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Abstract. Given a link in S3 we will use invariants derived from the
Alexander module and the Blanchfield pairing to obtain lower bounds on
the Gordian distance between links, the unlinking number and various split-
ting numbers. These lower bounds generalise results recently obtained by
Kawauchi.

We give an application restricting the knot types which can arise from a
sequence of splitting operations on a link. This allows us to answer a question
asked by Colin Adams in 1996.

1. Introduction.

1.1. Lower bounds on the clasp number and the Gordian distance.
In this paper, by an m-component link L ⊂ S3 we mean an embedding

L :
m⋃

i=1

S1 × {i} → S3.

Given i = 1, . . . , m we write Li = L(S1 × {i}) and we endow it with the orientation
inherited from the standard orientation of S1. By a slight abuse of notation we often
denote the union of the Li again by L. Throughout the paper we will identify two
m-component links L and J if there exists an isotopy through links from L to J . Slightly
more informally, an m-component link is an isotopy class of an oriented, ordered collection
of m disjoint circles in S3.

Let L and J be m-component links in S3. We are interested in the following measures
of how different L and J are.

1. The Gordian distance g(L, J) which is defined as the minimal number of crossing
changes required to turn a diagram representing L into a diagram for J . Here we take
the minimum over all diagrams of L.

2. The 4-dimensional clasp number c(L, J) which is the minimal number of double points
of an immersed concordance between L and J . An immersed concordance is a proper
immersion of m annuli fj : S1 × I # S3 × I with fj(S1 × {0}) = Lj × {0} and
fj(S1 × {1}) = −Jj × {1}, for j = 1, . . . , m. The only allowed singularities of the
immersion are ordinary double points.
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Note that c(L, J) ≤ g(L, J) since a sequence of crossing changes and isotopies gives rise
to an immersed concordance, with one double point for each crossing change.

Our goal in this paper is to give lower bounds on the Gordian distance and the
4-dimensional clasp number from the Alexander module and the Blanchfield pairing of a
link. The relationship between the Alexander module and the unlinking number has been
explored in several earlier papers, see e.g. [BW84], [Tra88], [CFP13]. The first and
second authors undertook a systematic study of the relationship between the Blanchfield
pairing and the unknotting number of knots in [BF14], [BF15].

Given an m-component link L we refer to the complement of an open tubular neigh-
bourhood of L as the exterior of L and we denote it by XL = S3 \ νL. We write
Λ = Z[t±1

1 , . . . , t±1
m ]. We can associate the Alexander module H1(XL; Λ) to L and we

denote the rank of the Alexander module by β(L) := rankΛ(H1(XL; Λ)). The Alexander
polynomial ∆L ∈ Λ of L is defined as the order of the Alexander module. Note that
∆L = 0 if and only if β(L) > 0. We also consider the torsion Alexander polynomial
∆tor

L as the order of the torsion submodule TorΛ H1(XL; Λ). Note that ∆tor
L is always

non-zero.
Next we consider the Blanchfield form, which was first introduced for knots by

Blanchfield [Bl57] in 1957. Let S ⊂ Λ be the multiplicative subset generated by the
polynomials ti − 1, for i = 1, . . . , m. By inverting the elements of S we obtain the ring

ΛS := Z[t±1
1 , . . . , t±1

m , (t1 − 1)−1, . . . , (tm − 1)−1].

Furthermore we denote the quotient field of Λ by Ω = Q(t1, . . . , tm). This is also the
quotient field of ΛS . The Blanchfield form

BlL : t̂H1(XL; ΛS)× t̂H1(XL; ΛS) → Ω/ΛS

is a nonsingular, hermitian, sesquilinear form defined on a certain quotient t̂H1(XL; ΛS)
of the torsion submodule TorΛS

H1(XL; ΛS); see Section 2 for details. We say that a
hermitian form λ : H×H → Ω/ΛS is metabolic if it admits a metabolizer, i.e. a submodule
P of H with P = P⊥ := {h ∈ H | λ(p, h) = 0 for all p ∈ P}. The following is our first
main theorem.

Theorem 1.1. Let L and J be m-component links. Then |β(L)− β(J)| ≤ c(L, J).
Moreover, if c(L, J) = |β(L)−β(J)|, then the Witt sum of Blanchfield forms BlL⊕−BlJ
is metabolic.

In the following, given f = f(t1, . . . , tm) ∈ Λ we write f := f(t−1
1 , . . . , t−1

m ). Fur-
thermore, we say that a polynomial n ∈ Λ is negligible if it is of the form

n = ±
m∏

i=1

tri
i ·

m∏

i=1

(1− ti)si

where ri, si ∈ Z for i = 1, . . . , m; this is equivalent to saying that n is invertible in ΛS .
We can formulate the following straightforward corollary to Theorem 1.1.
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Corollary 1.2. Let L and J be m-component links. If c(L, J) = |β(L) − β(J)|,
then ∆tor

L · f f = ∆tor
J · g g · n for some non-zero f, g ∈ Λ and some negligible n ∈ Λ.

The inequality |β(L)−β(J)| ≤ c(L, J) in Theorem 1.1 and the statement of the corol-
lary are essentially the main result of a recent paper by Kawauchi [Ka13]. (Kawauchi
gives a slightly more precise version of the corollary in so far as he also determines the
negligible element n.) In the case of single variable Alexander modules, the rank estimate
was previously given by Kawauchi in [Ka96]. The result on Blanchfield forms is to the
best of our knowledge a new result.

Our second main theorem gives a refinement of Corollary 1.2 when we replace the
clasp number by the Gordian distance. More precisely we have the following theorem.

Theorem 1.3. Let L and J be two m-component links. Then

|β(L)− β(J)| ≤ g(L, J).

Furthermore, if β(J) = β(L) + g(L, J), then

∆tor
L = ∆tor

J · f f · n

for some f ∈ Λ and some negligible n ∈ Λ.

Put differently, since Gordian distance is more specialized than 4-dimensional clasp
number, we are able to show that one torsion polynomial divides the other.

1.2. The splitting number and the weak splitting number.
We now recall and introduce a few more link theoretic notions.

1. The unlinking number u(L) of an m-component link L is the Gordian distance to the
m-component unlink.

2. An m-component link L is a split link if there are m disjoint balls in S3 each of which
contains a component of L.

3. Following [BS15], [CFP13], the splitting number sp(L) of a link L is the minimal
number of crossing changes between different components of L required on some dia-
gram of L to obtain a split link, where the minimum is taken over all diagrams.

4. The weak splitting number wsp(L) of a link L is the minimal number of crossing
changes required on some diagram of L to produce a split link, where the minimum
is taken over all diagrams.

Note that for the weak splitting number, unlike the splitting number considered above,
crossing changes of a component with itself are permitted. For example if L is the
Whitehead link then it is straightforward to see that wsp(L) = 1, but an elementary
linking number argument (see [CFP13, Section 2]) shows that sp(L) = 2. Somewhat
confusingly the weak splitting number is referred to as the splitting number in [Ad96],
[Sh12], [La14], but we decided to follow the convention used by Batson–Seed [BS15].

It is straightforward to apply Theorem 1.3 to the computation of unlinking numbers,
splitting numbers and weak splitting numbers. The precise statements are given in
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Corollaries 4.2, 4.3 and 4.4. We note that the result on splitting numbers, Corollary 4.3,
considerably strengthens [CFP13, Theorem 4.2].

In Section 5 we give some examples of the use of these corollaries. Corollary 4.2
enables us to easily compute the unlinking numbers of the 3-component links with 9 or
fewer crossings. We also show that some, but not all, of the results on splitting numbers
from [CFP13] which were obtained using covering links, can also be obtained with the
algebraic methods of this paper.

1.3. Knot types from weak splitting operations.
Now we turn to an application of Theorems 1.1 and 1.3 to weak splitting numbers.

Let us introduce some notation. If a link J can be obtained from a link L by a sequence
of r crossing changes then we write L Ãr J . A sequence of crossing changes culminating
in a split link is referred to as a splitting sequence. Given knots K1, . . . , Km we denote
the split link comprising these knots by K1 t · · · t Km. We write U for the unknot
throughout this subsection.

In Section 6 we give a general condition in terms of Blanchfield forms and Alexander
polynomials restricting the knot types which can arise from a sequence of crossing changes
realising the weak splitting number; see Theorem 6.1.

In [Ad96] Adams gave some examples of 2-component links L with unknotted com-
ponents and wsp(L) = 1, such that whenever one turns L into a split link using a single
crossing change, the resulting split link has a knotted component. Put differently, for
the given link L one has to pay a price for splitting it with one crossing change, i.e. one
has to turn one of the unknotted components into a non-trivial knot.

Adams then asked whether there are occasions when the price to pay must be ‘arbi-
trarily high’. More precisely, the following question was asked by Adams [Ad96, p. 299].

Question 1.4. Let C be a complexity for knots, e.g. crossing number, hyperbolic
volume, span of some knot polynomial. Given any c ∈ N, does there exist a 2-component
link L with unknotted components such that for any splitting sequence L Ã1 K t U of
length one we have C(K) ≥ c?

We give an affirmative answer to Adams’ question for the crossing number.

Theorem 1.5. Fix c ∈ N. There exists a 2-component link L with unknotted
components such that such for any knot K with L Ã1 K t U , the crossing number of K

is at least c.

Next we give a quick summary of the proof of Theorem 1.5. Given c ∈ N we combine
constructions from [Ad96] and [Kon79] to obtain a link L with L Ã1 J t U where J

is a knot such that the degree of ∆J(t) is 2n and ∆J is irreducible, chosen so that n is
suitably high with respect to c. Then we find that for any K as in Theorem 1.5, we have
∆J |∆K , so that the degree of ∆K is forced to be at least 2n. The theorem follows since
the degree of the Alexander polynomial gives a lower bound on the crossing number.

In fact, it is straightforward to modify the proof of Theorem 1.5 to give an affirmative
answer to Adams’ question for the support of knot Floer homology and the 3-genus as
the complexity, since the Alexander polynomial provides a lower bound for these as well.
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The paper is organized as follows. In Section 2 we recall the definitions and basic
properties of the Alexander module and the Blanchfield form of a link. In Section 3 we
provide the proof of Theorem 1.1 and Corollary 1.2. In Section 4 we will prove Theorem
1.3 and we will state several corollaries relating Alexander polynomials to the unlinking
number, the splitting number and the weak splitting number of a link. In Section 5
we give examples of unlinking and splitting number computations. In Section 6 we
investigate weak splitting numbers and the knot types arising from them; in particular
we give the proof of Theorem 1.5.

Conventions. All rings are commutative and all modules are finitely generated.
Links are oriented and ordered.

Acknowledgment. Work on this paper was supported by the SFB 1085 ‘Higher
Invariants’ at the Universität Regensburg funded by the DFG. This paper has roots in
joint work of two of us with Jae Choon Cha, and we wish to thank him, and also Patrick
Orson, for many helpful conversations. We would also like to thank Lorenzo Traldi for
helpful comments on the first version of the article.

2. The Alexander module and the Blanchfield form.

2.1. Alexander modules.
Throughout the paper we identify the group ring of Zm with the multivariable

Laurent polynomial ring Λ := Z[t±1
1 , . . . , t±1

m ] in the canonical way. (We suppress m from
the notation, but it will always be clear from the context which m we mean.) We denote
by f 7→ f the involution on Λ which is given by the unique Z-linear ring homomorphism
with ti 7→ t−1

i , i = 1, . . . , m. Furthermore, given a Λ-module V we denote the Λ-module
with involuted Λ-module structure by V , i.e. the underlying additive group of V is the
same as for V , but the action of f on V is defined as the action of f on V .

Throughout the paper we will mostly be interested in the following Λ-modules:

1. the ring Λ itself,
2. the ring ΛS := Z[t±1

1 , . . . , t±1
m , (t1 − 1)−1, . . . , (tm − 1)−1], which is the multivariable

Laurent polynomial ring with the monomials ti − 1 inverted,
3. the quotient field Ω of Λ, which is also the quotient field of ΛS .

In the following let X be a connected manifold and let ϕ : π1(X) → Zm be a homo-
morphism. We denote the cover corresponding to ϕ by p : X̃ → X. Given Y ⊂ X we
write Ỹ := p−1(Y ). Note that the group Zm acts by deck transformations on C∗(X̃, Ỹ )
on the left. Thus we can view C∗(X̃, Ỹ ) as a (left) Z[Zm] = Λ-module. Now let M be a
(left) Λ-module. Then we consider the following (right) Λ-modules:

Hi(X, Y ;M) := Hi

(
C∗(X̃, Ỹ )⊗Λ M

)
, and

Hi(X, Y ;M) := Hi

(
HomΛ(C∗(X̃, Ỹ ),M)

)
.

As usual we write Hi(X;M) = Hi(X, ∅;M) and Hi(X;M) = Hi(X, ∅;M).
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Now let L be an m-component link. We denote the exterior of L by XL. Note that
π1(XL) admits a canonical epimorphism φL onto Zm which is given by sending the i-th
oriented meridian to the i-th vector of the standard basis of Zm. In the following we will
refer to H1(XL; Λ) as the Alexander module of L.

We recall several basic properties of twisted homology and cohomology groups. The
following lemma is well-known; see e.g. [HS71, Section VI.3].

Lemma 2.1. Let X be a connected CW-complex and let ϕ : π1(X) → Zm be a
homomorphism. Then for any Λ-module M we have

H0(X;M) ∼= M

/{ m∑

i=1

ϕ(gi)vi − vi

∣∣∣∣ v1, . . . , vm ∈ M and g1, . . . , gm ∈ π1(X)
}

.

In particular, if M is a field and ϕ is non-trivial, then H0(X;M) = 0.

The following theorem is a well-known instance of Poincaré duality and the universal
coefficient theorem.

Theorem 2.2. Let X be a connected oriented k-manifold and let ϕ : π1(X) → Zm

be a homomorphism. Let ∂X = Y0 ∪ Y1 be a decomposition of the boundary into two
submanifolds with ∂Y0 = ∂Y1. Then for any Λ-module M we have an isomorphism

PD: Hi(X, ∂Y0;M)
∼=−→ Hk−i(X, ∂Y1;M).

In particular, if M = Ω is the quotient field of Λ, then Hi(X, ∂Y0; Ω) ∼= Hk−i(X, ∂Y1; Ω).

2.2. Ranks and orders of modules.
Let R be a domain with quotient field Q. Let M be an R-module. We then refer to

rankR(M) := dimQ(M ⊗R Q) as the rank of M . Now suppose that R is in fact a UFD
and that M is finitely generated. We pick a resolution

Rk A−→ R l → M → 0

with k ∈ N ∪ {∞}. After adding possibly columns of zeros we can and will assume that
k ≥ l. The order ord(A) of M is defined as the greatest common divisor of the (l × l)-
minors of A. Note that the order is well-defined up to multiplication by a unit in R; see
[CF77] for details. Also note that ord(A) 6= 0 if and only if rank(A) = 0.

For future reference we record the following lemma. A proof can be found in [Hi12,
Chapter 3.3].

Lemma 2.3. Let R be a UFD and let

0 → A → B → C → 0

be a short exact sequence of finitely generated R-modules. Then

ord(B) = ord(A) · ord(C).



Blanchfield forms and Gordian distance 1053

In the following, given f, g ∈ R we write f
.= g if f = ug for some unit u ∈ R.

We will mostly be interested in the rings R = Λ and R = ΛS . Note that the units in
Λ = Z[t±1

1 , . . . , t±1
m ] are precisely the monomials ±tn1

1 . . . tnm
m . Furthermore, the units in

ΛS = Z[t±1
1 , . . . , t±1

m , (t1 − 1)−1, . . . , (tm − 1)−1]

are precisely the products of monomials and powers of ti−1, i = 1, . . . , m. Put differently,
the units in ΛS are the negligible elements from the introduction.

Given an m-component link L we write

β(L) := rankΛ(H1(XL; Λ)).

Note that XL is compact, so in particular XL is homeomorphic to a finite CW-complex,
which in turn implies that the cellular chain complex C∗(X̃L) is finitely generated over
Λ. Since Λ is Noetherian it follows that H1(XL; Λ) and TorΛ H1(XL; Λ) are finitely
generated Λ-modules. We refer to

∆L := ord(H1(XL; Λ))

as the Alexander polynomial of L. Furthermore, we refer to

∆tor
L := ord(TorΛ H1(XL; Λ))

as the torsion Alexander polynomial of L.
Recall that an m-component link is split if there exist m disjoint 3-balls in S3, each

of which contains a component of L. Later on we will need the following well-known
lemma.

Lemma 2.4. Let L be a split m-component link. Then β(L) = m − 1 and ∆tor
L

.=
∆L1(t1) · · ·∆Lm(tm).

Proof. We just provide a short sketch of the well-known proof. By our hypothesis
there exist disjoint balls B1, . . . , Bm in S3, such that Li ⊂ Bi, i = 1, . . . , m. We write
Si = ∂Bi, i = 1, . . . , m and C := S3 \⋃m

i=1 Bi.
Note that H1(Si; Λ) = H1(C; Λ) = 0 and H0(Si; Λ) = H0(C; Λ) = Λ. Also, a

straightforward argument shows that for j = 0, 1 and i ∈ {1, . . . , m} we have

Hj(Bi \ νLi) ∼= Hj(S3 \ νLi; Λ) ∼= Hj(S3 \ νLi;Z[t±1
i ])⊗Z[t±1

i ] Λ.

It follows easily from Lemma 2.1 that H0(S3 \ νLi;Z[t±1
i ]) ∼= Z[t±1

i ]/(ti − 1)Z[t±1
i ].

Furthermore it follows from the definitions that Mi := H1(S3 \ νLi;Z[t±1
i ]) is a module

whose order equals ∆Li(ti).
The Mayer–Vietoris sequence with Λ coefficients corresponding to the decomposition

S3 \ νL =
⋃m

i=1(Bi \ νLi) ∪ C gives rise to the following exact sequence:
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0 //
⊕m

i=1 Mi ⊗Z[t±1
i ] Λ // H1(S3 \ νL; Λ) // Λm //

// Λ⊕⊕m
i=1 Λ/(ti − 1)Λ // H0(S3 \ νL; Λ) // 0.

By Lemma 2.1 the module H0(S3 \ νL; Λ) is Λ-torsion. The lemma now follows immedi-
ately from the above observations and from elementary properties of ranks and orders.
We leave the details to the reader. ¤

2.3. The maximal pseudo-null submodule.
Given a ring R and a module M over R we denote the torsion submodule by TM .

Furthermore we denote the maximal pseudo-null submodule of M by zM ; this is the
submodule of TM which is generated by the elements of M whose annihilator is not
contained in any principal ideal of R. Following [Hi12, Section 2.3] we write

t̂M := TM/zM.

For future reference we record the following lemma, see [Hi12, Theorem 3.5].

Lemma 2.5. For any Λ-module M we have ord(TM) = ord(t̂M).

2.4. Linking forms.
Let R be a ring with (possibly trivial) involution. We denote the quotient field of

R by Q. Here and throughout the paper we extend the involution on R to an involution
on Q. Let λ : H ×H → Q/R be a map.

• We say λ is sesquilinear if λ(au+ bv, w) = aλ(u,w)+ bλ(v, w) and λ(u, av + bw) =
λ(u, v)a + λ(u,w)b for all a, b ∈ R and u, v, w ∈ H.

• We say λ is hermitian if λ(u, v) = λ(v, u) for all u, v ∈ H.
• We say that λ is nonsingular if the assignment u 7→ (v 7→ λ(u, v)) defines an

isomorphism of R-modules H → Hom(H, Q/R).
• A linking form over R is an R-module H together with a hermitian sesquilinear

nonsingular form λ : H ×H → Q/R.
• We say that two linking forms λ : H × H → Q/R and µ : G × G → Q/R are

isomorphic if there is an isomorphism of R modules f : H
'−→ G such that λ(v, w) =

µ(f(v), f(w)) for all v, w ∈ H.
• We say that the linking form λ is metabolic if λ admits a metabolizer, i.e. a sub-

module P of H with P = P⊥ := {v ∈ H | λ(p, v) = 0 for all p ∈ P}.
• Given a linking form λ : H × H → Q/R we write −λ : H × H → Q/R for the

linking form which is defined by (−λ)(v, w) = −λ(v, w) for all v, w ∈ H.
• Given two linking forms λ : H ×H → Q/R and λ′ : H ′ ×H ′ → Q/R we refer to

λ⊕ λ′ : (H ⊕H ′)× (H ⊕H ′) → Q/R,

((v ⊕ v′), (w ⊕ w′)) 7→ λ(v, w) + λ′(v′, w′)

as the Witt sum of λ and λ′.
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• We say that two linking forms (H, λ) and (G,µ) are Witt equivalent, written as
(H, λ) ∼ (G,µ), if there exist metabolic forms (P, ϕ) and (Q,φ) such that

(H, λ)⊕ (P, ϕ) ∼= (G,µ)⊕ (Q,φ).

• The Witt group of linking forms over R is defined as the set of Witt equivalence
classes of linking forms. The identity element of the Witt group is the equivalence
class of the linking form on the zero module and the inverse of [(H, λ)] is given by
[(H,−λ)].

For the record we state the following well-known lemma which is proved in [Hi12,
Lemma 3.26], for example.

Lemma 2.6. Let R be a UFD with (possibly trivial) involution. If λ : H×H → Q/R

is a metabolic linking form, then ord(H) .= f · f for some f ∈ R.

2.5. The Blanchfield form.
In this section we sketch the definition of Blanchfield forms for 3-manifolds and we

summarize a few key properties. We refer to [Hi12, Section 2] for a thorough treatment
of Blanchfield forms.

Let N be a 3-manifold (with possibly nonempty boundary) and let ϕ : π1(N) → Zm

be a homomorphism, which induces a homomorphism Z[π1(N)] → Z[Zm] = Λ. Recall
that Ω is the quotient field of Λ. Let R be a subring of Ω that contains Λ and that
is closed under involution. We denote the composition of the following sequence of
R-module homomorphisms by Φ:

TH1(N ;R)
(1)−−→ TH1(N, ∂N ;R)

(2)−−→ TH2(N ;R)

(3)−−→ Ext1R(H1(N ;R), R)

(4)−−→ Ext1R(TH1(N ;R), R)

(5)−−→ HomR(TH1(N ;R),Ω/R).

Here we used the following maps:

1. the inclusion induced map;
2. the Poincaré duality given in Theorem 2.2;
3. the universal coefficient spectral sequence (see [Hi12, Sections 2.1 and 2.4]) gives rise

to a pair of exact sequences as in the following diagram, where V is some R-module.
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0

²²
coker

(
Ext0R(H1(N, R), R) → Ext2R(H0(N, R), R)

)

²²
0 // V //

²²

H2(N ;R) // Ext0R(H2(N, R), R)

ker
(
Ext1R(H1(N, R), R) → Ext3R(H0(N, R), R)

)

²²
0

Since Ext0R(H2(N, R), R) = HomR(H2(N, R), R) is torsion-free we obtain a map
TH2(N ;R) → V , which we then compose with the map

V → ker
(
Ext1R(H1(N, R), R) → Ext3R(H0(N, R), R)

)
↪→ Ext1R(H1(N, R), R).

4. The map induced by the restriction from H1(N ;R) to TH1(N ;R).
5. The Bockstein long exact sequence arising from the short exact sequence of coefficients

0 → R → Ω → Ω/R → 0:

// Ext0R(TH1(N ;R),Ω) // Ext0R(TH1(N ;R),Ω/R) //

// Ext1R(TH1(N ;R), R) // Ext1R(TH1(N ;R),Ω) //

has first and last terms vanishing, the first since TH1(N ;R) is R-torsion and
the last since Ω is an injective R-module. Thus there is a canonical map
Ext1R(TH1(N ;R), R) → Ext0R(TH1(N ;R),Ω/R) = HomR(TH1(N ;R),Ω/R).

Hillman [Hi12, Chapter 2] shows that if Hi(∂N ;R) = 0 for i = 0, 1 and R contains ΛS ,
then the resulting map

TH1(N ;R)× TH1(N ;R) → Ω/R,

(x, y) 7→ Φ(x)(y)

descends to a linking form

BlN : t̂H1(N ;R)× t̂H1(N ;R) → Ω/R

that we refer to as the R-Blanchfield form of N .
Later on we will make use of the following proposition that is proved on [Hi12,

p. 40]. (See also [Let00, Proposition 2.8].)

Proposition 2.7. Let N be a closed 3-manifold and let ϕ : π1(N) → Zm be a
homomorphism. Let R be a subring of Ω which contains ΛS. Suppose that there exists a
4-manifold W with ∂W = N such that ϕ extends over π1(W ). We write
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P := Im
{

TH2(W,N ;R) ∂−→ TH1(N ;R) → t̂H1(N ;R)
}

.

If the sequence

TH2(W,N ;R) ∂−→ TH1(N ;R) → TH1(W ;R)

is exact, then P⊥ is a metabolizer for the R-Blanchfield pairing of N .

The proof of this is contained in the proof of [Hi12, Theorem 2.4]. However the
situation of his Theorem 2.4 is different to ours, in that the 4-manifold Z in [Hi12] is the
exterior of a concordance between two links. Nevertheless the part of his proof on page
40, verbatim except for (Z, ∂Z) replaced with (W,N), provides a proof of Proposition 2.7.
There was a slight problem with this part of the proof in the first edition of Hillman’s
book, therefore the reader is advised to consult the second edition. A more detailed
version of the proof is also given in [Kim15, Section 5.1].

Now let L be an m-component link. It is straightforward to see that H∗(∂XL; ΛS) =
0. We then refer to

BlL := BlXL
: t̂H1(XL; ΛS)× t̂H1(XL; ΛS) → Ω/ΛS

as the Blanchfield form of L. Given an m-component link L we denote by BlLi(ti) the
linking form which is given by tensoring the Blanchfield form of the knot Li over the ring
Z[t±1

i ] up to the ring ΛS . Now we can formulate the following well-known lemma, which
can be viewed as a generalization of Lemma 2.4.

Lemma 2.8. Let L be a split m-component link. Then β(L) = m − 1 and BlL ∼
BlL1(t1)⊕ · · · ⊕ BlLm

(tm).

Proof. We only provide a sketch of the proof. The proof of Lemma 2.4 shows
that the torsion part of H1(XL; Λ) is the direct sum of the Alexander modules of the
components, tensored up into Λ. Each component lives in a 3-ball. The lemma follows
from the observation that the Blanchfield form of a 3-manifold N is isomorphic to that
of N with a 3-ball removed. We leave the details to the reader. ¤

2.6. Brief review of Reidemeister torsion.
In this section we remind the reader of the definition and some basic properties of

Reidemeister torsion, which we shall apply later to compute Λ coefficient homology. For
a comprehensive and readable introduction the reader is referred to [Tu01].

Let (C∗, {ci}) be a based finite chain complex of finitely generated free Ω-modules.
If C∗ is not acyclic, then we define τ(C∗, {ci}) = 0. Otherwise we pick a basis bi of each
Bi := Im(∂i : Ci+1 → Ci), and we pick a lift b̃i−1 of bi−1 to Ci. The Reidemeister torsion
of (C∗, {ci}) is defined as

τ(C∗, {ci}) :=
∏

det([bib̃i−1/ci])(−1)i+1 ∈ Ω× = Ω \ {0},
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where [d/e] is the change of basis matrix between bases d and e. The torsion is indepen-
dent of the choices of bi and of the lifts b̃i−1.

Let X be a CW complex together with a homomorphism ϕ : π1(X) → Zm. Such a
representation induces a homomorphism of rings

Z[π1(X)] → Λ → Ω.

Choose an orientation of each cell and choose a lift of each cell to a cell in the cover X̃

corresponding to ϕ. This determines a basis {ci} for the chain complex

C∗(X; Ω) = C∗(X̃)⊗Λ Ω.

By Chapman’s theorem [Ch74], the torsion:

τ(X) := τ(Cα
∗ (X; Ω), {ci}) ∈ {0} ∪ Ω×/± tk1

1 · · · tkm
m

is a well-defined homeomorphism invariant of (X, ϕ), that is up to the indeterminacy in-
dicated it is independent of the choice of cellular decomposition, the choice of orientations
and the choice of lifts.

An important property of the torsion is multiplicativity in short exact sequences.

Theorem 2.9. Let

0 → C → D → E → 0

be a short exact sequence of finite acyclic chain complexes of finitely generated Ω-modules.
Let {ci} and {ei} be bases for C and E respectively, let {ẽi} be a lift of {ei} to D, and
define the basis di = ciẽi. Then

τ(D, {di}) = ±τ(C, {ci})τ(E, {ei}).

Proof. See [Tu01, Theorem 1.5]. ¤

We will also need the following useful formula.

Lemma 2.10. Let X be any CW complex, and let α : π1(X × S1) → Zm be a
homomorphism such that the composition π1(S1) → π1(X × S1) α−→ Zm → Z[Zm] = Λ
sends a generator of π1(S1) to a non-trivial element z 6= 1 ∈ Λ. Then

τ(X × S1) = (z − 1)−χ(X).

Proof. See [Ni03, Example 2.7]. ¤

In particular this lemma implies that the torsion of a torus is τ(S1 × S1) = 1,
provided at least one of the generators maps nontrivially to Zm.
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3. Blanchfield forms and the 4-dimensional clasp number.

For the reader’s convenience we recall Theorem 1.1.

Theorem 1.1. Let L and J be m-component links. Then |β(L)−β(J)| ≤ c(L, J).
Moreover, if c(L, J) = |β(L)−β(J)|, then the Witt sum of Blanchfield forms BlL⊕−BlJ
is metabolic.

Note that Corollary 1.2 is an immediate consequence of Theorem 1.1 and Lemmas
2.5 and 2.6.

The first part of the theorem has been shown by Kawauchi [Ka13], however our
argument will lead into the proof of the second part of the theorem, so we give a complete
argument.

Let L and J be m-component links. We write c := c(L, J). We start out by
introducing notation, especially for the combinatorics of an immersed concordance.

Figure 1. Left: an example of an immersed concordance. The picture is a sketch in dimension
2. The annuli are represented by curves and the links are represented as points. The manifold W
is the part of the picture outside the neighbourhood of the annuli. The dashed curves represent
P . Right: the corresponding graph Γ (the labelling of the edges is not drawn).

• Let A1, . . . , Am # S3 × I be m properly immersed annuli giving an immersed
concordance between L and J with c double points. Define A :=

⋃m
i=1 Ai. to be

their union. So A ∩ (S3 × {0}) = Li and A ∩ (S3 × {1}) = −J . (Here we identify
L× {0} with L and similarly we identify J × {1} with J .)

• Define dij := |Ai ∩Aj | to be the number of double points between Ai and Aj , for
i 6= j. Let dii be the number of self-intersections of Ai. Note that dij = dji. We
have

∑
i≤j dij = c.

• Let Γ be the graph defined by the combinatorics of the intersections of the Ai.
That is, take m vertices corresponding to each of the annuli Ai, and add dij edges
between the i-th and j-th vertices. There are c edges in total.

• We introduce a labelling of edges of Γ. An edge corresponding to a positive double
point is labelled with “+”, while an edge corresponding to a negative double point
is labelled with “−”.

• Let E := β0(Γ) be the number of connected components of Γ and let D := β1(Γ)
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be the first Betti number of Γ. We have χ(Γ) = E −D = m− c.
• Define W := S3 × I \ νA to be the exterior of the annuli A.
• The boundary of W decomposes as ∂W = XL∪∂XL

P ∪∂XJ
XJ , where this defines

P . That is, P := cl(∂W \ (XL ∪XJ)), or equivalently P = ∂νA \ (νL ∪ νJ).

Some of the notation is sketched in Figure 1. We have three lemmata which lead to
the proof of Theorem 1.1. The first looks at the integral homology of P .

Lemma 3.1. The integral homology of P is given by H0(P ;Z) ∼= ZE, H1(P ;Z) ∼=
Z2m+D and H2(P ;Z) ∼= Z2m+D−E.

The next lemma computes the integral homology of W .

Lemma 3.2. The integral homology of W is given by

Hk(W ;Z) ∼=





Z k = 0,

Zm k = 1,

Zm+c−1 k = 2,

0 otherwise.

Furthermore there exists an isomorphism φW : H1(W ;Z) '−→ Zm such that the diagram
below commutes, where the other maps are either induced by the inclusions or they are
given by the canonical isomorphisms φL and φJ induced by the orientations of the links:

H1(XL;Z)
∼= //

φL

∼=

%%LLLLLLLLLLLLLLLL
H1(W ;Z)

∼= φW

²²

H1(XJ ;Z)
∼=oo

φJ

∼=

yyrrrrrrrrrrrrrrrr

Zm

In particular H1(W ;Z) is generated by the meridians to L, or to J , and the maps
H1(XL;Z) → H1(W ;Z) and H1(XJ ;Z) → H1(W ;Z) are isomorphisms.

For any subset V ⊆ W , a Λ coefficient system is defined with the representation
π1(V ) → H1(V ;Z) → H1(W ;Z)

φW−−→ Zm.
The third and final lemma needed for the proof of Theorem 1.1 looks at the Λ

coefficient homology of P , where the coefficient system is defined with the representation
π1(P ) → H1(P ;Z) → H1(W ;Z)

φW−−→ Zm.

Lemma 3.3. The homology H∗(P ; Ω) is trivial. Moreover the order of the homology
ordH1(P ; Λ) is a negligible polynomial.

Next we give the proofs of the three lemmata above.

Proof of Lemma 3.1. The key observation is that since each P is a boundary
of a tubular neighbourhood of a surface with double points, it is a (possibly discon-
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nected) plumbed 3-manifold; see [GS99, Example 4.6.2]. We remark that if we add, to
each vertex in the graph Γ, two edges ending in arrowhead vertices, then we obtain the
plumbing diagram for P in the sense of [Ne81, Appendix]. Note that the framings are
irrelevant because none of the plumbed components are closed. Also note that in our
convention the plumbing corresponding to a disconnected graph is a disjoint union of the
plumbed manifolds corresponding to the connected components of the graph. Elsewhere
in the literature it has been the connected sum instead of a disjoint union. Computation
of H1(P ;Z) is a standard procedure. We recall it for the reader’s convenience and for
future reference in the proof of Lemma 3.3.

Figure 2. A schematic of the manifold P near a double point. Two annuli, here A1 and A2,
intersect at a single point in the middle. The part of P near this point (denoted by T in the
picture) is the complement of the Hopf link, that is, of the link of the singularity of type ‘ordinary
double point’.

Let Σ be a disjoint union of m annuli. If there are no double points, then P = Σ×S1.
Otherwise we construct P as follows; compare [Ne81, Section 1] and see Figure 2. For
each vertex of the graph Γ we take an annulus with as many discs removed, as is the
valency (number of incident edges) of the vertex. Let Y1, . . . , Ym be these punctured
annuli. The number of removed discs in Yj is ∆j := djj +

∑m
i=1 dij . Let ∂j1, . . . , ∂j∆j

be
the boundary components of Yj corresponding to these discs. The total number of these
boundary components is equal to 2c. (Note that each Yj has two additional boundary
components, namely the boundary of the annulus.)

In the reconstruction of P it is convenient to temporarily orient the edges of Γ,
however the output is independent of this orientation. For each edge of Γ take a torus
S1 × S1. Let T1, . . . , Tc be these tori. Then the manifold P is a union of the products
Yj × S1 and thickened tori Ti × [−1, 1]. The glueing data is encoded in the graph Γ.
Namely, if the edge corresponding to Ti starts at the vertex corresponding to Yj , we
identify Ti×{−1} with ∂jk×S1 ⊂ ∂Yj×S1, where k is determined by the combinatorics
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of the graph. If the edge corresponding to Ti ends at the vertex corresponding to Yj , we
identify Ti × {1} with S1 × ∂jk. We remark that this time the coordinates are swapped.
Moreover, if the edge is marked with a “−”, the last identification reverses the orientation
both of S1 and of ∂jk; see [Ne81, Section 1].

Denote the canonical maps Ti → Ti × {±1} by ι±. The Mayer–Vietoris sequence
thus gives rise to the following long exact sequence

. . . //
c⊕

i=1

H1(Ti;Z)
ι−−ι+ // H1

(
Y × S1;Z

)
// H1(P ;Z) //

//
c⊕

i=1

H0(Ti;Z)
ι−−ι+ // H0

(
Y × S1;Z

)
// H0(P ;Z) // 0

(3.1)

where Y :=
⋃m

i=1 Yi. Now we have the following claim.

Claim. The homomorphism

c⊕

i=1

H1(Ti;Z)
ι−−ι+−−−−→ H1

(
Y × S1;Z

)

splits.

A straightforward argument shows that the curves ∂11, . . . , ∂m∆m
(their number is

2c) freely generate a summand of H1(Y ;Z). In particular there is a splitting

s : H1(Y ;Z) →
⊕

i=1,...,m
j=1,...,∆i

Z∂ij .

It follows easily from the glueings that the map

c⊕

i=1

H1(Ti;Z)
ι−−ι+−−−−→ H1

(
Y × S1;Z

) → H1(Y ;Z) s−→
⊕

i,j

Z∂ij

is an isomorphism. This concludes the proof of the claim.
The lemma is now an immediate consequence of the exact sequence (3.1), the defini-

tions and the fact that the above homomorphism splits. Indeed, the H0 terms in the exact
sequence are precisely the terms and maps which compute H0(Γ). Since H0(Γ;Z) ∼= ZE ,
the Mayer–Vietoris exact sequence (3.1) reduces to

Z2c → Z2c+2m → H1(P ;Z) → Zc → Zm → ZE → 0

where the left hand homomorphism splits. We thus see that H1(P ;Z) ∼= Z2m⊕Zc−m+E .
By E − D = m − c it follows that H1(P ) ∼= Z2m+D. The statement that H2(P ;Z) ∼=
Z2m+D−E also follows from the Mayer–Vietoris sequence. Alternatively it follows from
an Euler characteristic argument and the observation that H2(P ;Z) ∼= H1(P, ∂P ;Z) =
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Hom(H1(P, ∂P ;Z),Z) is torsion-free. ¤

Proof of Lemma 3.2. To compute the integral homology of W we use the
Mayer–Vietoris sequence associated to the decomposition S3 × I ∼= W ∪P νA. For
H1(W ;Z), we have an exact sequence:

H2(S3 × I;Z) → H1(P ;Z) → H1(W ;Z)⊕H1(νA;Z) → H1(S3 × I;Z).

As νA strongly retracts onto A, there is an homotopy equivalence

νA ' ((Γ ∨ S1) ∨ S1) ∨ · · · ∨ S1,

where there are m copies of S1, one attached to each vertex of Γ. That is, we change the
basepoint for each wedge sum. Therefore H1(νA;Z) ∼= Zm+D and the exact sequence
above becomes:

0 → Z2m+D → H1(W ;Z)⊕ Zm+D → 0.

It follows that H1(W ;Z) ∼= Zm ∼= ker(H1(P ;Z) → H1(νA;Z)). This kernel is
freely generated by the meridians to L (or to J). Therefore the inclusion induced
maps H1(XL;Z) → H1(W ;Z) and H1(XL;Z) → H1(W ;Z) are isomorphisms. It

is now straightforward to see that the maps H1(W ;Z)
∼=←− H1(XL;Z)

φL−−→ Zm and

H1(W ;Z)
∼=←− H1(XJ ;Z)

φJ−−→ Zm agree. We denote this isomorphism H1(W ;Z) → Zm

by φW . By Poincaré–Lefschetz duality, H3(W ;Z) ∼= H1(W ; ∂W ;Z), which fits into the
short exact sequence

0 → Ext1Z(H0(W,∂W ;Z),Z) → H1(W,∂W ;Z) → Ext0Z(H1(W,∂W ;Z),Z) → 0

by the universal coefficient theorem. Since ∂W is connected we have an isomorphism
H0(∂W ;Z) '−→ H0(W ;Z). Therefore H0(W,∂W ;Z) = 0 and the map H1(W ;Z) →
H1(W,∂W ;Z) is surjective. However we just saw that the meridians of L generate
H1(W ;Z). Since the meridians of L lie in ∂W , the image of the map H1(W ;Z) →
H1(W,∂W ;Z) is zero. Thus H1(W,∂W ;Z) vanishes, from which we see that H3(W ;Z)
= 0.

Next note that H2(W ;Z) is torsion free. To see this, observe that the torsion sub-
group of H2(W ;Z) is a subgroup of H3(W ;Z) by the universal coefficient theorem,
but H3(W ;Z) ∼= H1(W,∂W ;Z) = 0 by Poincaré–Lefschetz duality. Therefore to find
H2(W ;Z) it suffices to know its rank.

Now we may compute with the Euler characteristic. First χ(S3 × I) = χ(S3) = 0.
Also by Lemma 3.1 we have χ(P ) = 0, so 0 = χ(S3 × I) = χ(W ) + χ(νA) − χ(P ) =
χ(W )+χ(νA). As above, νA is homotopy equivalent to a graph Γ′ with β0(Γ′) = E and
β1(Γ′) = m+D. Therefore χ(νA) = E−D−m, from which we see that χ(W ) = m+D−E.
Then note that χ(Γ) = E −D = m − c, computing in the first instance using the Betti
numbers of Γ and in the second instance using the fact that there are m 0-cells and c

1-cells in a cell decomposition of Γ. Thus
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χ(W ) = m + D − E = m + c−m = c.

From this we may compute the rank of H2(W ;Z). Since β0(W ) = 1 and β1(W ) = m, we
have c = χ(W ) = 1−m + rankH2(W ;Z), so that H2(W ;Z) ∼= Zm+c−1 as claimed. ¤

Proof of Lemma 3.3. In the proof of Lemma 3.1 we constructed P as a union
of Y1 × S1, . . . , Ym × S1, where Y1, . . . , Ym are punctured annuli, and thickened tori
T1 × [−1, 1], . . . , Tc × [−1, 1]. In the present proof we use the same description of P .

First we show that H∗(P ; Ω) = 0. To this end, consider the short exact sequence of
chain complexes

0 →
⊕

i=1,...,c
u=±1

C∗(Ti × {u}; Ω)

→
m⊕

i=1

C∗(Yi × S1; Ω)⊕
⊕

i=1,...,c

C∗(Ti; Ω) → C∗(P ; Ω) → 0.

The Ω coefficient system for any subset V ⊆ P is defined via the map π1(V ) → π1(P ) →
Λ → Ω. All of these chain complexes are acyclic. To see this, note that by the associated
Mayer–Vietoris sequence, this will follow once we see that the Ω coefficient homology is
trivial for all complexes apart from C∗(P ; Ω). The homology H∗(S1; Ω) = 0 whenever
the generator of π1(S1) maps nontrivially into Ω. Then H∗(X×S1; Ω) = 0 for any X by
Lemma 2.10. This accounts for all the remaining terms, and thus completes the proof of
the first part of the lemma, that H∗(P ; Ω) = 0.

Given that H∗(P ; Ω) = 0, we can compute the Reidemeister torsion of P ; from
this we will be able to deduce the order of the first homology with Λ coefficients. The
representation π1(P ) → H1(P ;Z) → H1(W ;Z) → Zm = 〈t1, . . . , tm〉 sends a meridian of
Ai to ti. Therefore we may apply Lemma 2.10 to see that

τ(Yi × S1) = (ti − 1)−χ(Yi) = (ti − 1)∆i

since Yi is an annulus with ∆i := dii +
∑m

j=1 dij punctures. Both S1×S1 and S1×S1×I

have Reidemeister torsion 1, by a further application of Lemma 2.10 with X = S1 and
X = S1 × I respectively.

As P is presented as a union of thickened tori T1 × [−1, 1], . . . , Tc × [−1, 1] and
Y1 × S1, . . . , Ym × S1 along tori, the glueing formula of Theorem 2.9 yields the formula

τ(P ) =
m∏

i=1

(ti − 1)∆i , (3.2)

in particular τ(P ) is negligible. By [Tu01, Theorem 4.7] we have

τ(P ) =
2∏

i=0

(ordHi(P ; Λ))(−1)i

.
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Thus it suffices to show that ordH0(P ; Λ) and ordH2(P ; Λ) are negligible.
It follows immediately from Lemma 2.1 and from the definitions that the order of

H0(P ; Λ) is 1 if m ≥ 2, and t− 1 if m = 1. In both cases ordH0(P ; Λ) is negligible. Now
we turn to H2(P ; Λ). Note that P is homotopy equivalent to a 2-complex P ′. Therefore
H2(P ; Λ) = H2(P ′; Λ) is a submodule of the free Λ-module C2(P ′; Λ). In particular
H2(P ; Λ) is torsion-free. By the first part of the lemma we know that H2(P ; Λ)⊗Λ Ω =
H2(P ; Ω) = 0. It follows that H2(P ; Λ) = 0, in particular ordH2(P ; Λ) = 1. ¤

Remark 3.4. Since (ti − 1)2 is a norm, and each self-intersection contributes
(ti− 1)2, we see the linking number differences between the two links L and J determine
the negligible terms up to norms, just as in [Ka13].

Now we have assembled the necessary ingredients, we throw them into the pre-heated
sizzling pan of long exact sequences that is the proof of Theorem 1.1.

Proof of Theorem 1.1. Let L and J be m-component links. We write c =
c(L, J). We begin by studying the ranks β(L) and β(J). Without loss of generality we
can assume that β(J) ≥ β(L). We then have the following claim which in particular
proves the first statement of the theorem.

Claim. We have β(J) ∈ {β(L), . . . , β(L) + c}.

Consider the long exact sequences of the pairs (W,XL) and (W,XJ) with Ω coeffi-
cients:

· · · −→ H3(XL; Ω) −→ H3(W ; Ω) −→ H3(W,XL; Ω) −→
−→ H2(XL; Ω) −→ H2(W ; Ω) −→ H2(W,XL; Ω) −→
−→ H1(XL; Ω) −→ H1(W ; Ω) −→ H1(W,XL; Ω) −→ · · ·

and

· · · −→ H3(XJ ; Ω) −→ H3(W ; Ω) −→ H3(W,XJ ; Ω) −→
−→ H2(XJ ; Ω) −→ H2(W ; Ω) −→ H2(W,XJ ; Ω) −→
−→ H1(XJ ; Ω) −→ H1(W ; Ω) −→ H1(W,XJ ; Ω) −→ · · ·

We investigate the dimensions of the terms in these sequences. Let

β := β(L) = dimH1(XL; Ω).

By Lemma 2.1 we have H0(XL; Ω) = 0. Since XL is homotopy equivalent to a 2-complex,
we have H3(XL; Ω) = 0. The Euler characteristic of XL is zero since XL is a 3-manifold
with a toroidal boundary. Therefore dimH2(XL; Ω) = β.

Next by Lemma 3.2 we have Hi(W,XL;Z) = 0 for i = 0, 1. Therefore
H1(W,XL; Ω) = 0 by [COT03, Proposition 2.10].
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Claim. We have H3(W,XJ ; Ω) = 0.

By Theorem 2.2 the module H3(W,XJ ; Ω) is isomorphic to H1(W,∂W \XJ ; Ω) ∼=
H1(W,∂W \XJ ; Ω). Appealing again to [COT03, Proposition 2.10] we see that
H3(W,XJ ; Ω) = 0 if H1(W,∂W \XJ ;Z) = 0. To see that H1(W,∂W \XJ ;Z) = 0,
we consider the long exact sequence of the triple (W,∂W \XJ , XL):

H1(∂W \XJ , XL;Z) → H1(W,XL;Z) → H1(W,∂W \XJ ;Z) → H0(∂W \XJ , XL;Z).

As we saw above, by Lemma 3.2, H1(W,XL;Z) = 0. Also ∂W \XJ is connected, so
H0(∂W \XJ , XL;Z) = 0. Thus H1(W,∂W \XJ ;Z) = 0, as desired. This concludes the
proof of the claim.

Using the exact sequence of the pair (W,XJ) with Ω coefficients provided above and
the facts that H3(W,XJ ; Ω) = 0 ∼= H3(XJ ; Ω), we find that H3(W ; Ω) = 0. We may also
reverse the rôles of L and J , so that also H3(W,XL; Ω) = 0.

Suppose that dimH1(XJ ; Ω) = β + `, where ` > 0: recall that without loss of
generality we supposed that β(J) ≥ β(L). It follows from H0(XJ ; Ω) = 0 and the usual
Euler characteristic argument that dimH2(XJ ; Ω) = β+`. Next, since H1(W,XL; Ω) = 0
the map

H1(XL; Ω) → H1(W ; Ω)

is a surjection, so dimH1(W ; Ω) ≤ β. We also see that H3(W,XJ ; Ω) = 0 implies

H2(XJ ; Ω) → H2(W ; Ω)

is an injection, so dimH2(W ; Ω) ≥ β + `.
The only potentially nontrivial homology groups of W with Ω coefficients are

H1(W ; Ω) and H2(W ; Ω), since H0(W ; Ω) = 0, again by Lemma 2.1. The Euler charac-
teristic of W is χ(W ) = c by Lemma 3.2, from which it follows that dimH2(W ; Ω) =
dimH1(W ; Ω) + c. Combining this with the fact that dimH1(W ; Ω) ≤ β yields
dimH2(W ; Ω) ≤ β + c. Together the inequalities

β + ` ≤ dimH2(W ; Ω) and dimH2(W ; Ω) ≤ β + c

yield ` ≤ c, which says that β(J) − β(L) ≤ c. We assumed without loss of gener-
ality that β(J) ≥ β(L), so this completes the proof of the claim above that β(J) ∈
{β(L), . . . , β(L) + c}, and therefore also the proof of the first part of the theorem.

Now we turn to the proof of the second statement. First we note that the Witt sum
BlL⊕− BlJ is isomorphic to Bl∂W . Indeed, by Lemma 3.3 the homology of P with ΛS

coefficients is trivial. Using this observation, the argument on [Hi12, p. 39] carries over
to give the desired statement on Blanchfield forms. We leave the details to the reader.

Thus in light of Proposition 2.7, in order to see that the Witt sum of Blanchfield
forms of the links L and −J is metabolic, it suffices to prove the following claim.
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Claim. If β(J) = c(L, J) + β(L), then the sequence

TH2(W,∂W ; ΛS) → TH1(∂W ; ΛS) → TH1(W ; ΛS)

is exact.

In the notation of our proof the assumption that β(J) = c(L, J)+β(L) implies that
β + ` = c + β, so that c = `. Therefore dim H2(W ; Ω) = β + c. The Euler characteristic
implies that dimH1(W ; Ω) = β. Now we consider (3.3), i.e. the long exact sequence of
the pair (W,∂W ) with Ω coefficients. Underneath each entry we write its dimension, for
the convenience of the reader, which we will then proceed to justify.

0 −→H3(W,∂W ; Ω)−→H2(∂W ; Ω)−→H2(W ; Ω)−→
β 2β + c β + c

H2(W,∂W ; Ω)−→H1(∂W ; Ω)−→H1(W ; Ω)−→ 0.
β + c 2β + c β

(3.3)

By Theorem 2.2 and by the above calculations we have dimH3(W,∂W ; Ω) =
dimH1(W ; Ω) = β and dimH2(W,∂W ; Ω) = dimH2(W ; Ω) = β + c.

Finally we also have dimH1(∂W ; Ω) = 2β + c. Indeed, by Lemma 2.10 and Lemma
3.2 we have H∗(∂XL; Ω) = H∗(∂XJ ; Ω) = H∗(P ; Ω) = 0. The Mayer–Vietoris sequence
for ∂W = XL ∪ P ∪XJ with Ω coefficients then implies the desired equality

dimH1(∂W ; Ω) = dimH1(XL; Ω) + dimH1(XJ ; Ω) = 2β + c.

A quick look at the dimensions in the long exact sequence (3.3) shows that the
long exact sequence splits into two short exact sequences. Now consider the following
commutative diagram:

0

²²

0

²²

0

²²
TH2(W,∂W ; ΛS)

²²

// TH1(∂W ; ΛS)

²²

// TH1(W ; ΛS)

²²
H2(W,∂W ; ΛS)

²²

// H1(∂W ; ΛS)

²²

// H1(W ; ΛS)

²²
0 // H2(W,∂W ; Ω) // H1(∂W ; Ω) // H1(W ; Ω).

Note that the vertical sequences are exact. Also note that the middle horizontal sequence
is exact. Furthermore, we have just shown that the bottom horizontal sequence is also
exact. It follows from elementary diagram chasing (this is known as the sharp 3 × 3
lemma [FHH89, Lemma 2]) that the top horizontal sequence is also exact. ¤
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4. The Gordian distance between links.

4.1. Proof of Theorem 1.3.
For the reader’s convenience we recall the statement of Theorem 1.3.

Theorem 1.3. Let L and J be two m-component links. Then

|β(L)− β(J)| ≤ g(L, J).

Furthermore, if β(J) = β(L) + g(L, J), then

∆tor
L = ∆tor

J · f f · n

for some f ∈ Λ and some negligible n ∈ Λ. In particular ∆tor
L divides ∆tor

J .

Proof. We write L′ = J . In light of Theorem 1.1 and the inequality c(L,L′) ≤
g(L,L′) it suffices to prove the second statement. Let L and L′ be two m-component
links with β(L′) = β(L) + g(L,L′). We have to show that

∆tor
L = ∆tor

L′ · f f · n

for some f ∈ Λ and some negligible n ∈ Λ.
We first consider the case that g(L,L′) = 1. We start out with the following claim.

Claim. There exists a non-zero p ∈ Λ such that

∆tor
L = ∆tor

L′ · p.

We write H = H1(S3 \ νL; Λ), H ′ = H1(S3 \ νL′; Λ) and β = β(L). By assumption
we have rankΛ(H) = β and rankΛ(H ′) = β + 1. In [CFP13, Proposition 4.1] we showed
that there exists a diagram

Λ

f

²²
Λ

g // M
p′ //

p

²²

H ′ // 0

H

²²
0

where M is some Λ-module and where the horizontal and vertical sequences are exact.
It follows from the horizontal exact sequence that rankΛ(M) ≥ β +1. On the other hand
from considering the vertical exact sequence we see that rankΛ(M) ≤ β + 1. Thus we
deduce that rankΛ(M) = β + 1. It then follows again from the vertical sequence that f
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is injective, which in turn implies that TM → TH is a monomorphism. By Lemma 2.3
we have that

ord(TM) | ord(TH). (4.1)

Consider the following commutative diagram

0 // TM

p′|
²²

// M

p′

²²

// M ⊗Λ Ω

p′⊗id

²²
0 // TH ′ // H ′ // H ′ ⊗Λ Ω.

The middle vertical map is an epimorphism and the right hand map is a monomorphism
since p′ is a surjective homomorphism between two Ω-vector spaces of the same dimen-
sion. Some mild diagram chasing shows that p : TM → TH ′ is an epimorphism. Lemma
2.3 then implies that

ord(TH ′) | ord(TM). (4.2)

The combination of (4.1) and (4.2) implies that

ord(TH ′) | ord(TH).

But this is exactly the desired statement. This concludes the proof of the claim.
We just showed that ∆tor

L = ∆tor
L′ ·p for some non-zero p ∈ Λ. Moreover by Corollary

1.2 we know that

∆tor
L · g g = ∆tor

L′ · g′ g′ · n

for some g, g′ ∈ Λ and some negligible n. If we combine these two statements we see that
g g divides g′ g′ · n. Since Λ is a UFD we have that g′ g′ · n = g g · f f ·m for some f ∈ Λ
and some negligible m. Simplifying, we obtain ∆tor

L = ∆tor
L′ · f f ·m. This concludes the

proof of the theorem in the case g(L,L′) = 1.
Now suppose that g(L,L′) = g > 1. Then there exists a sequence L =

L0, L1, . . . , Lg = L′ of links such that each Li is obtained from the previous link by
a single crossing change. By Theorem 1.1 we have |β(Li+1) − β(Li)| ≤ 1 for each i.
It follows from the assumption β(L′) = β(L) + g(L,L′) that for each i we have in fact
β(Li+1) = β(Li)+1. The desired statement follows easily from applying the above result
to the g pairs of links. ¤

4.2. Applications of Theorem 1.3.
In this section we will discuss applications of Theorem 1.3 to various special cases

of determining the Gordian distance between links. We start out with the following
well-known lemma.

Lemma 4.1. For an m-component link L we have β(L) ≤ m− 1.
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Proof. The statement of the lemma is well-known to the experts, we will there-
fore just provide a sketch of an argument. Let L be an m-component link. Consider
the inclusion of a wedge of m circles Y :=

∨
m S1 → XL which sends each circle to a

meridian of a different component of L. The induced map on zeroth and first homol-
ogy is an isomorphism. In particular Hi(XL,

∨
m S1;Z) = 0 for i = 0, 1. It follows

from [COT03, Proposition 2.10] that H1(XL, Y ; Ω) = 0, which in turn implies that
H1(Y ; Ω) → H1(XL; Ω) is surjective. Thus it suffices to show that H1(Y ; Ω) ∼= Ωm−1.
Note that by Lemma 2.1 we have H0(Y ; Ω) = 0, therefore an Euler characteristic argu-
ment shows that indeed H1(Y ; Ω) ∼= Ωm−1. ¤

The following corollary to Theorem 1.3 says in particular that the gap between the
rank β(L) of the Alexander module and the maximal possible rank m− 1 gives a lower
bound on the unknotting number. Note that this particular corollary is in fact a special
case of [Ka13, Theorem 1.1].

Corollary 4.2. Let L be an m-component link. Then the following hold :

1. We have m− 1− β(L) ≤ u(L). In particular if ∆L 6= 0, then u(L) ≥ m− 1.
2. If ∆L 6= 0 and u(L) = m− 1, then

∆L = p p · n

for some p ∈ Λ and some negligible n.

Proof. We denote by J the unlink with m-components. It follows from Lemma
2.4 that β(J) = m − 1 and ∆tor

J
.= 1. The first statement of the corollary follows

immediately from the first statement of Theorem 1.1 together with Lemma 4.1.
Now suppose that u(L) = m− 1 and ∆L 6= 0. In this case β(L) = 0 and ∆tor

L = ∆L.
It thus follows that |β(L) − β(J)| = m − 1 = u(L) = g(L, J). The desired statement
follows immediately from Theorem 1.3 and ∆tor

J
.= 1. ¤

We also have the following corollary which significantly strengthens [CFP13, The-
orem 4.2].

Corollary 4.3. Let L be an m-component link. Then the following hold :

1. We have m− 1− β(L) ≤ sp(L). In particular if ∆L 6= 0, then sp(L) ≥ m− 1.
2. If ∆L 6= 0 and sp(L) = m− 1, then

∆L =
m∏

i=1

∆Li(ti) · p p · n

for some p ∈ Λ and some negligible n.

The corollary is deduced from Theorem 1.3 in almost the same way as Corollary 4.2,
except that we now apply Lemma 2.4 to the split link whose components are precisely
the components of L when they are considered as individual knots.
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Finally the following corollary is also proved in the same way as Corollary 4.2, except
here the knot types occurring in some putative split link, obtained by m − 1 crossing
changes on L, are unknown. We leave the details to the reader.

Corollary 4.4. Let L be an m-component link. Then the following hold :

1. We have m− 1− β(L) ≤ wsp(L). In particular if ∆L 6= 0, then wsp(L) ≥ m− 1.
2. If ∆L 6= 0 and wsp(L) = m− 1, then

∆L =
m∏

i=1

pi(ti) · p p · n

for some pi(ti) ∈ Z[t±1
i ], i = 1, . . . , m, some p ∈ Λ and some negligible n.

The reader may compare Corollary 4.4 to [Ka13, Corollary 4.1].

5. Examples of unlinking and splitting number computations.

5.1. Unlinking numbers.
Kohn [Koh93] considered the unlinking numbers of 2-component links with 9 or

fewer crossings. For most 3-component links with 9 or fewer crossings, the deduction of
the unlinking number follows easily from elementary considerations of linking numbers,
unknotting numbers of components, and certain sublinks being nontrivial. In this section
we show that Alexander modules enable a quick calculation of the unlinking numbers of
the remaining five 3-component links with 9 or fewer crossings. These five links are L6a4,
L8a16, L9a46, L9a53 and L9a54. We remark that the conclusions of this subsection
already follow from [Ka13], so we will be brief.

• The 3-component link L8a16 has unknotted components and Alexander polyno-
mial

(t1 − 1)(t2 − 1)(t3 − 1)(t2t3 − 1).

Since t2t3−1 is not a norm it follows from Corollary 4.2 that the unlinking number
is at least three. In fact the unlinking number is equal to three.

• We now consider the 3-component link L9a54, which has unknotted components.
Its Alexander polynomial is

(t3 − 1)(t2 − 1)(t1 − 1)(t23 − t3 + 1).

Again, since t23−t3+1 is not a norm it follows from Corollary 4.2 that the unlinking
number is at least three. In fact the unlinking number is equal to three.

• The 3-component links L6a4, L9a46 and L9a53 have nonzero Alexander polyno-
mial, hence unlinking numbers at least two by Corollary 4.2. In fact the unlinking
numbers of these links are equal to two.

• We also briefly consider one 2-component link, the link L9a1. It has two unknotted
components, and its Alexander polynomial is



1072 M. Borodzik, S. Friedl and M. Powell

(t2 − 1)(t1 − 1)(2t22 − 3t2 + 2).

So it follows from Corollary 4.2 that the unlinking number is at least two. In fact
the unlinking number is equal to two. This was already shown by Kohn [Koh93]
using other methods.

5.2. Band-claspings of split links.
Let K t J be a 2-component split link. Pick an embedding f : D = D2 → S3 such

that f(D)∩K = f(∂D)∩K is an interval and such that f(D) intersects J transversally
in one point in the interior of f(D). Then we write

K ′ = K \ f(∂D) ∪ f(∂D) \K

and we refer to K ′ ∪ J as a band-clasping of K and J . See Figure 3.

Figure 3. Band-clasping.

In Figure 4 we show a band-clasping of two trefoils. If we can find a projection
onto a plane such that the projections of K and f(D) intersect only in the projection
of K ∩ f(D), then we say that K ′ ∪ J is the trivial band-clasping of K and J . It is
straightforward to see that in that case the resulting link does not depend on the choice
of f .

Figure 4. A band-clasping of two trefoils.

We have the following observation about Alexander polynomials of band-claspings.

Proposition 5.1. Let L be a band-clasping of K and J , then

∆L(s, t) = ∆K(t) ·∆J(s) · g g

for some non-zero g ∈ Λ. Furthermore g = 1 if the band-clasping is trivial.
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For example, using Kodama’s program knotGTK we can show that for the link L

in Figure 4 we have

∆L(s, t) = (1− s + s2)(1− t + t2)(s−1 − 1 + t)(s− 1 + t−1).

Note that band-claspings have splitting number 1. The lemma is thus a consequence of
Corollary 4.3, but we prefer to give a sketch of a proof which is particular to this class
of links.

Sketched proof of Proposition 5.1. First of all, it is well-known, and can
be shown using a Mayer–Vietoris argument, that the Alexander polynomial of the triv-
ial band-clasping of K and J equals ∆K(t) · ∆J(s). Furthermore the proof of [Mi98,
Theorem 1.1] carries over to show that any band-clasping L of K and J is in fact ribbon
concordant to the trivial band-clasping of K and J . (We refer to [Tri69] or alternatively
[Sav02, p. 189] for the definition of ribbon concordance.) It then follows from standard
arguments, e.g. by a variation on [Ka78, Theorem B], that

∆L(s, t) = ∆K(t) ·∆J(s) · g g

for some non-zero g ∈ Λ. ¤

It can be shown by an argument completely analogous to that of [Kon79,
Theorem 1], that any 2-component link with splitting number 1 is a band-clasping of
its components. Moreover it seems likely, but we will not provide a proof, that in Propo-
sition 5.1 any non-zero g can be realized by a band-clasping. If this is correct, then this
will in particular show, except for determining the negligible factor precisely, that the
conclusion of Corollary 4.3 (2) is optimal.

5.3. Splitting numbers.
In an earlier paper [CFP13], two of us together with Jae Choon Cha already dis-

cussed splitting numbers in detail. In this section we will revisit some of the results from
that paper.

First we remind the reader that in the calculation of the splitting number, one only
allows crossing changes between different components. It is straightforward to show (see
[CFP13, Lemma 2.1]) that the splitting number has the same parity as the sum of all
linking numbers lk(Li, Lj) with i > j. For example, if L is a 2-component link with odd
linking number, then the splitting number is also necessarily odd.

In [CFP13] Alexander polynomial techniques were used to derive splitting number
conclusions for 2-component linking number one links with at least one knotted compo-
nent. When both components were unknotted, covering link calculus was used, in which
one studies the preimage of one component of the link in the covering space branched
along the other component; see [CK08], [Cha09], [CO93] for more on covering link
calculus. Some, but not all, of the conclusions obtained in [CFP13] using covering links
can be drawn using Corollary 4.3. For example, in [CFP13] we investigated the link
L12n1320, shown in Figure 5.

This is a 2-component link with linking number one and unknotted components.
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Figure 5. The link L12n1320.

It was shown in [CFP13, Section 5.2] that the splitting number is 3. According to
knotGTK [Kod], the Alexander polynomial is:

t31t
3
2 − 2t21t

3
2 − t31t

2
2 + t1t

3
2 + 5t21t

2
2 − 4t1t

2
2 − 4t21t2 + 5t1t2 + t21 − t2 − 2t1 + 1,

which factors as

(t1 − 1)(t2 − 1)(t21t
2
2 − t1t

2
2 + 3t1t2 − t1 + 1).

Since the last factor is not a norm, Corollary 4.3 says that the splitting number is greater
than 1. In fact by the observation above, the splitting number of L12n1320 has to be
odd, so it has to be at least 3. In fact it is easy to verify that it is precisely 3. The proof
of this fact in [CFP13, Section 5.2] used twisted Alexander polynomials to show that a
covering link is not slice, while [BS15] used a Khovanov homology spectral sequence.

Similarly, the links L8a16 and L9a46 were shown in [CFP13] to have splitting
number 3 using covering links. They are 3-component links with nonzero Alexander
polynomial, hence we also get from Corollary 4.3 that the splitting number is at least 3.

Note that for 2- and 3-component links this approach can only show that the splitting
number is at least 3, whereas the covering link techniques were sometimes sufficient to
show that the splitting number is 5.

5.4. Weak splitting numbers.
The 3-component link L8a16, shown in Figure 6, has unknotted components and

Alexander polynomial

(t1 − 1)(t2 − 1)(t3 − 1)(t2t3 − 1).

As well as having unlinking number 3 we see that L8a16 also has weak splitting
number 3, by Corollary 4.4. Similarly, we can also apply Corollary 4.4 to prove that the
link L12n1320 considered in Section 5.3 does not have weak splitting number 1.
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Figure 6. The link L8a16.

6. Knot types obtained from weak splitting operations.

Recall the following notation from the introduction. If a link J can be obtained
from a link L by a sequence of r crossing changes then we write L Ãr J . A sequence
of crossing changes culminating in a split link is referred to as a splitting sequence.
Given knots K1, . . . , Km we denote the split link whose components are these knots by
K1 t · · · tKm. Also we write U for the unknot.

Given an m-component link L with weak splitting number wsp(L) = r, we inves-
tigate the question of which knot types can arise in a splitting sequence of length r.
Theorem 6.1 below concerns the case r = m− 1.

Theorem 6.1. Let L be an m component link with ∆L 6= 0 and wsp(L) = m− 1.
Then for any two splitting sequences L Ãm−1 K1 t · · · tKm and L Ãm−1 J1 t · · · t Jm

we have
m⊕

i=1

BlKi
(ti) ∼

m⊕

i=1

BlJi
(ti),

where ∼ indicates equivalence in the Witt group of linking forms. In particular

m∏

i=1

∆Ki(ti) · f f =
m∏

i=1

∆Ji(ti) · g g · n

for some non-zero polynomials f, g and some negligible n ∈ Λ.

Proof. In this proof write K := K1 t · · · t Km and J := J1 t · · · t Jm. Since
∆L 6= 0 we have β(L) = 0, while

β(K) = β(J ) = r

by Lemma 2.4. By Theorem 1.1 we have that BlK⊕−BlL and BlJ ⊕−BlL are metabolic
and therefore both are zero in the Witt group. In particular they are equivalent in the
Witt group, from which it follows that BlK = BlJ in the Witt group. By Lemma 2.8
the Blanchfield forms of K and J are the Witt sums of the Blanchfield forms of their
constituent knots.
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The second statement is now a consequence of Lemma 2.5 and Lemma 2.6. ¤

Adams [Ad96] gave the first example of a 2-component link L with unknotted
components and weak splitting number one, such that any crossing change which splits
L necessarily turns one of the two components of L into a nontrivial knot. In the final
paragraph of [Ad96] Adams asked (see Question 1.4) whether there exist such examples,
where in addition we may guarantee high complexity of a component arising from a single
splitting crossing change. The following theorem gives an affirmative answer to Adams’
question.

Theorem 1.5. Fix c ∈ N. There exists a 2-component link L with unknotted
components such that such for any knot K with L Ã1 K t U , the crossing number of K

is at least c.

The proof of Theorem 1.5 will require the remainder of this section. The examples
we construct are inspired by the construction of Adams [Ad96], but we remark that we
have to change the links from [Ad96] slightly, since the links in [Ad96, Figure 4] are
boundary links and therefore have ∆L = 0 and β(L) = 1, whereas we require ∆L 6= 0
and β(L) = 0 in order to apply our results.

Figure 7. Left: the box denotes a tangle T such that the diagram is an unknotting number one
knot with the unknotting crossing isolated. Right: replace the strands outside the box as shown
to get a 2-component link LT with unknotted components and weak splitting number one.

Choose n to be such that 2n + 1 ≥ c. Choose an irreducible Laurent polynomial
∆(t) = a0(1 + t2n) + a1(t + t2n−1) + · · ·+ an−1(tn−1 + tn+1) + antn with ∆(1) = 1 and
degree 2n, where 2n = p−1 for p an odd prime. For example choosing n so that 2n = p−1
for p an odd prime greater than or equal to c, and taking a2i = 1 and a2i+1 = −1 for
i = 0, . . . , bn/2c gives rise to such a polynomial, since this is a cyclotomic polynomial
and cyclotomic polynomials are irreducible.

According to the main theorem of [Kon79], there exists an unknotting number one
knot J with ∆J(t) .= ∆(t). Let T be a tangle such that the picture on the left hand
side of Figure 7 is a diagram for J , where we isolated a crossing, at which a crossing
change results in an unknot. If necessary, switch J for one of either its reverse rJ , its
mirror image J or rJ , in order to arrange that the orientations are as shown on the left
of Figure 7. (These orientations will soon be important for simplifying the construction
of a Seifert surface.) Replace the strands outside the box with the arrangement on the
right hand side of Figure 7, to obtain a 2-component link with unknotted components
which we call LT . Changing one crossing of LT , in the clasp on the right, yields J t U .
This construction is an adaptation of that of [Ad96, Figure 4].
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Lemma 6.2. The links LT constructed above have nonzero Alexander polynomial
∆LT

6= 0.

Before giving the proof we recall the definition of the Sato–Levine invariant of a
2-component link L = L1 ∪ L2 with linking number zero [Sat84]. Pick two Seifert
surfaces F1 and F2 in S3, with ∂Fi = Li, F1 ∩ L2 = F2 ∩ L1 = ∅ and F1 t F2. The
intersection F1 ∩ F2 is a link J ⊂ S3. Choose an orientation of J , a framing for the
normal bundle of J in F1 and a framing for the normal bundle of J in F2, such that
the first two agree with the orientation of F1, the first and the third agree with the
orientation of F2, and all three agree with the orientation of S3. Together the framings
of the normal bundles to J in F1 and F2 give a framing for the normal bundle of J in S3.
The framed bordism class of the link J then defines the Sato–Levine invariant. Recall
that two framed links in S3 are framed bordant if and only if the sums of their framing
coefficients are equal, since we can use the Pontryagin–Thom construction to produce an
element of π3(S2) ∼= Z, with the Hopf invariant yielding the isomorphism to Z.

Proof of Lemma 6.2. We start with the following claim.

Claim. The links LT above have Sato–Levine invariant −1.

To prove the claim, apply the Seifert algorithm to the left hand component of LT ,
on the right of Figure 7. Call this component L1 and the resulting Seifert surface F1.
Construct a Seifert surface F2 for the other component L2 by taking the obvious disc
and tubing along L1 where L1 hits the disc, passing the tube around the clasp. This
makes Seifert surfaces F1, F2 for L1, L2 respectively with F1 ∩ L2 = ∅ = F2 ∩ L1. The
orientation is important for ensuring that the Seifert algorithm gives a surface F1 disjoint
from L2. The intersection F1 ∩ F2 is a single circle and the self linking of F1 ∩ F2 from
the framing induced by the Seifert surfaces is −1; it can be seen that a full negative twist
in the induced framing arises when passing around the clasp. This completes the proof
of the claim.

As was shown in [Co85, Theorem 4.1], the Sato–Levine invariant of a 2-component
link L with linking number zero is equal to minus the coefficient of z3 in the Conway
polynomial ∇L(z). Thus the Conway polynomial is nonzero.

According to Kawauchi [Ka96, Proposition 7.3.14] we may relate the multivariable
and single variable Alexander polynomials by:

∆L(t, t)(t− 1) = ∆L(t).

Thus, to show that the multivariable Alexander polynomial is nonzero it suffices to show
that ∆L(t) 6= 0. Suppose that V is an m×m Seifert matrix for L arising from a connected
Seifert surface. Then

t−m/2∆L(t) .= det(t1/2V − t−1/2V T ) = ∇L(t1/2 − t−1/2) = ∇L(z);

the change of variables is z = t1/2 − t−1/2. Thus if ∆L(t) = 0 then ∇L(z) = 0. The fact
shown above that ∇L(z) 6= 0 therefore completes the proof of Lemma 6.2. ¤
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The next result follows immediately from Alexander’s original definition; compare
also [Ro76, Exercise 8.C.12, p. 208]. The proof is left to the reader. For a Laurent
polynomial p(t) =

∑
i∈Z ait

i ∈ Z[t±1] we define deg(p(t)) to be the difference deg(p(t)) :=
max{j ∈ Z | aj 6= 0} −min{k ∈ Z | ak 6= 0}.

Lemma 6.3. Let K be a nontrivial knot and c be its crossing number. Then the
degree of the Alexander polynomial satisfies deg ∆K ≤ c− 1.

Continuation of the proof of Theorem 1.5. Consider the links LT con-
structed above. We have L Ã1 J t U , where deg(∆J) = 2n and 2n + 1 ≥ c; recall
that n was chosen to satisfy this property with respect to c. For any knot K with
Alexander polynomial having degree 2n we have 2n ≤ k − 1, where k is the crossing
number of K. Thus we have c ≤ 2n + 1 ≤ k. It therefore suffices to show that any knot
K arising from one splitting crossing change on LT has Alexander polynomial containing
∆J(t) as a factor.

Since ∆LT
6= 0, we have that β(L) = 0, whereas β(J t U) = 1 by Lemma 2.4.

Therefore by Theorem 1.3 and another application of Lemma 2.4 we have that

∆LT
(t1, t2) = ∆tor

JtU · f f ·m = ∆J(t1) · f f ·m

for some f ∈ Λ and some negligible n ∈ Λ.
Now suppose that we have some other splitting crossing change on L yielding KtU .

Then similarly to above we have

∆LT
(t1, t2) = ∆tor

KtU · g g ·m′ = ∆K(t1) · g g ·m′

for some g ∈ L and some negligible m′ ∈ Λ. Therefore

∆J(t1) · f f ·m = ∆K(t1) · g g ·m′. (6.1)

The ring Λ is a UFD and ∆J is irreducible. Therefore a non-negative number a∆K
such

that ∆
a∆K

J divides ∆K , but ∆
1+a∆K

J does not, is well-defined. Similarly we define af ,
af , ag, ag. As ∆J is symmetric, we infer that af = af and ag = ag. Notice that ∆J ,
being a non-trivial knot polynomial, does not divide negligible polynomials m and m′.

The maximal exponent a such that ∆J divides the left hand side of (6.1) is 1 + 2af .
For the right hand side it is a∆K

+ 2ag. This implies that a∆K
is odd, in particular ∆J

divides ∆K . This shows that deg ∆K ≥ deg ∆J = 2n. Recall that n was chosen so that
2n + 1 ≥ c, and by Lemma 6.3 this implies that the crossing number of K is at least c.

¤

7. Questions.

Kohn [Koh93] initiated the study of unlinking numbers for links with more than
one component. There are five 2-component 9 crossing links for which Kohn could not
compute the unlinking number, namely
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92
3 = L9a30, 92

15 = L9a15, 92
27 = L9a17, 92

31 = L9a2 and 92
36 = L9a10,

where the names come from Rolfsen’s book [Ro76] and the Linkinfo tables [CL] re-
spectively. For each link the question is whether the unlinking number is two or three.
Kanenobu recently announced a proof that the unlinking number of L9a30 is 3. Unfor-
tunately the techniques of this paper do not help. It would be very interesting if it could
be shown that one of the four remaining links has unlinking number 3.
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