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Abstract. We study the fundamental groups of (the complements of)
plane complex curves defined by equations of the form f(y) = g(x), where
f and g are polynomials with real coefficients and real roots (so-called R-
join-type curves). For generic (respectively, semi-generic) such polynomials,
the groups in question are already considered in [6] (respectively, in [3]). In
the present paper, we compute the fundamental groups of R-join-type curves
under a simple arithmetic condition on the multiplicities of the roots of f and
g without assuming any (semi-)genericity condition.

1. Introduction.

Let ν1, . . . , ν�, λ1, . . . , λm be positive integers. Denote by ν0 (respectively, λ0) the

greatest common divisor of ν1, . . . , ν� (respectively, of λ1, . . . , λm), and set

d :=
�∑

j=1

νj and d′ :=
m∑
i=1

λi.

A curve C in C
2 is called a join-type curve with exponents (ν1, . . . , ν�;λ1, . . . , λm) if it

is defined by an equation of the form f(y) = g(x), where

f(y) := a ·
�∏

j=1

(y − βj)
νj and g(x) := b ·

m∏
i=1

(x− αi)
λi . (1.1)

Here, a and b are non-zero complex numbers, and β1, . . . , β� (respectively, α1, . . . , αm)

are mutually distinct complex numbers. We say that C is an R-join-type curve if the

coefficients a, b, αi and βj (1 ≤ i ≤ m, 1 ≤ j ≤ �) are real numbers. Hereafter, we shall

always assume that C is an R-join-type curve. The singular points of such a curve are

the points (x, y) satisfying the equations

f(y) = g(x) and f ′(y) = g′(x) = 0.

Among these points, those which also satisfy the equations f(y) = g(x) = 0—which

are nothing but the points (αi, βj) with λi, νj ≥ 2—will be called inner singularities.

On the other hand, the singular points for which f(y) �= 0 and g(x) �= 0 will be called

outer or exceptional singularities. Both inner and outer singularities are Brieskorn–Pham

singularities Bλ,ν (normal form yν − xλ). For instance, the inner singularity at (αi, βj)
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is of type Bλi,νj . Note that, for an R-join-type curve, outer singularities can be only

node singularities (i.e., Brieskorn–Pham singularities of type B2,2). This follows from

the discussion in the next paragraph.

Without loss of generality, we can assume that the real numbers αi (1 ≤ i ≤ m)

and βj (1 ≤ j ≤ �) are indexed so that α1 < · · · < αm and β1 < · · · < β�. Then, by

considering the restriction of the function g(x) to the real numbers, we easily see that

the equation g′(x) = 0 has at least one real root γi in the open interval (αi, αi+1) for

each 1 ≤ i ≤ m− 1. Thus, since the degree of

g′(x)
/ m∏

i=1

(x− αi)
λi−1

is m − 1, the roots of g′(x) = 0 are exactly γ1, . . . , γm−1 and the roots αi of g(x) = 0

with λi ≥ 2. In particular, this implies that γ1, . . . , γm−1 are simple roots. Similarly, the

equation f ′(y) = 0 has �− 1 simple roots δ1, . . . , δ�−1 such that βj < δj < βj+1 for each

1 ≤ j ≤ � − 1. The other roots of f ′(y) = 0 are the roots βj of f(y) = 0 with νj ≥ 2;

they are simple for νj = 2.

We say that C is generic if it has only inner singularities. Thus, C is generic if and

only if, for any 1 ≤ i ≤ m − 1, g(γi) is a regular value for f , that is g(γi) �= f(δj) for

any 1 ≤ j ≤ � − 1. (Of course, this is also equivalent to the condition that, for any

1 ≤ j ≤ �− 1, f(δj) is a regular value for g.) We say that C is semi-generic with respect

to g if there exists i0, 1 ≤ i0 ≤ m, such that g(γi0−1) and g(γi0) are regular values for f .

(For i0 = 1 and m, we mean g(γ1) /∈ Vcrit(f) and g(γm−1) /∈ Vcrit(f) respectively, where

Vcrit(f) is the set of critical values of f .) The semi-genericity with respect to f is defined

similarly by exchanging the roles of f and g. Clearly, any generic curve is semi-generic

with respect to both g and f . Of course, the converse is not true. Note that C can be

semi-generic with respect to g without being semi-generic with respect to f (for details,

see [3]).

In [3], we proved that if C is semi-generic—with respect to g or with respect to f—

then

π1(C
2 \ C) � G(ν0;λ0),

where G(ν0;λ0) is the group obtained by taking p = ν0 and q = λ0 in the presentation

(2.1) described in Section 2 below. We also showed that, if C̃ is the projective closure of

C, then

π1(P
2 \ C̃) �

{
G(ν0;λ0; d/ν0) if d ≥ d′,

G(λ0; ν0; d
′/λ0) if d′ ≥ d.

The groups G(ν0;λ0; d/ν0) and G(λ0; ν0; d
′/λ0) are defined in (2.4). In the special case

where the curve is generic, the result was first proved in [6]. For a survey on this subject,

we refer to [2].

In the present paper, we compute the fundamental groups of R-join-type curves

under a simple arithmetic condition on the exponents νj and λi of the polynomials f
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and g, without assuming any semi-genericity condition (cf. Theorem 1.4). Beforehand,

we give an intermediate result (Theorem 1.1 below), half-way between the semi-generic

case of [3] and Theorem 1.4.

To make our statements simpler, throughout we fix real numbers γ0 < α1 and

γm > αm (respectively, δ0 < β1 and δ� > β�) so that g(γ0) and g(γm) are regular values

of f (respectively, f(δ0) and f(δ�) are regular values of g).

Theorem 1.1. Let C be an R-join-type curve in C
2 defined by the equation f(y) =

g(x), where f and g are as in (1.1), and let ν̂j,j+1 be the least common multiple of the

consecutive exponents νj and νj+1. Suppose that there exists an integer i0, 1 ≤ i0 ≤ m,

such that the following two conditions are satisfied :

(1) λi0 > ν̂j,j+1 for any 1 ≤ j ≤ �− 1;

(2) either g(γi0−1) or g(γi0) is a regular value of f .

Then,

π1(C
2 \ C) � G(ν0;λ0).

Furthermore, if C̃ is the projective closure of C, then

π1(P
2 \ C̃) �

{
G(ν0;λ0; d/ν0) if d ≥ d′,

G(λ0; ν0; d
′/λ0) if d′ ≥ d.

Remark 1.2. The conclusions of Theorem 1.1 are still valid if, instead of the

conditions (1) and (2), we suppose that there exists an integer j0, 1 ≤ j0 ≤ �, such that

the following two conditions are satisfied:

(1′) νj0 > λ̂i,i+1 for any 1 ≤ i ≤ m− 1;

(2′) either f(δj0−1) or f(δj0) is a regular value of g.

Here, λ̂i,i+1 is the least common multiple of λi and λi+1. This remark is an immediate

consequence of the theorem itself and Proposition 2.2 below.

Note that if i0 = 1 or m (respectively, if j0 = 1 or �), then the condition (2)

(respectively, the condition (2′)) is always satisfied.

Example 1.3. Consider the R-join-type curve C defined by the equation f(y) =

g(x), where

f(y) =
65536

9765625
y3(y − 1)3 and g(x) = − 1

64
x8(x− 1)2.

Clearly, the point (4/5, 1/2) is an outer singularity and the curve is not semi-generic.

However, as λ1 = 8 > ν̂1,2 = 3, Theorem 1.1 applies, and

π1(C
2 \ C) � G(3; 2) � B(3),
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the braid group on three strings, while

π1(P
2 \ C̃) � G(2; 3; 5) � Z10.

For the last isomorphism, see Corollary 2.7. Note that π1(C
2 \ C) is not abelian, while

π1(P
2 \ C̃) is. The reason is that the line at infinity is not generic for C̃.

If we replace the condition (1) in Theorem 1.1 by the condition [λi0/2] > ν̂j,j+1 for

all 1 ≤ j ≤ � − 1, where [λi0/2] is the integral part of λi0/2, then the conclusions of

the theorem are still valid, even if the condition (2) is not fulfilled. This is stated, more

precisely, in the following theorem.

Theorem 1.4. Again, let C be an R-join-type curve in C
2 defined by the equation

f(y) = g(x), where f and g are as in (1.1), and let ν̂j,j+1 be the least common multiple

of νj and νj+1. Suppose that there exists an integer i0, 1 ≤ i0 ≤ m, such that :

[λi0/2] > ν̂j,j+1 for any 1 ≤ j ≤ �− 1. (1.2)

Then, the conclusions of Theorem 1.1 still hold true. That is,

π1(C
2 \ C) � G(ν0;λ0),

and

π1(P
2 \ C̃) �

{
G(ν0;λ0; d/ν0) if d ≥ d′,

G(λ0; ν0; d
′/λ0) if d′ ≥ d.

As in Remark 1.2, observe that the conclusions of Theorem 1.4 are still valid if,

instead of the condition (1.2), we suppose that there exists an integer j0, 1 ≤ j0 ≤ �,

such that:

[νj0/2] > λ̂i,i+1 for any 1 ≤ i ≤ m− 1. (1.3)

Example 1.5. Consider polynomials of the form

f(y) = a(y − β1)
2(y − β2)(y − β3)

2(y − β4)(y − β5),

g(x) = b(x− α1)
2(x− α2)(x− α3)

7(x− α4).

Choose the coefficients a, b, α1, . . . , α4, β1, . . . , β5 so that there exist γ1, . . . , γ3 and

δ1, . . . , δ4, with αi < γi < αi+1 and βj < δj < βj+1, such that

g′(γi) = f ′(δj) = 0 (1 ≤ i ≤ 3, 1 ≤ j ≤ 4),

g(γ1) = g(γ3) = f(δ1) = f(δ4) > 0,

g(γ2) = f(δ2) = f(δ3) < 0.

The existence of such a polynomial is guaranteed by [9]. Then, the R-join-type curve

C defined by the equation f(y) = g(x) is not semi-generic and neither Theorem 1.1 nor
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Remark 1.2 apply. However, for i0 = 3, we have λi0 = 7, and

[λi0/2] = 3 > ν̂j,j+1 for any 1 ≤ j ≤ 4.

Thus, Theorem 1.4 applies, and

π1(C
2 \ C) � G(ν0;λ0) = G(1; 1) � Z,

while

π1(P
2 \ C̃) � G(λ0; ν0; deg(g)/λ0) = G(1; 1; 11) � Z11.

Remark 1.6. The conclusions of Theorem 1.4 are not true without any assumption

on the exponents. For example, suppose that � = m ≥ 2, νj = λj , βj = αj (1 ≤ j ≤ �),

a = b and ν0 = 1. Then, the corresponding join-type curve C is reducible with a line

component given by the equation y = x, and hence π1(C
2 \ C) �� G(1;λ0) � Zd.

Remark 1.7. In [1], [4], we computed the fundamental groups of all R-join-type

curves in the special case where d and d′ are both equal to 6 or both equal to 7. Theorem

1.1 and 1.4 above and Theorem 1.1 in [3] (the latter concerns the semi-generic case) are

complementary to each other. Combined, these three theorems cover many R-join-type

curves. However, they do not cover all of them, even in the special cases of sextics and

septics treated in [1], [4].

2. The groups G(p; q) and G(p; q; r).

In this section, we recall the definitions and collect basic properties of the groups

G(p; q) and G(p; q; r) introduced in [6] and which appear in Theorems 1.1 and 1.4 as the

fundamental groups of our curves.

Let p, q, r be positive integers. The group G(p; q) is defined by the presentation

〈ω, ak (k ∈ Z) | ω = ap−1ap−2 · · · a0, Rq,k, R′
p,k (k ∈ Z) 〉, (2.1)

where

Rq,k : ak+q = ak (periodicity relation);

R′
p,k : ak+p = ωakω

−1 (conjugacy relation).

Remark 2.1 (cf. [6]). The group G(p; q) is isomorphic to the fundamental group

π1(C
2 \ Cp,q), where Cp,q is the curve given by yp − xq = 0.

The next proposition has already been used in Remark 1.2. From a purely algebraic

point of view, this proposition is not obvious. However, it follows immediately from

Remark 2.1 above.

Proposition 2.2. The groups G(p; q) and G(q; p) are isomorphic.

The proposition below will be very useful to prove Theorems 1.1 and 1.4.
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Proposition 2.3 (cf. [6]). The relations R′
p,k (k ∈ Z) and ω = ap−1ap−2 · · · a0

imply the following new relation for any k ∈ Z:

ω = akak−1 · · · ak−p+1.

Now, let q1, . . . , qn be positive integers and G(p; {q1, . . . , qn}) be the group defined

by the presentation

〈ω, ak (k ∈ Z) | ω = ap−1ap−2 · · · a0, Rqi,k, R′
p,k (1 ≤ i ≤ n, k ∈ Z) 〉,

where

Rqi,k : ak+qi = ak.

The following proposition will also be useful in the proofs of Theorems 1.1 and 1.4.

Proposition 2.4 (cf. [6]). The group G(p; {q1, . . . , qn}) is isomorphic to the group

G(p; q0), where q0 := gcd(q1, . . . , qn).

In the same vein, we also have the next result. Let p1, . . . , ps be positive integers,

p0 := gcd(p1, . . . , ps) and G({p1, . . . , ps}; q) the group defined by the presentation

〈ω, ak (k ∈ Z) | ω = ap0−1ap0−2 · · · a0, Rq,k, R′
pi,k (1 ≤ i ≤ s, k ∈ Z) 〉, (2.2)

where

R′
pi,k : ak+pi = ωiakω

−1
i ,

with ωi := api−1api−2 . . . a0.

Proposition 2.5. The group G({p1, . . . , ps}; q) is isomorphic to the group

G(p0; q).

Proof. First, we show that the relations of the presentation (2.2) imply the re-

lations of the presentation (2.1) with p = p0. By Proposition 2.3, for each 1 ≤ i ≤ s, the

relations R′
pi,k

(k ∈ Z) and ωi = api−1 · · · a0 imply

ωi = ak+pi−1 · · · ak (k ∈ Z). (2.3)

Write p0 = k1p1 + · · ·+ ksps, where k1, . . . , ks ∈ Z. Then, still by R′
pi,k

,

ak+p0
= (ωks

s · · ·ωk1
1 ) · ak · (ωks

s · · ·ωk1
1 )−1,

while (2.3) shows

ω = ap0−1 · · · a0
= (ak1p1+···+ksps−1 · · · ak1p1+···+ks−1ps−1

) · · · (ak1p1−1 · · · a0)
= ωks

s · · ·ωk1
1 .



On the fundamental groups of non-generic R-join-type curves, II 247

Conversely, let us show that the relations of the presentation (2.1) with p = p0 imply

the relations of the presentation (2.2). By Proposition 2.3, the relations R′
p0,k

(k ∈ Z)

and ω = ap0−1 · · · a0 imply

ωi = ωpi/p0 .

To conclude, it suffices to observe that the relations R′
p0,k

also imply

ak+pi = ωpi/p0 · ak · ω−pi/p0 . �

The group G(p; q; r) is the quotient of G(p; q) by the normal subgroup generated by

ωr. In other words, G(p; q; r) is given by the presentation

〈ω, ak (k ∈ Z) | ω = ap−1ap−2 · · · a0, ωr = e, Rq,k, R′
p,k (k ∈ Z) 〉, (2.4)

where e is the unit element.

Theorem 2.6 (cf. [6]). Let s := gcd(p, q) and n := gcd(q/s, r). The center of

G(p; q; r) contains the cyclic group Zr/n generated by ωn, and

Zr/n ∩D(G(p; q; r)) = {e},

where D(G(p; q; r)) is the commutator subgroup of G(p; q; r). The latter is equivalent to

the injectivity of the composition

Zr/n ↪→ G(p; q; r)→ G(p; q; r)
/
D(G(p; q; r)).

Furthermore, the quotient group G(p; q; r)
/
Zr/n is isomorphic to the free product

Zp/s ∗ Zn ∗ F(s− 1),

where F(s− 1) is a free group of rank s− 1.

This theorem has the following corollary which has already been used in Example

1.3.

Corollary 2.7 (cf. [6]). If p, q, r are mutually coprime, then G(p; q; r) � Zpr.

Proof. By Theorem 2.6, there is a central extension

{e} → Zr → G(p; q; r)→ Zp → {e},

where Zr is generated by ω. Therefore, the relations R′
p,k reduce to ak+p = ak, and the

group G(p; q; r) is given by

〈ω, a0 | ω = ap0, ωr = e 〉 � Zpr. �

Necessary and sufficient conditions for the groups G(p; q) and G(p; q; r) to be abelian

are also given in [6]. These conditions can be used to test the commutativity of the groups
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π1(C
2 \ C) and π1(P

2 \ C̃) which appear in Theorems 1.1 and 1.4.

3. Bifurcation graphs.

To compute the group π1(C
2 \ C) in Theorems 1.1 and 1.4, we use the Zariski–van

Kampen theorem with the pencil P given by the vertical lines L(γ) : x = γ, where γ ∈ C

(cf. [5], [7], [10]).1 This theorem says that

π1(C
2 \ C) � π1(L(γ0) \ C)

/M,

where L(γ0) is a generic line of P and M is the normal subgroup of π1(L(γ0) \ C)

generated by the monodromy relations associated with the ‘special’ lines of P. Here, a

line L(γ) of P is called special if it meets the curve C at a point (γ, δ) with intersection

multiplicity at least 2. This happens if and only if f(δ) = g(γ) and f ′(δ) = 0. As we

have seen in Section 1, f ′(δ) = 0 if and only if δ = δj for some j, 1 ≤ j ≤ �− 1, or δ = βj

for some j, 1 ≤ j ≤ �, such that νj ≥ 2. Let γj,1, . . . , γj,d′ be the roots of g(x) = f(δj)

for 1 ≤ j ≤ �− 1. If g′(γj,k) �= 0, then (γj,k, δj) is a smooth point of C. As δj is a simple

root of f ′(y) = 0, in a small neighbourhood of this point, C is topologically described by

(y − δj)
2 = c(x− γj,k),

where c �= 0, and the line x = γj,k is tangent to the curve at (γj,k, δj) with intersection

multiplicity 2. In particular, this is the case if γj,k ∈ C \ R, as g′(x) = 0 has only real

roots. If g′(γj,k) = 0, then (γj,k, δj) is an outer singularity. As γj,k is a simple root

too, this singularity is necessarily of type A1 = B2,2. Near this point, the curve is

topologically equivalent to

(y − δj)
2 = c(x− γj,k)

2.

For each βj with νj ≥ 2, the roots of g(x) = f(βj) are α1, . . . , αm. If λi = 1, then (αi, βj)

is a smooth point of C. In a small neighbourhood of it, C is topologically given by

(y − βj)
νj = c(x− αi),

and the line x = αi is tangent to C at (αi, βj) with intersection multiplicity νj . If

λi ≥ 2, then the point (αi, βj) is an inner singularity of type Bλi,νj , and in a small

neighbourhood of it, the curve is topologically equivalent to

(y − βj)
νj = c(x− αi)

λi .

The special lines of the pencil P correspond to certain vertices of a graph called the

‘bifurcation graph’. This graph is defined as follows. Let Vcrit(f) (respectively, Vcrit(g))

be the set of critical values of f (respectively, of g), and let

Vcrit := Vcrit(f) ∪ Vcrit(g).

1Note that this pencil is ‘admissible’ in the sense of [7].
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Σ− Σ+

v− v+0

Figure 1. Graph Σ.

If there exists i0 or j0 such that λi0 ≥ 2 or νj0 ≥ 2, then

Vcrit = {0, g(γ1), . . . , g(γm−1), f(δ1), . . . , f(δ�−1)}.

Otherwise,

Vcrit = {g(γ1), . . . , g(γm−1), f(δ1), . . . , f(δ�−1)}.

Denote by Σ the bamboo-shaped graph (embedded in the real axis) whose vertices are

the points of Vcrit∪{0} (cf. Figure 1). This graph can be decomposed into two connected

subgraphs Σ+ and Σ−, where Σ+ (respectively, Σ−) is the subgraph whose vertices are

≥ 0 (respectively, ≤ 0). Hereafter, we shall denote by v+ := sup {v | v ∈ Vcrit} and

v− := inf {v | v ∈ Vcrit}. The pull-back graph Γ := g−1(Σ) of Σ by g is called the

bifurcation graph (or ‘dessin d’enfant’ ) associated with the curve C with respect to g. Its

vertices are the points of the set g−1(Vcrit ∪ {0}).

Observation 3.1. The special lines x = γ of the pencil P are given by the vertices

γ of Γ such that g(γ) ∈ Vcrit(f).

The bifurcation graph uniquely decomposes as the union of connected subgraphs

Γ(α1), . . . ,Γ(αm) such that, for 1 ≤ i ≤ m, the following properties are satisfied:

(1) Γ(αi) is a star-shaped graph with ‘centre’ αi, and with 2λi branches (respectively,

λi branches) if v+ > 0 and v− < 0 (respectively, if v+ or v− is zero);

(2) the restriction of g to Γ(αi) is an λi-fold branched covering onto Σ, whose branched

locus is {0}, and g−1(0) ∩ Γ(αi) = {αi};
(3) for i �= m, Γ(αi)∩Γ(αi+1) = {γi}, and if g(γi) /∈ {v−, v+}, then the branch of Γ(αi)

(respectively, Γ(αi+1)) with γi as a vertex goes vertically downward (respectively,

vertically upward) at γi.

The subgraphs Γ(αi) (1 ≤ i ≤ m) are called the satellite graphs of Γ.

Example 3.2. In the special case of Example 1.3 (respectively, Example 1.5), the

graphs Σ, Γ and Γ(αi) are as in Figures 2 and 3 (respectively, Figures 4 and 5). In Σ

(respectively, in Γ and Γ(αi)), the black vertices and the solid lines correspond to the

positive branch Σ+ of Σ (respectively, the part above Σ+), while the white vertices and

the dashed lines correspond to the negative branch Σ− (respectively, the part above Σ−).
In Γ, the star-style vertices represent the points αi (1 ≤ i ≤ m), which are the centres of

the satellites. We also use a star-style vertex for 0 = g(αi) ∈ Σ. In these two examples,

all the vertices γ of the bifurcation graph are such that g(γ) ∈ Vcrit(f), and hence all the

vertices correspond to a special line. For more examples, we refer to [3].
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Σ: Γ:
100 γ1g(γ1)=f(δ1)

Figure 2. Graphs Σ and Γ of Example 1.3.

Γ(1)

10 γ1γ1

Γ(0)

Figure 3. Satellites Γ(0) and Γ(1) of Example 1.3.

Γ:

0

γ3

Σ:

γ2γ1 α4α2α1

g(γ2) g(γ1)

Figure 4. Graphs Σ and Γ of Example 1.5.

Γ(α1)

γ3

Γ(α3)

Γ(α2) Γ(α4)

α4

γ1 γ2α2

γ1α1 γ2 γ3

Figure 5. Satellites Γ(α1), . . . ,Γ(α4) of Example 1.5.

4. Proof of Theorem 1.1.

It is based on the same pattern as the proof of Theorem 1.3 in [3] where the semi-

generic case is considered. Hereafter, we shall assume that C is not semi-generic. In

this case, the main new difficulty is that all the satellites give rise to at least one outer

singularity, so that there is no satellite the branches of which produce only ‘tangential’
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ξ1,ν1−1

ξ2,1

ξ2,0ξ1,0

ξ1,1

ξ1,2

ξ2,ν2−1 ξ�,ν�−1

ξ�,1

ξ�,0

β�β2β1

Figure 6. Generators of π1(L(α
+
i0
) \ C).

monodromy relations—this reduction to tangential relations was a crucial simplification

in [3]. This ‘lack’ of tangential relations is compensated by the hypotheses (1) and (2)

of the theorem. Here, the key observation is Lemma 4.3.

As mentioned in the previous section, we use the Zariski–van Kampen theorem with

the pencil P given by the vertical lines L(γ) : x = γ, where γ ∈ C. We take a sufficiently

small positive number ε, and for any real number η, we write η− := η−ε and η+ := η+ε.

Let i0 be an integer satisfying the conditions (1) and (2) of the theorem. We consider

the generic line L(α+
i0
), and we choose generators

ξ1,0, . . . , ξ1,ν1−1, . . . , ξ�,0, . . . , ξ�,ν�−1

of the fundamental group π1(L(α
+
i0
)\C) as in Figure 6. (In the figure, we do not respect

the numerical scale; we even zoom on the part that collapses to βj when ε→ 0.) Here, the

loops ξj,rj (1 ≤ j ≤ �, 0 ≤ rj ≤ νj − 1) are counterclockwise-oriented lassos around the

intersection points of L(α+
i0
) with C. We shall refer to these generators as the geometric

generators. For 1 ≤ j ≤ �, 0 ≤ rj ≤ νj − 1 and n ∈ Z, let

ωj := ξj,νj−1 · · · ξj,0 and ξj,nνj+rj := ωn
j · ξj,rj · ω−n

j .

These relations define elements ξj,k for any 1 ≤ j ≤ � and any k ∈ Z. (Indeed, any k ∈ Z

can be written as k = nνj + rj , with n ∈ Z and 0 ≤ rj ≤ νj − 1.) It is easy to see that

ξj,nνj+r = ωn
j · ξj,r · ω−n

j for 1 ≤ j ≤ � and n, r ∈ Z. (4.1)

As usual, to find the monodromy relations associated with the special lines of the

pencil P, we consider a ‘standard’ system of counterclockwise-oriented generators of the

fundamental group π1(C\S), where S is the set consisting of the vertices αi (1 ≤ i ≤ m)

and γj,k (1 ≤ j ≤ � − 1, 1 ≤ k ≤ d′) in the bifurcation graph Γ. (We recall that

the elements γj,k are the roots of the equation g(x) = f(δj), where δj is defined as in

Section 1.) We choose α+
i0

as base point, and we denote these generators by σ(αi) and

σ(γj,k). Then, σ(αi) (respectively, σ(γj,k)) is a loop in C \ S surrounding the vertex

αi (respectively, γj,k). It is based at α+
i0

and it runs along the edges of Γ avoiding the
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α+
i0

αi0+1αi0

σ(γj,k)

σ(γj′,k′)

Figure 7. Example of standard generators of π1(C \ S).

vertices corresponding to special lines (cf. Figure 7). The monodromy relations around

the special line L(αi) (respectively, L(γj,k)) are obtained by dragging the generic fibre

L(α+
i0
)\C isotopically along the loop σ(αi) (respectively, σ(γj,k)) and by identifying each

generator ξj,rj (1 ≤ j ≤ �, 0 ≤ rj ≤ νj − 1) of the group π1(L(α
+
i0
) \C) with its image by

the terminal homeomorphism of this isotopy. For more details, we refer to [5], [7], [10].

We start with the monodromy relations associated with the special line L(αi0).

These relations can be found using the local models

yνj = xλi0 for 1 ≤ j ≤ �.

Precisely, if we write λi0 = njνj + rj , where nj ∈ Z and 0 ≤ rj ≤ νj − 1, they are given

by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξj,0 = ω
nj

j · ξj,rj · ω−nj

j

ξj,1 = ω
nj

j · ξj,rj+1 · ω−nj

j

. . .

ξj,νj−(rj+1) = ω
nj

j · ξj,νj−1 · ω−nj

j

ξj,νj−rj = ω
nj+1
j · ξj,0 · ω−(nj+1)

j

. . .

ξj,νj−1 = ω
nj+1
j · ξj,rj−1 · ω−(nj+1)

j

By (4.1), these relations can be written, more concisely, as

ξj,kj
= ω

nj

j · ξj,kj+rj · ω−nj

j = ξj,kj+λi0
for 1 ≤ j ≤ � and 0 ≤ kj ≤ νj − 1.

In fact, (4.1) shows that

ξj,k = ξj,k+λi0
for 1 ≤ j ≤ � and k ∈ Z. (4.2)

Remark 4.1. If νj = 1 for all 1 ≤ j ≤ �, then L(αi0) is not a special line, and
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hence, the corresponding monodromy relations are trivial. However, it is clear that the

relations (4.2) remain valid, as, in this case, ξj,k = ξj,0 for all k ∈ Z.

Next, we look for the monodromy relations along the branches of the satellite Γ(αi0).

For simplicity, we shall assume v− < 0 and v+ > 0, so that Γ(αi0) has 2λi0 branches.

(The proof can be easily adapted if v− or v+ is zero.) For 0 ≤ q ≤ 2λi0 − 1, we denote

by Bi0,q the q-th branch of Γ(αi0). We suppose that the branches Bi0,2q (respectively,

Bi0,2q+1), 0 ≤ q ≤ λi0 − 1, correspond to the positive part Σ+ (respectively, the neg-

ative part Σ−) of Σ through the correspondence Γ(αi0) → Σ given by the restriction

of g. We also suppose that Bi0,0 (respectively, Bi0,1) contains the line segment [αi0 , γi0 ]

if g(γi0) > 0 (respectively, if g(γi0) < 0). For simplicity, hereafter, we shall assume

g(γi0) > 0. (The argument is similar in the case g(γi0) < 0.) For 0 ≤ q ≤ λi0 − 1, let

αi0,2q (respectively, αi0,2q+1) be the unique point of g−1(g(α+
i0
))∩Bi0,2q (respectively, of

g−1(g(α−
i0
))∩Bi0,2q+1). See Figure 8. Of course, for q = 0, αi0,0 is nothing but the point

α+
i0
. Finally, recalling the hypothesis (2) of the theorem, let us suppose, for instance, that

g(γi0−1) is a regular value of f and g(γi0) is a critical value of f . (The case where g(γi0)

is a regular value of f and g(γi0−1) a critical value of f is similar and left to the reader.

Note that if both g(γi0−1) and g(γi0) were regular values of f , then the curve would be

semi-generic, which is excluded as the result in this case is already proved in [3].)

The following observation will be useful.

Observation 4.2. For any i (1 ≤ i ≤ m), when x moves on the circle |x−αi| = ε

by the angle 2π/λi, the centre of each lasso ξj,rj (1 ≤ j ≤ �, 0 ≤ rj ≤ νj − 1) turns, up

to higher order terms, on the circle |y − βj | = ελi/νj by the angle 2π/νj.

Pick any index j0, 1 ≤ j0 ≤ � − 1. If f(δj0) > 0, then, for each 0 ≤ q ≤ λi0 − 1,

there exists a unique vertex γi0,j0,2q ∈ Bi0,2q such that g(γi0,j0,2q) = f(δj0). As the only

possible critical point for g among the points

γi0,j0,0, γi0,j0,2, . . . , γi0,j0,2λi0−2

is the point γi0,j0,0, it follows from Observation 4.2 that the monodromy relation associ-

ated with the special line L(γi0,j0,2q), for 0 < q ≤ λi0 − 1, is given by

ξj0,−q = ξj0+1,kj0−q, (4.3)

γ−i0,j0,2q

α+
i0αi0

αi0,2q

Figure 8. Definitions of αi0,2q and γ−i0,j0,2q.
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δj0

ξj0,−q ξj0+1,kj0−q
ξj0+1,1−q

ξj0,νj0−1−q ξj0+1,νj0+1−1−q

βj0+1

βj0

ξj0,1−q ξj0+1,kj0−q

ξj0+1,−q

ξj0,−q

Figure 9. Generators at x = αi0,2q (left-hand side) and at x = γ−i0,j0,2q
(right-hand side) when g(γi0) > 0 and f(δj0) > 0.

where kj0 is some integer depending only on the first ordering of the elements ξj0+1,rj0+1

(0 ≤ rj0+1 ≤ νj0+1 − 1). See Figure 9. The picture on the left-hand side (respectively,

right-hand side) represents the generators in a neighbourhood of βj0 and βj0+1 (respec-

tively, in a neighbourhood of δj0) at x = αi0,2q (respectively, at x = γ−
i0,j0,2q

). The

complex number γ−
i0,j0,2q

is defined as in Figure 8. For example, if f(δj0) < g(γi0), then

γi0,j0,0 is a real number (so that γ−
i0,j0,0

:= γi0,j0,0 − ε) and γ−
i0,j0,2q

is defined to be the

unique point of g−1(g(γ−
i0,j0,0

))∩Bi0,2q. Note that the relation (4.3) is also true for q = 0

if γi0,j0,0 �= γi0 , that is, if γi0,j0,0 is not a critical point of g.

If f(δj0) < 0, then, for each 0 ≤ q ≤ λi0−1, there exists a unique vertex γi0,j0,2q+1 ∈
Bi0,2q+1 such that g(γi0,j0,2q+1) = f(δj0). As none of the points

γi0,j0,1, γi0,j0,3, . . . , γi0,j0,2λi0
−1

is a critical point of g, the monodromy relation associated with the special line

L(γi0,j0,2q+1) is given by

ξj0,hj0
−q = ξj0+1,kj0

−q (4.4)

for each 0 ≤ q ≤ λi0 − 1, where hj0 and kj0 are integers depending only on the first

ordering of the elements ξj0,rj0 (0 ≤ rj0 ≤ νj0−1) and ξj0+1,rj0+1
(0 ≤ rj0+1 ≤ νj0+1−1).

Now, by reordering the generators ξj,k successively for j = 1, . . . , �, we can assume

that, for any 1 ≤ j ≤ �− 1,

ξj,k = ξj+1,k for pj < k ≤ pj + λi0 − 1,

for some integers p1, . . . , p�−1. These relations, together with (4.2), imply

ξj,k = ξj+1,k for k �≡ pj (mod λi0) (4.5)

for any 1 ≤ j ≤ � − 1. Actually, we are going to prove that the relations (4.5) are true

for any k ∈ Z (cf. Lemma 4.3). This key observation follows from the relations (4.5)
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themselves and the hypothesis (1) of the theorem.

Lemma 4.3. For any 1 ≤ j ≤ �− 1,

ξj,k = ξj+1,k for k ∈ Z.

Proof. By (4.2) and (4.5), it suffices to show that ξj,pj
= ξj+1,pj

for any 1 ≤ j ≤
�− 1. First of all, observe that (4.1) and Proposition 2.3 imply

ωj = ξj,k+νj−1 · · · ξj,k (4.6)

for any 1 ≤ j ≤ � and any k ∈ Z. Now, fix an integer j such that 1 ≤ j ≤ � − 1. As

λi0 > ν̂j,j+1 (hypothesis (1) of the theorem), the relations (4.5) show that

ξj,pj+ν̂j,j+1 · · · ξj,pj+1 = ξj+1,pj+ν̂j,j+1 · · · ξj+1,pj+1,

and hence, by (4.6), we get

ω
ν̂j,j+1/νj

j = ω
ν̂j,j+1/νj+1

j+1 . (4.7)

Besides, by (4.1), we also have

ξj,pj+ν̂j,j+1
= ω

ν̂j,j+1/νj

j · ξj,pj
· ω−ν̂j,j+1/νj

j and

ξj+1,pj+ν̂j,j+1
= ω

ν̂j,j+1/νj+1

j+1 · ξj+1,pj
· ω−ν̂j,j+1/νj+1

j+1 .

Then, as ξj,pj+ν̂j,j+1
= ξj+1,pj+ν̂j,j+1

, the relation (4.7) immediately implies

ξj,pj = ξj+1,pj . �

Lemma 4.3 tells us that we can take, as generators, the elements

ξk := ξj0,k for k ∈ Z.

Then, the relations (4.2) are written as

ξk = ξk+λi0
for k ∈ Z, (4.8)

and, by (4.1) and Proposition 2.3, we have

ξk+ν0
= ωξkω

−1 for k ∈ Z, (4.9)

where ω := ξν0−1 · · · ξ0.
Now, let us consider the monodromy relations associated with the other satellites.

For simplicity, we still assume g(γi0) > 0. We start with the satellite Γ(αi0+1) and first

look for the relations around the line L(αi0+1). For this purpose, we need to know how

the generators are deformed when x moves along the ‘modified’ line segment [α+
i0
, α−

i0+1].

Here, ‘modified’ means that x makes a half-turn counterclockwise around each vertex

of Γ ∩ [α+
i0
, α−

i0+1] corresponding to a special line (cf. Figure 10). Take an element j0,
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α+
i0

α−i0+1

Figure 10. The modified line segment [α+
i0
, α−i0+1].

ξj0,k0+1

ξj0,k0

ξj0+1,k0−1

ξj0+1,k0

ξj0,k0+νj0−1 ξj0+1,k0−νj0+1+1
ξj0,k0+νj0−1

ξj0+1,k0−νj0+1+1

ξj0,k0+1 ξj0+1,k0−1

ξj0,k0

ξj0+1,k0

βj0+1βj0+1 βj0βj0

Figure 11. Deformation of the generators when 0 < f(δj0) < g(γi0).

1 ≤ j0 ≤ � − 1. If 0 < f(δj0) < g(γi0), then there are exactly two vertices γi0,j0,0 �= γi0
and γi0+1,j0,2q0 �= γi0 (for some 0 ≤ q0 ≤ λi0+1 − 1) on the line segment [α+

i0
, α−

i0+1] that

correspond to special lines of the pencil associated with the critical value f(δj0)—that

is, g(γi0,j0,0) = f(δj0) and g(γi0+1,j0,2q0) = f(δj0). The first one γi0,j0,0 is in Γ(αi0) and

the second one γi0+1,j0,2q0 is in Γ(αi0+1). Therefore, when x moves along the modified

line segment [α+
i0
, α−

i0+1], the generators are deformed as in Figure 11. The picture on

the left-hand side of the figure represents the generators at x = α+
i0

(i.e., before the

deformation). The picture on the right-hand side represents the generators at x = α−
i0+1

(i.e., after the deformation). However, by Lemma 4.3, we can suppose that the generators

in the fibre x = α−
i0+1 are still the same as in the fibre x = α+

i0
. In other words, the

picture on the left-hand side of Figure 11 also represents the generators at x = α−
i0+1.

Hence, by the same argument as above, the monodromy relations associated with the

special line L(αi0+1) give the relations

ξk = ξk+λi0+1
for k ∈ Z.

We also get the same relations if f(δj0) = g(γi0)—that is, if (γi0 , δj0) is an outer

singularity—or if g(γi0) < f(δj0) or f(δj0) < 0. Indeed, in the first case, applying Lemma

4.3 shows that the configuration of the generators is identical on the fibres x = α−
i0+1

and x = α+
i0
. It is also identical if g(γi0) < f(δj0) or if f(δj0) < 0, as, in these two cases,

the set g−1(f(δj0)) ∩ [α+
i0
, α−

i0+1] is empty.

The monodromy relations associated with the special lines corresponding to the

vertices located on the branches of Γ(αi0+1) do not give any new relation. This can be

directly shown easily but it is not necessary. In fact, as we shall see below, it suffices

to collect the monodromy relations associated with the special lines L(αi) for all i,

1 ≤ i ≤ m. We already know that, for i = i0 and i0 + 1, the monodromy relations
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ξj0,k0
′+1

ξj0,k0
′

ξj0+1,k0
′−1

ξj0+1,k0
′

ξj0,k0
′+νj0−1 ξj0+1,k0

′−νj0+1+1

βj0+1βj0

Figure 12. Generators at x = α+
i0+1 and at x = α−i0+2 when g(γi0), g(γi0+1)

and f(δj0) are > 0.

around L(αi) are given by ξk = ξk+λi
for all k ∈ Z. In fact, this is true for any i.

For instance, let us show it for i = i0 + 2. For this purpose, we need to know how the

generators are deformed when x makes a half-turn on the circle |x − αi0+1| = ε from

α−
i0+1 to α+

i0+1, and then moves along the modified line segment [α+
i0+1, α

−
i0+2]. Again,

choose an index j0 with 1 ≤ j0 ≤ �− 1, and, for simplicity, assume that g(γi0), g(γi0+1)

and f(δj0) are positive. (The other cases are similar.) By Observation 4.2, when x makes

a half-turn on the circle |x−αi0+1| = ε from α−
i0+1 to α+

i0+1, the generators are deformed

as in Figure 12, where k′0 ∈ Z. That is, the configuration of the generators on the fibre

x = α+
i0+1 is just the parallel translation of that on the fibre x = α−

i0+1. Then, as above,

by applying Lemma 4.3, when x moves along the modified line segment [α+
i0+1, α

−
i0+2],

we easily see that the generators are still as in Figure 12. It follows that the monodromy

relations associated with the special line L(αi0+2) give the relations

ξk = ξk+λi0+2
for k ∈ Z.

This argument can be repeated for all the other values of i, 1 ≤ i ≤ m, so that the

monodromy relations associated with the special line L(αi) for any i, 1 ≤ i ≤ m, are

written as

ξk = ξk+λi
for k ∈ Z. (4.10)

By Proposition 2.4, the collection of relations (4.10), for 1 ≤ i ≤ m, and the relation

(4.9) are equivalent to {
ξk = ξk+λ0

ξk+ν0
= ωξkω

−1 for k ∈ Z.

That is, the fundamental group π1(C
2 \C) is presented by the generators ξk (k ∈ Z) and

ω and by a set of relations that includes the following relations:
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ω = ξν0−1 · · · ξ0, (4.11)

ξk+λ0 = ξk (k ∈ Z), (4.12)

ξk+ν0
= ωξkω

−1 (k ∈ Z). (4.13)

In other words, π1(C
2\C) is a quotient of the group G(ν0;λ0). To show that π1(C

2\C) is

isomorphic to G(ν0;λ0), we consider the family {Ct}0≤t�1 of R-join-type curves, where

Ct is defined by the equation

f(y) = (1− t)g(x).

Clearly, for any 0 < t� 1, the curve Ct has only inner singularities—that is, Ct is generic.

Therefore, by the degeneration principle [8], [10], for any sufficiently small t > 0, there

is a canonical epimorphism

ψt : π1(C
2 \ C) = π1(C

2 \ C0) � π1(C
2 \ Ct) � G(ν0;λ0).

This epimorphism is defined as follows. Take a line L∞ at infinity, and set C ′ := C ∪L∞
and C ′

t := Ct ∪ L∞. Pick a sufficiently small regular neighbourhood N of C ′ in P
2 so

that the inclusion

ı : P2 \N ↪→ P
2 \ C ′ = C

2 \ C

is a homotopy equivalence, and choose a sufficiently small t so that C ′
t is contained in

N . We may assume that N ∩ L(α+
i0
) is a copy of d disjoint sufficiently small 2-disks, so

that the elements ξk (0 ≤ k ≤ d − 1) also give free generators of π1(L(α
+
i0
) \ Ct) and

π1(L(α
+
i0
) \N). Then, ψt is defined by taking the composition of

ı�
−1 : π1(C

2 \ C)→ π1(P
2 \N)

with the homomorphism induced by the inclusion

P
2 \N ↪→ P

2 \ C ′
t = C

2 \ Ct.

To distinguish the generators, we write ξk(t) (k ∈ Z) for the generators of π1(C
2 \ Ct),

which are represented by the same loops as ξk. Note that ψt(ξk) = ξk(t). As Ct is generic,

π1(C
2 \Ct) is presented by the generators ξk(t) (k ∈ Z) and ω(t) := ξν0−1(t) · · · ξ0(t) and

by the relations (4.11)–(4.13), replacing ξk by ξk(t) and ω by ω(t). This implies that

kerψt is trivial, and hence

π1(C
2 \ C) � G(ν0;λ0).

(In particular, as announced above, the branches of the satellites Γ(αi), i �= i0, do not

give any new relation.)

As for the fundamental group π1(P
2 \ C̃), we proceed as follows. If d ≥ d′, then

the base locus of the pencil X = γZ (γ ∈ C) in P
2 does not belong to the curve, and

therefore the group π1(P
2 \ C̃) is obtained from the above presentation of π1(C

2 \C) by

adding the vanishing relation at infinity ω1 · · ·ω� = e. By Proposition 2.3, the relations
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(4.11) and (4.13) imply ωj = ωνj/ν0 (1 ≤ j ≤ �). Therefore, the relation ω1 · · ·ω� = e

can also be written as

ωd/ν0 = e,

and hence,

π1(P
2 \ C̃) � G(ν0;λ0; d/ν0).

If d′ ≥ d, then we consider again the above family {Ct}0≤t�1. We use the same

regular neighbourhood N and the same isomorphism ψt for a sufficiently small t > 0.

But this time, to compute π1(C
2 \C), we consider the pencil given by the horizontal lines

y = δ, where δ ∈ C. We fix a generic line, y = δ0, and we choose geometric generators

ρk (0 ≤ k ≤ d′− 1) as above so that the ρk’s give generators of the fundamental group of

the generic fibre of each complement P2 \N , C2 \C and C
2 \Ct simultaneously. Then, we

define elements τ and ρk, for k ∈ Z, in the same way as we defined the elements ω and

ξk (k ∈ Z) above. As ψt is an isomorphism and Ct is generic, the generating relations

for each group π1(C
2 \ Ct), π1(C

2 \ C) and π1(P
2 \N) are given by

τ = ρλ0−1 · · · ρ0,
ρk+ν0

= ρk (k ∈ Z),

ρk+λ0
= τρkτ

−1 (k ∈ Z).

As d′ ≥ d, the base locus of the pencil Y = δZ (δ ∈ C) in P
2 does not belong to C̃, and

hence the group π1(P
2 \ C̃) is obtained from the above presentation of π1(C

2 \ C) by

adding the vanishing relation at infinity τd
′/λ0 = e. Finally, we get

π1(P
2 \ C̃) � G(λ0; ν0; d

′/λ0).

This completes the proof of Theorem 1.1.

5. Proof of Theorem 1.4.

It is similar to the proof of Theorem 1.1 except that, in the present case, both

g(γi0−1) and g(γi0) may be critical values of f . In this case, the satellite Γ(αi0) gives

rise to two outer singularities instead of one. (Note that a satellite can give at most

two such singularities.) The proof therefore requires a special attention when reading

the monodromy relations along the branches of Γ(αi0). In the present case, the lack of

tangential relations is compensated by the hypothesis (1.2) of the theorem. Here, the

key observation is Lemma 5.1—counterpart of Lemma 4.3.

We consider the generic line L(α+
i0
), and we choose generators

ξ1,0, . . . , ξ1,ν1−1, . . . , ξ�,0, . . . , ξ�,ν�−1

of the fundamental group π1(L(α
+
i0
) \C) as in Figure 6. As in the proof of Theorem 1.1,

for 1 ≤ j ≤ �, 0 ≤ rj ≤ νj − 1 and n ∈ Z, we set
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ωj := ξj,νj−1 · · · ξj,0 and ξj,nνj+rj := ωn
j · ξj,rj · ω−n

j ,

and we observe that

ξj,nνj+r = ωn
j · ξj,r · ω−n

j for 1 ≤ j ≤ � and n, r ∈ Z. (5.1)

Then, by the same argument as above, we show that the monodromy relations associated

with the special line L(αi0) are given by

ξj,k = ξj,k+λi0
for 1 ≤ j ≤ � and k ∈ Z. (5.2)

Now, we look for the monodromy relations along the branches of Γ(αi0). As in

the proof of Theorem 1.1, we use the notation Bi0,2q (respectively, Bi0,2q+1) for the

branches of Γ(αi0) corresponding to Σ+ (respectively, Σ−), and we suppose that Bi0,0

(respectively, Bi0,1) contains the line segment [αi0 , γi0 ] if g(γi0) > 0 (respectively, if

g(γi0) < 0). For simplicity, we also assume v− < 0, v+ > 0 and g(γi0) > 0. Pick an

index j0, 1 ≤ j0 ≤ � − 1. If f(δj0) > 0, then, for each 0 ≤ q ≤ λi0 − 1, there exists a

unique vertex γi0,j0,2q ∈ Bi0,2q such that g(γi0,j0,2q) = f(δj0). If λi0 is odd (respectively,

even), then, for each 0 < q ≤ λi0 − 1 (respectively, for each 0 < q ≤ λi0 − 1 such that

q �= λi0/2), the monodromy relation associated with the special line L(γi0,j0,2q) is given

by

ξj0,−q = ξj0+1,kj0−q,

where kj0 is an integer depending only on the first ordering of the elements ξj0+1,rj0+1

(0 ≤ rj0+1 ≤ νj0+1−1). If f(δj0) < 0, then, for each 0 ≤ q ≤ λi0−1, there exists a unique

vertex γi0,j0,2q+1 ∈ Bi0,2q+1 such that g(γi0,j0,2q+1) = f(δj0). If λi0 is even (respectively,

odd), then, for each 0 ≤ q ≤ λi0 − 1 (respectively, for each 0 ≤ q ≤ λi0 − 1 such that

q �= (λi0 − 1)/2), the monodromy relation associated with the special line L(γi0,j0,2q+1)

is given by

ξj0,hj0−q = ξj0+1,kj0−q,

where hj0 and kj0 are integers depending only on the first ordering of the elements

ξj0,rj0 (0 ≤ rj0 ≤ νj0 − 1) and ξj0+1,rj0+1
(0 ≤ rj0+1 ≤ νj0+1 − 1). Now, by reordering

the generators ξj,k successively for j = 1, . . . , �, we can assume that there are integers

p1, . . . , p�−1 such that, for any 1 ≤ j ≤ �− 1,

ξj,k = ξj+1,k

for all pj ≤ k ≤ pj + λi0 − 1 such that:

· k �= pj if λi0 is odd and f(δj) > 0;

· k �= pj , pj + λi0/2 if λi0 is even and f(δj) > 0;

· k �= pj + (λi0 − 1)/2 if λi0 is odd and f(δj) < 0.

Combined with (5.2), these relations imply
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ξj,k = ξj+1,k for all k �≡ pj , pj + [λi0/2] (mod λi0) (5.3)

for any 1 ≤ j ≤ �− 1. In fact, as in the proof of Theorem 1.1, we are going to prove that

the relations (5.3) hold for any k ∈ Z.

Lemma 5.1. For any 1 ≤ j ≤ �− 1,

ξj,k = ξj+1,k for k ∈ Z.

Proof. First, note that (5.1) and Proposition 2.3 imply

ωj = ξj,k+νj−1 · · · ξj,k (5.4)

for any 1 ≤ j ≤ � and any k ∈ Z. Now, fix an integer j such that 1 ≤ j ≤ �− 1. By (5.2)

and (5.3), in order to prove the lemma, it suffices to show:

(i) ξj,pj
= ξj+1,pj

;

(ii) ξj,pj+[λi0/2]
= ξj+1,pj+[λi0/2]

.

The item (i) is obtained exactly as in the proof of Lemma 4.3, replacing the reference to

the hypothesis (1) of Theorem 1.1 by a reference to the hypothesis (1.2) of Theorem 1.4.

As for the item (ii), write [λi0/2] = nν̂j,j+1 + r with n, r ∈ Z and 0 ≤ r < ν̂j,j+1 <

[λi0/2]. Then, by (5.1), we have

ξj,pj+[λi0/2]
= ω

nν̂j,j+1/νj

j · ξj,pj+r · ω−nν̂j,j+1/νj

j and

ξj+1,pj+[λi0/2]
= ω

nν̂j,j+1/νj+1

j+1 · ξj+1,pj+r · ω−nν̂j,j+1/νj+1

j+1 .

As 0 ≤ r < [λi0/2], the item (i) and the relations (5.3) show that

ξj,pj+r = ξj+1,pj+r.

Then, the item (ii) follows immediately from the equality

ω
ν̂j,j+1/νj

j = ω
ν̂j,j+1/νj+1

j+1 .

(This latter equality is obtained as in the proof of Lemma 4.3 by combining the hypothesis

(1.2) with the relations (5.3).) �

With Lemma 5.1 in hand—which plays a role analogous to that of Lemma 4.3 in

the proof of Theorem 1.1—the remaining of the proof of Theorem 1.4 is identical to that

of Theorem 1.1.
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