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Abstract. In this paper, we proved decay properties of solutions to the
Stokes equations with surface tension and gravity in the half space R_‘]\_’ =
{(«',zn) | 2 € RVN71 zx > 0} (N > 2). In order to prove the decay
properties, we first show that the zero points A+ of Lopatinskii determinant
for some resolvent problem associated with the Stokes equations have the
asymptotics: Ay = iic;/2\§’|1/2 —2[¢’|24+0(|¢’'[5/2) as |¢'| — 0, where ¢g > 0
is the gravitational acceleration and ¢ € RN~ is the tangential variable in
the Fourier space. We next shift the integral path in the representation formula
of the Stokes semi-group to the complex left half-plane by Cauchy’s integral
theorem, and then it is decomposed into closed curves enclosing A+ and the
remainder part. We finally see, by the residue theorem, that the low frequency
part of the solution to the Stokes equations behaves like the convolution of the

172
(N — 1)-dimensional heat kernel and fgl[eiw.‘? |5/‘1/2t](x’) formally, where

F, g_ ! is the inverse Fourier transform with respect to &’. However, main task in

our approach is to show that the remainder part in the above decomposition
decay faster than the residue part.
1. Introduction and main results.

Let RY and R{’ (VN > 2) be the half space and its boundary, that is,
RY = {(2/,zn) |2/ e RV!, 2y >0}, RY ={(2',2n) |2’ e RV7!, 2y =0}

In this paper, we consider the following Stokes equations with the surface tension and
gravity in the half space Rf :

0,U — DivS(U,0) =0, divU =0 inRY, t>0,

OH+Un=0 onR(I)V,t>O,

S(U,O)v + (cg — co A )Hv =0 on Ry, t >0,
Ulizo=f i RY, Hlizo=d on RV7L

(1.1)
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Here the unknowns U = (Uy(z,t),...,Ux(z,t))T! and © = O(z,t) are the velocity
field and the pressure at (z,¢) € RY X (0,00), respectively, and also H = H(x/,t) is the
height function at (2/,t) € RN¥~! x (0,00). The operators div and A’ are defined by

N N-1 P
: _ TT. l _ 2 L2
dlvU—;DjU], AH_;D]-H (Dj_a%)

for any N-component vector function U and scalar function H. S(U,0) = —OI + D(U)
is the stress tensor, where I is the N x N identity matrix and D(U) is the doubled strain
tensor whose (7,7) component is D;;(U) = D;U; + D;U;. Moreover, Div S(U, ©) is the
N-component vector function with the ith component:

N
j=1

Let v = (0,...,0,—1)T be the unit outer normal to RY’, and then

—(DnUi + DiUy) (i=1,...,N—1),

i™® component of S(U, Q)v = {
—9DNUx +© (i =N).

The parameters ¢, > 0 and ¢, > 0 describe the gravitational acceleration and the surface

tension coefficient, respectively, and the functions f = (f1(x),..., fx(2))T and d = d(2’)

are given initial data.

The equations (1.1) arise in the study of a free boundary problem for the incom-
pressible Navier-Stokes equations. The free boundary problem is mathematically to find a
N-component vector function u = (uy(x,t),...,un(x,t))T, a scalar function 6 = 0(z, 1),
and a free boundary I'(¢) = {(2/,zy) | 2’ € RN~ oy = h(z',t)} satisfying the following
Navier-Stokes equations:

p(Owu+u - Vu) — Div S(u,0) = —pcgVay, divu=0 in Q(t),t>0,
Oh+u' -V'h—uny =0 onI'(t),t>0,
S(u, 0)vy = cokin on I'(t), t > 0, (1.2)
Uli=0 = uo in Q(0),
hli=o = ho on RV,

Here Q(t) = {(2/,zn) | ' € RN7L, 2y < h(a/,t)}, and Q(0) is a given initial
domain; p is a positive constant describing the density of the fluid; k = k(x,t) is the
mean curvature of I'(t), and 14 is the unit outer normal to I'(t); u - Vu = Z;\le
and v’ - V'h = Y3 u; Djh.

A problem is called the finite depth one if the equations (1.2) is considered in Q(t) =

'I.LijU,

IMT describes the transposed M.
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{(z;zn) | 2" € RN7L, —b < ax < h(a/,t)} for some constant b > 0 with Dirichlet
boundary condition on the lower boundary: T', = {(2/,zx) | 2’ € RN zny = —b}.
There are several results for the finite depth problem. In fact, Beale [4] proved the local
well-posedness in the case of ¢, = 0 and ¢, > 0, and also [5] proved the global well-
posedness for small initial data when ¢, > 0 and ¢, > 0. Beale and Nishida [6] proved
decay properties of the solution obtained in [5], but the paper is just survey. We can find
the detailed proof in Hataya [9]. Tani and Tanaka [20] also treated both case of ¢, = 0
and ¢, > 0 under the condition ¢, > 0. Along with these results, we refer to Allain
[2], Hataya and Kawashima [8], and Bae [3]. Note that they treated the problem in the
Lo-Ly framework, that is, their classes of solutions are contained in the space-time Lo
space, and their methods are based on the Hilbert space structure. Thus, their methods
do not work in general Banach spaces. From this viewpoint, we need completely different
techniques since our aim is to treat (1.2) in the L,-L, framework.

The study of free boundary problems with surface tension and gravity in the L,-
L, maximal regularity class were started by Shibata and Shimizu [16]. We especially
note that Abels [1] proved the local well-posedness of the finite depth problem with
p=q> N, c, =0, and ¢; > 0. In the case of the L,-L, framework, Shibata [19] proved
the local well-posedness of free boundary problems for the Navier-Stokes equations with
¢s = c¢g = 0 in general unbounded domains containing the finite depth problem, where p
and ¢ are exponents satisfying the conditions: 1 < p,q < oo and 2/p + N/q < 1.

Concerning (1.2), under some smallness condition of initial data, Priiss and Simonett
[10] showed the local well-posedness of the two-phase problem containing (1.2) with
¢o > 0 and ¢4 = 0, and also [11] and [12] proved the local well-posedness of the case
where ¢, > 0 and ¢, > 0. Recently, there are two papers due to Shibata and Shimizu
[15], [17], which treat the linearized problem of (1.2) and some resolvent problem. But all
the papers do not have any results about decay properties of solutions for the linearized
problem of (1.2). In the present paper, we show decay properties of solutions to (1.1) as
the first step to prove the global well-posedness of (1.2).

Now we shall state our main results. For this purpose, we introduce some symbols
and function spaces. For any domain € in RY | positive integer m, and 1 < ¢ < oo, L,(2)
and W™ (€2) denote the usual Lebesgue and Sobolev spaces with || - |z, (@) and ||+ [[wy (o).
respectively, and we set W (Q) = Ly(2). Let N be the set of all natural numbers and
Ny = NU {0}, and let C be the set of all complex numbers. For differentiations, we use
the symbols D$ and D}, defined by

olel

D¥ =
wf(xl? 7xN) 81.(111 ...am%N

f(xl,... ,J,‘N) = D?l ---D%Nf(l‘l,...,x]v),

Ot ) = DY - DI g6 Ev)
3. BN—-1 1,--+3SN—-1) = 1 Y N-1 1,-+-HySN—-1)
e "'8fzﬂv_1

D?’.Q(glw'wg]\/'fl) =
where o = (ai,...,ay) € NY and /' = (B1,...,0nv-1) € Névfl. In addition,
for any vector functions u(z) = (uy(x),...,un(z))?, D%u(z) is given by D%u(x) =
(Duy(z),...,Ddun(x))T, and also
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Vu={Dju; |i,j=1,...,N}, V?u={D;Djuy |i,jk=1,...,N}.

Let X and Y be Banach spaces with | - ||x and | - ||y, respectively, and then £(X,Y)
denotes the set of all bounded linear operators from X to Y, and set £(X) = L(X, X).
For m € Ny and an interval I in R, C™(I, X) is the set of all X-valued C™-functions
defined on I. Let X™ be the m-product space of X with m € N, while we use the symbol
Il - [|x to denote its norm for short, that is,

m

lullx =) llugllx  for uw= (ua,...,um) € X™
j=1

For 1 < g < oo, non-integer s > 0, and m € N, W7(R™) denotes the Slobodeckii spaces
defined by

W (R™) = {u € WIHR™) | Jullws mem) < o0},
Du(e) = Du(lt |\
||u||Ws R™) HUHW Rm)-i- Z </m/m |x—y|m+(5 D dxdy ,

where [s] is the largest integer lower than s. For any vector function v = (uq,...,un
and v = (vy,...,vx)T defined on Rf, we set

)T

(u, )y = /R ul@) o) do = ZN: /R (o () dr

Jj=1

The letter C' denotes a generic constant and C(a,b,c,...) a generic constant depending
on the quantities a, b, ¢,.... The value of C' and C(a,b,¢c,...) may change from line to

line.
Let qu (RY) be the homogeneous spaces of order 1 defined by Wl(RN) = {0 ¢

Lgioc(RY) | VO € Ly(RY)N}. In addition, we set Wlo(RN) = {0 € Wl(RN) | Olry
=0} and W) (RY) = {0 € W (RY) | O|lry = 0}. As was seen in [18, Theorem A. 3]
W} o(RY) is dense in Wlo(RN) with the gradient norm ||V - || (gx). Then the second
solenoidal space J,(RY) is defined by

JoRY) = {f € LRIV | (£, Vehmy = 0 for any € W2 o(RY)},
where 1/qg + 1/¢' = 1. For simplicity, we set

Xq = Jq(Rf) X Wg_l/q(RN_l)’ Xo = Lq(R-I&Y) X Lq(RN_l)’

q

Xi=L,RY) x WiV aRNY) (i =1,2), (1.3)

q

and let £H be the harmonic extension of H, that is,



Stokes equations with surface tension and gravity in the half space 1563

{ASH:O in RY, 14

EH=H onR}.

The main results of this paper then is stated as follows:

(1)

THEOREM 1.1. Let1 <p < oo, ¢y >0, and ¢, > 0.
For every t > 0 there exists operators
S(t) € L(X2,WARNN), (1) € £(X2,WEHRY)), T(t) € L(X2,W2~V/P(RN1))
such that for F = (f,d) € X,
S()F € C1((0,00), Jp(RE)) N C?((0,00), W (RE)™),
I()F € C°((0,00), W (RY)),
T()F € C'((0,00), Wy~ /P(RN1)) N CO((0,00), W~ V/P(RYTY)),
and that (U,0,H) = (S)F,II(t)F,T(t)F) solves uniquely (1.1) with

lim [|(U (), H(0)) — (f,d)1x, = 0.

Let1<r<2<g<ooand F = (f,d) € X°N Xg. The operators, obtained in (1),
then are decomposed into

S(t)F = So(t)F + Sx(t)F + R(t) f,
TI(t)F = To(t)F + Moo () F + P(t) f,
TH)F =To(t)F + T (t)F, (1.5)

which satisfy the estimates as follows: For k=1,2,£=0,1,2, andt > 1
1(So(8) . & (To () )|, myy < CE+ 1)@ Fllxoif (q,7) # (2,2),
IV So(O)F |1, my) < C(t+1) 7" @8 F| xo,
1(0eSo (8 F, VI (6) F)l| 1, vy < C(t+ 1)@V F| xo,
IV 0 E(To (1) F) |l 1, my) < C(t+ 1) @D F| o,

IVHHE(To () F) Ly my) < Ct+ 1) 7OV P o (1.6)

with some positive constant C, where we have set
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( )_N_ll 14_11 1
T =y r q 2\2 gq/)’
()N—111+,111121
n(qgr) = —| - —— min< =(-—-),=(2—=]¢.
¢ 2 r q 2\r q/)’8 q
In addition, there exist positive constants § and C' such that fort > 1
[0S0 () F, Voo () F) || 1, mY)
+ [ (Soo () F, B (T (1) F)), VE (T (VD) w2y < Ce*||Fllxz. (L.7)
Finally, fort > 1 and { =0,1,2,
IV ROl ) < O+ 17 £l
[@R0) 1,V PW) ) my) < O+ D)7 1Ly (18)

This paper consists of five sections. In the next section, we introduce some symbols
and lemmas, and also consider some resolvent problem associated with (1.1) with ¢, =
¢, = 0. In Section 3, we construct the operators S(¢),II(t), and T'(¢), and also give the
decompositions (1.5). Finally, Theorem 1.1 (2) is proved in Section 4 and Section 5.

2. Preliminaries.

We first give some symbols used throughout this paper. Set
Y.={deC|lag\ <m—e, A£0}, T, ={NEZ||A> Ao}

for any 0 < e < 7/2 and A\ > 0. We then define

/ efBa _ ean
A=l¢], B=VA+[ER ReB>0), M) =—F——
D(A,B) = B*+ AB> + 3A’B — A,
L(A,B) = (B— A)D(A, B) + A(cg + ¢, A?) (2.1)

for & = (&1,...,6n_1) € RN71 A€ 3., and a > 0. Especially, we have, for ¢ = 1,2,

aé

WM(G) = (-DY((B+A) " te B + A* M(a)),

1
M(a) = —a / e~ (BO+A(=0)a g (2.2)
0

The following lemma was proved in [17, Lemma 5.2, Lemma 5.3, Lemma 7.2].
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LEMMA 2.1. LetO<e<w/2,s€R,a>0, and o € Né\[*l.

(1) There holds the estimate
bo(IA[Y? + A) <Re B < |B| < (]A|Y/? + A)

for any (€/,)) € RN=1 x ¥, with b, = (1/4/2){sin(e/2)}3/2.
(2) There exist a positive constant C = C(e,s, ') such that for any (¢',\) € (RN71\
{0}) x X

[Dg 47| < carle,
‘D?’e—Aa| < C«1417|o/\67(,4/2)a7
D' B*| < CNY?2 + A=,
|DZe=Be| < C(IA] + A) 1ol C-/DIN*+A)a,
|Dg'D(A, B)*| < C(IAMY2 + Ay 471
]Dg, M(a)| < CA—1-1o"lg=(be/8)Aa.
|Dg M(a)| < CIA|7V/2 A1 = (be/8) A

(3) There ezist positive constants Ag = Ao(g) > 1 and C = C(g, Ao, ') such that for any
(€ 2) € RNTI\{0}) x Xz

| D L(A, B)™Y < C{N(NY? + A)2 + A(cy + coA?)} AT,

Let f(x) and g(¢) be functions defined on R, and then the Fourier transform of
f(z) and the inverse Fourier transform of g(§) are defined by

FNO = [ e @ 7w = o [ et

RN

We also define the partial Fourier transform of f(x) and the inverse partial Fourier
transform of g(&) with respect to tangential variables o’ = (z1,...,zxy_1) and its dual

variable ¢ = (&1,...,&n-1) by

fighan) = [ e el an) do

fgl[g](x',fN)Z(Qﬂ%/RN . e (¢ En) de'.

Next we consider the following resolvent problem:
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{)\w—DivS’(w,p):f, divw =0 ian7 (2.3)

S(w,p)v =0 on RY.

LEMMA 2.2. Let0<e<7/2,1<qg<o0, A€ X, and f € Ly(RY)N. Then the
equations (2.3) admits a unique solution (w,p) € WZ(RY)N x WI(RAY) possessing the
estimate:

||(/\wv Al/sz7 VQ’U), vP)”Lq(Ri) < CHf”Lq(Rf)

with some positive constant C = C(e,q, N). In addition, Wy (E',0,)) is given by
N-1 .
B—-A) [* -~
m) ’OAZE:L( / “Byn F (¢ yn) d
wn(&',0,A) 2 "D(A,B) Jy e fe(€' yn) dyn

A(B+ A > N S
1§(A,+B))/O e BN N (€ yn) dyn

MZ

2 A2
B + / M(yn) fr(€ s yn) dyn

2)
—u/ M(yn) Fn (€ yn) dyn (2.4)

N-looip gy o R
= Z ng((A B))/O e_Anyk(glvyN)dyN
k=1 ’

A A o —~
D(ilJ,FB)) /0 e N (€ yn) dyn

i€ A
ffj 35 | MOmAE ) duy

B Di:i_B)/OOOM(yN)fN(g,,yN)dyN. (25)

PROOF. The lemma was proved by Shibata and Shimizu [14, Theorem 4.1] except
for (2.4) and (2.5), so that we prove (2.4) and (2.5) here.

Given functions g(z) defined on RY, we set their even extensions g¢(z) and odd
extensions ¢g°(x) as

g(z',—zy) in RY, g°(@) = / (2.6)

(2) g(z',zy)  inRY, , gz, zN) in RY,
9°(x) =
—g(2', —xy) in RY,

where RY = {(z/,zy) | 2’ € RY¥"1zy < 0}. In addition, given the right member
f=f1, -, fn)T of (2.3), weset Ef = (f0,..., f_1, f5)T. Let (wl, pt) be the solution
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to the following resolvent problem:
2! — DivS(w!,pt) = Ef, divw' =0 in RY.
We then have the following solution formulas (cf. [17, Section 3]):
ZoTa N
alte) =7 [ ) - > e B @
(G =1...,N),
PN =7 ET©) o) (2.7)
As was seen in [14, Section 4], we have, by the definition of the extension E,
Dywi(2',0,\) =0, p'(z',0,\) =0. (2.8)

Next we give the exact formulas of @} (¢,0, \) and D/N\w]1 &,0,\)forj=1,...,N—
1. To this end, we use the following lemma which is proved by the residue theorem.

LEMMA 2.3. Leta € R\ {0}, and let £ = (&1,...,&n) € RN, Then

]_ o0 eiaéN eiA‘a‘ ]_ © igNeiagN eiA‘a‘
- e ISNC T gen = —si
R i Bt e
1 ) eiaEN e—B|a| 1 0o §N€m5N
il e dEn = ———— — d e~ Blal
r ) ATEEEN T aE 0 o) oy jge ey T sienle )2
L[ Enelty . i —Alal _ —Bla|
— —_— = sign(a)—(e —e ,
o= | e o @5 ’

e 2 it L o
1™ 14—l _ ge-Blal
/| RO R B = e e

where sign(a) defined by the formula: sign(a) = 1 when a > 0 and sign(a) = —1 when
a < 0.

In order to obtain

Mgy =Y & /0 (740 — =) fi (€' yw) dyw

o0 e—ByN ~ ,
+/ 5 In(€ yn) dyn
0

+ X/ (Ae=4v~ — Be=Bn) iy (€ yn) dyn,
0
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Dyw}(¢,0,)) Z 5jgk/ AN — B (¢ yn) dyn

+ / e B (€ yn) dyn
0

+ % / (Ae_AyN — Be_ByN)fN(gl, yN) dyN, (29)
0

we apply the partial Fourier transform with respect to ' = (x1,...,zxy_1) to (2.7), insert
the identities in Lemma 2.3 into the resultant formula, and use the formulas

F[fjo](é.) _/O (e—inﬁN _ einiN)f/‘;,(g”yN) dyy (j=1,...,N—1),

FILIE = / (c™9vEN 4 NEN) Fy (€, ) iy

Here and in the following, j runs from 1 through N — 1. By (2.9) and the fact that
A= DB%?— A% and e By~ —e=4Un — (B — A)M(yn), we have

7“/&]1\1(5/70a)‘) B(B ) / e_BmeN(glayN) dyN

N-1

-y / M) Ful€, yn) dyw

k=1

_m/o M(yn) v (€ yn) dyn,

D€ 0.0 = [ e PR ) duy - 5 [ e Fa(€ ) duy
0

B+ A J,
= ~
)fk(glayN)dyN
- [ M Tl ) do (2.10)

Next we give the exact formula of @3,(¢/,0,\). Setting w = w! +w? and p = p! +p?
in (2.3) and noting (2.8), we achieve the equations:

Mw? — DivS(w?,p?) =0, divw?=0 inRY,
DjU)JQV + DN’LUJZ = —hj on R(J)v,

—p? +2Dyw%, =0 on RY

with h; = Djwy 4+ Dywj. We then obtain the formulas (cf. [17, Section 4]):
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wiy (2, 2n,A) = Fo ' [ (€ 2n, V)] (2),

W3 xn, \) = (mem + %M(x@) ]:Zjigﬁj(é’,o,x). (2.11)
By (2.10) and (2.11),
F2(¢',0,\) = m : i€;h;(€,0,0)
- N T (S T(€.0.0) + D} (€0.)
<
- J: SO | e R i
g [T e ) du
v N e A [ M) Fl€' )
B [ M) P €

which combined with (2.10) furnishes (2.4), because wx(£,0,A) = @Wx(¢,0,N) +
T (€,0,A).

Finally, using the relation: e BY¥ = =49~ 4 (B — A)M(yy) in (2.4), we have (2.5).
This completes the proof of the lemma. O

3. Decompositions of operators.

In this section, we construct the operators S(t),II(t), and T'(¢) in Theorem 1.1, and
also show the decompositions (1.5). For this purpose, we first give the exact formulas of
the solution (u, 0, h) to

M —DivS(u,0) = f divu=0 inRY,
Ah+uny =d on RY, (3.1)
S(u, )+ (¢g — ce A )Yhv =0 on RY.

Let (w,p) be the solution to (2.3) and (v, , k) the solution to the equations:
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MW—Av+Vr=0, divv=0 ian,
M +ovy = —wy +d on Rév, (32)
S(v,m)v + (cg —coA'Yhv =0  on RY.

Then, u = v+w, § = m+p, and h solve (3.1). Let j and k run from 1 through N —1 and

J from 1 through N, respectively, in the present section. The exact formulas of (v, 7, h)

are given by

vi(e,\) = Fg ' [os(€ an, M@, 7m(z,A) = Fo ' [7 (€ on, M)

D(A, B)

') = 75 | PP (— (€0, + ) | )

(cf. [17, Section 7]), where

(&) = (- BT e se 4 SEEE M) ) ¢y + o AT )
2 2

N (A(B“‘ BIN—%MW))(%HUA?) (€',

R ) = T e o AN

Inserting (2.4) into h(z’, \), we have the decompositions:
6J(£l7 TN, /\) = 17§(£/7 TN, /\) +6§(§/7 TN, )‘)7 %(5,7 TN, A) = %f(gla TN, >‘) +%d(£/a TN, >‘)7

where each term on the right-hand sides is given by

BB (¢ A2 oS} R
65(5/5371\“)‘) = Z V (g )(Cg +CU )/0 e_B(xN+yN)fK(§/ayN) dyN

P L(A, B)
+ Z VI e o) [ b () )
+ Z Vi A(Cé; ) /OOOM(Q?N)eByNJ?K(iﬁyN)dyN
+ Z Vi A(Cz—g;r o) /OOOM(xN)M(yN)fK(ﬁ',yN)dyN

u(E an, A) = ] (= (B=A)e™ P 4 (B> + A%)M(an))d(E)),

(B+ A)L(A, B
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Alcy + ¢, A?)
(B+ A)L(A, B)

o~

% (¢ N, ) = ((B+ Ay Pov — (B? + A% ) M(a))d(&),

N
~ PRAE M) (cg +coA%) [ _ .
=f f',x ) = K > g o / e A(zN+yN)f gl,y dy

N

+ 3 PGt [ et ) i€ )
(e oy n) = Bt f&fg oA —ton gier), (3.3)
where we have set
e £ v s o o
ViR (€N = —ig’ﬁ((ﬁ ;)A), VER(E ) = —A;((lj;B‘;l),
YEM(¢r y) = £i€k(B — A)(B* + A2)’ VEM(er ) = i A(B — A)(B* + A?)

(B+ A)D(A, B) (B+A)D(A,B)

/ _ ika(BQ + A2) ! _ A2(82 + A2)
VN =gy VN (N = =5
/ o f&k(B — A)(82 +A2) / o ZfA(B2 +A2)
V;\I:B(gv)\)_ J(B+A)D(A7B) ) V_;A]AVB(gvA)__ ]D(A,B> )
MB oy _ GA(B — A)(B? + A%) oy ANB® + A%)
VNkB(gv)‘)_ (B+A)D(A7B) ) V]'Q'A]VB(ga)‘)_ D(A,B) )

B gjgk(BZ+A2)2
(B+ A)D(A, B)’

i€ A(B? + A?)?
(B+ A)D(A, B)’

g (B — A) (B + A2)

i§;A(B* + A?)?
(B+A)D(A,B)’

A2(B? + A?)?
(B+ A)D(A, B)’

A(B + A)(B? + A?)

VAME ) = VIRT(EN) =

VEIME N = — VVM(E ) = —

PRAAEN) = PANEN) = —

D(A, B) ’ D(A, B) ’
AM s v\ 206, AB(B? + A?) AM ot vy 2A43(B% 4+ A?)
Pk (f v>‘) - D(A, B) ) PN (5 a)‘) - W (34)

In addition, we see, by inserting (2.5) into h(¢’, ), that h(¢/,A) = h' (&', \) + h4(¢', )
with
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N-1
W=~
k=1

A > -~
*m/o 67AnyN(§/7yN)dyN

N 926, AB

! k=1 MW/O M(yN)fk(g/’yN)dyN

ng(B*A) > —AYyNn 7. (¢!
(B‘f'A)L(AaB)/o e Y fk(f,yN)dyN

243 0o =R .
FEERIE ) MO ) dy,

D(A,B) -

hA(E, ) = md(§/)~ (3.5)

Next we shall construct cut-off functions. Let ¢ € C§°(R™~1) be a function such
that 0 < (&) <1, (&) =1 for |¢'| < 1/3, and (&) = 0 for |&'| > 2/3. Let Ag be a
number in (0, 1), which is determined in Section 4 below. We then define ¢ and ¢ by

©o(&') = (€' An), (&) =1—¢(£'/Ao), (3.6)

and also set, for a € {0,00}, g € {f,d}, and F = (f,d),

S9(t; Ag)F = —— / A F (€09 (€, V](@') dA,
I'(e)

- 2mi
1 _ ~
M AP = o [ T € R o V]
1 B R
T3t Ao)F = 5 /F( )e”fg,l[%(g’)hg(g',A)](x’) d,
1 ERTPN
R f =5~ /F ( )eAtfg,l[w(f/,xN,A)](x’) dX,
1 Ao—11¢/ !
Pt)f = 5 s Bl zn, N)](@) dA (¢ > 0) (3.7)
with 99(¢, xn, \) = (0 (¢, 2N, N), ..., 0%(¢ 2N, A)T. Here we have taken the integral

path T'(¢) as follows:
L(e) =TT (e)uUl (), TEe)={AeC|A= Xo(E) + set (™) 5 < (0, o)} (3.8)

for Ao(e) = 2Xo(e)/sine with € € (0,7/2), where Ag(e) is the same number as in Lemma
2.1 (3).



Stokes equations with surface tension and gravity in the half space

\ Im
I'(e)
2X0(e)
Ao(e)
€ XO(E )
0] € Re
I'(e)

Figure 1. T(e) =Tt (e) UT ().
REMARK 3.1. (1) If we set
SMF="%_ > SilA)F+ R0/,
a€{0,00} ge{f,d}

OHF= > Y MYt A)F + P(t)f,

a€{0,00} ge{f,d}

TOF= Y. Y Tt AF

a€{0,00} ge{f,d}
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then S(¢)F, II(t)F, and T(t)F are the requirements in Theorem 1.1 (1). Especially,
let S(t) : F— (S@)F,T(t)F) and 1 < p < oo, and then {S(¢)};>0 is an analytic
semi-group on X,, defined in (1.3), as was seen in [18]. On the other hand, by
Lemma 2.2, {R(t)}¢>0 is an analytic semi-group on J,(RY), and also R(t) and P(t)

satisfy

IV R0,y < Ol ).

1R f, VP@) )L, my) < ClefHLp(Rf)

for f € L,(RY)N, £=0,1,2, and ¢ > 0. These estimates imply that (1.8) holds.

(2) For a € {0,00} and g € {f,d}, the extension E(TY(t; Ag)F) defined as (1.4) is

decomposed into

1
2

E(TF(t; Ao) F)

Figure 1 is reprinted from Ph.D. thesis of the first author.

YR G RV Y
T'(e)

(3.9)
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(3) In the following sections, we show, for a € {0, 00}, that

Sat)F = Y SYt;A))F, T, ()F = Y Tt Ao)F,
ge{f.d} ge{f.d}

TOF = 3 Tyt A)F
ge{f.d}

satisfy the estimates (1.6) and (1.7), respectively.

We devote the last part of this section to the proof of the following lemma.

LEMMA 3.2. Let & €e RN71\ {0} and A € {z € C | Rez > 0}. Then L(A, B) # 0.
PROOF.

Applying the partial Fourier transform with respect to tangential variable
2’ to the equations (3.1) with f =0 and d = 0 yields that

N—1
Nij(xn) = Y i€k (i85t (xn) + i€kl (2n))
k=1 ~
— Dn(Dnuj(zn) +i€un(zn)) +i€;0(xn) =0,
N-—1

)\ﬂN(ICN) — Z z‘fk(DNﬁk(wN) + ifkﬂN(xN)) — 2D]2VQN(xN) + DNé\(xN) =0,
k=1

N-1

> ightin(en) + Dyiiy(zn) =0, M+ iy (0) =0,
k=1

Dni;(0) + i&ain (0) =0,  —8(0) + 2DnTin(0) + (¢ + cog A2V = 0 (3.10)

for zy > 0, where we have used the symbols:

Uy(en) =0s(E2n), O 0\ h=h

0(xn) =0(¢,xn), h=h().
We here set

Aen) = @(en). ... ax(@n) [f]? = / " fon)Tlon) dax,

and show that L(A, B) # 0 by contradiction. Suppose that L(A, B) = 0. We know that

(3.10) admits a solution (u(zy),8(zn),h) # 0 that decays exponentially when zy — oo
(see e.g. [17, Section 4]). To obtain

N—-1
0= Mal? + 2l Dyanl* + Y lliged; |
k=1
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N—-1 N-—1
1Y i@l + Y 10w +igan® + Meg + o ADRP, (3.11)
j=1 j=1

we multiply the first equation of (3.10) by @;(zx) and the second equation by Uy (zn),
and integrate the resultant formulas with respect to 2y € (0, 00), and furthermore, after
integration by parts, we use the third to sixth equations of (3.10). Taking the real part
of (3.11), we have

DNaN(JJN) =0, DNﬂj(xN) + ija]v =0 for ReA>0.

In particular, uy is a constant, but uy = 0 since lim,, .o Uy = 0. We thus have
Dyu; =0, which implies that @; = 0 since limg .o %; = 0. Combining %; = 0 and the
first equation of (3.10) yields that iﬁj@‘\ = 0. This implies that 0 = 0 because & #£0. In
addition, by the sixth equation of (3.10), we have (¢, + e A2)h = 0. Since cg+co A% #0,
we see that i = 0. We thus have i = 0, 0= 0, and h = 0, which leads to a contradiciton.
This completes the proof of Lemma 3.2. (]

4. Analysis of low frequency parts.

In this section, we show the estimates (1.6) in Theorem 1.1 (2). If we consider the
Lopatinskii determinant L(A, B) defined in (2.1) as a polynomial with respect to B, then
it has four roots B]j»E (j = 1,2), which have the following asymptotics:

7/4 9/4
Bj»[ — eii@j*”(”/‘*)c;/“Al/“— : _A / T 'C”A / 573 +O(AY/%) (4.1)
2€:t1(2j71)(7r/4)cg 611(2]71)(37r/4)cg

as A — 0. Set Ay = (Bif)? — A%, and then

P
Ap = Ficl/2AV? —24% 3 %Aw/‘* +O(AMY) as A — 0. (4.2)
icy

REMARK 4.1. For A € X, we choose a branch such that Re B = Rev\ + 42 > 0.
Note that A+ € X, and Re (A+ + A?) < 0.

We define a positive number gy by g9 = tan=1{(4%/8)/A?} = tan—'(1/8), and
furthermore, we set

T ={AeC|A=As+(c)/?/1)AY2e*™ w0 — 2r},

IF={\cC|\N=—A%+ (A?/4)eF™, u:0 — 7/2},

IF={\eC|A=—(A%(1 —u) + you) £ i((A%/4)(1 — u) +Fou), u:0 — 1},

Tf={A€C|\=—(y0 %) +ueF ") 40— oo}
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with 79 = Ao(g0) given by Lemma 2.1 (3) and

ey = LBy

(Ao(e0) + X0(50)) = ;<1 +

| —

o =

1_‘; X Yo

C}/QAI/Z

....... A%/4 Ao(e0)

efi
- —242-A%2 O Re
Figure 2. T} (0 =0,1,2,3).

Then, by Cauchy’s integral theorem, we decompose S§(t; Ag)F, IIJ(t; Ag)F, and
E(TY(t; Ap)F) given by (3.7) and (3.9) as follows: For g € {f,d}

3
SY(t Ag)F = 837 (t; Ag)F,  TI§(t; Ag) F anf’tAo
o=0
3
E(T(t; A)F) = Y E(TF (t; Ag) F) (4.4)
o=0
with
(1
9,0 (4. — —1 . At NG (¢! /
Spo s aF = 7 g [ M€ (€ ) ] @),
(1

T8 (85 Ao F = 7! M€ o N 0N (),

| 2mi rrur;
[ 1

£y AP =7 g [
L s Ul',

Mo (€)e AN RI(E | N) dA} (z'),  (4.5)

where ¢((¢’) is the cut-off function given in (3.6). In order to estimate each term in
(4.5), we here introduce operators K7 (t; Ag) and L7 (t; Ag) defined by

Figure 2 is reprinted from Ph.D. thesis of the first author.
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Ao = [ 7| [ (€ () Fe )| @) v,
@ A0(e) = 75| [ Men(@)ea€ NIlam) NG| ) (0 =0,1,2,3
’ (4.6)

with some multipliers &, (¢, A) and £, (&', A), where X, (zn,yn) and Y, (zy) are given
by

e~ Al@n+yn) (n=1),

AT M(yy)  (n=2), i ey
Xo(zn,yn) = ¢ P (n=3), Inlzy) = e B2 (n=2),

e B M(yny)  (n=4), Mex) (n=3

M(zy)e By (n=5),

M(zn)M(yn) (n=6),

4.1. Analysis on 1"3:.
Our aim here is to show the following theorem for the operators given in (4.5) with
o=0.

THEOREM 4.2. Let1 <r <2<g¢<oo and F = (f,d) € L,(RY)N x L,(RN71).
Then there exists an Ay € (0,1) such that the following assertions hold:

(1) Let k = 0,1, £ = 0,1,2, and o’ € N(I)Vfl. Then there exist a positive constant
C = C(d/) such that for anyt >0
o ,0 _ e —k/A—|o | Jo—
|07 D DYy ST Ao)F |, gy < Ot + 1)~ WD OZRAEZE £ gy,
ko' e ad,0/y.

. {(t + 1)~ ((N=0/DO/r=1/)= /202 =kl g ooy (£=0),
T (4 1) W0 1=/ )=k A0 28 d ey (0= 1,2).

(2) There exists a positive constant C' such that for any t > 0

VIO (t; Ao < Ct+ 1) NACVOTR fl| gy,

., my)
(| vIIg°(¢; Ao)F||Lq(R$)

<Ot + 1)7((Nfl)/Z)(l/rfl/q)7(1/2)(1/271/q)71/4||d||LT(RN71).

(3) Let o € NYY. Then there exists a positive constant C' = C(a) such that for anyt > 0
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|DEVETo( AV F) |, gy < Cle+ 1)~ CIDAr bl ), o
|D2OECT O A0V F)| gy < O+ 1)~ VDA D2 f
1DEVET  (t: A )|, )
<Ot + 1)7((N71)/2)(1/7"71/(1)7(1/2)(1/271/@71/47'&‘/2Hd”LT(RNfly
We here introduce some fundamental lemmas to show Theorem 4.2.

LEMMA 4.3. Let s; > 0 (i = 0,1,2,3). Then there exists a positive constant
C = C(so, $1, S2,83) such that for any 7 >0,a >0, and Z >0

e—so(Zz)TZsle—SQ(Z33)a S C(Tsl/Z + asl/s;;)—l.

LEMMA 4.4. Letl <qg,r<oo,a>0, b >0, and by > 0.

(1) Set g(zn,7) = (¢ + (zn)")"Yfor xx > 0 and 7 > 0. Then there exists a positive
constant C' such that for any T > 0

19(T) 2, ((0,00)) < Cr—ol-1/ba),

provided that byg > 1.
(2) Let f e L.((0,00)), and set, for xtxy >0 and 7 > 0,

_ > f(yN)
o) = [ G G

Then there exists a positive constant C' such that for any T > 0

1907l ey < Or=eCA a1 o0 0
provided that for v’ =r/(r — 1)

1
b1q>1, b2(1—>7‘,>1.
bigq

By using Lemma 4.3 and Lemma 4.4, we obtain the following lemma.

LEMMA 4.5. Let1 <r<2<qg<oo, andlet f € Lr(Rf)N and d € L,(RN™1).
For multipliers k,(&',\) and m, (&', \) given below, we set, in (4.6),

_ Kn (&5 N)
L(A,B)’

(e n) = MmN

(1) Let s > 0 and suppose that there exist constants Ay € (0,1) and C = C(s) > 0 such
that for any A € (0, Ay)
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R (€ A0 < CAY™, ia(€l, As)| < CATHE, [y(€ A)] < CA/+,
|’€4(§/7 Ai)| < CA7/4+53 |K5(§/a Ai)‘ < CA7/4+Sa ‘K‘G({/a )‘i)| < OA8/4+S'

Then there exist constants Ag € (0, A1) and C = C(s) > 0 such that for any t > 0

K0t Ao)fllr,my)y < CE+ 1)7(N/2)(1/T71/q)7s/2Hf”LT(Rﬁ) (n=1,2,6),

+, - — r— —3/8—s
HK3 O(uAO)f”Lq(Rﬁ) < C(t+1) ((N—=1)/2+1/8)(1/r—1/q)—3/8 /2||f|

L,.(Rﬁ)a

+, - - r— —3/8r—s
HK4 O(uAO)f”Lq(Rﬁ) < C(t+ 1) ((N—=1)/2+1/8)(1/r—1/q)—3/8 /2Hf| LT.(Rf)v

+, - — r— — — —s
|13 O(t;Ao)fHLq(Rf) <Ct+1) ((N—1)/2+1/8)(1/r—1/q)—3/8(1-3/q) /2Hf|

Lr®RY)
(2) Let s > 0 and suppose that there exist constants A; € (0,1) and C = C(s) > 0 such
that for any A € (0, Ay)
‘m1(§l7 A:I:)l < CA1+S7 |m2(§/7 )‘:t)| < CA1+35 |m3(£l7 >\:|:)| < CA5/4+3-

Then there exist constants Ag € (0, A1) and C = C(s) > 0 such that for any t >0

||L$7O(t§A0)d”Lq(Rf) <C(t+ 1)7((1\[71)/2)(1/7«71/(1)7(1/2)(1/271/q)78/2||dHL7‘(RN71)
(n=1,3),
||L;t70(t§A0)d”Lq(Rf) < O(t + 1)*((Nfl)/Q)(l/Tfl/q)*(1/8)(271/@75/2Hd||LT(RN71).

PROOF. We use the abbreviations: | - [la = || - || Ly~ -1), F(yn) = F(€,yn), and
t = t+1 for t > 0 in this proof, and consider only the estimates on I’g since the estimates
on I'y can be shown similarly.

(1) We first show the inequality for K;(t; Ao). Noting that B2 — (B;f)2 = A — A,
by the residue theorem, we have

(K0t Ao) f]()

o > 1 A\t 800(5/)'%1(5/7)\)(3 + Bf)
-

A)(B = By )(B - B3)(B - By)

x e~ AN FuN) dAf(yN)} (') dyn

— dri / T L Ao (€)ma (€', A ) BY

—A(zn+yn) 7 ’
Bf — B)(Bf — BI)(Bf - B;)" o f(yN)] (') dyy. (4.7)

In view of (4.1) and (4.2), we can choose Ay € (0, A1) in such a way that

Mt < Ce= At |Bf =By | > CAY*, |Bf —Bf| > CAY*, |Bf —Bj| > CAY* (4.8)
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for any A € (0, Ap) and ¢t > 0 with some constant C. Thus, by L,-L, estimates of the
(N — 1)-dimensional heat kernel and Parseval’s theorem, we have

KT (8 Ao) F1C 2n) | .y (re—1)

i 00 || o= (A2/2)E , (¢1) A6/4+s g1/4 =
< Ct—((N—l)/z)(1/2—1/q)/ - %(53 )4 e AN Fyn) || dyn
0 A3/ 2
~ oo 2 ~ -~
< CF-(N=1)/2)(1/2-1/q)=s/2 /0 e~ A/ DE e AN+ Fy ) |, dyn
— 2 Y
< CE_((N_I)/2)(1/2_1/q)_5/2 /oo ||6 (A~/8)t f(yN)||L2(RN71) dyN
< 0 t2+ay +yn
o0 . —

SCg_((N_l)/m(l/r_l/q)_sp/ IIfN(1 72yN)HLr(RN Y gy, (4.9)

o tYV24an+uyn

where we have used Lemma 4.3 with so = 1/8,s;, =1 (i = 1,2,3), a = xx + yn, and
Z = A. If ¢ > 2, then applying Lemma 4.4 (2) with a = 1/2 and b, = by = 1 to (4.9)
furnishes that

||Ki‘—’0(t, AO)fHLq(Rf) < C{*(N/Q)(l/rfl/q)*s/2||f||LT(R£).

In the case of (¢,r) = (2,2), by (4.9)

I 6 A o)l < CF [ =400 Fyn ] |
0
and then it follows from [17, Lemma 5.4] that

||Kf’0(t§A0)fHL2(Rﬁ) < Cffs/2||f“L2(Rﬁ)-

On the other hand, in the case of 1 <r < 2 and ¢ = 2, by the second inequality of (4.9),
Lemma 4.3, and Holder’s inequality

~

s o0 (A2 VT _
|\K1+’O(t;Ao)fHL2(R$) <Ct /2/0 | e=(A/2EAL 2= AN f () || dyn

< oi-(-nas—y—sz [T IFG ), @y
- o ity

< C{—(N/2)(1/r—1/2)—s/2|

ey

which implies that the required inequality for K 1+ ’O(t; Ap) holds. Summing up the argu-
ments above, we see that the following lemma holds.

LEMMA 46. Let1<r<2<¢g<oo,7>0,ands; >0 (i=12). Forzy >0
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and f € L, (RY), we set

F(zyn,7) = / He*SlAzTAefvSQA(CEN‘FyN)f(g/’yN)HLZ(RN71) dyn.-
0

Then there exists a positive constant C' such that for any 7 > 0

||F(T)||Lq((0,oo)) < O+ (N=1)/2)(1/r=1/2)-(1/2)(1/r=1/q) ||f||LT(Rf)-

Secondly we show the inequality for K 2+ ’O(t; Ap). We here set
e—Blia — g~ Aa

Melo) = ey
1

for a > 0.

In view of (4.1) and (4.2), we can choose Ag € (0,A4;) in such a way that for any
A€ (0,Ap) anda >0

|efBita _ ean|

(M(a)| = W

< QA4 Aa (4.10)

with some constant C'. Thus, by the same calculations as in (4.7) and (4.9), we obtain

ISt A F1C o an) | o, mev—1)

< CF(N=1/2)1/2-1/q)=5/2 /OO e~/ oA +3) Fyn | dy,
0

which furnishes the required inequality of K. 2+ ’O(t; Ap) by Lemma 4.6.
Thirdly we show the inequality for K5 °(t; Ag). In view of (4.1) and (4.2), we can
choose Aj € (0, A1) such that

‘6—Bf(mN+yw)| < e~ CAY @ntuy)  for any A € (0, Ap)

with some constant C', so that we easily see that by Lemma 4.3

I[KS (8 Ao) £1(- 2N,y -1

< i~ ((N=1)/2)(1/2-1/q)=s/2 /OO H6,(,42/2){A6—0A1/4(1N+yw)f(yN)||2 dyn
0

< - ((N=1)/2)(1/r-1/q)~5/2 /Oo Gl g
N o tYV2+ (zn)t+ (yn)*

Combining the inequality above with Lemma 4.4 (2) with a = 1/2 and b; = by = 4, we
obtain the required inequality of K5 O(t; Ag).
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Finally we show the inequalities for K;0(¢; Ag) (n = 4,5,6). Using similar argu-
mentations to the above cases, we have for n = 4,5

KT (8 Ao) £1(- 2N ||,y -1

< OF(N=1)/2)(1/r=1/q)—5/2 /Oo HNf(' YN, @y -1
B o T2+ (zn)* +yn

IOt A F1C o an) o, mev—1)

< O ((N=1)/2)(1/r=1/q)~5/2 /°° 7oyl -1
- o tY2+an+ (yn)?

)

YN,

which, combined with Lemma 4.4 (2), furnishes the required inequalities of K;0(¢; Ag)
(n =4,5). In addition, for n = 6, we have

1K (8 Ao) F1(» 2n)ll ., (v —1)

< CF((N=1/2)(1/2-1/9)=s5/2 /°° e~ (4/2 ae=CA@x+um) Fly )| dun
0

with a positive constant C, which yields the required inequality of K ’O(t; Ap) by Lemma
4.6.

(2) We consider the case of n = 1,3. Noting that B2 — (Bf)? = X\ — A4, by the
residue theorem, we have

e)\+t§00(£l)mn(§lv>‘+)3i‘r 2 AEN ] (2
B BB - Bt - By @)

[LEO(t; Ag)d](z) = 47ri.7-'§_,1

Thus, by (4.8), (4.10), Lemma 4.3, L,-L, estimates of the (N — 1)-dimensional heat
kernel, and Parseval’s theorem, we have

I[LE 0 Ao)d) (-, on) || 2y (V-1
< T (N=D/2)(1/2-1/a)=5/2)| o~ (A% /2)T g1/2¢= Az G( /)|,

< Ci'f((Nfl)/2)(1/271/q)7s/2||67(A2/4)t~ A(EI)||2/(£1/4 + (l,N)l/Z)

< C{f((Nfl)/2)(1/r71/Q)78/2||d||LT(RN71)/({1/4 + (IN)1/2). (4.11)

If ¢ > 2, then by Lemma 4.4 (1) we obtain the required inequality of L;70(¢; Ag) (n = 1, 3).
In the case of ¢ = 2, we see that by the first inequality of (4.11)
L0 Aol rayy < CF /2l /1€

< CF(W=D/2A/r=1/2=5/2||q|| | gxy.



Stokes equations with surface tension and gravity in the half space 1583

Analogously, we can obtain the required inequality of L;’O(t; Ap), which complete the
proof of the lemma. O

Noting that for some Ay € (0,1) and C' > 0 there holds |D(A, BE)| > CA3/* for
A € (0, As), we see that there exist positive numbers A; € (0, A3) and C such that for
any A € (0,4;) and j,k=1,...,N
VEE(E A < CAY WRM(E M)l < CATH, [VP(E Ag)| < CAT,
VIME A < oAt PAAE ) <04, [PMM(EL )| < 0AY
Therefore, recalling the formulas (3.3), (3.4), (3.5), and (4.5) with o = 0 and using (2.2),
we obtain the required inequalities of Theorem 4.2 by Lemma 4.5.

4.2. Analysis on I‘::lt.
Our aim here is to show the following theorem for the operators defined in (4.5) with
o=1.

THEOREM 4.7. Let1 <r <2< ¢ <oco and F = (f,d) € L,(RY)N x L,(RN71).
Then, there exists an Ay € (0,1) such that we have the following assertions:

(1) Let k = 0,1, £ = 0,1,2, and o' € Névfl. Then there exists a positive constant
C = C(d/) such that for anyt >0

10 D DiST (85 A0)F| vy < O+ 1)~ N/DO/r =t = CRHTRO2 )

RY) = RY)

108 D3 D S5 (15 A0)F | ey
<C(t+ 1)—((N—1)/2)(1/7’—1/q)—(1/2)(1/2—1/q)—3/4—(2k+|a’|+€)/2||dHL (RN-1).

(2) There exists a positive constant C' such that for any t > 0
||VH£71(t§ AO)FHLQ(R% <C(t+ 1)7(N/2)(1/r71/Q)71”f”Lr(Rf)a

|}VHg7l(t;AO)F||Lq(Rf) < Ot + 1)7((Nil)/z)(1/7”71/Q)7(1/2)(1/271/q)77/4Hd”LT(RN—l).

(3) Let o € NYY. Then there exists a positive constant C = C(«) such that for anyt > 0
|‘D$V5(T({,1(t7 AO)F)HLQ(RQ) S C<t + 1)_(N/2)(1/T_1/q)_1_‘a|/2||fHLT(R£)7
||D§8t5(Tg’1(t; AO)F)HLq(Rf) <C(t+ 1)7(N/2)(1/r71/q)73/27‘QI/Q||f||LT(R$),
||D$V5(Téi’1(t;AO)F)HLq(RQ')

<C(t+ 1)—((N—1)/2)(1/T—1/q)—(1/2)(1/2—1/Q)—7/4—|a|/2||dHLT(RN71).
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We start with the following lemmas in order to show Theorem 4.7.

LEMMA 4.8. Let f(z) = 23 + 222 + 122 — 8. Then f(z) #0 for z € {w € C | Rew
> 03\ (0,1).

PrROOF. We note that f(z) has only one real root a because f(0) = =8, f(1) =7
and f/(z) = 322 + 42+ 12 > 0 for 2 € R, and it is clear that o is in (0,1). Let 8 and
B be the other roots of f(z). Since a + 3+ 3 = —2, we have 2Re8 = —2 — o < 0. This
completes the proof. O

LEMMA 4.9. Let A€ T and & € RN='. Then

A A
— <ReB<|B| < —
[ <ReB<|B| <3,

|D(A, B)| > CA®

or some positive constant C independent of & and ). In addition, there exist positive
D D s p

constants A1 € (0,1) and C such that |L(A, B)| > CA for any A € (0, 4;).

PrROOF. We first show the inequalities for B and D(A, B). Note that

B =+ A2 = (A4/2)et1(w/2) (4.12)

since A = — A%+ (A% /4)e*™ for u € [0,7/2] on I's. Therefore, it is clear that the required
inequalities of B hold. We insert the identity (4.12) into D(A, B) to obtain

3
D(A,B) _ %((eiz(u/Q))d + 2(e:|:i(u/2))2 + 12(6:|:i(u/2)) _ 8),

which, combined with Lemma 4.8, furnishes that |D(A, B)| > CA3 for some positive
constant C' independent of £ and .
We finally show the last inequality. By (4.2)

eizu

B* — (BY)? = Ficy/?AY? + A (1 + ) +O(A™MY) as A -0,

so that there exist positive constants A; € (0,1) and C such that
|B? — (BY)?| > CAY? for any A € (0, A;). (4.13)

On the other hand, we have |B+Bf| < CAY* on I‘li when A is sufficiently small, which,
combined with (4.13), furnishes that

B2 — Bi 2
1B = (B | > CAY* for any A € (0, Ay).

B - Bf| =
| rl |B + Bi|

Since |B — BY| < |B — BF| as follows from Re B > 0 and (4.1), we thus obtain
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|L(A, B)| = (B — B )(B— By )(B—B3)(B-By)|>CA

for any A € (0,4;1), A € I‘li, and a positive constant C' independent of £ and \. O
Next, we show some multiplier theorem on T'}.

LEMMA 4.10. Let1 <r<2<q< o0, and let f € LT(Rf)N and d € L,(RN~1).
We use the symbols defined in (4.6).

(1) Let s > 0 and suppose that there exist constants A; € (0,1) and C = C(s) > 0 such
that for any A € TE and A € (0, A1)
kn (€, 0)] S CATH (n=1,3),  |kn(,N)| < CA® (n=2,4,5),
ke (&', \)| < CAMTS,

Then there exist constants Ag € (0, A1) and C = C(s) > 0 such that for any t > 0
we have the estimates:

1K (85 Ao) |, (miyy < O+ 1)UV O2Y fl) gy (0 =1,2,3,4,5,6).

(2) Let s > 0 and suppose that there exist constants A; € (0,1) and C' = C(s) > 0 such
that for any A € TT and A € (0, A;)

L€ N € CA” (n=1,2), [£5(€, )] < CA*.

Then there exist constants Ag € (0, A1) and C = C(s) > 0 such that for any t > 0
we have the estimates:

1L (t; Ao)d”Lq(Rf)
<Ot + 1)f((Nfl)/2)(1/T*1/q)7(1/2)(1/271/11)*3/4*8/2||d||L ®y-1) (n=1,2,3).

~ ~

Proor.  We use the abbreviations: || - [|2 = || - [|p,&~-1), f(yn) = f(§',yn), and
t = t+1 for t > 0 in this proof, and consider only the estimates on l"f since the estimates

on I'] can be shown similarly.
(1) Since A = —A2% + (A2 /4)e™ for u € [0,7/2] on I'{, we have

[ (85 40) f] ()

-~

> 7\'/2 2 2 iu ZA2 .
= / f?{ / AN oy () (€], e AN T Zet du fyw) | (o) dy
0 0

Noting that |e(=A*+HA*/De™)t| < Ce=B/DA™ for some positive constant C' independent
of ¢, u, and ¢, we see that by Lemma 4.3, L,-L, estimates of the (/N — 1)-dimensional
heat kernel, and Parseval’s theorem
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LK (8 Ao) £1(- 2N )z, @my-1)

< O (N=1)/2)(1/2-1/9)-s/2 /°° le=4%/2E ge=AGx+um) Fyo) | dy.
0

and furthermore, for n = 2,3,4,5,6

I (85 Ao) 1, 2n) Ly (rev—1y

< CF-((N=1)/2)(1/2-1/9)=s5/2 /°° e~ 47D ge=CAN+un) Fy)|| dun
0

with some positive constant C' analogously, where we have used the fact that for a > 0
and \ € I'f

1
IM(a)| < a/ le™(BOFAU=0)yn | gg < ge=(A/Ma < g4~ (A/8)a (4.14)
0

We thus obtain the required inequality for K;7!(t; Ag) (n =1,...,6) by Lemma 4.6.
(2) Since A\ = —A% + (A?/4)e™ for u € [0,7/2] on T'{, we have

(L (t; Ag)d) ()

P A2

™/2 2 2 iu A¢ . ~
_ *7:5_’1 |:/ e(—A +(A%/4)e )tQDO(g/)El(g/,)\)e_AIN ZTezu du d(§’) (.13/)
0

By calculations similar to the case of K;'(¢) and Lemma 4.3,
LT (8 Ao)dl (2 2 vy
< Cif((Nf1)/2)(1/271/q)71/275/2 /M2 He*(AQ/Q)fAe*Ach/Z\(f')||2 du
0
< C{f((Nfl)/2)(1/Tfl/q)71/278/2||dHLT(RN71)/({1/2 + zN),
and also for n = 2,3 we have by (4.14)

L (5 Ao)d) (- ) || o, vy < CE(NTDRAT=U == )| gy /(B4 y).

We thus obtain the required inequality for L (¢; Ag) (n = 1,2,3) by Lemma 4.4 (1). O

By Lemma 4.9 we see that there exist constants A; € (0,1) and C' > 0 such that for
any \ € Fli, A€ (0,4),and j,k=1,...,N

VEB(¢',\)/L(A,B)| < CA™Y,  [VEM(¢,)\)/L(A,B)| < C,
VIE(E,N)/L(A,B)| < C, VIM(E L N)/L(A, B)| < CA,
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[P N)/L(A,B) < C, [PA(E L N)/L(A, B)| < CA.
Therefore, recalling (3.3)—(3.5) and (4.5) with 0 = 1 and using Lemma 4.10, we have
Theorem 4.7.

4.3. Analysis on I‘;t
Our aim here is to show the following theorem for the operators defined in (4.5) with
o=2.

THEOREM 4.11. Let 1 <r <2<q<oo and F = (f,d) € L,(RY)N x L,(RN71).
Then there exists an Ay € (0,1) such that the following assertions hold:

1) Let k = 0,1, £ = 0,1,2, and o/ € NY"1. Then there exists a positive constant
0
C = C(d') such that for any t >0

108 D3 Dy ST (15 A0)F |, gy < €t 4 1)" /DW=t HOR2 ),

|oF g/,Df\/S(C)l’Q(t;AO)FHLq(Rf)

<CO(t+ 1)*((N*1)/2)(1/T*1/(1)*(1/2)(1/2*1/q)*k*(|0/|+f)/2||dHLT(RN71)7

provided that k + €+ |&/| # 0. In addition, if (q,7) # (2,2), then
1552 (t: A0)F || gy < Clt 4+ 1)7 DUVD £ ),

Hsg’z(t;Ao <Ct+1)" ((N=1)/2)(A/r=1/q)=(1/2)(1/2— 1/q)||dHL (RN-1

FHL (RN) -1).

(2) There exists a positive constant C' such that for any t > 0
VI (5 A0) |, vy < C(t + 1)~ /DW= £ iy

HVH(U)IZ t; Ag) FHL <C(t+1) (N *1)/2)(1/T*1/q)*(1/2)(1/2*1/!1)*1||dHLT(RN71).

(3) Let « € NYY. Then there exists a positive constant C' = C(«) such that for any t > 0

| DEVET (t; Ao)F) < C(t + 1)~ W/2A/r=1/9)=1/4=|al/2

I,y < 11z, ),

1D20E(TS2(8: AV )|, gy < Ot 1)7 DDA £l oy if o] # 0,

1D VETS (6 AP, v,

< Ot + 1)~ ((V=D/DA/r=1/0)=(1/DA/2-1/D=1=lal/2| g - ooy,

In addition, if (q,7) # (2,2), then
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10 (T2 (8 AV )|, gy < ClE 4+ 1)~ NDUVD £ ).

We start with the following lemma in order to show Theorem 4.11.

LEMMA 4.12.  There exist positive constants Ay € (0,1), by > 1, and C such that
for any A € T and A € (0, A;)

by L(AVTI —u+Vu+ A) <ReB < |B| < bo(AV1 — u + Vu + A),
|ID(A, B)| > C(AV1 —u+ vu + A)?,
IL(A, B)| > C(AVI —u+ Vu + AV,

PROOF. We fist show the inequalities for B. Set 0 = A+ A2 and § = argo. Noting
that

A= —(A%(1 —u) + you) + £i((A%/4)(1 — u) + Fou)

for u € [0,1] on 'S, we have
A2
lo| + A%(1 — u) + you — A% < 2(A%(1 — u) + you + A%) + - (=) +Fou
< 3max(y0,%0)(A*(1 — u) + u + A%)

< 3max(v0,70)(AV1 — u + Vu + A)?,

which is used to obtain

0 |0‘1/2
Re B = |o|Y? cos = = 1+ cos0)/2
712 con 5 = (1 + cost)
B |0|1/2(|0|+Rea)1/2_1(|o|2—(Re0)2>1/2
V2 |o| ~ V2\ o] -Reo

(A2/4)(1 — u) + you + (A%/8) — (A%/8)(1 —u) — (A*/8)u
V2(lo| + A2(1 — u) + ~you — A2)1/2

(A%/8)(1 — u) +ou + (4%/8) — (AF/8)u

>
VBmax(vy'®, 3 ) AVI = u + v + A)
S (1/8){A%(1 — u) + you + A?} S AVi—u+u+ A

T VBmax(y,?, 3 AVI —u+ v+ A) T 24v6max(y,”* 5%

for any A € (0,A;) provided that A? < 7v¢. It is clear that the other inequalities
concerning B hold.

Next we consider D(A, B). Noting that A\ € TS C %, and using Lemma 2.1 (2), we
obtain



Stokes equations with surface tension and gravity in the half space 1589

ID(A, B)| = C(eo) (N2 + A)* = Cleo)(AVI —u+ vV + A)*.

Finally, we show the inequality for L(A, B). By (4.2)
A2
B? — (BY)? = —(A%(1 — u) + you) £ (4(1 —u) + Fou — c_}/QAW) +24% 4 O(A0/4)
as A — 0, and also we have

A? ?
’ — (A%(1 — u) + you) ii(4(1 —u) +Jou — c;/QAl/Q)

A2 1\ A? -
= (A%(1 — u) + you)® + ((1 —u) + ’you> +cgA— 2051/2141/2 <4(1 —u)+ 70u>

4
~ 2 2
1 1 [ A?
> 21 — 0 — R _ Y
> <A (1—u)+ 3 u) Hch 10( 1 (1 U)+’YQU>
1 1
> %(AQ(l —u) +Fou)? + A > C(AVT —u+ Vu+ AVH Y,

We thus see that there exist positive constants A; and C such that for any A € (0, A;)
and \ € I3

|B% — (B{)?|
|B + BY|

C(AVT —u+ u+ AY*4)?
T bo(AVIT —u+ u+ A) + e/ AL/

B BE| -

> C(AVI —u+ Vu+ AV,

Since |B — Bif| < |B — Bf| as follows from Re B > 0 and (4.1), we have the required
inequality for L(A, B), which completes the proof of Lemma 4.12. O

LEMMA 4.13. Let1<r <2<qg<oo, and let f € L,(RY)" and d € L,(RN71).
We use the symbols defined in (4.6).

(1) Let s > 0 and suppose that there exist constants A; € (0,1) and C' = C(s) > 0 such
that for any A € T and A € (0, A;)
CAVI —u+ Vu+ A)2AB] (n=1,3),
| < C(AVT —u+Vu+ A) 2 A% B,
CAVT —u+ Vu+ A)T'AB]*  (n=4,5),
C

Then there exist constants Ag € (0, A1) and C = C(s) > 0 such that for any t > 0
and n=1,...,6 we have the estimates:
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HKrjf’Q(t; AO)fHLq(Rg) <Ot + 1)_(N/2)(1/T_1/q)_s/2||f||LT(R¢’)7
provided that s > 0. In the case of s =0, we have
V52005 A0) gy < O+ D7D Sy if (0,7) # (2,2)

(2) Let s > 0 and suppose that there exist constants Ay € (0,1) and C = C(s) > 0 such
that for any A € T3 and A € (0, A;)

6 (€ ] < CAVI —u+ Vu+ AV AIBP (n=1,2),
[63(¢', M| < C(AVT —u+ Vu+ AV A|BP*.

Then there exist constants Ay € (0, 41) and C = C(s) > 0 such that for any t > 0
we have the estimates:

L5 (t; Ao)d”Lq(Rf)
<C(t+ 1)_((N_l)/2)(1/T_1/q)_(1/2)(1/2_1/q)_s/2||d||LT(RN*1
1L (t A0)d 1, my)

<O(t+ 1)*((N*1)/2)(1/7”*1/q)*(1/2)(1/2*1/¢1)*3/4*5/2

) (TL:173,S>0),

Iz, mr-1)  (s=0).

In the case of s =0, for n=1,3, we have

ILE2(t Ao)d 1, my)
<Ot + 1)—((N—1)/2)(1/r—1/q)—(1/2)(1/2—1/q)||dHLT(RN_1) if (q,7) # (2,2).

Proor. We use the abbreviations: | - [l2 = || - [[,&~-1), f(yn) = f(£',yn) and

t =t+1 for t > 0 in this proof, and consider only the estimates on F;“ since the estimates
on I'; can be shown similarly.

(1) We first show the inequality for K;"?(t; Ag). Recalling that A = —(A2(1 — u) +
you) 4 i((A%/4)(1 — u) + Fou) for u € [0,1] on Ty, we have, by (4.6),

(K2 (t; Ao) f)(2)

[ee) 1
:/ }‘gl [/ e{—(A2(1—u)+7ou)+i((A2/4)(1—u)+%u)}t(po(5’)kl(5'7)\)e—A(xN+yN)
0 0

2

«{ = o= 2%+ i(50 - 5 ) au flum) | )

Since it follows from Lemma 4.12 that
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e{*(Az(1*U)+Wou)+i((z42/4)(1*U)+%U)}t|

< 67(3/4).»421567(1/4)(A2(17u)+'you)t < Ce’(3/4)A2fe’C‘B|2£ (4.15)

with some positive constant C, independent of &', A, and ¢, for any A € (0, Ag) by
choosing suitable Ay € (0, A1), we have, by L,-L, estimates of the (N — 1)-dimensional
heat kernel and Parseval’s theorem,

||[Kfr72(t;Ao)f]('?xN)HLq(RN—l)

< CF(W-1/2)1/2-1/9)

e~ (A2/De—CIBI Ly (¢1) A|BJse—Alontuw)
d d 4.16
H/ A\/m+\/ﬂ+A)2 u f(yn) , yn )
< o (N=1)/2)(1/2-1/q)
—ClBl tB s 6 ’ . R
H/ | |2 5 (5)due—<A2/2>tA€_A(xN+yN)f(yN) 2dyN

for a sufficiently small § > 0. If s > 0, then we have, by Lemma 4.12 and Lemma 4.3
with Z = |B| and a = 0,

1 —C\B|21§‘B‘s—6 (5/) " 1 —Cut _
€ ¥o —(5—5)/2/ € ~s/2
du < Ct du < Ct . 4.17
/o (V)= 0 (Ve (417

We thus obtain
H[Kl ’2(t; AO)f](7 xN)HLq(RN—l)

SCg—((N—l)/2)(1/2—1/4)—s/2/ e~ (42 /2T = A0 Fy ), du,
0

which furnishes the required inequality by Lemma 4.6. In the case of s = 0, by Lemma
4.3 and (4.16)

||K1+’2(t;140)fHLq(RN—1)
< i~ ((N=1)/2)(1/2-1/q)

00 1 —C|B|*t / -
e vo(&') C(A%)2)T g1-6 —A(entyn) T
— T due AT NN f(yn)|| dyn
H / (Vu)2=? 2
< CF-((N=1)/2)(1/r=1/a)-5/2 /OO _ £, yN)”LT(RN*l) dyn,
- 0 t(lfﬁ)/Q + (xN)lf(S + (yN)lfts

which implies that the required inequality holds by Lemma 4.4 (2) if we choose a suf-
ficiently small § > 0 and (g,7) # (2,2). Analogously, for K;“z(t;AO), we see that the
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required inequality holds, noting that there holds, by (2.2) and Lemma 4.12,
1
(M(a)] < a/ e~ {ReBWFAN=0}a gy < ge=bo ' Aa < op A= 1= /2)4a
0

for @ > 0 and any A € (0, Ag) by choosing suitable Ay € (0, A7).
Next we show the inequalities for K;72(¢; Ag) (n = 3,4,5). Note that by Lemma
4.12 we have

—Ba —Aa| —CAa

(&
< C|B| e e < (4.18)
Vu

with @ > 0 and some positive constant C' for any A € (0, Ap) by choosing suitable
Ap € (0, A;). Then, by (4.15) and Lemma 4.12, there holds

B2 (85 Ao) 1 o n) | Ly (rv 1)
< Ot (N=1)/2)(1/2-1/q)

dyn,
2

/ e—(A%/2)t,—C|BJ? tA\B|s CA(QUN“F'!JN)@O(&' ) J f( )
U
H (AVI—u+ Vat A o

which furnishes that the required inequalities of K, 2(t; Ag) (n = 3,4,5) hold in the
same manner as we have obtained the inequality of K (t; Ag) from (4.16).
Finally, we consider Kg"Q(t; Ap). By (4.17) and (4.18), we have for s > 0

11K (8 Ao) 11 2wl Ly 1)
< CF-((N=1/2)1/2-1/9)

SRS
2 g 27 Iy
| [t erm o @) Al M) M) du Flun) | o
) 2
< CF-(N-1/2)1/2-1/9)
%) 1 _ . —~
x/ ‘/ e Tem OB oy () A| B 2 CAEN N du fly) | dyy
0 0 2

< CT-((N=D/2)(1/2-1/q)

50 e—ClIB =0 3
[ Rl i en s |
0

2

2 5

< C'tv—((N—1)/2)(1/2—1/q)—s/2/ e —(A2/2)F go~CAG@N+uN) iy )y dyn
0

by choosing sufficiently small § > 0. We thus obtain the required inequality of K gr -2 (t; Ap)
by Lemma 4.6 if s > 0. In the case of s = 0, since it follows from Lemma 4.12 that
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1 1 i
M(a)| < a/ o~ {(Re B)0+A(1-0)}a gy < a/ o~ (b5 (it A)I+A(—-0)}an gg
0 0

1
< aefbglAa/ el V¥a4dg (a>0, Ael])
0

for any A € (0, Ag) by choosing some Ag € (0, A1), we easily obtain by Lemma 4.3

I1KG 2t Ao) 1 an) |z, w1
< OF-(N-1/2(/2-1/q)

dyn
2

) 1 5 N N
<[ H [ e IR OB ) At () M (o) s Tl
0 0

o0
< of~((N=1)/2)(1/2-1/q) / -TN:‘/NH e~ (A*/2) go=CAG@n+yn) J?(yN)Hz
0

X /// e~ Culg=CVuprn o=CVugyn dudpdipdy N
[0.1]?

< CF-(W-1/2)/r-1/q)

x/ enynIf G yn)l, my-1) // dpdip _dyy
0 [0

2 +an +yn 12 t+ (pzn)? + (Yyn)

for some positive constant C. The change of variable: yy = {t + (pxn)?}'/? yields
that

[ o
o t+ (pan)? + (Yyn)?

% s 211/2
1 )2/ I {t+ (pzN)7} a0 < C
0

< = =
- 1+ /02 YN B yN(tl/z-l-ngN)

t+ (pzn

for a positive constant C, so that

1Kt Ao) £1(- 2N )L, @y

< CP-((N=1)/2)(1/r=1/q) /oo o llFCoyn) e, vty /1 4
B 0 t2 + oy +yn o Y2+ oy

_ O ((N=1)/2)(1/r=1/q)

X/OO e[l f( yn)llL, &y /1 dodyn
o P o ) Jo G2+ an +yn (72 + pan)

for any 0 < § < 1. By the change of variable: pxy = t'/2¢, we then have
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/1 dQD < /1 dQD
o @V2+an+yn)2(EV 2 +pan) T Jo (B2 + pzn)P (12 + pay)

1
dp
< =
= C/O FA10)/2 4 (pz )10

__cC 1 2 < C
SFAH02 f) T4 0 gy T pnio/2
with a positive constant C', which furnishes that

1K 2 (t; Ao) £1(- N ) L,y

< 0F(N=1)/2)(1/r=1/q)~5/2 /°° I7Coyn )l )
- o T=9)/2 4 gm0 4yl

5 dyN.

We therefore obtain the required inequality by Lemma 4.4 (2) with choosing a sufficiently
small 0 > 0 when (g,7) # (2,2).

(2) First, we show the inequality for L"?(t; Ag). Noting that A = —(A2(1 — u) +
you) 4+ i((A%/4)(1 — u) + you) for u € [0,1] on I'], we have, by (4.6),

(L2 (t; Ag)d] ()

1
= _7-“5—,1 {/ e{*(A2(1*u)+'you)+i((z42/4)(1*u)+%u)}t<p0(gl)gl(5/7/\)e*A(zNﬂJN)
0

{ =0 vi(- 4 b))

In a similar way to the case of K;"?(t; Ag), we have by (4.17) and Lemma 4.3

L2 (85 Ao)d] (-, o) | L w1
/1 e—(A2/2)fe—C|B‘2f<p0(fl)Al/Q|B|se—Aa:N du(f(g’)
0 (AVT —u+ Ju+ AV/4)?

1 _—C|B|* Bls—9 / ~ N
/ e | |2_5<P0(5 ) du e—(A2/2)tA1/2e—Ade(£/)
0 (Vu)

< Ci-((N=1)/2)(1/2-1/q) (4.19)

2

< Ci-((N=1)/2)(1/2-1/q)

(4.20)

< CI(W=D/DA/r=1/D=s/2)\ || s JFV + (an) ).

We thus obtain the required inequality by Lemma 4.4 (1) if s > 0 and ¢ > 2. In the case
of s > 0 and ¢ = 2, by (4.20) and using (4.17) again, we have

~

—C|BI’t|g|s—6 .
|51 t|B| due_(Az/Q)td(E')

1
L+’2 P A Ny < / ‘
|| 1 (t7 0)d|‘L2(R+) = CH 0 (\/H)Q,(;

2
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< Cf—((N—l)/2)(1/r—1/2)—s/2||d||L (RN-1).-

If s = 0, then we have by Lemma 4.3 and Lemma 4.12

L2 (t; Ag)d] (-, xn) Iz, @®y-1)

1 ,—(A?/2){ ,—C|B|*t NAL/2e—Azn .
/ € € ()00(6) € du d(g/)
0 (AVT —u+ Ju+ AV/4)?

< CF(W-1)/2)(1/2-1/q)

2
< CF (W -1)/2)(1/2-1/q) (4.21)

1 —Cut 5 .
/ e du o= A/ J(0/2)=(6/0) = Azn Jier)
0 2

(Vu)*=?
< CF- (V=021 )=5/2) ),

RN,l)/({(l/ll)f(é/@) + (:cN)(l/z)*(fs/‘*)),

which, combined with Lemma 4.4 (1), furnishes that the required inequality holds for
g > 2 by choosing a sufficiently small § > 0. In the case of s = 0 and ¢ = 2, by (4.21)
and Young’s inequality with 1+ (1/2) = (1/p) + (1/r) for 1 < r < 2, we have

~_ _ _ 2 g _
HLT’Q(téAO)dHLZ(Rﬁ) <Ct 5/2||7:5f1[€ (472t 4 5/4]||LP(RN—1)”dHLr(RN—l)- (4.22)

We use the following proposition proved by [13, Theorem 2.3] to calculate the right-hand
side of (4.22).

PROPOSITION 4.14.  Let X be a Banach space and || - ||x its norm. Suppose that
L and n be a non-negative integer and positive integer, respectively. Let 0 < o < 1 and
s=L+o—mn. Let f(§) be a C®-function, defined on R™ \ {0} with value X, which
satisfies the following two conditions:

(1) Dgf e Li(R",X) for any multi-indezx o € N with |a| < L.
(2) For any multi-index o € N}, there exists a positive constant C(a) such that

IDEF(E)lx < Cla)lé]™1*1 (¢ e R™\ {0}).

Then there exists a positive constant C(n,s) such that

176 @l = Cno) (o, Cla) o=+ (o € R (o))

|a|<L+2
By Proposition 4.14 withn =N —1, L= N — 2, and 0 =1 — §/4, we have
|j:gl[67(A2/2)5A76/4](x/)| < C|$/|7(N7175/4)

for a positive constant C, and furthermore, by direct calculations

|}—£—/1[67(A2/2)?A75/4](x/)| < Of—(1/2)(N-1-5/4)



1596 H. SA1TO and Y. SHIBATA

We thus obtain

—1 7(A2/2)?A75/4 N < ¢
|]:£’ [e ](a: )< t(1/2)(N=-1-6/4) 4 |x/|(N—1—(5/4)

for some positive constant C'. Therefore, by choosing a sufficiently small § > 0, we see
that

[ e A /DTA=D/Y| sy < CT-(N=D/DA=U/p143/8 _ C=((N=1)/2)1/r=1/2)+8/8

since p > 1 by 1 < r < 2, which, combined with (4.22), furnishes that the required
inequality holds. Summing up in the case of s = 0, we have obtained

||Lf’2(t;Ao)d||Lq(R$) < Of’((N*1)/2)(1/“1/61)7(1/2)(1/2*1/")IIdHLT(wal)
for some positive constant C' and 1 <r < 2 < ¢ < oo when (gq,7) # (2,2).
Concerning L;Q(t; Ag), we see, by Lemma 4.3, that

I[L3 2 (t: Ao)d] (-, TN, my-1)

< i~ (N=1)/2)(1/2=1/q)—=s/2

1 - - ~
/ 67(A2/2)t670\B|2tw0(£/)67(Re B)xn du d(g/)
0

2

1
< CF-(N=1)/2)(1/2-1/q)~s/2 / e—cufe—cﬁxN du e—(A2/2)fC/l\(£l)

0

2
—(AZ/Q){E[@/)
£+ (ZN)z

[P

< CF-(N=1)/2)(1/2-1/q)~5/2 | e

< oi- (=12 /r—1/g-s/2 1L, @Y -1)
- t+ (zn)?

which, combined with Lemma 4.4 (1), furnishes the required inequality for Ly (t; Ao).
Finally, we show the inequality for L ?(t; Ag). We easily have by (4.18) and Lemma
4.12

L2 @®)d)(-, 23) | L, @my-1)

< i~ (N=1)/2)(1/2-1/q)

/1 67(A2/2){:'670|B\2£¢0(€/)A1/2|B|567C‘AxN
0

(A ﬁ—u—}—\/ﬂ—FAl/‘l)\/a dud({x)

2

for a positive constant C. We thus obtain the required inequality in the same manner as
we have obtained the inequality of LT ?(t; Ag) from (4.19). O

COROLLARY 4.15. Let 1 < r <2 < q < oo, and let f € LT(Rf)N and d €
L, (RN~1). We use the symbols defined in (4.6).
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(1) Let @ € N and we assume that there exist positive constants A; € (0,1) and C
such that for any A € Ty and A € (0, A;)

‘kl(é-/vAN S C(A\/m+ \/a+A1/4)74A,
‘kQ(ElvAN S C(Am+ \/a+A1/4)74A27
161(€, )] < C(AVI —u+ v+ AY4) =4 B)2.

Then there exist positive constants Ay € (0, A1) and C = C(«) such that for any
t>0andn=1,2

||DgVK$’2(t; AO)fHLq(Rf) < C(t + ]‘)_(N/Q)(l/r_l/q)_1/4_|a‘/2Hf”LT(Rf)v
||D?ath’2(t§AO)fHLq(RQ’) <Ct+ 1)_(N/2)(1/T_1/q)_|a‘/2Hf”Lr(Rﬁ\r’) if la| #0,
||D§VLit’2(t§A0)d||Lq(R$)

<Ot + 1)—((N—l)/2)(1/r—1/q)—(1/2)(1/2—1/q)—1—|al/2||dHL (RN-1).

In addition, if (q,7) # (2,2), then we have for anyt >0 and n =1,2

||5th’2(f5A0)fHLq(RI+V) < C(t+ 1)~ WNAW=D) £l gy

(2) Let k = 0,1, £ = 0,1,2, and o/ € Névfl. We assume that there exist positive
constants Ay € (0,1) and C such that for any A € T's and A € (0, A;)

ks (€, N)] < CAVI —u+ Vu+ A) %4,
al€'. V] < CAVI=u+ Vi + A)2AIB| (n=4.5).
ko (€, \)] < C(AVT —u+ v + A)~2A|B|?
162(€, 0| < CAVI —u + v + AV~ 4,

)| <

[03(A, B)| < C(AVT —u+ Vu+ AY*) 3 A.

Then there exist positive constants Ag € (0, A1) and C = C(a’) such that for any
t>0

k 0 po+,2

Hat D K%(t5 Ao) fHL «(RY)
< Ot + 1)~ N2 =R £ gy (0= 3,4,5,6),
ko ne r+,2/04.

|0F DS DN Ly (tAo)dHLq(RQ')

<Ot + 1)f((Nfl)/2)(1/r71/q)7(1/2)(1/271/q) k—(lo/|+£) /2Hd”L ®y-1)  (n=2,3),
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provided that k + €+ |o/| # 0. In addition, if (q,r) # (2,2), then there hold for any
t>0

1K 2(t Ao) fll 1,y < Ot 4+ 1)~ VDW= VD £ gy (0= 3,4,5,6),
”Lrj;’Q(t;AO)dHLq(Rf) <C(t+ 1)—((N_l)/2)(1/r—1/q>—(1/2)(1/2—1/q)HdHLT(RN_l)

(n=2,3).

PrROOF. We only show the inequalities for K5i’2(t), K6i’2(t), and L3i’2(t). The
other inequalities can be proved by Lemma 4.13 directly. By (4.6)
OF D K552 (8 Ao) ()

- A .7-'5_,1{ /F X e“goo(i’)x’“(ii’)“'kn(i’,A)Xn(:cN,yN)dAf(é’,yN)] (@),

DY L1 An)lla) = 75" | [ Xl € €N ale' N M) AT @)

2

for n = 5,6. Since by Lemma 4.12

|)\k(i§/)a/k €N <C (AVI—u+ \/E+A)—1A|B|2k+|a’\ (n="5),
n\S = A|B|2k+|a’| (n:6)7

|>\k(ifl)a/£3(§/7)\)| < (A /1 —u+ \/E_’_ A1/4)—3A|B|2k+|a/|
for A € TF and A € (0, Ag) by choosing some Ag € (0, A1), we obtain by Lemma 4.13
ko' 1o+,2 —(N/2)(1/r—1 —k—|a’|/2 _
05D KE2(0) 1], gy < ClE+ 1) VOOV (= 5,6),
ko' 7£,2
|05 D3 Ly (t)d”Lq(Rf)
< Ot 4 1)~ (V=072 /r=1/a)=(1/2)A/2=1/a)=k=]al/2) g|| | (RN-1) (4.23)

for any t > 0, provided that k 4 |a/| # 0. In the case of k + || = 0, we have by Lemma
4.13

K20 f Nl @) < Ot + 1)~ DW=V D| £, gy (n=5,6),

||L?jf’2(t)d\|Lq(Rf) <C(t+ 1)*((Nfl)/2)(1/%1/q)*(1/2)(1/271/q)||d||LT(RN71) (4.24)

when (q,r) # (2,2). On the other hand, by (2.2)



Stokes equations with surface tension and gravity in the half space 1599
k o’ ne +,2
9y Dy Dy [K57 () f1(x)

- <1>f{ | { [ M€ty B+ 4

2

< k(€. N~ BNt gy e, yNﬂ (') dyn

+ /0 TR [ /F . Mipo(€)AR(ig)™ A1
(€ Mo P an T ) () du .
aF DY DK *(6) f]()
= [T [ et 5+ 4y

< k(€ N)e 555 My )dA J(€ yNﬂ (') dyy

> —1 At Nk (zena' g4
+ [Tt | [ antentiig)'a

2

% k(€' N M () M(yx)dA f(a',ym} (o) dyN},
0F DY DLy * (t)d)(x)

- <—1>f{fe ' [ / L Mo(€)IN(EE) (B + A) ey Ne PN F(E m} (a')

2

+Ft [ / . Mo (&N ALty (&, M )dX F(E, yN)] (x')}
I

2

for £ = 1,2. Since by Lemma 4.12

INEGEN (B + A) s (€', 0)] < C(AVI — u + v + A) "2 A|BJR+1e 1+
INF (€Y Alks (€, 0)] < CAVT —u+ Vu + A)"LA|BPRHIe 1+
(€, N)] < CAVT —u+ Vu + A) LA BREFl I+

INEGig' ) Alke(€/,N)| < CA|BPRFI I+

INF (€)™ (B + A) ke

IN

for any A € TS and A € (0, Ag) by choosing suitable Ay € (0, A1), we have by Lemma
4.13

||8fD§‘;D§VKfz < C(t+1)" (N/2)(1/r=1/q)—k—(|a'|+¢€) /2||f||L ®Y) (n =5,6)

(4.25)

fHL JRY) =
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for £ = 1,2. In addition,
NEGE )™ (B4 A 5(8' N)| < CLAVI -+ v+ A4 A B+ 1+
INEGiE ) ALy (€, 0)] € CAVT = u+ Vu + AV4) 73 A| BRI I+
for any A € T5 and A € (0, Ap), and therefore by Lemma 4.13
|oF g//vaszst’Q(t)dHLq(Rf)
< C(t+ 1)_((N_1)/2)(1/T_1/q)_(1/2)(1/2_1/(1)_/6_(‘0/I+Z)/2||dHLT(RN*1)

for £ = 1,2, which, combined with (4.23), (4.24), and (4.25), furnishes the required
estimates for ng’2 (1), KéE’Q(t), and Lf’Q (t). This completes the proof of Corollary 4.15.
U

By Lemma 4.12 there exist a positive number 4; € (0,1) and a positive constant C
such that for j,k=1,...,N, A € I‘i and A € (0, 4;) we have

ViR (€N CA VEM(E',\) . CA|B|
L(A,B) |~ (AVI—u+u+A)? L(AB) |~ (AVT—u+Vu+A?’
VIEEN| CA|B| ‘V%M(f’,A) B CA|BJ?
L(A,B) |7 (AVI—u+u+ A)? L(A,B) |~ (AV1—u+Ju+ A)?*
‘P;“(E’,A) _ cA ’P;“M(ﬁ’,m _ cA?
L(A,B) |~ (AVT—u+u+AVHY | L(A,B) [~ (AVT—u+ Vu+ AVHY

and furthermore,

|A/L(A,B)| < C(AVI —u+ Vu+ AYH) 744,
{A(B? + A%)}/{(B + A)L(A, B)}| < C(AVI —u+ Vu+ AY*") 724,
|D(A, B)/{(B + A)L(A,B)}| < C(AV1 —u+ Vu+ AY*)™*|B|.
Therefore, remembering (3.3)—(3.5), and (4.5) with ¢ = 2, and using Corollary 4.15, we
have Theorem 4.11. This completes the proof of Theorem 4.11.

4.4. Analysis on I‘g:.
Our aim here is to show the following theorem for the operators defined in (4.5) with
o=3.

THEOREM 4.16. Let 1 <r <2< q<oo, (o/,a) e N x NY, and F = (f,d) €
L, (Rf)N x L.(RN~Y). Then there exist positive constants dy, Ao, and C such that for
anyt>1
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100537 (#: A0) . VI (1 A) F) |, )

+ (D2 S§? (8 Ao) F, D2B,E (TP (t; Ao) F), DEVE(TY (t; A0)F)) 2 ®RY)

< Ce_éotHfHLr(Rfy

100557 (8 Ao) F, VLG (8 Ao) F) ||, )

+ (D2 SE3 (t; Ao) F, ngg(Tgﬁ(t;AO)F))HWQZ(R% < Ce % d| 1, (mr-1)-

In order to show Theorem 4.16, we start with the following lemma.

LEMMA 4.17. Let1 <r<2<q< o0, and let f € LT(Rf)N and d € L,(RN~1).
We use the operators defined in (4.6) with the forms:

kn(€l7/\) = Hn(gl7)‘)/L(AvB)ﬂ gn(glv)‘) = mn(glv)‘)/L(AwB)‘

(1) Let s > 0 and suppose that there exist positive constants Ay € (0,1) and C such that
for any A € T and A € (0, Ay)

(€ ] < CUNY? + A2AM (n=1,2,4,5,6),  |ra(€', A)] < C(AY? + 4)24°,
Then there exist positive constants &g, Ag € (0, A1), and C such that for any t > 1
+,3/,4. —dot _
I (6 Ao) fllp,ryy < Ce™ Il myy (n=1,...,6).

(2) Let s > 0 and suppose that there exist positive constants Ay € (0,1) and C' such that
for any A € T and A € (0, A;)

ma (€', )] < CUAM2 + A)2A, - ma(€', N)] < C(AV2 + A)2A°%,
[ma (€', )] < CIA2(IAH2 + 4)2 A,

Then there exist positive constants Ag € (0, A1), do, and C such that for any t > 1

1L (8 Ao)dl p, my)y < Ce*|ld]l L, mr-1y (0 =1,2,3).
ProOF.  We use the abbreviations: || - [l2 = || - ||z, &~-1), Flyn) = f(€,yn), and
t =t+1 for t > 0 in this proof, and consider only the estimates on I‘3+, because the
estimates on I';’ can be shown similarly.
(1) First, we show the inequality for K7 ’S(t). Noting that A = —vq + 7o + ue'(7—=0)
for u € [0,00) on I's, we have, by (4.6),
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[Kf’g(t)f}(af):/o ]:5_'1[/0 e

k(€ A) x i(r—e iy
Xwo(f’)Ll((jB))e A T2 duf(yn) | (+') dyn-

Since e~ (0/2teA’t < Ce=A’t for any A € (0, Ag) by choosing some Ay € (0, A1), we
obtain by Lemma 2.1 (3), L,-L, estimates of the (/N — 1) dimensional heat kernel, and
Parseval’s theorem

IS (8 Ao) F1C )|y -1y
< i ((N=1)/2)(1/2-1/q)

o
)(/
0

< CF-((N=1)/2)(1/2-1/q) o~ (0 /2)t

oo
)(/
0

< CF-((N=1)/2)(1/2-1/4) ~(r0/2)t / e AT A A ) 7o) duw
0

[es} : . A1+s Az N
et omnemeon S e ) dufl)|
0

2

dyn
2

oo ,—u(coseg)t - ~
/ e e A ) )
0

for any ¢ > 1 with some positive constant C, where we note that |[A| > 74 on I‘; and
A? < C on supp pg. We thus obtain the required inequality of K 1+ ’S(t; Ap) by Lemma
4.6. Analogously, we can show the case of n = 2,4,5,6 by using the fact that

le™Be < Ce™ %, |Mla)] < CINLe P < Ce (4.26)

for any @ > 0 and A € T'J with some positive constant C' by Lemma 2.1 (1) and (2.2).
We finally show the inequality for K; ’3(t; Ap). By Holder’s inequality and (4.26),
we easily have for v’ =r/(r — 1)

K52 (t; Ao) F1(, o) | 1y mv-1)
< i~ (N=1)/2)(1/2=1/q) ,—(70/2)t
dyn

oo
0 2

0o ,—u(coseg)t ,—C|AY2zn o] , /7’
< Ce*(70/2>t/ € |§‘ </ o= Cr/IAY 2y dyN> dul| f|
0 0

oo —u(coseg)t 1 N
/e e ) due )
0

L.(RY)"

Therefore, we see that
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efu(cos €o)t

3 (1. - Oo
[tieg (t»AO)f”Lq(Rf) <Ce (W/Q)t/o IA[1+1/(2a)+1/(2r) du ”fHLr(Rf)

< Ce—(vo/2)tHf|

L.(RY)

for any t > 1 with some positive constant C.

(2) Employing an argumentation similar to (1) and using (4.26) for L1 (¢; Ag), we
can prove (2), so that we may omit the detailed proof of (2). This completes the proof
of Lemma 4.17. ]

We see that by Lemma 2.1 there exist positive constants A; € (0,1) and C such
that for any A € (0, 4;) and A € I'T we have

VAP N <0, VEME N < CA, [VIPE N < CA,
VIME N < CA,  [PAME N < CA, [PAME N <A
for j,k =1,..., N. Therefore, remembering (3.3)—(3.5), and (4.5) with o = 3, and using

Lemma 4.17, we have Theorem 4.16. This completes the proof of Theorem 4.16.
We finally consider the term 0, (T (t; Ag)F) given by

OE(TE(t; Ag)F) = .7-"5_,1 {217” /F eMW dA eAmNg(ﬁl)} (2')

1 o~
=7 |5 [ () dle) @)

NA o A%) 1 - Aen Gren | (0
_ ‘7_—6—/1 [217” /F By @o(€ )L((jg;—)c ) dhe TN d(¢ )} ('),

where we have used the relations: D(A, B) = (B — A)"Y{L(A, B) — A(cy + ¢, A%)} and
B? — A% = \. Note that the first term vanishes by Cauchy’s integral theorem, so that it
suffices to consider the second term only. Set

Ig:(t, AO) _ —fgll |:21m /F:t e)\t @0(5/)‘24((1:_(];)60142) d\ eAmNC’l\(é-/):l (3?/) (O’ _ O7 1’ 2’ 3)

Since by Lemma 4.12 there exist positive constants A; € (0,1) and C such that for any
AeTs and A € (0,4;)

|A(cy + co A%)/L(A, B)| < C(AVT —u + Vu + AY*) 744,
by Lemma 4.13 we have for ¢t > 0, « € N} with |a| #0,and 1 <r <2< ¢g< o0

||Dg[2i(t; AO)HLQ(RQ) <C(t+ 1)—((N—l)/2)(1/r—1/Q)—(1/2)(1/2—1/¢Z)—|a\/2Hd”LT(RNﬂ)
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with some positive constant C. If (¢, r) # (2,2), then we also have
1 (5 Aol gy < O+ 1)~ (VDA 0=0/2024/0) ] gy,
In addition, by Lemma 4.5, 4.10, and 4.17, we have
||D;‘Iff(t; AO)HLq(Rf) <C(t+ 1)f((Nfl)/2)(1/r71/q)f(1/2)(1/271/11)*\a|/2||d||LT(RN71)
(n=0,1),
||D§I§(t;A0)||Lq(R$) < OeféotHdHLr(RNfl)

for any t > 1, « € N}, and 1 < r < 2 < g < 0o with some positive constant C. Thus,
we have
IDSOE (TS (t; Ao) F) 1, my)
<Ot + 1)—((N—l)/2)(1/f'—1/Q)—(1/2)(1/2—1/Q)—\w|/2||d||L (RN-1)
(1<r<2<qg<oo, |af #0),
10:E (T5' (t; Ao)F)l 1,y
<Ot + 1)f((Nfl)/2)(1/7“*1/11)7(1/2)(1/271/q)||dHL (RN-1)

(1<r<2<q<ocand (qr)#(2,2)

for any t > 1 with some positive constant C, which, combined with Theorem 4.2, 4.7,
4.11, and 4.16, completes the proof of (1.6) in Theorem 1.1 (2), because

3 3
Sot)F = > Y S§7(tA)F, To(t)F = > Y T57(t A)F,

g€{f,d} 0=0 g€{f,d} 0=0

3
To(t)F = > Y T§7(t Ag)F.

g€{f,d} o=0

5. Analysis of high frequency part.

In this section, we show the estimate (1.7) in Theorem 1.1 (2). If we consider the
Lopatinskii determinant L(A, B) defined by (2.1) as a polynomial with respect to B, it
has the following four roots:

Co (1+ Sa?)cg 1 1
—+0(— A 5.1
4(1 - a; —a3) + 32(1—aj—a§)314+ <A2) AT e (5-1)

Bj :ajA+

where a; (j = 1,...,4) are the solutions to the equation: x? + 222 —4x +1 = 0. We
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have the following informations about a;: a; and ay are real numbers such that a; =1
and 0 < as < 1/2, and a3 and a4 are complex numbers satisfying Rea; < 0 for j = 3,4.
We define A; by A; = BJZ — A2 for j = 1,2, and then

a92Cqs
2(1 — ay — a3)

as A —oo.  (5.2)

M=—frg_ 3 +o< ) Ay = —(1—a2)A% + A+0(1)

2 16 7

Let Lo={A€ C | L(A,B) =0, ReB >0, A € supp ¢}, where ¢, is defined in (3.6),
and then we see, by the expansion formulas (4.2), (5.2), and Lemma 3.2, that there exist
positive numbers 0 < e < m/2 and Ao > 0 such that Lo C .__N{z € C|Rez < —Ax}.
Set Yoo = min{ Ao, 471 x (Ap/6)?} for Ag defined in (3.6), and set, for (3.7) and g € {f, d},

SZ (1) = S (8 Ao), N (1) =T, (4 Ao),  TL(H) = TE,(; Ao).
In order to estimate each term above, we use the integral paths:
IT={AcC|A= 7y tiu, u:0— oo},
IE={A€C| A= —yoo & iFuo + ueF ™) 41 0 — 00},

where Joo = (tan o) (Ao (Eso) + Yoo) and Ag(ess) is the same constant as in (3.8) with
€ = €oo. Furthermore, for g € {f,d}, setting vd (z,)) = (vf (2, N), ..., v} o (z,A)T

1,00
and

Voo (@, 2) = Fe oo (€] (€ zn, V(') (j=1,...,N),
1o (2,A) = Fo oo (€)T(E i, N)](2),
1y oo (2, 3) = Fo oo (€)e ™" RI (¢, V)] (2)
by (3.3)—(3.6), we have, by Cauchy’s integral theorem, the following decompositions:
5
Z 890 (t)F, TI9( ZHQ T(WF, E(TLHF) =Y E(TL(H)F),
o=4 o=4

where the right-hand sides are given by

1 1
SO (H)F = Mog (2, ) d\, TI90()F = —— / Mrd_ () d,
271 F;rUF; 2mi F+UF7
1
T (H)F) = — Mp : :
e N SR (53)

By the relation 1 = B2/B? = (A + A2)/B?, we write v/, £, and h', ‘100 as follows: For
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i=1,...,N, fi(yn) = F;(€',yn), and oo = 0o (&),

N BB /! 2
b Vi yA)(eg + e A B ~
Jeen=3 [ fgl[sooo i (€, Neg +eodT) N*ymfk(ym} (') dyn
k=170

AL(A, B)
N Lo —1/2\,BM (g1 2
~ AN TY2VEM (¢ N (e, + cp A?)

1 J g

N

x A|A|1/2e—BZNM<yN)ﬁ<yN>] («') dyn

N oo VEM(E' N)(eq + co A2 _Bz = /
N e ) L

N e —1/2,MB (¢ 2
T ANATVABE A ey + crA%)
1 J g

+Z/0 7 [“"“’ ABPL(A, B)

y A|A|1/2M(xN>e*ByNﬂ<yN>] (') dyn

N oo r VMB l,A ; O-AQ ) R /

+ ;/ .7'—71 -9000 Jk (€BQL)(EZ’;—)C )AZM(:CN)e Bnyk(yN):| (‘r )dyN
N 0o r VMM /7)\ UAQ ~ /

+ ;/0 Fot _L,Doo ik 1§1£B2L)((Ic49, ;)C )A)\M(xN)M(yN)fk(yN)] (') dyn
N ) | r v./\/l./\/l /’)\ ; O-A2 r R l

+ ;/; Fe oo Jk IEfBZl?((Z7 ;)C )AsM(lfN)M(yN)fk(yN):l (1; )dyN,

N ) AA (¢t 2 —~
Tl (z, ) = Z/O Fat {%opk (€, N)(eo £ A )AG_A(QCNWN)fk(yN)] (z") dyn

AL(A, B)
k=1
N oo B PAM /7)\ + crA2 . R ,
+;/0 fg,l[gooo i (1642[4)(540,93)0 ) 42,4 M(yN)fk(yN)](x)dyN,
N-1
f _ R 1 M —A(zNn+yN) T ,
Ml k:l/o 7e {%”A(B+A)L(A,B)Ae ! fk(yN)] (') dyn

oo 1 CAls N
— /O .7:5/1 |:Sooo mAe A( N+yN)fN(yN)] (") dyn

> —1 21£kB 2 —Axzpn N /
n /0 Fa |:§Doo A(B 1 A)L(AB) Ae M(yN)fk(yN)] (z') dyn

+ /000 fg_l [5%0 mAA%_AZNM(yN)fN(yN)} (z') dyn-. (5.4)

Moreover, using the relations:
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oo

G*BZEN’g\(O):/ Be*B(INH/N)@(yN)dyN_/ eiB(””N+yN)DNg(yN)dyN,
0 0

Max)a0) = [ T (e BEN ) 4 AM(ay + yw))Fun) dyn

+/ M(zy +yn)Dnglyn) dyx, (5.5)
0

where G(yn) = §(¢/,yn), and using the identity: 1 = A2/A% = — S~ 1 (i€;,)% /A%, we
write v4, 74 | and h(i,oo as follows: For j=1,...,N —1,

d - _ | igj(cg+c“A2) —B(xN+YN) AT '
Vi oo (T, A) = /o Fer {(poo AZL(A, B) Ae Ald(yn) | (z") dyn

N-1

oo (B = A)(cg + oA . _Bla —

+ Z/ f5/1{¢w€]£22(3+i()ci(AcB) )Ae B N+yN>DkDNd(yN):| (x/)dyN
k=1"0 ’

0o . ‘jBQ+A2 g+c7A2 5 — ,
S ARCH v e e SR ) (O

N-—1
1 £ (B? 4+ A%)(cy + o A?)
*2/ e {%" T AB T A)L(AB)

x A M(zn + yN)Dk/D\Nd(yN):| (z") dyn,

[ (B=A)(eg +coA?)
vﬁiv,oo(w»)\)——/o Fer {‘PW A(B+ A)L(A, B)

A B )| o) g

= i€k (cg + coA?) —
+ Z / 7‘?’1 {‘PooMiAth)AeiB(xNﬂN)DkDNd(yN)] (I,) dyn
k=1 0 )

o B? 4+ A%)(cg + co A%) o Ad '
+/o Fe {‘p"" : Az(+B +)£1)L?A, B) LA MG ) d(yN)] ) v

N-—-1 oo . 2 2 2
_ —1 i€k (B? + A?)(cg + co A?) o _— ,
;/0 Te {“0‘” BB LA B A MeEyFyn)DiDndyy) | () dyw,

d R (B® + A%)(cg +¢oA?) \ —Alntun) K7 '
= — , 0o A NTYN A/
S R e () | &) dy

Nzl opoo ; 2 2 2
ot € (B”+ A%)(cg + coA) | —AGentun) 5D /

’ 00 d 7

" ;/0 7 {“0 ASL(A, B) Ae Dy Dnd(yn) | (") dyn

d _ R D(AvB) —A(eN+YN) AT T /
ha,co(x, X)) = /o Fer {SDOOAQ(B+A)L(A,B)A6 Ald(yn) | (z") dyn

N-—-1
1 ika(A,B)
+ / e {“"“A3<B+A)L<A,B>

k=1

Ae_A(”’CNerN)Dﬁ)?d(yN)] (') dyn.

(5.6)
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REMARK 5.1. We extend d € ngl/p(RN_l) to a function d, which is defined on
RY and satisfies Hd”vvg(Rﬁ) < C’||dHW§_1/p(RN_1) for a positive constant C' independent

of d and d. For simplicity, such a d is denoted by d again in the present section.

To estimates all the terms given in (5.4) and (5.6), we introduce the following oper-
ators:

[K1(\)f](z) = /0 N For [poo(€)E1(€, \) Ae™ 4NN ()] (') dyn,

8

~

(K2 (M) f](x) Fe' [0oo(€)ha (€1, M) A2 A M(yn) F(€, yn)] (") dyn,

8

[K3(A\) f() Fer [poo(€)hs(E, N Aem Blentum) F(e' yn)] (2') dyn,

8

~

[Ka(N) f](x) Fer [poo(€Vka(€, N A% PN M(yn) (€, yn)] («) dyn,

3

o~

(K5 (M) f]() oo (€ ks (€, AN e B2 M(yn) F(€, yn)] (2) dyw

N

Moo (€ )ks (€, ) A* M )™ F(€ yn)] (2) dyn,

8

[K7(\) f]() oo (€ (€ NVANY 2 M (2 n e BN F(E yn)] (2) dyn,

N

8

~

Moo (€)ks (€ N A2 M(zn + yn) F(E yn)] (&) dyn,

[Ks(A)f](x)

)

8

~

[Ko(A) f1(x) For [poo (€)ko (€', ) AP M) M(yn) F(€' yn)] () dyn,

=
>
==
&

I
hhc\»hﬁhc\hc\
9
|

3

~

o [poo (€)R10(€" M) AMM (23 )M (yn) (€ yn)] (=) dyn. - (5.7)

Kﬁ

[Kio(M)f](z) =

We know the following proposition (cf. [17, Lemma 5.4]).

PROPOSITION 5.2. Let 1 < p < o0, 0<e < 7/2, and f € Lp(Rﬂ), and let A,
be a subset of B.. Suppose that for every o’ € Névfl there exists a positive constant
C = C(d!) such that for any A € A, and & € RN\ {0}

D& {poc(€)kn (€, N} < CATIT (n=1,...,10).

Then there ezists a positive constant C such that for any A\ € A

HEn M,y < ClfllL,@my) (n=1,...,10).
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5.1. Analysis on I‘ff.
We first show the following lemma concerning estimates of the symbols defined in
(2.1).

LEMMA 5.3. (1) There exists a positive constant A such that for any A > A
and A € I’

27'A<ReB < |B| <24, |D(A,B)|> A% |L(A,B)|> (c,/16)(871A)>.

(2) There exist positive constants C1,Cs, and C such that for any A € [A9/6,2A] and
AeTs,

CiA<ReB < |B| < oA, |D(A,B)|>CA% |L(A,B)| > CA®.

where Ao and Ag are the same constants as in (1) and in (3.6), respectively.

(3) Let o/ € N7, s € R, and a > 0. Then there exist constants C > 0 and by > 1,
independent of a, such that for any \ € Fff and A > Ag/6 with Ay defined as in
(3.6)

DE B*| < CA*1'l D/ D(4, B)*| < CA¥I'l | DgleBa| < C A1 lemb" e,
DE L(A,B)™'| < CA™519'l |Dg/ M(a)| < CA- 1o lemb e,
: ;

PROOF. (1) We first consider the estimates of B. For A € I'T, set 0 = A + A2 =
Yoo + A% +iu (u € [0,75]) and 0 = argo. Then we have

Re B = |o|}/? cosg = M(l + cosf) /2 = i(\a| + A? — )2,
2 V2 2

so that for any A > A

1 A
ReB > ——(24% — 270 — 3.0)Y/?2 > —,
*\/i( Yoo — Yoo) Z 5

provided that A, satisifes A2 > 27, +700. On the other hand, it is clear that |B| < 2A.
Next, we show the inequality for D(A, B). Since

D(A,B) = B(B*+3A4?)+ A(B? — A?) = B(A+4A%)+\A = 4A? B+ (B + A) (70 L iu),
we see, by the inequality of B obtained above, that

|D(A, B)| 2 4A%|B| — | B + Al = 7ec £ iu| > 44%(Re B) — (IB] + A) (0 + Foo)
>24°% — 3(Voo +Yo0)A = A3

for any A > A, provided that A, satisfies A2, > 3(Voo + Voo)-
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Finally, we show the inequality for L(A, B). Since

o 3 ,
Bf_BZ:—CQA—mci—(—’ywizu)—kO(

1

A) as A — oo,

there exist positive constants A,, and C such that for any A > A, and A € I‘ff we
have |B? — B%| > (c,/4) A, which, combined with the inequality of B obtained above and
(5.1), furnishes that

B2 — B2| _ (co/DA _ ¢y
‘BthB| > 4/A > 76 (A> Ay and A € T).

|B1 — B| >

On the other hand, we have
B} —B?*=—(1—-a3)A*> +O(A) as A — oo,

so that there exists a positive number A, such that for any A > A, and A € Ff we
have |B3 — B?| > (A?%/2), from which it follows that

|B; =B _ (4%/2) A
_ _ > - =
1B = Bl="p 5 2 14 ~ 3

Since |B — By| < |B — By| (j = 3,4), we thus obtain
|L(A, B)| > (cs/16)(871A)® (A > Ay and A € TY).

(2) Tt is sufficient to show the existence of positive constants Cy, Cs, and C' such
that for any A € [Ag/6,2A44) and A € T

It is obvious that the inequalities for B holds, so that we here consider D(A, B) and

L(A, B) only.
First, we show the inequality for D(A, B). Set

A= 5 A= Yoo +3A2+iu foruce [0, Yool
and note that B = (A + A2)1/2. We then see that
{B/AcC | xeTT and A € [A/6,245]} C {z€ C|1<Rez}.

In fact, setting 0 = 1 — (700 /A?) £i(u/A%) and 6 = arg o, we have
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B 0 1 A
Re— = 2o[!/? cos 5 = 2|a|1/2<+2‘m> = V2(|o| + Reo)/2 > 2(Re o)/

This combined with Lemma 4.8 and the formula:

3 2
D(A,B):B3+2ZBQ+12223—8E3=E3{(§> +2(l;) +12<§>—8},

furnishes the existence of a positive constant C' such that for any A € [Ay/6,24] and
A € T'f we have |D(A, B)| > C. The inequality for L(A, B) follows clearly from the
definition of the integral path ij.

(3) We see, by Lemma 5.3 (1) and (2), that there exist positive constants Cy, Cs,
and C such that for any A\ € I‘ff and A > Ay/6

C1A<ReB<|B|<CyA, |D(A B)|>CA* |L(A, B) >CA>. (5.8)

We thus obtain the required inequalities by using Leibniz’s rule and Bell’s formula, and
noting

|Dg'D(A,B)| = |Dg/ (B® + AB? + 3A%B — A%)| < CA?,

Dg’( A D(A,B)+A(cg+cUA2)>’<C’A3

for any o' € N(J)V_l, S I‘ff, and A > Ay/6 by (5.8) (cf. [17, Lemma 5.2, Lemma 5.3,
Lemma 7.2]). O

Now, we have a multiplier theorems on Ff

LEMMA 5.4. Letl<p<oo,n=1,...,10, and f € Lp(Rf). We use the symbols
defined in (5.7) and assume that for any o/ € Né\[*l there exists a positive constant
C = C(d') such that |D?,/kn(§’,)\)| < CATI for any A € T and A > Ao/6 with Ay
defined as in (3.6). Then there exists a positive constant C' such that for any A € ij

IHEn (M f e, wyy < CllfllL,@y) (n=1,...,10).

PrOOF. Employing the similar argumentation to the proof of [17, Lemma 5.4] and
using Lemma 5.3, we can prove the lemma. O

By (3.4), (5.4), (5.6), Lemma 5.3, and Lemma 5.4, we have the following lemma.

LEMMA 5.5. Let 1 <p < oo, f € L,(RY)N, and d € W}(RY). Then there exists
a positive constant C' such that for any \ € Fff
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vaong(Rf) + H7T£o||w,}(R$) + ||h;7;,oo||wg(R¢') < Cllflle, @),
d d d
logellwz @) + Imscllwimy) + 1% collwsmy) < Clldlwzmy)-
Applying Lemma 5.5 to the terms in (5.3), we have

4 A4
||(8tS£o (t)Fa vngo (t)F)HLp(Ri’)
+ [(SEAWE, 0 TL OF), TETL OF) 2y < Ce =1l )
d,4 d,4
+[[(SE O F, 3t5(Tf<;4(t)F)7VS(T5<34(75)F))||W3<R§) < Ce ™ ld|wzmy, (5.9)
for any ¢ > 0 with some positive constant C.

5.2. Analysis on I‘g:.
By Lemma 2.1, (3.4), (5.4), (5.6), and Proposition 5.2, we easily see that the follow-
ing lemma holds.

LEMMA 5.6. Let 1 <p < oo, f € L,(RY)N, and d € W}(RY). Then there exists
a positive constant C such that for any X\ € 1"5jE

||(/\3/2U£oa AvvgovVQUécmV”go)HLp(Rf) < OHf”LP(Rf)v

H()‘th;,oov )‘3/2Vh£,ooa )\v2hzf4,oo7 Vghfl,oo)HL,,(Rf) <Clflle,®my)

(320, Avvng%go,wgo)uhmf) < Olld|lwzw),

HAhii,ooHsz(Rg) 17 sollwamy) < Clldllwz@y)-

Applying Lemma 5.6 to the terms in (5.3), we have for ¢t > 1
| (0:SL2 (4 F, VIILP (t) F) HL,, ®Y)

+ (S0, (OF), VEXL OF )y < Ce 1L mp)
(285> O F, VI (O F)| gy

)
+ | (SE5(OF, 0T O F), VETL O F) yacay, < Ce = Idlwamy)  (510)

with some positive constant C.
Summing up (5.9) and (5.10), we have obtained the estimate (1.7) in Theorem 1.1
(2), since
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SutiF = 3 S S2mF P = Y S nw®R,

g€{f,d} o=4 g€{f,d} o=4

To(t)F = > f:Tgf(t)F.

g€e{f,d} o=4
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