute boundary conditions is (0 < q <m + 1):

(@) _ 52 > 52 >
Sp-i-Aabs = Mcex,q,n * Uﬁbq,maq,k T U Meex,g—1,n * ’Uuq,l,n,aq,l,k k=1
2 o 2 °
) {mcex —1,n -V } U {mcex —2n U }
q ? )uqfl,ngk 71,7k:1 q ? ,u,qu’n,k: n,k:l

e} oo

a2 .02
U {mhar,q : ’”|aq|,aq,k} U {mhar»q—l : ”|aq_1\,aq_17k}

k=1 k=1

where the v, 1 are the zeros of the function
Tu(x) = Ju(law)Yu(hr) = V() Ju(law),
and the 0, 1 are the zeros of the function

Tye(@) = (cJu(l2x) + laJ) (lx)) (Y, (lhx) + hiaY, (lz))
— (Y (law) + laaY, (lzx)) (e ], (ha) + hiad), (lix)),

with real ¢ # 0, and ay and pig.n as defined in Lemma 3.1.

4. Simplifying the torsion zeta function.

We define the torsion zeta function by

taron (8) =

S (~1)7q¢(s, AW),

DN | =

and the analytic torsion is:
log T(M™, g) =t (0).

In this section, we consider the torsion zeta function for the cone with absolute
BC and for the frustum with mixed and absolute BC respectively. We proceed to some
simplifications of it. We present the proof in the case of the cone, the proof for the
frustum is analogous.

LEMMA 4.1.  The torsion zeta function of the cone is:

£ (s) = 5™ () + 17 (5) + 5™ (5) + 5™ (s),

Cone
with
25 (m/2=1 A A
706 =5 D (17 ((Zals) = Zyt () + (1) (Zyls) = Zo(5)))
q=0
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where ZAq,O denotes Zq,i with ag = 0, and

-—2s
ji(xq,

M

— § -—2s 7 _ ~_92s
- mcex,qm],tq,",kv Z%i(s) - E : mcemqm‘?;tq,n,iaq,m Z‘Li(s)
n,k=1 n,k=1

T
I

PrROOF. Rearranging the sums and isolating the case ¢ = p, @, = 1/2 when
m = 2p, we obtain: if m =2p — 1,

2s
(2p-1) ! E § : .25 —2s
tCOne (S) - 2 Meex,q,n qu nk ‘]Uq n,0q,k
q=0 n,k=1
l2s 2p—1 00
v _1\q+1 ~—2s
+ 5 2 DT mhanad 2o,k
q=0 k=1
if m = 2p,
2 1
2s “P—
(2p) l -—2s -—2s
tCone( ) - E E Mcex,q,n jy,q ok juq g,k
q=0 n,k=1
123 2p 0o
v _1\g+1 Z ~—2s
+5 E (-1) Mhar,a]|a, |0,k
q=0,q7#p k=1

1! 2
1P+ Z Mhar,p (31/2 K TJ- 1?2 k)

Using Hodge duality on coexact g-forms on the section, we obtain the following
identities:

Meex,q,n = Mceex,m—1—q,n»
)\q,n = A'm—l—q,nv
Qg = —Qpm—1—gq;

Hgn = bm—1—q,n,

and hence the first term in the previous equations reads:

—

m—

125 e ., L,
7 Z (_1)q Z Meex,q,n (]#q :7 o Jl"q :vo‘qvk)
n,k=1

q=0
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[m/2]—1

l23 &
= 7 Z (_1)q Z Meex,q,n
q=0 n,k=1
(e =) + O (k= 5 o))
. m
+ (term with ¢ = [5]) , (4.1)

where the last term appears only if [m/2] is an integer, namely if m = 2p — 1 is odd,
and has the following form. Since when ¢ = p—1, m = 2p — 1, ap—1 = 0, (and
Jrok = Ap—1n = Jj, 1), then

. m _ 125 > .9 A_9g
(term with q= [5}) = (_1)12 17 Z Meex,p—1,n (.]ijl,mk _jli;?jl,n,o,k) .

n,k=1

The sign in front to the second term in Equation (4.1) is the key difference between
the even and the odd case.
Next consider the term involving the harmonics, i.e. the sums

2p—1 0
k2P=D(5) = % Z (—1)7+t thar,q.}‘;j\s,aq,k:’
1 q_;)p k_loo R
SCETD DD DU
9=0,97p =

Consider the function
Tagliog (@) = oy (@) + 12T/, | (2).
Since
22,(2) = —2Z,11(2) + pZu(2), and 2Z),(2) = 22, 1(2) — pZ,(2),
where Z is either J; or J_, it follows that
Z,aq,aq (2) == agZ_a,(2) + zZ',aq(z) =—2Z_q,41(2) = —2Z_a,_,(2),

Zoyag(2) = 0qZo,(2) + zZ;q(z) = 2Z0,-1(2) = 22a,_,(2).

@
This permit to simplify j‘aqmq as follows. If a4 is negative, then
Jiaglaq (@) = —2J 0, (2),
and this means that ﬂaq‘,aq,k = J—ay_1.k, for these q. If a is positive, then
Tyl g (X) = 2T, (2),

and this means that ﬁaq‘,%,k = Jay_1,ks for these ¢. When o, = 0 (and this happens
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only if m =2p —1, ¢ =p — 1), we have Joo(z) = z.J1,(z), and hence we can use either
Jik or j_i k. Next, if m = 2p — 1, a4 is negative for 0 < ¢ <p—2, a1 = 0, and «y is
positive for p < ¢ < 2p — 1, whence

1= 2 m 1 “m 12p ! m

2p—1 +1 har,q har,1 +1 har,q

k(p)() 2: K E: 5 1)19}:'728 +2§: ) 2:723 ,
q—O k= 1‘7—% 1,k k=1 Joik q=p k=1 Jorg 1,k

if m = 2p, aq is negative for 0 < g < p—1, and a4 is positive for p < ¢ < 2p —1, whence

~1 2p
1% m m
(21)) - q+1 har,q q+1 har,q
=52 (1 Xb_ +32 (1 2%48’
q=0 k=1 ag—1,k q=p k=1Yaq-1,k
and since by Poincaré duality mpar,q = Mhar,m—gq, and am,—q = —a4—1, we have the thesis
(note that when m = 2p, a;, = 1/2). O

For the frustum, we define (for ¢ > 0) the function
FV(LU; ll, lg) = Jl,(lll')Yl,,l(lg.’L') — Yy(lll‘)Jyfl(lQCL'),
and let f, 1 (l1,l2) denote its zeros. Then, we have the following result.

LEMMA 4.2.  The torsion zeta function of the frustum with mized BC' is

B i (5) = w5 (8) + w{™ (5) + wi™ (5) +w§™ (s),
with
1 [m/2]—1
Wi (s) =5 D ()7 (Do (532, 1) = Dyr (10, 12)
q=0

+(=1)" " (Dg+ (812, 11) — Dy, (s 11,12))) ;

_ 1/ .
’ngp 1)(8) = (—1)17715 <Dp,110(8; lQ, ll) — Dpfl’o(s; ll, lg)) s w?p) (S) = 0,

1[(mfl)/2]
w () =5 D (D (dylsile )+ (<) g5, 12))
q=0

, 1 -
wéZp)(S) _ (71)”“5%(5;11,12), w§2p 1)(5) =0,

where ﬁp,m 18 given either by ﬁp,17+ or lA)p,l),, since o1 = 0, when m = 2p — 1,
and

-Dq,:t(&llalZ) = Z mccx,q,n.fﬁ;?iiaq’k(llv12)» dq(3§llal2 mhaquf_aq 1k ll,l2)~
n,k=1

LEMMA 4.3.  The torsion zeta function on the frustum with absolute BC reads
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tr) o (8) = 8™ () + 9™ () + 8™ () + 45 (s),

where:
1 [m/2]—1 X A
) =5 3 (0 ((Eals) = Bger () + (1) (Ey(s) = By (s))
q=0
s () = (1P 5 (Bpa(s) ~ Bpaols)) 9 (5) =0,
1 [(m-1)/2]
w () =5 D (D g (g1, (5) + (~1)"eq,—(s)),
q=0
Y (5) = (1P e (), 4 (9) =0,

where Eq70 denotes E‘q’i with ag = 0, and

oo oo oo

_ —2s 7 _ E ~N—28 § —2s

- E : mce&%nvuqm,w E‘]»i(s) - mcex,q,nyuq,miamkv e‘]v* U—aq
n,k=1 n,k=1 k=1

5. Zeta determinants.

We recall in this section the main points of the technique that we will use to compute
the derivative at s = 0 of the zeta functions appearing in the torsion zeta functions
introduced in Section 4. This section is essentially contained in Section 4 of [9], to which
we refer for details, and based on [22]. Given a sequence S = {a,}?2 of spectral type,
we define the zeta function by

z :an ’

when Re(s) > e(5), and by analytic continuation otherwise, and for all A € p(S) = C—-S9,
we define the Gamma function by the canonical product,

1 0 )\ Zg(S) (= /1>J (=07 A)J
— 1 _ “n . .1

a
n=1 n

Given a double sequence S = {\, ; }5°_; of non vanishing complex numbers with
unique accumulation point at the infinity, finite exponent sy = e(S) and genus p = g(.59),
we use the notation S, (Sk) to denote the simple sequence with fixed n (k), we call
the exponents of S,, and Sy, the relative exponents of S, and we use the notation (sg =
e(5),s1 = e(Sk), s2 = e(Sy)); we define relative genus accordingly.

DEFINITION 5.1. Let S = {An,k};szl be a double sequence with finite exponents
(s0, $1,82), genus (po, p1,p2), and positive spectral sector Xg, .. Let U = {u,}22, be
a totally regular sequence of spectral type of infinite order with exponent rg, genus g,
domain Dy 4. We say that S is spectrally decomposable over U with power &, length
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¢ and asymptotic domain Dy ., with ¢ = min(cg, d, '), § = max (6, ¢,0'), if there exist
positive real numbers &, £ (integer), ¢/, and ¢, with 0 < 6’ < 7, such that:

(1) the sequence u,"S, = {A\,/uf},-, has spectral sector Xg o, and is a totally
regular sequence of spectral type of infinite order for each n;

(2) the logarithmic I'-function associated to S,/uf has an asymptotic expansion for
large n uniformly in A for A in Dy ., of the following form

v L
1og T(=A, 4, 80) = > b, (N ™" + Y Poy (Mg, " log g + 0(u, "), (5.2)
h=0 =0

where o, and p; are real numbers with oy < --- < gy, po < -+ < pr, the P, (N)
are polynomials in A satisfying the condition P, (0) = 0, £ and L are the larger
integers such that o, < rg and pp < rg.

Define the following functions, (Ag. = {z € C | |arg(z —¢)| =6/2}, oriented
counter clockwise):

21

[e'e} N 1 ef}\t
bo )= [t [ en e (5.3)
0 AQ,C -
By Lemma 3.3 of [22], for all n, we have the expansions:

p2
log T'(=X, S /uf) ~ Y aa, 0m(=N)% + Y ak1.a(—2)log(=)),
k=0

= (5.4)
e} P2
(bffh,()‘) ~ Z bUh,,l)éj,()(_)‘)aj + Z bUh,k,l(_)‘)k 10g(->\)7
j=0 k=0
for large A in Dy .. We set (see Lemma 3.5 of [22])
oo J4 ,
Aoo(s) = Z <a0,0,n - Z bah,o,oungh) u, ",
n=1 h=0 (55)

NE

: ! —0 —Ks .
Aji(s) = Wjam =Y boyjaun™ | uy", 0 <5 < ps,
h=0

where the notation Z’ means that only the terms such that (s, U) has a pole at s = oy,
appear in the sum.

n=1

THEOREM 5.1.  Let S be spectrally decomposable over U as in Definition 5.1. As-
sume that the functions @, (s) have at most simple poles for s = 0. Then, ((s,S) is
regular at s =0, and

S=0Op

4
G(0:8) = = Aua 0+ 3 Ress 0, (5)Resy (5. U)
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¢'(0,8) =— Ago(0) — Ag 1 Z Resl o (8)Resy C(s,U)

S=0Op

14

+ = ZRQSO o, () Resy ((s,U) +Z Resol D, (s)Resy ((s,U),
s s=op o = s=op

where the notation >." means that only the terms such that (s,U) has a pole at s = oy,
appear in the sum.

REMARK 5.1.  We call regular part of (0, S) the first term appearing in the formula
given in the theorem, and regular part of ’(0,5) the first two terms. The other terms
we call singular part.

COROLLARY 5.1.  Let S(;) = {A(j),n,k}%?k:p j=1,...,J, be a finite set of double
sequences that satisfy all the requirements of Definition 5.1 of spectral decomposability
over a common sequence U, with the same parameters k, £, etc., except that the polyno-
mials P(;) ,(A\) appearing in condition (2) do not vanish for X = 0. Assume that some
linear combination Z;-le ¢; Pj),p(A), with complex coefficients, of such polynomials does
satisfy this condition, namely that Z;’Zl cjP(jy,p(A) = 0. Then, the linear combination of

the zeta function 23'121 cjC(s,S8(;)) is regular at s = 0 and satisfies the linear combination
of the formulas given in Theorem 5.1.

We conclude recalling some formulas for the zeta determinants of some simple se-
quences. The results are known to specialists, and can be found in different places. We
will use the formulation of [19]. For positive real | and ¢, define the non homogeneous
quadratic Bessel zeta function by

0o -9 -S
.71/,
As,vq )= < lzk +q2> :

k=1

for Re(s) > 1/2. Then, z(s,v,q,l) extends analytically to a meromorphic function in
the complex plane with simple poles at s = 1/2,—1/2,—-3/2,.... The point s =0 is a
regular point and

1 1 1,(1
2(0,v,q,1) = -3 <1/ + 2) . 2(0,v,q,1) = flogVQWZ#. (5.6)

In particular, taking the limit for ¢ — 0,

SR/

/ L meraa
2'(0,1,0,1) = —log 9 =(/2T(y + 1)

6. Decomposition of the torsion zeta function.

Inspection of the formulas in the lemmas of Section 4 shows that the torsion zeta
function is the finite sum of some simple and some double series:
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tCone,abs(5) = to(s) + t1(s) + t2(s) + t3(s),
wo(s) + w1 (s) +wa(s) +ws(s),
Yo(s) +y1(s) +y2(s) + y3(s),

tFrustum,mixed(s)

tFrustum,abs (5)

where tg,t1, wp, w1, and yg,y; are double series, and the others simple series. Simple
series can be treated by using the formulas appearing at the end of Section 5. In order
to deal with the double series, applying the spectral decomposition Theorem 5.1, the
derivative at zero of tg,t1, wp, w1, and yg,y1 decomposes into two parts, called regular

and singular contribution (see Remark 5.1), and this gives the following decomposition
of the analytic torsion (in the following we assume I; > 0),

log Tabs,ideal(CZ(W)) = t(),reg(o) + tll,reg(o) + t6,sing(0) + tll,sing(o) + t/2 (O) + té (0)’
1Og Thnixed (O[h,lz] (W)) = w/O,reg (0) + wll,reg(o) + w(/),sing(o) + wll,sing(o) + w/2 (O) + ’LUé(O),
log TabS(C[ll,lz] (W)) = yO,reg(S) + yl,reg(s) + yO,sing(S) + yl,sing(s) + Y2 (5) + yB(S)-

On the other side, for the frustum, that is a manifold, we also have the decomposition

log Thixed (Cpiy 1,1 (W) = IOgT(Cll,lz]( )} x W)
X(30[11,12 (W))1og 2 + ABM,mixed (OC], 1,) (W),
log Taps (Cpty 15 (W) = log 7(Cyyy 1,)(W))
(

+ =X (9Cq, 1,)(W)) 1og 2 + Apn,ans(9CT, 1,1 (W)

== 0Q »Jk\

We will prove in Section 9 that

1 ’ ’
logT(C[h,lz} (W)7{ll} X W) + §X(W) 10g2 = wO,reg(O) +w/1,reg (O) +ws (0) +U}é(0)7

6.1)
ABM,mixed (80 l1,l2] (W)) = w(/),sing(o) + w;.,sing (O)’
IOgT(C[h l2] (W)) ( )10g2 yO rcg(0)+y/1,rcg(0)+y/2(0)+yé(0)7 (6 2)
ABM ,abs (80 l1,l ( )) = yO,sing(O) + yll,sing(o) :

This suggests to introduce a similar decomposition for the cone
1
1Og Tabs,ideal(cl(W)) = log Tglobal(cl(w)) + ZX(8CI(W)) 10g 2+ ABM,abs(aCl(W))v
with

1
log Tgiobal (C1(W)) + 7X(OCH(W)) 1082 = 1,15 (0) + 1115 (0) + 12(0) + #5(0),
ABM,abS(aCl(W)) = ta,sing(o) + tll,sing(o)'

(6.3)

We will call the first term, namely global plus Euler, the reqular part of the torsion,
and the second term the anomaly boundary term. We will prove in Section 10 that the
notation is justified by the fact that #{ ;.. (0) +#] 4,,(0) coincides with the term that we
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would obtain if we would apply the formula of Briining and Ma for the cone as if it were
a regular manifold.

7. Calculations I: application of Definition 5.1.

In both the cases of the cone and of the frustum, we prove that the double series
are spectrally decomposable according to Definition 5.1 (see detail in [10]) on the same
simple sequence, that we discuss now. The simple sequence is Uy = {myn * fgn}toer-
This is a totally regular sequence of spectral type with infinite order, e(U,) = g(U,) =
m = dim W, and the associated zeta functions is

C(s,Uq) = Cccx(ﬂ ()+oz)

The possible poles of ((s,U,) are at s =m —h, h=0,2,4,..., and the residues are
completely determined by the residues of the function (eex(s, A(Q)) [10, Lemma 5.2].

We give in this section complete calculations for the cone and for the frustum with
mixed BC, we omit the calculations for the frustum with absolute BC that are very
similar to ones for the frustum with mixed BC.

7.1. The cone.
We consider the double series

— +—25 7 _ A2
- E : mCCX,q,nqum,k:’ Zq,ﬂ:(s) - § mCCX!‘]',n]Hq‘n,iaq,k’
n,k=1 n,k=1

appearing in Lemma 4.1. These are the zeta functions associated to the double sequences
Sq = {Mmeex,gn  Jp, . 1} and Sg+ = {Meex,qn  Jp | 4o, k) 1t 1S easy to see that these
sequences have power x = 2. By Definition 5.1, the relevant spectral function associated
to S, is the function (compare with Equation (5.1)):

log (= A, S,) 10gH<1+ = )

Mq nok
( \ _)‘) + Kg,n IOg Vv —A = Mg,n IOg 2 — 1OgF(Mq7n + 1);

—log [

Haq,n
and the relevant spectral function associated to ,SA'qi is the function:

log (=X, Sy2) = 1ogH<1+A —) )

'];U'q nd:am
—10g I, o, (V=) + ig.nlog V=X — log 2" T'(11g )

+log <1 + aq) ,
La.n

where (for —m < arg(z) < m/2)

Io(z) = e /2 ], (i2).
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First, we need uniform asymptotic expansions of the function log I" for large n. Such
expansions can be obtained from those of the Bessel function (see [10, Section 5.1] for
details). For large n, uniformly in A, (compare with Equation (5.2))

log (=, Sq/ 17 ) = tanlog gV —A—log2"e" T (pg +1) —uq nV1=A

— fg.nlogV — —|—uqnlog(1+\/ 710g27mq7n+ 4log(1—)\)

Z ¢qy O(u; 2", (7.1)

j=1 /~Lq7

where ¢, ;()) is the coefficient of y 7, in the asymptotic expansion of (for the definition
of the function U and W see Lemma 7.1 below)

log (1 +)° Uk@)u;Z) :
k=1
for large (4.5, i-e.
log <1 +> Uk@)u;,ﬁ) = b0 (MVigh (7:2)
k=1 j=1

and

log T'(—A, S’q’i/,ug}n) = fign 108 tignV =X —1og2#¢ T (g, + 1) + log (1 + )

Haq,n
_Mq,nVl_)‘_,anlogV_ +,uqn10g(1+V1_ A)
1 gt _
+ 5 log 27mp1g.n — log Z . /i - Olpg2r), (7.3)
j=0 ’

where @q,j,i()\) is the coeflicient of uq’jl in the asymptotic expansion of
o
o (143 W00 ).
k=1
for large fig.n, i.c.

log (1 + Z W:I:aq, M% > Z Yq.j, +( Mq,%

k=1

therefore the complete coefficient of 1,7, in logT'(—A, S'%i/,uin) is

(— 1)7+1

Gt (V) =g e (N) + f(iaq) . (7.4)

Second, we need asymptotic expansions of the function logI" and of the functions



Analytic torsion of cones 331

¢gq,; and (;Abqyj,i for large A. The expansion of logI' can be obtained from those of the
Bessel function [10, pp. 641, 642] (compare with Equation (5.4))

1 1
log D(=A, Sq/pe ) = 7 log 27 + <uq,n + 2> log fign — pignlog2 —logT'(jigm + 1)

1 1
i) (u + 2) log(—A) + O(e oY=, (7.5)

N 1 1
log (=, Sq,i/ﬂg,n) = fgnV—A+ 5 log 27 + (uq’n — 2) log ptg.n — log 21T (11g )

+ % </~Lq,n - ;) log(—\) + log (1 =+ aq> + O(e*uq,n\/:\).
q,n
(7.6)

About the functions ¢4 ;(A) and ng%i(/\) we have the following facts.

LemMmA 7.1. For j =0,

1 1
Gq.0(N) = 5 log 2m + 1 log(1 — A),

- 1 1
Gq.0+(N) = 3 log 2w — 1 log(1 — ).

For j > 0, the functions ¢q;(N\) and ng,j,i(A) are polynomial of order 3j in
1/v/1 =X, whose parity only depends on the index j, and with minimal monomial of
degree j, and satisfy the following formulas:

= ()7
A=0

= 0.
A=0

(2¢q,2k*1()‘) — bg2e-1.4(\) — qﬁq,%,l,,()\)) ’
(B2t () = By V)|

ProOOF. The case j = 0 follows by inspection of the formulas in Equations (7.1)
and (7.3). Next, assume j > 0. Recall the definition of the functions U;(\) and V;(\)
[17, (7.10) and Example 7.2]. Let

wlw) =1 upne) = 3u - )+ [0 s,
w@) =1 vy () = wa(w) — sw(l — whus(w) w3 (1~ ) (w),
then
1 1
U;(A) = u; (m) ; Vi(A) = v <\/ﬁ> )

By these formulas, it is clear that the functions U; and V; are polynomials in
1/4/1 — X\ with the stated properties. Since, ([10, pp.639])
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Qq
V1=

the same is true for W;(\). Whence the first part of the statement follows by the very
definition of the functions ¢, ;j(\) and ¢, j+()), since in the functions ¢q.2r_1(A) and
®q.2k—1,+ () only Ugi—q and Vai_1 appear, and in the ¢, 21 (A) and ¢q ok, +(A) only Usg
and Vo appear. Next consider the situation in more details: by definition

Wio‘q?j ()‘) = VJ(A) + Uj—l(/\)v

00 0o ) R R 1 41 )
log (1 +> Uk(/\)uq_,’2> = GaiNghs Pajr (V) = g (V) + ( j) (Faq)’,
j=1

k=1

where

log (1 + Z (Vk(/\) + \/%Uk—l()\o M;ﬁ) = Ziﬁq,j,i(/\)/‘;zz'

k=1

Since, again by the very definition, V;(0) = U;(0) for all j, by comparing the
two formulas above, we realize that, if A = 0, in each odd term of the expansion of
20g,2k-1(A) = Pg2k—1,+(A) — dg26—1,—(A) In figp, ie. in the coefficient of each p=2+=1,
the two terms (coming from (ﬁq7j7i()\))

« (—1)7+1 ,
+—L U, (N + : +ay)’,
m J 1( ) ] ( q)

cancel each other, while the term (coming from ¢, ;(\))

2U(N),
will cancel out by the two terms (coming from éq,jyi()\))
—2Vi.(N).

This prove the first formula in the last statement. The proof of the second one is
similar. O

LEMMA 7.2.  For j > 0, the following functions of ®4; and (i)q,j,:l: are reqular at
s=0:
Resy <2<I)q,2k71(5) — Dy op1,4(5) — ‘i)q,%q,f(s)) =0,

s=0

Rest (@21 () = Do.4(5)) =0.

PrROOF. The argument is the same for the functions ® and the function P, so just
consider the last ones. By Lemma 7.1

1
$q,i(A) = Z Ckmv
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and since (see [20])

'(k)s ’
we have that
3j
B I(s+k)
5) = ZCkW7
k=1
and this means that
3(2h—1)
Res; @y on-1(5) = Z ¢k = Pg,2n—1(0),
s=0 k—j
RE? a.2h( Z k= ¢g,21(0 U

Applying the definition in Equation (5.5), we see that all relevant b,, ¢0/1 and
IS(,MOQO/I vanish. For j = 0, = m — h, with h = 0,2,4,..., h # m; and therefore when
J=0,09,0,0/1 and 3070)0/1 do not appear in the sums, while when j > 0 there are neither
logarithmic terms nor constant terms in the expansion for large A of the functions ¢, ;(A)
and ¢, j+(A\) by the previous lemmas. Thus,

—2s
AO 0 q g Meex,q,n@0,0,n q,uq n , Ay 1,q § Mcex,q,n@0,1,n,qlq n >
n=1
o0 o0
AO,O,q,:I: § Meex,q, naO 0,n q,:l:ﬂq n 7 AO 1,q, :t § Meex,q, naO 1,n,q, :I:,qu n 7
n=1 n=1
(7.7)

where ag,0,n,q and ag 1,5, are the constant and the logarithmic term in the expansion in
Equation (7.5), and Go,0,n,q,+ and @ 1,n,q,4+ are the constant and the logarithmic term in
the expansion in Equation (7.6).

Third, concerning the singular term, the functions defined in Equation (5.3), are

< 11 e A
by = [ o7 [ et

21

b T L (A
q.5,:+(8) —/O t 2m/j\g@_)\¢‘]7]‘,i( )dAdt,

where the ¢ and the ¢ are given in Equations (7.2) and (7.4), respectively.

(7.8)

7.2. The frustum with mixed BC.
Consider the double series



334 L. HARTMANN and M. SPREAFICO

oo
Dq,:t(5§llyl2) = Z mcex,q,nf;fi,iaq,k(llv12)7
n,k=1

associated to the double sequence (:)%i(ll, lo) = {Mcex,qn : fu_q " tay p(l1,12)}. It is easy

to see that this sequence has power x = 2. By Definition 5.1, the relevant spectral
function associated to ©4 +(l1,12) is the function (compare with Equation (5.1)):

. -
log(—\; ©4.+(I1,12)) = — log H <1 + )

fﬁq,n»iaq,k(lla l2)

—10g G, o, (V=X 11,12)

1 lﬂq,n ll‘«q,n a ll"q,n ll—‘q,n
tlog=+log((2—+Lt— )+ -4 (2 -1 ),
o7+ (i ) <t (i -

where (for —7 < arg(z) < /2)

éu,c(z; ll,lg) = ch(iz; l1, lz)

We need (uniform) asymptotic expansions of the function logI' for large n and
for large A. Such expansions can be obtained from those of the Bessel function. A
long calculation gives the following results. For large n, uniformly in A, (compare with
Equation (5.2))

lo(1+/T— 12X
1og(—X;Og (11, 12) /112 ,,) = qu<\/1m \/112)\) fig.nlog M
1 — b2

1 (=B el l)
— 21 4,7, ’
1% 1= Z; P

Bon BN ey (B e o
+1Og Hq,n + Hq,n + HFgn — jHlan +O('U’Q7’ﬂ )’
Iy ly Pgn \ 1y ly

where ’(/Jq’ .+ (A1, 12) is the coefficient of ,uq in the asymptotic expansion for large fiq ,,,
ie. of

log (1 + Z \I]q,k,:l:(lh l2)ﬂq,ﬁ> ’

=1
where
U, px(l1,12) = sgn(ly — o) Up(livV/=X) + sgn(ly — ll)kWisgn(lzfll)amk(lQV —A)
k-1

+ Z Sgn(ll - ZQ)thn(ZQ - ll)kihUh(ll \% 7)\)Wisgn(lz—ll)aq,k—h(ZQ \% 7)‘)

h=1

In other words,
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log <1+Z‘I’qkil1,l2 qu> Z%yi Xl 1) g
k=1 =

therefore the complete coefficient of 7, in logT'(—A, 04+, la)/ 12 ) is

_1)j+1

ba it N1, 1) = g (N1, la) + (sgn(ly — 11)ay)’. (7.9)

For large A, (compare with Equation (5.4))

N l
10g T(=A, Sy g k(5 12) /15 1) = = pign(le = L)V=A = *1 li

lﬂq,n ll’«q,n a ll‘«q,n l/’«q,n
(N )
1) S g e
1
+O(ﬁ). (7.10)

Next consider the functions éq, 5+ (A1, 12). By the following lemma we see that all
the results given in Lemmas 7.1 and 7.2 hold for these functions.

LEMMA 7.3.  The following relation holds:
Gq (Nl lo) = sgn(ly — 12) &g ; (1FX) + sgn(la — 1) B j tsgn(ta—1) (BA)-

PROOF. By definition in Equations (7.2) and (7.4)

IOg (1 + Z Uk( :uq n) Z ¢q 7 /J“qu

and

(_1)j+1

bt () = Vg jr(N) £

.

where

log (1 + Z Wiaq,k(\/j)\),u;ﬁ> = Z zﬁq,jvi()‘)”;%

k=1

while by Equation (7.9)

ng,j-,i()ﬂ l1,l2) = 7[’q,j,i(>\; li,le) +

where

log <1+Z\qui 11712 ,[an) qu]i A 11712),u“qn7

k=1 Jj=1
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with

Ut (1, 12) = sgn(ly — 1)FUR(LV=X) 4+ sgn(le — 1) Woggn(ts—1)ay 1 (l2V/=X)
k1
+ Z Sgn(ll - l2)hsgn(l2 - ll)k_hUh(ll \% _)‘)Wisgn(lgfll)aq,kfh(b \% _A)

h=1

Now,

log (1 +) Wyl m;g’;)

k=1

= log (1 —+ Z sgn(h — ZQ)kUk(llﬂ)umfb>

k=1

+ log <1 —+ Z Sgn(ZQ - ll)kWﬂ:sgn(lgfll)aq,k(lQ 1% —A)u;ﬁ) ’

k=1
and hence the thesis follows by the very definition. O

This means that the b,, ;i in Equation (5.5) are all disappearing, and hence

oo

Ao0.+(5301,012) =D Meexign@0,0m,+ (11, 12)11g 2
n=1
o0

Ao (:01,02) = Y Meexqn@o1mx (1, 12) g 27
n=1

where ag 0,n,4 (11, 12) and ag,1.n,+(l1,l2) are the constant and the logarithmic term in the
expansion in Equation (7.10).
Eventually, concerning the singular term, the functions defined in Equation (5.3) are

~ © 1 e—At .
q)q)j7i(5;l1,lg) = / ts_li / T¢q7j,i()\;llal2)d)\dt7 (7.11)
0 AG,C -

2mi

where the ¢ are given in Equation (7.9).

8. Calculation II: application of Theorem 5.1.

We now apply Theorem 5.1 and its corollary to compute the derivative at s = 0 of
the functions Z, D, and F appearing in Lemmas 4.1, 4.2, and 4.3. According to Remark
5.1 we split the result in the regular and singular parts, denoted by the obvious subscript.
In order to improve readability we will use in this section the simplified notation A and B
for the two terms Ag o and Ag ; defined in Equation (5.5). We observe that, in all cases,
when computing the regular part, all the terms that are equal in B,(0) and qui(()) and
in A,(0) and A, +(0) respectively, cancel in the final formula for téﬁgg(O), and similarly
for the others. We thus introduce some regularized terms, denoted by a slashed letter,
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where only the relevant parts appear.

8.1. The cone.
We split the calculation into three parts: the regular contribution, the singular
contribution and the contribution of the harmonics. We give all details for the cone.

8.1.1. The contribution of the regular part.
By Theorem 5.1, we have

Zq,reg(O) = _Bq(o)a Z(;,reg(o) = _Aq(o) - B:](O)a
Zq+.reg(0) = =By +(0), g4reg(0) = —Ag £(0) — By 1. (0),

where, by Equation (7.7),

= 1 1 o
Ay(s) = Z Meex,q,n (2 log 27 + (Mq,n - 2) log 1q,n — log 2Mq’nr(,“q,n)> Mq,gz )
n=1
1 1\
Bq(s) = by Z Mcex,q,n (Mq,n + 2) Mq,% )
n=1
/ S 1 —2s
Bq(s) = - Z Meex,q,n | Hgn + B} Hgn log Kq,n,
n=1
Aq,:t(s) - Z Mceex,q,n
n=1

1 1
X (2 log 27 + (HW — 2) 10g f1g.n — log 2P0 T (j1g.0,) + log (1 + % )) M;isv
1

Hag,n
. 1 e
PRI SR | s
n=1

A~ i 1 9
Btl]’:‘:(s) = — chex’q,’ﬂ </1'q,n - 2) ,uq’i log /,Lq’n.
n=1
This gives (in the following formulas we are taking the finite part)
3 ! 1 Hq,n
A4(0) = ;mcex,q,n 310827 + ( p1gn = 5 ) l0g ptgn —log 20 T (p1g,) |
1 — 1
Bq(O) = § Z mcex,q,n (,uq,n + 2) 5
n=1
= 1
B;(O) = nz_:l Mecex,q,n <Mq,n + 2) log 1q,n,
A‘Zai(o) = Z Mecex,q,n

n=1

1 1
X (2 log 27 + (,uqﬁn — 2) 108 ig.n — log 2807 T (1., ) + log (1 + % )) )

Haq,n
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~ 1 © 1

Bysl0) = 5 3 eonan (an = 3 ).
n=1

7 - 1

Bq’i(O) = — Z Meex,qn | Hgn — 3 log ftg,n-
n=1

Thus, considering first ™) | by Lemma 4.1, we have

O,reg’
) [m/2]—1 A A
150 0= 3~ (1" ((Zawes () = Zart s 0) +(~1)" " (Zyres(0) = Zy. - 1es(0)) ) 1og
q=0
1 et q ! 7! m—1rz/ 7!
13 2 D (Zres0) = Zg g (0) 4 (1) (21 (0) = 2 _ 10 0)))
q=0
and hence
, [(m/2]—1 ) )
0, 0) == - (=1)7 (By(0) = Byt (0) + (—1)" " (By(0) = By, (0))) log!
q=0
[m/2]—1
—5 > (A4(0) + By(0) — Ag 1 (0) - B,.(0)
q=0
[m/2]—1
SN Y (1) (A4(0) 4 By(0) — Ay (0) By _(0))).
q=0

We observe that all the terms that are equal in B, (0) and B, +(0) and in A,(0) and

A, +(0) respectively, cancel in the final formula for tgﬁgg(O). This is because the final
formulas are

>
>

(Z(/],reg(o) - ZAq,-&-,reg(O)) + (Zt,],reg(o) - Zq,—yreg(o)) =27, (O) - q,+,reg(0) - q,—,reg(o)v

q,reg

(Zq,reg (O) - Zq,+,reg (0)) + (Zq,reg(o) - Zq,—,reg(o)) = QZq,reg(O) T 4q,+reg (O) - q,—,reg(o)v

>
>

if m=2p—1is odd, and

(Z(lLreg(O) - Zq7+,reg(0)) - (Zé,reg(o) - ZA;,f,reg(o)) = _Zé,+,reg(0) + ZA(IJ,f,reg(O)7

(queg(o) - q7+,reg(0)) - (qureg(o) - Zq,—,reg(o)) = _Zq,+7reg(0> + Zq7—,reg(0)v

>

if m = 2p is even. Therefore, we can rewrite

) [m/2]—1

G, 0 == > (=17 (B,0) — B, . (0)) + (~1)" " (B,(0) B, _(0)) ) log!
q=0
[m/2]—1 A B
—5 > 0 (KO0 + B0 - K, . 0) - B, (0)

q=0
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[m/2]—1
m— 1 N ~/
— (D)"Y (D7 (4,00 + B0) - X, _(0) — B, _(0)).
q=0
where
£,(0) =0,
Ly 1 A (@) 2 1 A (9)
Bq(o) = 4 chexvqm = ZCcex(OaA + aq) = ZC(O7A ),
n=1
/ 1
Bq(O) = _5 Z Meex,q,n log Hq,ns
n=1
~ e a
X, +(0) = Z Meex,q,n 108 (1 + q> ;
n=1 Hq,n
p Ly 1 A@ 4 o2y = L A@
Bqd:(o) = _Z Meex,qn = _ZCcex(Ov A + Oéq) = _ZCcex(Ov A )7
n=1
Al 1 e
Bq,:l:(o) = 5 Z Mcex,q,n 10g Hq,n»
n=1
and
Z Mceex,q,n = Ccex(oa A(q) + 0‘3)» —2 Z Meex,q,n log Hgn = C(/:cx(ov A(Q) + 0‘3)
n=1 n=1
Thus,

(—1)9 (gcex(o,Nq)) n (—1)mflgcex(0,A(q>)) logl

L m/21-1 - N %0
+ 5 (_1)q <Z mcex,q,nlog (1 + 1 ¢ ) +chex,q,n10guq,n>

n=1 n n=1

[m/2]-1 e 0
1 «
+ (_1)m—1§ § (_1)q ( E mcex,‘],nl()g (1 - uq) + mcex,Q,TLlOg/J'tI’n) .
q,n

q=0 n=1 n=1
(8.1)

Next, consider tffegl). By Lemma 4.1, we have

—1)/ A
12:7(0) = = (=177 (By-1(0) = Bpo1,0(0) ) log

A 1

1
= 5 (Ap-1(0) + By (0) = Ap1,0(0) = By (0))
As above, all the terms that are equal in B4(0) and Bq,o(O) and in A4(0) and Aqyo(O)

respectively, cancel in the final formula for tfﬁ;)(o). Therefore, we can rewrite
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(700 = = (<17 (B,-1(0) = B,14(0)) log!
5 (B @+ B 0) = Ky 0(0) — B 0)),
where

Apfl,o(o) =0,

1 -
Bp—l,o(o) = Meex,p—1,n = CceX( A=Y + a _1) = _cheX(Oa A(p_l))v

= =
[M]8

1

3
Il

~ !

Bpro(O) =

DN =
M8

Mecex,p—1,n IOg Hp—1,n-

n=1

Observing that a1 = (1+2p—2—2p+1)/2 =0, ftp—1,n = Ap—1,n, and hence

CCBX(S’ A(p*l) + Oz ) Ccex S, A P 1) Z Meex,p—1 n/\;zi ns

and
i Ly 1 (p—1)
BP*LO(O) = § Z Mecex,p—1,n log )‘P—lﬂl = _4CCEX(O A )
Thus,
_1y/ 41 < (e 1 _ <
t(l?ngl) 0) == (=1)” 1§CceX(07A(p 1))logl - Z(_l)p 1<éex(07A(p 1))- (8:2)

8.1.2. The contribution of the singular part.

By Lemma 7.2, the functions ®,2;_1 and ®,2;_1 + are regular at s = 0 when m is
odd, and the functions ®,2; and ®,2; + are regular at s = 0 when m is even. By the
location of the poles of ((s,U) given at the beginning of Section 7, it follows that the
formula for the singular part in Theorem 5.1 reduces to the single sums (recall k = 2 and
the zeta of U is regular at s = 0)

Zq sing(o) =0 Zq,i,sing(o)

0,
1 & . 1<
q,blng 5 Z Resl C(S U) Z(/],i,sing, 5 Z q,5,% Resl C(S U)

where the ® are defined in Equation (7.8). Thus, considering first £l by Lemma 4.1,

we have

0 smg’

e O =5 > (0 ((Zing0) ~ Zp 1 g O)

(1) ing(0) = Zg g 0)))
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and hence
oy 1o 1 u p
tO,sing (0) = 1 Z qz ( qJ Dq.;, +(0))
q=0 j=1

(=) (@45(0) = By (0))) Ress (5, V).

s5=j

Second, consider t(l fmgl) (0) as given in Lemma 4.1. We have

KV (0) = (1 (2

1,sing p—1,sing

(0) = Z)1.0.5i05(0) ) -

and hence

#20-1" ) =

1,sing

pM>—~

Z( p—1,5(0 ‘i’p—l,j,O(O)) P;ib;; C(s,U).

8.1.3. The contribution of the harmonics.
The contribution of the harmonics can be computed using the formula in Equation
(5.7) at the end of Section 5. By the definition in Lemma 4.1, since

zg,+(8) = z(s, £ay,0,1),

we have
125 [((m—1)/2]
57() =5 D (D) g (25, —0g-1,0,1) + (1) "2(s, ~ag, 0,1));
q=0

by Equations (5.7) and (5.6),

[(m—1)/2]
/
50 = > ()T g (2(0, —ag-1,0,1) + (—1)™2(0, —ay, 0, 1)) log
q=0
| [m=1)/2]
T3 (=D)T M mar g (2'(0, —ag-1,0,1) + (~1)™2'(0, ~0q, 0, 1))

[( /2]

=0
—1)
3 2
=0
)

1 1
fH-lmhar,q ((—aq_1 + 2) + (—1)m (—aq + 2)) logl
[(m—l /2]

(=) mnar g

DN | =

+
q=0
27112 (g 41
x | log (Cag1+1)
NG

+ (=1)" log

27120 (—a, + 1)
NG ) . (8.3)

On the other side,
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l25
t§2p)(s) = (_l)erlthar,p (2(s,ap,0,1) + 2(s, —vp, 0,1)) .
Whence
@) oy pt1 1
t57 (0) = (-1) Mhar,p (2(0, 0, 0,1) + 2(0, =, 0, 1)) log I

1
+ (—l)p“mhar,pz (2'(s,ap,0,1) + 2" (s, —, 0, 1))

1 1 1
= — (—1)P*! Mharp <(ap + 2) + (—ap + 2)) log !

1 200120 (a, + 1) 2= 12D (—q, 4+ 1)
1 p+1= ar 1 P P
+(=1) 1 Mharp <0g NG + log NG )

Qp

1 1
= (—1)p1mhar,p logl + (—1)P+=

4mhar,p log

2sin(mray,)”
Since o, = (1 +2p —2p)/2 = 1/2, this gives

2p)’ 1

§7(0) = (-1

8.2. The frustum with mixed BC.

We omit the details, since the calculations are similar to the one performed for the
cone. As above, we split into three parts.

1
Mhar,p logl + (—1)p§mhm7p log 2. (8.4)

8.2.1. The contribution of the regular part.
According to Theorem 5.1, we have

D! treg(0311,12) = —Ag 1 (0511, 12) — Bl 4 (0311, 1),

where, according to Equation (7.10)

5 llalQ E mq cex

1 l2 l/;q,n lll‘*q,n a ll“qm ll‘«q,n
X | —=log = +1o + + 2 2_ _ 1 —2s
( piosie +oe (e + e ) £ (e — e ) ) ) i

B:t(s; llv 12) = Oa

and hence

0 llulQ qu cex

1 12 qu,n l“q’" o lﬂq,n luq,n
X [ —=log = +1o 2_ 4 2 >:|: d <2 — L 7

B4 (0;11,12) =0

Now, note that
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ly
A_(0312,1) — AL (0314, 12) = qucexlog = Ceex (0, A(q))logl

and hence, by Lemma 4.2,

[m/2]-1
m 1
w(() rc)g (O) - 5 Z ( 1) ((D;—reg(o l2?ll) q+reg(0;ll712))
q=0
+( )m I(D/qureg(O 12711) qureg(O;lhlz)))
L 2 ) )
=5 2 (07 (Ao (05l 1) = Ay (0511, 1))
q=0
H(=1)™ N (Ag (0519, 1h) — Ag,—(0; l17l2)))
) L ) )
2 (log 11> D (D Ceex (0, A1) + (=)™ e (0, @), (85)
q=0

and
2p—1)' 11 ~
w§,feg ) (O) = (_1)1) 5 ( p—1,0 reg(o; 12’ ll) - Dgfl,o,reg(o; l17 lz))

= (12 log 2(een (0, A, (8.6)
2 l1

8.2.2. The contribution of the singular part.

Since the functions ®,2;—1 and ®4 21+ are regular at s = 0, and by the location
of the poles of ((s,U) given at the beginning of Section 7, it follows that the formula for
the singular part in Theorem 5.1 reduces to the single sums (recall kK = 2 and the zeta
of U is regular at s = 0)

-Dq,:t,sing(o; llv 12) = 07 ) :;,:t,sing(o lla 12 Z (I)q 7y :t 0 ll; l2) Resl C(S U)
=J

where the ® are defined in Equation (7.11). Thus, considering first wéfzi)ng, by Lemma
4.2, we have

[m/2]-1
/ 1
w(()rg)ng (O) 5 Z ( ) ((D; —,sing (07 l23 ll) D/q +, ilng(o; ll7 ZQ))
q=0
+( )’m 1(D(l]+smg(0 lQ?ll) qusmg(o;ll’l?») )
and hence
[m/2]-1

m) ! 1 m ~
wé,si)ng (0) = Z Z q Z ( q.J,— 0 la, ll) - (I)q,jﬂr(O; b1, 12))

q=0 j=1
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H=1)" T By (0312,10) = By (011, 12) ) Resy C(s,0). (8.7)

s=j

Second, for wffi;gl)/(O), we have

2p—1)’ 11
wg,gng) (O) = (_1) 2 (D;;) 1 Osmg(o 127l1) p 1 Osnlg(o;ll;lQ)) )

and hence
(2p—1)’ 118
Wy gne (0) = 1 Z ( p—1,5,0(05l2,11) — (I)pfl,]}O(O;llalQ)) %isjl C(s,U). (8.8)

8.2.3. The contribution of the harmonics.

In order to determinate the contribution of the harmonics, we use the technique
described in Section 2 of [22] to deal with (simple) sequences of spectral type (in fact
this was already in [21]). Recall that, by Lemma 4.2, we need d(0;l1,l2), where by
definition

dq(s;l1,12) mhaquf,zs w1, 12),

and the fl:,fs(ll, ly) are the positive zeros of the function
FV(Z; ll,lg) = Jl,(llz)Yl,,l(lgz) — Y,,(llz)Jl,,l(lgz).
Recalling the series definition of the Bessel functions, we obtain that near z = 0,

2 15t
Tz Iy

F,(z)=

This means that the function F,(z) is an even function of z. By the Hadamard
factorization Theorem, we have the product expansion

!
2 l”f1 i z
Fy(2) = |
(2) 7wz 1Y H ( fy,k(l17l2)>

1 k=—

and therefore

2 5T 22
F(z) = —2 [
G = g( fik(lhlg))

Defining, for —m < arg(z) < 7/2,

we have



Analytic torsion of cones 345

G2 = 2B T (14 i
v Tz lu = f%k(ll,lg) ’

v

By Equation (5.1), the logarithmic Gamma function associated to the simple se-

quence O, (I1,l2) = {f2 (1, 12)} is

= —logGu(\/jA) - logg — 1ogl2\[\—|— Vlog%.
1

- —A
IOgF(_A,G)V(ll,lg)) = _IOgH <1+ ( 2 )
k=1 v,k

Combining the asymptotic expansions of the Bessel functions, we obtain for large A:
1

1 !
logT(=X, 0, (I, 15)) = (2 - y> logi +1log2 — (la — 1)VA+ O (\5) .

Therefore, by Theorem 2.11 of [22],

1 l
dy (0511, 12) = —Mhar 4 <<2 + qul) logl—1 + log 2) ,
2

and hence, by Lemma 4.2,

wf™'(0) = 5 7 (~)T (dy031, L) + (~1)"dy (031, 1)
q=0
m/2

]
1 l
(_l)thar,q (<2 + aq—l) logli + 10g2
2

w0 (G e Jlog 4 10g2) ). (59)

/ 1 1 1 l
w§2p) (O) = (—1)p+1§d;(0’l17l2) = (_1)p§mhar,p (<2 + Oépl) logi + log 2)

1
= (—1)p§mhar,p log 2. (8.10)
8.3. The frustum with absolute BC.
8.3.1. The contribution of the regular part.
Proceeding as in Section 8, by Theorem 5.1, we have

B reg(0) = —=Ag(0) — B,(0), By 4 reg(0) = =Aq.+(0) — By +(0),

a,reg
where,

Hq,n l#q,n
1

(o]
1 —2s
Ay(s) = E Meex,qn <log (liq‘" — l”“’") + 2logl112) ,uq,i )
n=1 1 2
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oo
_ 1 —2s
- 5 mCequyn/u’q,n )

B;(S) = — Z mcex,q,nﬂz;is IOg Hq,n»

n=1
S g 2\
S) = Z mcex,q,n IOg l1l2 + IOg (lﬂq n lHq,n) + log 1 - :U‘2 N;n87
2 q,n
By + =5 Z mcex,q,nﬂ;isa
3! . ( Z Meex,qnlly o 108 fign-
n=1

This gives (in the following formulas we are taking the finite part)
lﬂq n l“q n 1
Aq( chean (log (l”q" l“q") +210glllg> ,
= 5 Z Meex,q,n»
n=1

B;(O) = - Z Meex,q,n 108 Hg,n,

n=1

lﬂq n llllq,n 04(2]
Z Meex,q,n loglllg +log | -5 i | Tlog | 1——— ,
o 5" Han

0) = D) Z Mceex,q,ns
n=1

A(/Lj:(o) = Z Meex,q,n 10g Hq,n-

n=1

Thus, considering first y(m) we have

0,reg?
O o : | :
Uit =5 3 (=1 (B reg 0) = 4 0es(0) + (= 1) (B 1o (0) = By _ 1 (0)))
q=0
and hence
o L m/2 A A
Youweg (0) = — 3 > (=1 (Aq(O) + B4(0) — Ag+(0) — B;,+(0)>
q=0
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We observe that all the terms that are equal in B, (0) and B, 4+ (0) and in A,(0) and
A,.+(0) respectively cancel in the final formula for tg?;gg(O). This is because the final
formulas are

(E;,reg (O) - Eq,+,reg(0)) + (E;,reg(o) o E(Iv—»reg(o)) - 2E(/1,reg (0) - Eq,+,reg(0) - E‘Z1—7reg(0)ﬂ

if m=2p—1is odd, and

(Eé,reg(o) - Eq,-i—,reg(o)) - (E:],reg(o) - Eé,—,reg(o)) = - A;,—&-,reg(o) + E;,—,reg(o)a

if m = 2p is even. Therefore, we can rewrite

) 1 [m/2]—1 ) B
Ui () ==5 3 (=1 (4,0 +B,(0) — &,,(0) — B, (0))
q=0
! [m/2]—1 X B
— (DTS D (D (4,0 + B(0) - A, _(0) - B, _(0).
q=0
where

1 > 1 _
Aq(o) = §1Oglll2 chex,q,n = §C(O,A(q))logl1l2,

n=1

B;(O) = — Z Meex,q,n log Kqn,

n=1
~ > 1 ag
Aq,i(o) = Z Meex,q,n ) loglyly +log | 1 — —
n=1 q,m
Lo A@ 3 og
= =560, A) loglaly + ) Meexg.nlog | 1= o
n=1 an
a1 >
Bq,:l:(o) — Z Meex,q,n 10g Hq,n»,
n=1
and
Z mcex,q,n - Ccex(oa A(q) + 01121), -2 Z mCequ,n IOg Hgn = C(/:ex(ov A(q) + 05(21)
n=1 n=1
Thus,
)/ 1 [m/2]—1 ~ }
v () ==5 3 (=17 (C0,AW) + (~1)"7¢(0,A@)) log Ly
q=0
1 [m/2]—1 0o o? 0o
+ 5 Z (_1)(1 (Z mcex,q,n IOg (_ 2q > + 2 mcex,q,n IOg Mq,n)
q=0 n=1 q,n n=1
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[m/2]—-1

1
m—1
I D
q=0
X <Z Meex,qn 10g (1 - M2q ) +2 Meex.gn 10g uqm) : (8.11)
n=1 q,m n=1

Next, consider y; regl) By Lemma 4.1, we have
2p—1)’ 1 - ;
y2. Y (0) = =5 (4p-1(0) + By (0) = Ap-1,0(0) = By, (0)) -
As above, all the terms that are equal in B, (0) and B, ¢(0) and in A4,(0) and A, (0)
respectively cancel in the final formula for #(2p—1)

irxeg (0). Therefore, we can write
1 . y
y2000) = = 5 (A, 00+ By, (0) = K,y (0) = By 4(0)

where
1 ~
#K,4(0) = §§(0, AP~ loglyl, - Z Meex.q.n 108 flgn,
n=1
~ 1 - o0
K,(0) =

~/
75 log l1l2C(0, A(q))v Bq7i(0) = Z Meex,q,n IOg Hqn-
n=1

Observing that a,—1 = (1+2p—2—2p+1)/2 =0, and fip_1,n = Ap—1.n, We have

Ccex(SaA(p_l) +a ) Ccex S, A(p 1) chex,p 1n)\ 2

p—1,n
and
E;—LO(O) = ;mccx,p—l,n log A\p—1,n = *;Ccox( Alr— 1))
Thus,
P (0) = — (1P S0, AP loghly — L (1P (0,A07Y). (812)
8.3.2.

The contribution of the harmonics
The contribution of the harmonics can be computed directly, proceeding as in Section

8.1.3. We obtain (this formula holds for all cases in which oy # 0, the particular case
only appears when m is odd and is described below)

/P A 1
e, (0) =log(—ag) —log | 25 L | — - loglls,
’ Lt L 2

and hence
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[(m—1)/2]
m)’ 1 m
us 0= 5 D0 (D) g (1, (0)+(~1)"e) (0))

q=0
[((m—1)/2] _
! m—2q+1Y\ [(m—2q—1
= 3 (1)q+1mhar7q10g< : > ( : )
q=0
1 [(m—1)/2] lm72q+1 N lm72q+1 lmquil B lm*2Q*1 (-Hm™
+2 ; ( 1) mllar,q10g< (l1l2)(m—2q+1)/2 ) ( (l1l2)(m_2q—1)/2 >
[(m—1)/2]
1 1+(-1)™
+ 5 qzz:o (_1)thar,q#10gl112_

It is convenient to distinguish odd and even cases, as in Section 9.1. When, m =
2p — 1, we need to isolate the case ¢ = p — 1, when the correct formula is
l
¢, (0) = —loglog f —log2 — log \/I1ls.
After some calculations, we obtain

p—1 Z2p—2q _ l2p—2q
1

@p-1) ;0 1L 2
Y2 (0) = ) Z(—l)thanq log W

q=0
l2p72q72 12p72q72
2 !

1) g1
(=) har g log =—5 5 "

1
(—1)q+1mhar’q loglils + 5(—1)pmhar’p log log Z—Z
1

By duality on the section:
2p—1 12p72q - l%p72q

p—2 12p7272q o 12p7272q
—1)4% 1, log -2 L = —1)%mpar o log -2
q;)( ) q 2p_2_2q q=p+1( ) »d 2p_2q
p—2
= (=1)rglog(lyl2)* 27,
q=0
and hence
2p—1 2p—2q 2p—2q
(2p—1)’ 1 +1 ls -
0) == —1)4 ar.g L
y2 ( ) 2 < ( ) My »q og 2p_2q
q=0,q#p
p—1 1
+ (—1)q+1(2p — 1 —2¢)Mhar,q loglils + 5(—1)pmhar’p log log lﬁ
1

1
2
q=0
(8.13)
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When m = 2p, we obtain

/ 1 p—!
y$2P(0) = 5 (=1)" ' mpar 4 (log (2p — 2¢ + 1) + log (2p — 2¢ — 1) — 2log 2)
q=0
15
+ 5 (—1)¢ (mhar,q log (l§p72q+1 - l?p72q+1)
q=0
+log (ng_Qq_l — lfp_Qq_l) —(2p—2q) loglllg)
15
+ 5 (—1)mnar,q log l115.
q=0

The last contribution is

2p)’ 1
yé v (0) - (71)p+1§mhar,pe;7_(0)

ol A ANE!
= (=1 —mparp | —log2 —1 — — —logll
(=1) 2mh P 0g 0g li/g l;/g 5 0gl1la

1
= (*1)p§mhar,p (log(lg — ll) + log 2) .

Collecting

|
A

P
2p)/ 2p)/
y&P(0) + y7 (0) =

(]

1
(=D)7log2 + 5(—1)pmhar’p log 2

Q
Il

+
o= 9
[~

2p—2q+1 2p—2q+1
l2 - ll

(*1)thar,q IOg

g 2p—2q+1
1 p—1 l2p—2q—1 . l2p—2q—1
- -1 q 1 2 1
+ B ( ) Mhar,q 108 2p — 2q 1

(

Q
Il

1 =
+ 5 loglila D (=) mnar g (2p — 29— 1),
q=0

Using duality on the section

p—1 l2p—2q—1 . lzp—zq—l
_1 q ar 1 2 1
qz::()( ) Mha ) Og 2p_2q_1
2p
-1 1 1
= (—1)rq log ( 2p—2q+1  2p—2 +1>
q:pZH 2p—2q+1 \ ;372 2P
2p l2p—2q+1 . l2p—2q+1 p—1
2 1

= Y. ((D)irglog Pt ) (1) rg(2p — 20 — 1) log il
g=p+1 P20t =0
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and hence
2p—2q+1 2p—2q+1
I -

2p —2q+1

2p
/ / 1 1
ys™ (0) + 45 (0) = Sx(W)log 24 5 D (~1) thar g log (8.14)
q=0

8.3.3. The contribution of the singular part.

The calculations show that the functions ® appearing in the singular part are the
same appearing in the singular part for the cone and the frustum with mixed BC, as
described in Sections 7 and 8. We obtain the following result

m

1 Frustum,abs
Eq,sing(o) =0, E(/],sing(o) = 5 (I)q,j ' (O) fzgsjl C(sv U)7
Jj=1 B
- - 1 — = Frustum,abs
EQ,:t,sing(O) =0, E:;,:t,sing(o) = 5 Z q)q,j,:g (0) %gsjl C(Sa U)
i=1 =
Since,
) 1 [m/2]—1 R .
yO,Sing (O) = 5 Z (_1>q ((El/],sing(()) - Et/1,+,sing(0)) +(_1)m_1(E1/1,sing(0) - E(/],f,sing(o)))’
q=0
we obtain
(m) , 1 [m/2]—-1 m . b - N
m rustum,abs 5 Frustum,
Ui ()= 7 - (=17 (@5 (0) — &5 (0))
q=0 Jj=1
(= 1)@t 0) — §FAL 0))) Res, (5,U). (8.15)
5=j
Ifm=2p—1:
, 1 p—2 2p—1
2p—1 Frustum,abs
Y (0) = 322 (=1)7 D7 (205 (0)
q=0 j=1
= Frustum,abs = Frustum,abs
= B (0) — &gt (0)) Ress C(s, U),
if m = 2p:
(2p) ' 15 2 F b Fr b
+ Frustum,abs = Frustum,abs
Yosimg (0) == 7 (=1 > (‘I’q,j,+ (0) =g 5- (0)) Rgsjl ((s,0).
=0 j=1 =

/
For yﬁ’;gl) (0), we have

2p—1)’ Y ~
y%,szzng) (0) = (_1)]) 15 ( éfl,sing(o) - ;171,0,sing(0)) )

and hence
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m

— / — 1 ustum,abs = Frustum,abs
Y (0) = (—1P 1 3 (@FT T (0) — TR (0)) Resi (s, U). (816

=1 =

In particular, we have a result analogous to Lemma 7.3, that leads to the following
formula

(I)E:r;lstum,abS(s) o ég‘rﬁitum,abS(s) + (71)m71(@§7r;1$tum,ab5(8) - (Abgfﬁs_tum,abS(s))
= (" + (1)) (@q5(5) = by yov (5) + (1) (@45(5) = Dy (5)) )

and therefore, if m =2p — 1,

Q(I)qF;gstum,abS(O) _ (i)g‘f]}firtum,abS(O) _ ci)qF;%sjurrl,abS(O)

= (14 (=1)7) (205(0) = 8454 (0) = b5, (0)) .
if m = 2p,
= Frustum,abs = Frustum,abs j 2 =
B 0) — B (0) = (14 (1)) (B4 (0) B (0)).
Since in the odd case the relevant terms are those with odd index j, we have that

2p—1)/ 2p—1)/
e D0) + 98 D (0) = 0.

In the even case, we obtain

2p) / 2p—1)/
et (0) = 2657 V().

9. The regular part of the torsion.

We decompose the torsion in two parts, the regular part and the anomaly boundary
term, according to the formulas (6.1), (6.2), and (6.3) of Section 6. In this section we give
the formulas for the regular part, for the cone and for the frustum. As a consequence,
we have the proof of the formulas in Equations (6.1), and (6.2) namely that, in the case
of the frustum, the regular part of the torsion coincides with the Reidemeister torsion
plus the Euler part of the boundary contribution, and the singular part is precisely the
anomaly boundary contribution.

9.1. The regular part of the torsion for the cone.
We distinguish odd and even cases.

9.1.1. 0Odd case: m = 2p — 1.
[m/2] — 1 =p — 2, and hence, using Equation (8.1),

p—2

(0(0) = = 37 (=1)%Ceex (0, A@) log 1

q=0
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1 p—2 a2
+ 5 Z Meex, ,q,m 10g 1 - T Z Mecex ,q,m log Nq n .

n=1 q,n n=1

Since p2 — a2 = \2 . we obtain
q,n

q amn
/ p—2 1PZ 00
1 (0) = = D7 (- 1)%Ceen(0,A9) log U 4 Z (Z Meos,qn 10 Aq,n>
q=0 q=0 n=1
p—2 1 p—2
= — A (@) _ - _ / A (q)
- ( 1)q<CEX(0’ A 1 )logl 2 Z( 1>q<cex(0, A 4 )
q=0 q=0
Next, from Equation (8.2)
- 1 ~ 1 -
t20"0) = (177 o0, AP log L (—1)771 1 (0, AP 7).

Eventually, the contribution of the harmonics is given in Equation (8.3)

Ly 1R
thp D (0) = 3 (=D mpar g (g1 — ag) logl
q=0
1p_1 270“1—1F(—Oz _1+1)
- —1)et+1 coll 4 .
+5 2 (D) g <°g 2=l (—ay + 1) )
q=0

Since, by definition oy = (14+2¢ —2p+1)/2 and oy—1 = (14+2¢—2—2p+1)/2, we
obtain

1

P p—1

Y 1 1
t5770(0) = 5 D (= 1) mnarglogl + 5 D~ (~ 1) thar g log(2(p — 0))-
q q=0

I
o

Summing up, as in Equation (6.3), we obtain

log Ty1oba1 (C1(W))

2p—1 2p—1)’ 2p—1)’ 2p—1
= 150 0 + 43, @ + 77V ) 1577 (0)

= <; :é(_l)thar,q - g(—l)qgcex(o’ A(Q)) _ (_1)p—1%<cex(0’ A(p—l))) log [
+ 11)2? q+1 A(q)) ( 1)p<—/ (0 A(p—l))
2 g 4 cex\ Y
1 pP—
—-3 ( 1) mhar,q log(2(p — q)).
q=0

Using Equations (A.4) and (A.1), this formula can be rewritten in terms of harmon-
ics:
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[
—

p l2p72q

1
“logT :
o _2q 3% (W, 9)

log Tglobal(cl (W)) - (*1)thar,q 108;

1
2

Il
<

q

9.1.2. Even case: m = 2p.
[m/2] — 1 =p—1, and hence, using Equation (8.1),

—1 oo
/ 1% a a
t(()?ﬁe)g (0) -5 Z(_l)q chex,q,n (10g (1 + 1 ) - 10g (1 - q)) .
2 q=0 n=1 Pa.n Ha.n
Next, the contribution of the harmonics is given in Equation (8.3)
/ 1 p=l
£57(0) = = 5 D (=) g (a1 — aq + 1) log!
q=0
14 221 11—, + DI(—ay + 1
+5 2 (=) mar g log o Tag ¥ DHZag 1),
™
q=0

Since, by definition oy = (1+2¢ —2p)/2, and ag—1 = (14+2¢ —2 —2p)/2, we obtain

I 1 p—1
%) (0) = 3 (—=1)%mparq(2p — 2¢ + 1) log!
q=0
1224
+ 5 2 (=T mhar g log(27%((2p — 20 = )*(2p - 2¢ + 1)).

q=0

Eventually, from Equation (8.4)
/ 1 1
t:(fp) (0) = (—1)p1mhanp logl + (—1)p§mhar,p log 2.
Summing up, as in Equation (6.3), we obtain

1
log Tyiobal (C1(W)) + Zx(ac'l(W)) log 2

!/ / / /
= tintog (0) + 1200, (0) + 65 (0) + £ (0)

eg 1,reg
127t 1
=13 ;(—1)thar’q(2p —2¢+1)+ (—1)P4mhar,p> log [
151
=) (—1)rtt log(2p — 2q + 1)((2p — 2q — 1)!1)?
+ B ( 1) Mhar,q Og( p q+ )(( p q ))
q=0
+ Lo 2+1§( 1)q§: log L1 Ya/Haun
=X 0g a - mcex, ,n 0og —_—
2 2 = — 4 1— g/ thgm
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9.2. The regular part of the torsion for the frustum with mixed BC.
By Equation (8.5),

m 1 lo ~ " -
w(() rgg (0)= 3 (1og h) Z (=1)(Ceexc (0, ADY 4 (=1) 1o (0, AlD)Y),
q=0
whence
(2p—1)’ ) 5~ A (2p)
woﬂg (O) = —log (ll> (_1)qCCex(07 A(q))7 Wy feg (0) = 0;
q=0
by Equation (8.6)
b (0) = (<172 1og 2 ) Ceon(0, AFD)
g 2 ll

by Equation (8.9)

o L /2]
wf™'(0) = 5 3 (1) b

q=0

1 l 1 l
X — g1 log = + log 2 + (=)™ (| = + g1 log 2 +1log2 ) |,
2 l2 2 ll

-1

Y 4 1 l -
’wéZP b (0) = Z(*l)q+1mhar,q <P —q— 2) IOg fa (2]7) Z mha'r7q IOg 2.

q=0 q=

and hence

By Equation (8.10),
(2p)’ pl
wy  (0) =(—1) imhar’p log 2.

Thus, when m = 2p,

/ / 1
W, (0) + wi (0) + " (0) = S (=1)"har g 0g 2 + (~1)7 5 b p log 2

NgE

(=)

q
1
= §X(W) log 2.

When m = 2p — 1, recalling Equations (A.2) and (A.3),

q q
CCCI(O A(q) q Z 0 A(k) q Z mhar,k7
k=0 k=0

since the dimension of W is odd; whence, after some calculation we obtain
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— - 1 l S
w2 D'(0) + wP'(0) = S log (2) (1) Mpar g,

O,reg 2 Zl ~
-1
2p—1)’ 1 2\ % .
wgfjeg ) (O) = 5 lOg (ll) (_1)kmhar,k:7
k=0

and hence

2p—1)/ 2p—1)/ m)’
ws VN (0) + wi D (0) + wi™ (0) = 0.

Therefore, for any parity of m, the regular part of the torsion is

™ 70y 4 w™ (01 4 w™ () + 0™ (0) = 1y (W) log 2
wO,reg()+w ()+w2 ()+w3 ()_2X( )Ogv

1,reg

and this is equal to the Reidemeister torsion plus the Euler part of the boundary contri-
bution, i.e.

tog 7(Cit ) (W), {11} X W) + 1x(@C, 1,0 log?2
= il () wililg (0) -+ wg™ (0) +wf™ (0).
and hence
ABM,mix (0C(, 1, (W) = w((JT,rsLi)ng/(O) + wg:i)ng/(o)v
and this concludes the proof of the formulas in Equation (6.1).

9.3. The regular part of the torsion for the frustum with absolute BC.
By Equations (8.11) and (8.12),

2 /
o (0) = 0,

p—2 p—2
— / ~ ~
Yo (0) = = ST(=1)7¢(0, AD) log yly — > (~1)7¢e (0, AD),
q=0 q=0
1y .1 o 1 _ (e
Yt (0) = = (1P SGeen0, AP log il — Z(=1)7 71 ¢y (0, AF7),

and, using Equation (A.4),

p—1

_ ! _ i
ot 0) + P (0) = 3 (< 1) i o (20 — 1 29) log laly + log T(W, g).
q=0

By Equation (8.13)

2p—1)/ 2p—1)/ 2p—1)/
T (1) IR (1) IN R (1)
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2p—1 2p—2q 2p—2q
12r=2 2

Z (*1>q+1mhar,q10g 2

q=0,9#p

l
(—1)Pmnar p log log —2,

=logT(W,g) + I

1
2p — 2q + 2
and by Equation (8.14)
2 2p)/ 2p)/
u, (0) + 58 (0) + 45 (0)

2p l2p72q+1 . 12p72q+1
Wlog2 + — Z )9 Mhar ¢ log 2 L

2p—2q+1
Comparison with Proposition 3.3 of [11], proves the following formulas:
m m / m ! m ! m ]- m
it (0) + {7 (0) +55™(0) + 5™ (0) = Tog 7 (Cp, 4 (W™)) + Sx(W ™) log2,
and

m / m /
Y (0) 4yt (0) = Apagabs (0Cq, 15 (W),

and this concludes the proof of the formulas in Equation (6.2).

10. The anomaly boundary term.

We show in this section that the anomaly boundary term of the frustum with mixed
BC is twice the one of the cone. This concludes the proof of Theorem 1.1.
By Equations (8.7) and (8.8),

[m/2]-1 m
my 1
g 0 = 7 2 (D7D (@ (0512,1) = @454 (0311, 12))
q=0 Jj=1

F(=1)"™ Dy (05, 11) — Dy — (031, l2))> Res; ((s,U),
s=j

2p—1

( p—1,5,0(05l2,11) — ‘i)p71,j,0(0;l1,l2)) Res; ((s,U),
s=j

2p—1)/ 11
wg,ﬁng) (0) Z
Jj=1

where (see Equation (7.11))

~ S 1 e—At R
D, (sl ) = A — by (N, Ig)ddt
q,],:t(sa 1, 2) A i \/Ae'C Y ¢q,j,:|:( 3 U1, 2) 3

and the ¢ are given in Equation (7.9). Let introduce the linear operator

0057 1 —
T(f):/O t 12772‘//\9 _/\f( )dAdt.

Note that
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T(f(a))(0) = a*T(F()) (),

and hence by Lemma 7.3
Dy 4 (silh,lo) = sgn(ly — 12)713°®y ;(s) +sgn(lo — 1) 13 Py j Legn(n—11)(5)-
Therefore,
(Rg.j,— (0312, 11) = D .+ (0511, 19)) + (1) (g 5 1 (0312, 1) — D 5.~ (0511, 12))
= (1= (=1)7)®4,5(0) = Pg,5,4-(0) + (=1) &5, (0)
(=17 (1= (1)) 8,5 (0) = @y (0) + (1Y Dy 4 (0))
and
&) 150(050a,11) = Dp15.0(03 11, 12)) = (1= (=1)7) @1 ;(0) — (1 = (=1)7) ) 15,0(0).

It is now convenient to distinguish odd and even cases. If m = 2p — 1 is odd, then
the relevant values of the index j are the odd ones, since the zeta function ((s,U) only
has poles at odd integers s, while if m = 2p is even, the relevant values for j are the even
ones, for similar reason. Thus, if m = 2p — 1,

(Dgok-1,— (0312, 11) — Pyon—1.4(0;11,12)) + (Pgar—1.+ (0519, 11) — Ci)q,qu,f(o; l1,12))
=49 2 1(0) — 28 25—1,4-(0) — 20 251, (0),

and

Dy 108100512, 11) — @p_1.25-1,0(0; 11, I2) =281 ;(0) — 28,1 j0(0),
if m = 2p is even,

(P2~ (0512, 1) — g ok, (0511,12)) + (g 20,1 (0512, 1) — g2k, — (0511, 1))
=28, 01, (0) — 28,2514 (0).

Now, recalling the singular contribution for the cone given in Section 8.1.2

p—2
2p—1)/ . .
t5 fmg =1 Z Z ®g,2i-1(0) = g 25-1,4(0) — Py 25-1,-(0)) 1_°~26J$11 ¢(s,U),
j=1 ST
, 1 p—1 p—1
) . .
tg i'i)ng (0) = 1 Z(—l)q Z(‘I’q,zy‘,—(o) — ®,25,+(0)) Resy ((s,U),
q=0 =1 s=2j
and
1y 1 — .
tfgn;) (0) = 11 Z ( p—1 J (I)pfl,j,o(o)) Resll ¢(s,0),

j=1 5=
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and hence we have proved that

m) ! m) !
w((J,si)ng (0) = 2t( ) (0)7

0,sing
2p—1)" 2p—1)/
Wi D0) = 25 07(0),

Now, by the final formula in the previous section, and by Lemma 4.1 of [11]
() '(0) +w!™(0) = Apapmin(0Cy, 1) (W) = | B
W ing (0) + W1 ging (0) BM,mix (OC[1, 1,1 (W) i

where B is defined in Section 4.3 of [11] (based on [1]). Therefore,

(m) ' (m) "y _ L
t sin (O) +1 sin (O) Y Ba
0,sing 1,sing 2 Jw

and this is exactly the term that we would obtain applying the formula of [1], [2] on the
cone, as if it were a smooth manifold. This concludes the proof of Theorem 1.1.

11. The limiting case.

We address the following question: is there any relationship between the analytic
torsion of the frustum and that of the cone? In [11] we proved that, in the odd case
m = 2p— 1, regularising the analytic torsion of the frustum with absolute BC (taking the
quotient by the suitable factor) and taking the limit for I; — 0 we obtained the torsion
of the cone. The results of the present paper permit a more explicit unified analysis for
all dimensions, and a possible interpretation for the regularising factor.

The idea is to consider the set of the formal eigenfunctions of the cone that are
not square integrable. If we proceed formally, applying the boundary conditions, these
eigenfunctions gives a new set of eigenvalues for the formal operator, that for simplicity we
call the negative part of the spectrum. We verify that the negative part of the spectrum
can be treated by the same method used for the positive part of the spectrum, up to some
technical points, that we describe in details. As a result, we obtain a new term, that we
call the negative part of the analytic torsion, and that we denote by log T (C;(W)). We
give a formula for this term in Proposition 11.1, that shows clearly the analogies and the
differences with the regular torsion. Next, in Proposition 11.2 we give the expansion for
the logarithm of the ratio of the analytic torsion of the cone to the negative torsion of
the cone (with [ = l), and eventually we show in Theorem 11.1 that the finite part of
this ratio coincides with the analytic torsion of the cone (with I = l3) up to a classical
boundary term (see Remark 2.1).

11.1. The “negative” analytic torsion of the cone.

We proceed with the notation of Section 3. The set S(@ of the eigenvalues of
the equation A@y = A2y, with absolute BC and A # 0, is S(@ = S_(f) U S(_Q), where
Sgrq) _ Sp+A(q)

abs?

namely: if m =dimW =2p—1,p > 1:

and S is the same set with fz.n Teplaced by —piz , © = q,q— 1,9 —2,
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(@) _ .52 2™ .52 21>
S_ =\ Meex,g,n * j_ﬂq,maqvk/l n.k=1 U Meex,g—1,n * ]_Nq—l,maqfl,k/l nok=1

o0 o0
L2 2 .2 2
oo o0
L2 2 .52 2 .
Y {mhar,q H I ol b/ ! },H U {mhar,qfl P },H ;

ifm=dimW =2p, p>1:

glazpotl) _ [ .52 /12 “ ulm a2 /12 °°
- - cex,qyn * J—pig noag.k b1 cex, =1, J—pg 1 pago1k N

0o oo
.22 2 .22 2
U {mce&q_lm : ]7”“171 ,“k/l } 1 U {mcex,q—2,n . jfuq,z ,,L,k:/l }
, n,k= ,

n,k=1
2 2> A2 21
U {mhar,q : j7|aq|,aq,k/l }k:—l U {mhar7q71 : ]7|aq71\,a471,k/1 }k—l ’

(p) _ 52 21> a2 21>
S0 = Meex,pn - J*#p-,nvapvk/l n,k=1 U Meex,p—1,n * j*ﬂp—l,nyap—l,k/l nok=1

U {mcex IR k/lz} U {mcex —om i j? k/lz}
p=1, —Hp—1,n, k=1 P THp=2n, n,k=1
U 1mhar 3j12 2/12 U 1mhar :j21 2/l2
5 » Iy 2 =1/

o
.22 2
U {mhar,p—l . j—\ap_1|,ap_1,k/l }krfl )

oo (oo}

k=1 k=1

(p+1) _ 52 21> a2 2%
SY = {Meexptin 2 I ppir apsaih/! S U Meexpn = 3740, 0o k/ ! T

oo oo
.22 2 .22 2
U {mcex,p,n : J—Mp,mk/l }n,kzl U {mcex,p—l,n . j—up,l,n,k/l }n,kzl

(oo}

Ln2 21~ 1 L2 2
Y {mhar’p“ LI ol }k:1 Y o Mthar.p SRV k=1
oo

1 .
U {2mhar,p 1312/2/52} ;
k=1
where the j, ; are the positive zeros of the Bessel function J,(z), the j’mc’k are the
positive zeros of the function J,, .(v) = c¢J.(z) + xJ,(z), c € R, ag and pg,, are defined
in Lemma 3.1.

REMARK 11.1. The above description of the negative spectrum is always valid
except that for the eigenvalues associated to the harmonics of the section in the odd case
m = 2p — 1. In such a case, the eigenfunctions associated to these eigenvalues are not
the Bessel function themselves, as observed at the end of Lemma 3.1. We will take care
of this difference explicitly when we treat the term of the analytic torsion associated to
these eigenvalues, in Subsection 11.1.3 below.

Note that the set S(@) satisfy all the same properties satisfied by the set SJ(rq) and used
in the previous sections in order to define and analyse the associated spectral functions.
Following this idea, and proceeding as in Section 6, we consider the functions
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Z[;(S) = Z mcqun]:ij ok
n,k=1
Zz;i(s) = Z Meex,q, nJ_zq mibag ke AaE Z]:I:aq,lw
n,k=1
and
tme(5) = 16" () + 157 () + 157 (5) + 157 (s),
where
I E ) )
) = Y (2 () — Zaa () + (1" Z7 (5) — 2y (s))
q=0

2s R 9
H70(6) = (0P (Z4(9) — Zagls) s H76) =0,

125 [(m—1)/2]

15 (s) = =

D) (_1>q+1mhar,q (2g-1,4+(8) + (=1)"24,+(5)) ,

q=0
l25

2 2p—1
167() = (0P ey (2,4 (5) + 2, (9)) 167 () =0,
The aim of this section is to determine the quantity

log T (Cy(W ™)) = 1) (0).

Cone,—

11.1.1. The contribution of the regular part.

The functions ¢ty — and ¢; _ are double series as ¢y and ¢, and, up to solving some
technical problems, can be analysed by the same method used in Section 7. The relevant
sequences are now S, = {Mcex,q, w1 and S’;i = {Mcex,q.n jiﬂwi%k}. We
obtain the following representation for associated logarithmic Gamma functions:

log (=, S, ) = — log H (1 + >
*#q n,k

—logl_,, ., (V=X) = tignlog V—=A+ pignlog2 —log I'(1 — fig.n).

logI'(=\, S, 1) = 10gH<1+A —) )

]_#q n,tag,k

.42
n- ‘]_l‘q,'m

= IOg I_Hq,ruiaq( \ _)‘) — Mq,n IOg V—A+ Hqn 10g2

—logT'(—pgn) + log (1 %q ) .
Hag,n

Recalling
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substitution in the representations above of the logarithmic Gamma functions, and using
the known asymptotic expansions for the Bessel functions, shows that the asymptotic
expansions for the negative case may be deduced from the ones computed for the positive
case. We give here the relevant results, using the same notation as in Section 8, with an
added minus index.

[m/2]—1

e (0)=— Z (=1)7 (B (0) =B,y () + (= 1) (B, _(0) B, _ _(0)))log!
-2 [m:i:l(—l)q (4, O+B,_0-%, . -7, ©)
- <1>m1§[m§_1<1>q (4, O+B,_0-%,_ OB, __©).
where
%,(0)=0,
B,_(0) = infjlmqn = iccex(o, AlD 4 a2) = ic(o,A@),
By 0) = =5 3 s 080,
K,y (0 nzlmcemlog (liuqn)’
Byo (0= z_j Mo = — a0, A9 +02) =~ Ceon(0, A,
% i Meex,q,n 108 fig,n
and :

Z Meex,q,n = CCGX(Oa A(q) + O‘g)v -2 Z Mecex,q,n 10g Hqn = Céex(oa A(q) + 04(2])

n=1 n=1
Thus,
! 1 [m/2]—1 ~ R
tOn;Leg, (0) - _§ Z (_1)q (Ccex(ov A(q)) + (_1)m_1<cex(07 A(q))) 1Ogl
q=0

l\')\)—l

(Z mcex,q n ]-Og (1 - > Z Meex NeN log ,u*q n)

n=1 Ha.n n=1

m/2]
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[m/2]-1 ) )
1
I (_1)m—1§ Z (—1)1 (Z Meex,q.n 108 (1 L Y > + chex,qm loguq,n>

q=0 n=1 T n=1
m li
= ()™, (0). (11.1)

Similar analysis gives

- 1 . 1 " -
tffcg,ll/(o) - 7(71):0715(0@((07 A(p*l)) logl - Z(il)pilé}/:ex(ov A(pil)) - tffcgl)/(o)'
(11.2)

11.1.2. The contribution of the singular part.
It is easy to realise that the singular part coincides exactly with the singular part in
the positive case, namely:

!/ !
14/t (0) = g (0),
(2p—1) ’ (2p-1) ' (1L3)
tl,sing,— (0) = tl,sing,— (O)

11.1.3. The contribution of the harmonics.

This is the contribution coming from the simple series z, 4+ (s). Respect with the
harmonics for the positive torsion, where we studied the functions z, _(s), there is now
a technical problem, since the values of o, appearing in the z, _(s) are never negative
integers, while the values of the a, appearing in the z, 4 (s) maybe negative integers.
This problem appears only when m = 2p — 1 is odd, that is treated below in details. In
the even case m = 2p, we can use the formulas in Equations (5.6) and (5.7) as in Section
8.1.3. For 0 < ¢ < p, ag = 1/2 + ¢ — p, and we obtain:

1 1 1 1
a0 = = (05 ) = =5 (a9 =~ O = 5,

24.+(0) = log 200 12T (g + 1) =—log2—log(2(p—q—1)— 1!

= —z; _(0) +1log(2p — 2q — 1) — 2log 2.

This gives:
p—1
£ (0) = = 1£9(0) = (=) r log
q=0
1221 p-1
52~ rglog(2p — 20— 1)(2p — 29 +1) =2 (=1)"*"rglog2,
q=0 q=0
!

!
t57(0) = 177 (0).
(11.4)
In the odd case, m =2p —1, since ¢y =1+q¢—p <0 for 0 < ¢ < p—1, as observed
in Remark 11.1, the eigenfunctions of type E and O are not the Bessel function J,, of
negative index, but the functions Y, . Whence, function under study is the function is
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—2s
ZQ+ § :yaq,kﬂ

where S = {yq,.x} is the sequence of the zeros of the Bessel function Y_, . We proceed

as follows. Consider the series representation of the Bessel function Y, (n = —ay),
2 n—k—1)! yz\2k-n n ]
Ya(2) == Ju(2) (1025 +c)+27(§) -(5) = kz - Zank
Since

1 ! !
lim 2"Y,(2) = — = )
T

z—0

we have the product expansion

Gn(z):z”Yn(z)zw ﬁo <1_Z>.

Define

i)
then
T, (z) = 2= D! (1 n )
k=1 Yn, ik
and
log (—A logH (1—) —log Y, (V=) + nlog 2 + log(n — 1)! — log 7.
n,k

Using the classical expansion for large z of I,,(z) and K, (z),

log (In(z) - len(z)) ~log I,(z) + O(e™?).
This implies that
log Tp (V=X) = nlogvV/—X++v—-X — %1og277 - %bg\/—ix\
! log V=X + V=X — %log%,

and

1 2 1 1
log (=A,S) =— logvV—XA—V—-A+ nt log 2 4 log(n — 1)! — 3 log .
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Whence, for g #p — 1,

1 1 1 1 1 1
2¢,+(0) = B (p—q—l— 2) =3 (‘%"’2) 9 _Zqﬁ(o)—i,

2=1/2-140) (p — g~ 2) 2=t 120(~a)
2g+(0) = —log iz = —log — 7
= —z; _(0) — log 2 + log(—ay),

ZP*I,JF(O) = zp*l,*(o)a
2p-1,4(0) = —2p-1,-(0) — log?2,

and
1270 (0) = — 182770 (0) + 3 (=1)7H g log pp;q- (11.5)

11.2. Formula for the “negative” torsion and the limiting case I3 = 0.
Collecting the results of the previous subsections we have:

log T (Cy(W=D)) = ¢ (0) 4 @70 (0) + 427" (0) + &) (0)

0,reg,— 0,sing,

1
1 p— l2p—2q 1 (2p—1)/
=3 q:o(—l)qrq log 5 2 + 3 log T(W. g) + tg ging (0)
p—2 .
+» (=17, log P4 I
q=0 4=
I ! ! /
log T—(Ci(WP)) = ti1, _ (0) + t5(0) + 57 (0) + 722, _ (0)
2 2p)’ 2p)’ 2p) !
=~ 1§ f’e)g (0) = £5°77°(0) + £ (0) + £, (0)
152
+ Z(—nqrq logl — - > (=1)%rglog(2p — 20 — 1)(2p — 2 + 1)
— q=0
p—1
+2 Z(—l)qrq log 2
l2p—2q+1
== Z Mhar,q 10g m
1% )1
- 5 )irqlog(2p —2¢ —1)(2p —2¢ + 1) + (—1) 7 Mhar.p log

p—1

pfl
1
+;<—1>qrqlogz+§;<—1>thar,qlog<<2p_2q_ 2
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1 p—1 00
) Z(fl)q Z Meex,q,n <10g <1 + aq> —log (1 - a"))
q=0 n=1 Hq,n Hq,n

p—1
+ > (-1)%rylog2+ (—
q=0

1 ’
1)p§mhar’p log2 + t(()2£)ng (0).

The previous formulas in the notation of Theorem 8.4 read:

ProrosiTIiON 11.1.

1 Det? ™t
log T (CWCP~1)) = ~log T(W, g) — log y + Aps.abs(0C (W)

th"
p—2
B Z(_l)qrq log 1 T
q=0
Det?'é 1
log T (Cy (W) = — 1 O_C 4 —x(W)log 2 + Aps abs(9CH (W)
Detf a4
(2p) (2p)
ByH(C(W)) + By (Ci(W)
p—1 p—1
+ > (=1)7rglogl — 3 > (—1)%r,log(2p — 2 — 1)(2p — 2q + 1).
q=0 q=0

We are now able to study the constant part of the limit for I; — 0% of the difference
between the logarithms of the torsion of the frustum and the one of the negative torsion
with [ = [;. For we need a few lemmas and a remark.

LEMMA 11.1.  Forly — 0T, we have the expansions:

2
Detcep  (—1)P 11 p—2-2
08 [ = T rploglogl + = Z )irglogI3P=771
Detf))* éc,
+logm *Z quog 2p—2—2q)+0(l1)

ifm=2p—1, and

1 DetaF - ]. P 1 q 1 12p,2q,1
o 2MAr _ LS 1ytrlog
q=0
Detf 'éc, 1%
+log—————2 = )74 log(2p — 2 — 1
gDetg*a 24 qlog(2p —2¢ — 1)

1
+ Z(—l)p’l“p log Iy + O(ll),

if m = 2p.
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Proor. When m =2p — 1,

2p—1 lgp—2q _ lfp—Qq 2p—1 lgq—Qp _ l%q—2p
—1Drylog =—F—F— = —1)%rylo
q:zp;rl( rule 2r =24 Z;rl( Nratos (2q = 2p)(Lilz)?=?

2p—2—2q 2p—2—2q
! — 2

(2p — 2 —2q)(l1lo)?P—272

(=1)%* 7, log

Il
_NoQ
I M T
[l

a+1y log
q
poar 2p —2 —2q
-2
g q 2p—2—2q
+ > (—1)%r,logl
q=0
Whence,
2p—1 2p—1 2p—2 2p—2
P2 — =1 (=1)P l
_ _1\e 2 1 °2
log H r,= Z (—1)9mnar,q log 5~ 2 + 5 T log log I
q=0,q7p
p—1 2p—2 2p—2
Pt — =1 (=1)P lo
= —1)9mpar 4 log 2 1 loglog =
q:O( ) Mnar,q 10g 2 — 2 + 5 'pl08108 I
2p—2—2q
p—2 ]_ _ (Ll) p—2
_1\g+1 2p—2— 2q
+Z( 1) Tq10g_2p—2—2q +Z( 1)%r,logly
q=0 q=0
When m = 2p,
2p lgp—2q+1 _ l%p—2q+1
1 r,= arq L
OgH qzo 08 T T

2p—2g+1 2p—2q+1
l2 - ll

P
Z mhar ,q g
= 2p —2q+1

l2p—2q+1 _ l2p—2q+1
2 1
+ Z (—1)9mpar ¢ log
q=p+1

1

2p—2q+1
e
=> (—1)"mpar,qlog

q=

2p—2q+1 2p—2q+1
l2 — ll

2p—2q+1

[}

l2p—2q+1 _ lQp—2q+1
+ Z (_l)thar,qIOg 2 !
q=p+1

+ (—=1)Pr,log(la — 11).

2p —2q+1
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2p 12p72q+1 l2p72q+1 2p
- 2p—2q+1  ;2p—2q+1
Z (—=1)9mpar 4 log 2 55 :_1 = Z (71)tharyqlog<llp e q+)
q=p+1 P q q=p+1

- Z (—=1)9mpar glog(2¢—1—2p).

q=p+1
2p p—1
Z (=1)%mpar,qlog(2¢ —1—2p) =Z(—1)thm,qlog(2p— 1-2q).
q=p+1 q=0
2p 2
5 (el (37 500) = 55 (1ot
a=pt q=p+1
2 1\ 2021
+ 3 (—1) mpar g log (1_ (zl) ) ,
q=p+1 2

REMARK 11.2. Observe that the anomaly boundary term of the frustum is the
sum of two equal terms each defined as an integral over on of the two boundaries, so we

can write
Aps abs (OC[1, 1,)(W)) = Ags abs(0C, (W) + Aps abs (9C1, (W),
and this is true in all dimensions, see Lemma 4.1 of [11].

ProposIiTION 11.2.  For small l1, we have the expansions:

log Tabs (Cir, 1) (W ™1)) = log T (Cy, (W~ 1))

—1) 1 p—1 L
= ( 2) Tp loglogl + Z )T, IOglfp 1-2q +1og Tans (Cr, (W) + O(lh),
q=0

log Tabs(c[lhlz] (W(zp))) —logT_ (Ch (W(Qp)))
1
= log Tabs,ideal (Cr, (W) — §X(W) log 2 + O(1y).

Proor. Using the expansion in the previous lemma and the formulas in Theorem
2.1 we compute, in the odd case m = 2p — 1,

log Tans (Cty 1, (W) —log T (Cy, (W)

Deté Detf™ 1acl
=logT(W,g)+log +ABS abs(0C], 1, (W) — flogT(W g)—i—logil1
Det ’ Detf, «
= p—q
— ABs abs (0C1, (W) +>_(=1) rqlog ———
gt p—q-
1 p—1 .
( ]_)p 1 = 2p—1—2 1 Det OLCl
logl log 5P T4 —logT(W, log—2 2
5 rploglog - +Z )rqlogl; + 5 logT(W, g) +log Dol T

q=0
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+ ABs’abs(aClz (W)) + O(ll).

In the even case m = 2p,

10g Tas (Clty 1) (W) — log T (Cy, (W)
Detarp 1 Detg_ldm 1
=1 - log2+ A , log ——0  “Ch = log 2
°® Deta * 2X(W> 082 + Aps,abs(9C, 15 (W) + log Detg_la 4X<W) 0g
p—1
— Aps abs(9C1, (W) + B (C, (W) = B (C, (W) = Y (—1)%r, log ly
q=0
124
+5 2 (=1)rglog(2p — 29 = 1)(2p — 2 + 1)
q=0
Det’g_ldcl2 1
= log A -1 + *(—l)prp log Iy + ABS,abS(OCUhlz] (W)) - ABS,abs(acll (W))
Dety "« 4
+ BE(C, (W) + O(1y). -

THEOREM 11.1.

I}GSSJ (108 Tabs (Cliy 15) (W) = log T (Cy, (W))) =10g Taps ideat (Cr, (W) — %X(W) log 2.
=

As announced in the introduction, we reobtained the formula for the torsion written
in Theorem 1.1 (or better 2.1) as a limit of a regularisation of the torsion of the frustum
(extending a result obtained in [11] for the odd case m = 2p — 1). Beside the intrinsic
interest of this result, this also shows that the anomaly term B; appearing in the formula
for the analytic torsion of the cone (compare Theorem 2.1) is due to the fact that in
this approach to the problem of extending the definition of Ray and Singer of analytic
torsion to spaces with conical singularities, a set of eigenfunctions of the Laplace Beltrami
operator are missed (those that are not square integrable near the tip of the cone). As
a consequence, the spectrum changes, and the lost part of the spectrum is exactly the
one that produces a counter term to the anomaly term Bj in the analytic torsion (the
term we called the negative part of the torsion). Due to the symmetry of the problem,
that depends on the parity of the dimension, this cancelation happens in odd dimension,
but does not happens in even dimension. This emerges clearly by comparison of the
formulas given in this section for the different terms composing the negative torsion with
the formulas for the corresponding terms composing the regular (positive) torsion and
given in the previous sections.

Appendix A. Formulas for the zeta function of the Hodge—Laplace op-
erator.

Decomposing the zeta function of the Hodge-Laplace operator A on an m-
dimensional oriented compact connected Riemannian manifold (W, g), we have that

C(S, A(q)) - gex(sa A(q)) + Ccex(sa A(q))
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enm=2p—1iso using duality, this gives
Wh 2p—1 dd, g duality, this g
p—2 1
_ —+1 7 / —1
IOgT(VVv g) - Z(_l)q Ccex(ov A(q)) + 5(_1)pgcex(oa A(p )) (Al)
q=0
Moreover, observing that
q
k k
Ccex(saA(q)) = (_l)q Z(_l) C(SvA( ))7 (AQ)
k=0
and that
¢(0,AW) = — dimker A®, (A.3)
using duality we have
p—2 1 1 p—1
—1 -1
(_1>qccex(0ﬂA(q)) + 5(_1>p Ccex(0>A(p )) = D) Z(_l)q(2p_ 1= 2q)rqu(W)~
q=0 q=0
(A.4)
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