
c©2016 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 68, No. 1 (2016) pp. 441–458
doi: 10.2969/jmsj/06810441

Conformal invariants defined by harmonic functions

on Riemann surfaces

By Hiroshige Shiga

(Received May 12, 2014)

Abstract. In this paper, we consider conformal invariants defined by
various spaces of harmonic functions on Riemann surfaces. The Harnack dis-
tance is a typical one. We give sharp inequalities comparing those invariants
with the hyperbolic metric on the Riemann surface and we determine when
equalities hold. We also describe the Harnack distance in terms of the Martin
compactification and discuss some properties of the distance.

1. Introduction.

Let R be an open Riemann surface. Among many conformal invariants on R, we are
interested in quantities derived from some spaces of harmonic functions on R, such as
spaces of positive harmonic functions, bounded harmonic functions and harmonic Hardy
spaces. The classical Harnack distance is one of the important quantities. We compare
those invariants with the hyperbolic distance.

On the unit disk D = {z ∈ C | |z| < 1}, the hyperbolic metric λD(z)|dz| is defined
by

λD(z)|dz| = 2|dz|
1− |z|2 .

We assume that the Riemann surface R admits the hyperbolic metric, namely, the univer-
sal covering of R is conformally equivalent to the unit disk D, and the hyperbolic metric
λR(z)|dz| on R is defined by the relation π∗(λR(w)|dw|) = λD(z)|dz| for w = π(z), where
π : D→ R is a universal covering map and π∗ stands for the pull back operation for met-
rics. For two points a, b in R, the hyperbolic distance dR(a, b) is defined by the standard
manner by λR(z)|dz|.

In [4], Herron and Minda consider conformal invariants defined by the spaces of
bounded harmonic functions and positive harmonic functions on R, and compare them
with the hyperbolic distance on R. We shall give alternative proofs of their results. The
method we will take also works to show similar properties of conformal invariants for
harmonic Hardy spaces (Theorems 4.1 and 4.2).

It is rather known that the Martin compactification is a useful tool in studying pos-
itive harmonic functions. We describe the Harnack distance, which is defined by positive
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harmonic functions on a Riemann surface, in terms of the Martin compactification of
the Riemann surface. Using this description, we compute the Harnack distance on the
complement of a closed polar set on a Riemann surface. The result is obtained by Herron
[3] for the Harnack distance in a domain of the Euclidean space. We also discuss the
completeness of the distance.

2. Preliminaries.

2.1. Spaces of harmonic functions and invariants.
Throughout this paper, we consider a Riemann surface R which is open and admits

Green’s functions. Therefore, the universal covering of R must be conformally equivalent
to the unit disk. We consider the following spaces of harmonic functions on R:

HP (R) = {u : u is harmonic and positive on R},
HB(R) = {u : u is bounded harmonic on R},

and for p ∈ (1,+∞),

hp(R) = {u : u is harmonic and |u|p has a harmonic majorant on R}.

We call hp(R) the harmonic Hardy space of rank p. We consider the norm ‖u‖hp called
the Hardy norm for u ∈ hp(R) by

‖u‖hp = (L.H.M.|u|p(a0))1/p,

where L.H.M.|u|p is the least harmonic majorant and a0 ∈ R is a base point. It is known
that both (HB(R), ‖ · ‖∞) and (hp(R), ‖ · ‖hp) are Banach spaces.

Since the norm ‖ · ‖hp depends on choice of the base point a0, we call it the Hardy
norm with respect to the base point a0 if we need to count the dependance of a0.

For two points a, b ∈ R, we define

dR
H(a, b) = sup

{∣∣∣∣ log
u(a)
u(b)

∣∣∣∣ : u ∈ HP (R)
}

.

The quantity dR
H(·, ·) is called the Harnack (pseudo-)distance on R.

For HB(R) and hp(R), we define

ρR
B(a, b) = sup{|u(a)− u(b)|/‖u‖∞ : u ∈ HB(R) \ {0}}

and

ρR
p (a, b) = sup{|u(a)− u(b)|/‖u‖hp : u ∈ hp(R) \ {0}}.

We also consider conformal metrics corresponding to above spaces as follows:



Conformal invariants defined by harmonic functions 443

βR
H(z)|dz| = sup

{ |ux − iuy|
u(z)

|dz| : u ∈ HP (R)
}

,

βR
B(z)|dz| = sup

{ |ux − iuy|
‖u‖∞ |dz| : u ∈ HB(R) \ {0}

}
,

and

βR
p (z)|dz| = sup

{ |ux − iuy|
‖u‖hp

|dz| : u ∈ hp(R) \ {0}
}

.

The metric βR
B(z)|dz| is introduced by Oikawa [6] and it is called the harmonic metric.

Those quantities are defined by taking the supremums. However, using normal
family arguments, we verify that there are harmonic functions in their spaces such that
they attain their supremums.

Herron and Minda [4] compare dR
H , ρR

B , βR
H(z)|dz| and βR

B(z)|dz| with the hyperbolic
distance and the hyperbolic metric on R. In the later section, we shall give alternative
proofs of their results. We see that our method works to obtain similar estimates for ρR

p

and βR
p (z)|dz| as well.

2.2. The Martin compactification.
Let gR(·, q) be Green’s function on R with pole at q ∈ R. Take a base point a0 ∈ R,

and consider a function

uq(·) =
gR(·, q)

gR(a0, q)

for q ∈ R. The function uq is in HP (R \ {q}) and uq(a0) = 1. Thus, a family {uqn
}∞n=1

becomes a normal family on any compact subset of R when the sequence {qn}∞n=1 tends
to the ideal boundary of R. We may add a boundary point q as the limit of {qn}∞n=1 if
kq(·) := limn→∞ uqn(·) exists and it belongs to HP (R). The positive harmonic function
kq is called the Martin kernel with pole at q.

All such boundary points together with R is called the Martin compactification of
R with base point a0 and it is denoted by R∗M . It is known that R∗M is a metrizable
compactification of R. The set ∆ := R∗M \R is called the Martin boundary. A boundary
point q ∈ ∆ is called minimal if the Martin kernel kq(·) is minimal, where u ∈ HP (R)
is minimal if 0 < v ≤ u (v ∈ HP (R)) implies v = cu for some constant c. The set of
minimal points is called the minimal boundary and it is denoted by ∆1.

It is known that the Martin compactification does not depend on the choice of the
base point. Indeed, for two Martin compactifications R∗1 and R∗2 of R with different base
points, the identity map ι : R → R extends to a homeomorphism ι∗ from R∗1 onto R∗2.
Furthermore, minimal points of R∗1 are mapped those of R∗2 via ι∗. As for the fundamental
facts of the Martin compactification, one may refer Constantinescu and Cornea [2].

The minimal boundary ∆1 plays an important role in HP (R).

Theorem 2.1. For each u ∈ HP (R), there exists a unique measure µ on ∆1 such
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that

u(p) =
∫

∆1

kq(p)dµ(q). (2.1)

It is known that the Martin compactification D∗M of the unit disk D = {|z| < 1}
is identified with the Euclidean closure D = {|z| ≤ 1} and kq is the Poisson kernel at
q ∈ ∂D. Hence, Theorem 2.1 is a generalization of the classical Herglotz theorem (cf. [1,
6.14 Corollary]) for HP (D).

3. Invariants for HP (R) and HB(R).

This section devotes to give alternative proofs of results by Herron and Minda [4]
and our proofs give an idea used in the later sections. Some computations in this section
are also found in [1] for the same quantities in the unit ball of the Euclidean space.

Let Γ be a Fuchsian group acting on the unit disk D so that D/Γ = R and π : D→ R

the universal covering map. For every function f on R, the function f̃ := f ◦ π is a Γ-
automorphic function for Γ, that is,

f̃ ◦ γ = f̃ (3.1)

holds for any γ ∈ Γ. Conversely, if (3.1) holds for any γ ∈ Γ, then f̃ defines a function f

on R with f̃ = f ◦π. Therefore, HP (R)Γ, the space of Γ-automorphic positive harmonic
functions on D is identified with HP (R). Similarly, HB(R)Γ, the space of Γ-automorphic
bounded harmonic functions on D, is identified with HB(R).

Now, we show the following theorem:

Theorem 3.1. Let R be an open Riemann surface and a, b two distinct points on
R. Then,

dR
H(a, b) ≤ dR(a, b) (3.2)

and

ρR
B(a, b) ≤ 8

π
arctan

(
tanh

dR(a, b)
4

)
(3.3)

hold, where dR(·, ·) is the hyperbolic distance on R.
Furthermore, if R = D, then equalities hold in (3.2) and (3.3) for any points a, b ∈ D.

More precisely, let ua,b ∈ HP (D) denote a function which gives the equality of (3.2).
Then, ua,b(z) = cP (α; z) or cP (β; z) for some positive constant c, where α, β ∈ ∂D are
the endpoints of the hyperbolic geodesic passing through a, b; let va,b ∈ HB(D) ‖va,b‖∞ =
1 denote a function which gives the equality of (3.3). Then, up to sign, va,b has boundary
value 1 on I+ and −1 on I−, where I± are the connected components of ∂D \ {α′, β′} for
the endpoints α′, β′ of the hyperbolic bisector between a and b.
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Proof. Take ã, b̃ ∈ D such that π(ã) = a, π(b̃) = b and dR(a, b) = dD(ã, b̃). Using
the above identifications HP (R) ' HP (D)Γ and HB(R) ' HB(D)Γ, we see that

dR
H(a, b) = sup

{∣∣∣∣ log
u(ã)
u(b̃)

∣∣∣∣ : u ∈ HP (D)Γ

}
,

and

ρR
B(a, b) = sup

{|u(ã)− u(b̃)|/‖u‖∞ : u ∈ HB(D)Γ \ {0}
}
.

Obviously, HP (D)Γ ⊂ HP (D) and HB(D)Γ ⊂ HB(D). We have

sup
{∣∣∣∣ log

u(ã)
u(b̃)

∣∣∣∣ : u ∈ HP (D)Γ

}
≤ dDH(ã, b̃), (3.4)

and

sup
{|u(ã)− u(b̃)|/‖u‖∞ : u ∈ HB(D)Γ \ {0}

} ≤ ρDB(ã, b̃). (3.5)

Hence, it suffices to show that

dDH(ã, b̃) = dD(ã, b̃) (3.6)

and

ρDB(ã, b̃) =
8
π

arctan
(

tanh
dD(ã, b̃)

4

)
. (3.7)

To show (3.6), we use the Herglotz theorem for positive harmonic functions.
We may assume that ã = 0 and b̃ = r ∈ (0, 1). Let u be in HP (D). It follows from

the Herglotz theorem that there exists a unique positive measure µ on ∂D such that

u(z) =
∫

∂D
P (eiθ; z)dµ (z ∈ D), (3.8)

where P (eiθ; z) is the Poisson kernel. We may also assume that u(0) = 1. Then, from
(3.8), we obtain

1 = u(0) =
∫

∂D
dµ.

Thus, u is represented by a probability measure in (3.8) and immediately we obtain

e−dD(0,r) =
1− r

1 + r
≤ u(r) ≤ 1 + r

1− r
= edD(0,r).
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Indeed, both equalities hold for Dirac measures δ{−1} and δ{1} with support at −1 and
1, respectively. In other words, for u = P (−1; ·) and u = P (1; ·), the equality (3.6) holds
and only those functions give the equality (3.6) under the condition that u(0) = 1. Since
{−1, 1} is the set of the end points of the geodesic passing through 0 and r, we have
shown the statement for dR

H .
To prove (3.7), we use other integral representation for bounded harmonic functions.

Fatou’s theorem (cf. [1, Chapter 6]) guarantees us that every bounded harmonic function
u has non-tangential limits u∗(eiθ) almost everywhere on ∂D and u is represented by the
Poisson integral of u∗, namely,

u(z) =
1
2π

∫ 2π

0

u∗(eiθ)P (eiθ; z)dθ. (3.9)

In showing (3.7), we may assume that ã = −r, b̃ = r for some r ∈ (0, 1) and
‖u‖∞ = ‖u∗‖∞ = 1. Then, we have

|u(r)− u(−r)| = 1
2π

∣∣∣∣
∫ 2π

0

u∗(eiθ)
(
P (eiθ; r)− P (eiθ;−r)

)
dθ

∣∣∣∣

≤ 1
2π

∫ 2π

0

|u∗(eiθ)||(P (eiθ; r)− P (eiθ;−r)|dθ

≤ 1
2π

∫ 2π

0

|(P (eiθ; r)− P (eiθ;−r)|dθ.

Therefore, we have

ρDB(r,−r) ≤ 1
2π

∫ 2π

0

|(P (eiθ; r)− P (eiθ;−r)|dθ.

On the other hand,

P (eiθ; r)− P (eiθ;−r) =
4r(1− r2) cos θ

(1 + r2 − 2r cos θ)(1 + r2 + 2r cos θ)

and we see that P (eiθ; r) − P (eiθ;−r) > 0 for θ ∈ (0, π/2) ∪ (3π/2, 2π) and < 0 for θ ∈
(π/2, 3π/2). We define u∗0 ∈ L∞(∂D) by setting u∗0(e

iθ) = 1 for θ ∈ (0, π/2) ∪ (3π/2, 2π)
and = −1 for θ ∈ (π/2, 3π/2). Then the Poisson integral u0 of u∗0,

u0(z) =
1
2π

∫ 2π

0

u∗0(e
iθ)P (eiθ; z)dθ

is in HB(D) with ‖u‖∞ = 1. Furthermore, we have

u∗0(r)− u∗0(−r) =
1
2π

∫ 2π

0

|(P (eiθ; r)− P (eiθ;−r)|dθ.
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Therefore, we obtain

ρDB(r,−r) =
1
2π

∫ 2π

0

|(P (eiθ; r)− P (eiθ;−r)|dθ.

Since it is not hard to verify that

1
2π

∫ 2π

0

|(P (eiθ; r)− P (eiθ;−r)|dθ =
8
π

arctan
(

tanh
dD(r,−r)

4

)
,

we obtain (3.7) and we verify that only ±u0 gives the equality (3.7) among functions in
u ∈ HB(D) with ‖u‖∞ = 1. Since {i,−i} is the set of the end points of the bisector
between −r and r, we verify that the proof is completed. ¤

Using this theorem, we may determine Riemann surfaces where equalities hold for
some points a, b ∈ R in (3.6) and (3.7).

Theorem 3.2. Suppose that R is not a simply connected Riemann surface. Then,

(1) there exist distinct points a, b in R such that dR
H(a, b) = dR(a, b) if and only if R is

(conformally equivalent to) the punctured disk D∗, and a, b lie on the same radius of
D∗;

(2) there exist distinct points a, b in R such that ρR
B(a, b) = (8/π) arctan(tanh(dR(a, b)/

4)) if and only if R is (conformally equivalent to) an annulus A(k) := {0 < k <

|z| < 1} and a, b are symmetric with respect to the core curve {|z| =
√

k} of A(k).

Proof. Let Γ be a Fuchsian group acting on the unit disk D which represents R

and π : D→ R = D/Γ be the universal covering map.

Proof of (1). We may assume that π(0) = a and π(r) = b for some r ∈ (0, 1),
and dD(0, r) = dR(a, b). We take u ∈ HP (R) satisfying u(a) = 1 and log(u(a)/u(b)) =
dR

H(a, b). Since ũ = u ◦ π ∈ HP (D), we have

dR(a, b) = dR
H(a, b) =

∣∣∣∣ log
u(π(0))
u(π(r))

∣∣∣∣ ≤ dDH(0, r) = dR(a, b).

Thus, we conclude | log(ũ(0)/ũ(r))| = dDH(0, r). Since ũ(0) = u(a) = 1, it follows from
Theorem 3.1 that ũ(z) = P (1; z) or ũ(z) = P (−1; z). We may assume ũ(z) = P (1; z).
Since ũ belongs to HP (D)Γ, we verify that Γ is a parabolic cyclic group fixing z = 1.
Indeed, z = 1 is a unique singularity of P (1; z). Hence, every element of Γ has to fix the
point because P (1; z) is automorphic for Γ.

Therefore, R = D/Γ is the punctured disk D∗, and a = π(0), b = π(r) lie on the
same radius in D∗ because the positive real axis in D is mapped a radius in D∗ via the
universal covering map π.

Proof of (2). We may assume that π(−r) = a and π(r) = b for some r ∈ (0, 1),
and dD(−r, r) = dR(a, b). We take u ∈ HB(R) with ‖u‖∞ = 1 such that |u(b)− u(a)| =
ρR

B(a, b). Since ũ = u ◦ π ∈ HB(D) with ‖ũ‖∞ = 1, we have
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ρR
B(a, b) =

8
π

arctan
(

tanh
dD(−r, r)

4

)
= |ũ(r)− ũ(−r)|

≤ ρDB(r,−r) =
8
π

arctan
(

tanh
dD(−r, r)

4

)
.

Thus, we conclude that |ũ(r) − ũ(−r)| = ρDB(r,−r) and therefore, ũ = u0 or = −u0,
where u0 ∈ HB(D) is the function obtained in the proof of Theorem 3.1. Since ũ belongs
to HB(D)Γ, we verify that Γ is a hyperbolic cyclic group fixing ±i. Hence, R = D/Γ is
an annulus, and a = π(−r), b = π(r) are symmetric with respect to π({iy : −1 < y < 1})
which is the core curve of the annulus. ¤

We may show the similar results for conformal metrics by using the same ideas of
the proofs of Theorems 3.1 and 3.2.

Theorem 3.3. Let R be a hyperbolic Riemann surface. Then,

βR
H(z)|dz| ≤ λR(z)|dz| (3.10)

and

βR
B(z)|dz| ≤ 2

π
λR(z)|dz| (3.11)

hold at every point in R, where λR(z)|dz| is the hyperbolic metric on R. If R = D, then
the equalities hold in (3.10) and (3.11) at every point in D. More precisely, if ua ∈ HP (D)
gives the equality in (3.10) at a ∈ D, then ua(z) = cP (α; z) for some c > 0 and α ∈ ∂D;
if va ∈ HB(D) with ‖va‖∞ = 1 gives the equality in (3.11), then va(z) = ±va,b(z), where
va,b is the function given in Theorem 3.1 for any b ∈ D (a 6= b).

Proof. The proof is done by the same idea as in Theorem 3.1. Exactly the same
reasons as in (3.4) and (3.5), we obtain

π∗(βR
H(w)|dw|) ≤ βDH(z)|dz|,

and

π∗(βR
B(w)|dw|) ≤ βR

B(z)|dz|,

where R 3 w = π(z) is a universal covering map as before. Hence, it suffices to show
that βDH(z)|dz| = λD(z)|dz| and βDB(z)|dz| = (2/π)λD(z)|dz| at z = 0.

Let u be a function in HP (D) with u(0) = 1. It follows from the Herglotz theorem
that there exists a probability measure µ on ∂D such that

u(z) =
∫

∂D
P (eiθ; z)dµ
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holds on D. Thus,

|ux(0)− iuy(0)| = 2
∣∣∣∣
∫

∂D
e−iθdµ

∣∣∣∣ = 2
∣∣∣∣
∫

∂D
cos θdµ− i

∫

∂D
sin θdµ

∣∣∣∣

= 2

√( ∫

∂D
cos θdµ

)2

+
( ∫

∂D
sin θdµ

)2

≤ 2.

From Schwartz’ inequality,

( ∫

∂D
cos θdµ

)2

≤
( ∫

∂D
dµ

)( ∫

∂D
cos2 θdµ

)
=

∫

∂D
cos2 θdµ

and

( ∫

∂D
sin θdµ

)2

≤
( ∫

∂D
dµ

)( ∫

∂D
sin2 θdµ

)
=

∫

∂D
sin2 θdµ.

Since the equalities hold only when both cos θ and sin θ are constants on the support
of µ, µ must be a Dirac measure δα for some α ∈ ∂D. Indeed, for u(z) = P (α; z) =∫

∂D P (eiθ;z)dδα, |ux(0)− iuy(0)| = 2. Therefore, P (α; z) gives βDH(z)|dz| at z = 0. Since
λD(z)|dz| = 2|dz| at z = 0, we have shown that βDH(z)|dz| = λD(z)|dz| at z = 0.

Next, we consider βDB(z)|dz| at z = 0. Let u be a function in HB(D) with ‖u‖∞ = 1.
We consider

|ux(0)− iuy(0)| = |grad u|(0) = max
ϕ

∣∣∣∣∣
d

dr
u(reiϕ)

∣∣∣∣
r=0

∣∣∣∣∣. (3.12)

Since

u(z) =
1
2π

∫ 2π

0

u∗(eiθ)P (eiθ; z)dθ,

for u∗ ∈ L∞(∂D) with ‖u∗‖∞ = 1, we have

∣∣∣∣∣
d

dr
u(r)

∣∣∣∣
r=0

∣∣∣∣∣ =
∣∣∣∣
1
π

∫ 2π

0

u∗(eiθ) cos θdθ

∣∣∣∣ ≤
1
π

∫ 2π

0

| cos θ|dθ =
4
π

,

and the equality holds only for u∗ = ±v−r,r, the same function in Theorem 3.1 for some
r ∈ (0, 1). Thus, if ϕ = 0 gives the maximum in (3.12), we conclude that βDB(z)|dz| =
(2/π)λD(z)|dz| at z = 0 and ±v−r,r gives the equality. The same argument works for
any ϕ ∈ [0, 2π) and we verify that the proof is completed. ¤

Equalities in (3.10) and (3.11) hold at every point on R if the Riemann surface is
simply connected. If R is not simply connected, then we may show similar results to
Theorem 3.2.
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Theorem 3.4. Suppose that R is not a simply connected Riemann surface. Then,

(1) there exists a point α in R such that βR
H(z)|dz| = λR(z)|dz| at α if and only if R is

conformally equivalent to the punctured disk ;
(2) there exists a point α in R such that βR

B(z)|dz| = (2/π)λR(z)|dz| at α if and only if
R is (conformally) equivalent to an annulus A(k) := {0 < k < |z| < 1} and α lies
on the core curve {|z| =

√
k} of A(k).

Proof. The proof is done by the same manner as that of Theorem 3.2. So, we
may leave it for the reader. ¤

4. Invariants for hp(R).

In this section, we compare ρR
p and βR

p (z)|dz| (1 < p < ∞) with the hyperbolic
metric of R.

We note the following the decreasing property of those quantities.

Lemma 4.1. Let f : X 3 z 7→ f(z) = w ∈ Y be a holomorphic map between two
Riemann surfaces X and Y . Then,

ρY
p (f(a), f(b)) ≤ ρX

p (a, b),

and

f∗(βY
p (w)|dw|) ≤ βX

p (z)|dz|,

where ‖u‖hp = (L.H.M.|u|p(a0))1/p for u ∈ hp(X) and ‖u′‖hp = (L.H.M.|u′|p(f(a0)))1/p

for u′ ∈ hp(Y ).

Proof. For u ∈ hp(Y ), we denote by v the least harmonic majorant of |u|p and
by ṽ the least harmonic majorant of |u ◦ f |p. Since |u|p ◦ f ≤ v ◦ f and v ◦ f is harmonic,
we see that ṽ ≤ v ◦ f . Thus, we obtain ‖u ◦ f‖hp ≤ ‖u‖hp for u ∈ hp(Y ). Hence, we have

|u ◦ f(b)− u ◦ f(a)|
‖u‖hp

≤ |u ◦ f(b)− u ◦ f(a)|
‖u ◦ f‖hp

≤ ρX
p (a, b),

and we see that ρY
p (f(a), f(b)) ≤ ρX

p (a, b) because u ◦ f ∈ hp(X) for u ∈ hp(Y ).
The same argument yields that f∗(βY

p (w)|dw|) ≤ βX
p (z)|dz|. ¤

Let π : D→ R be a universal covering. From Lemma 4.1, we have

ρR
p (a, b) ≤ ρDp (ã, b̃),

for ã, b̃ ∈ D with π(ã) = a, π(b̃) = b and dR(a, b) = dD(ã, b̃).
We compute ρDp (a, b) for a, b ∈ D. We may assume that a = −r, b = r (0 < r < 1).

Let u be a function in hp(D) with ‖u‖hp = 1. It is well known (cf. [1]) that there exists
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a function u∗ ∈ Lp(∂D) such that

u(z) =
1
2π

∫ 2π

0

u∗(eiθ)P (eiθ; z)dθ. (4.1)

We also see that

1 = ‖u‖hp = (L.H.M.|u|p(a0))1/p =
(

1
2π

∫ 2π

0

|u∗(eiθ)|pP (eiθ; a0)dθ

)1/p

.

By Hölder’s inequality, we have

|u(r)− u(−r)| =
∣∣∣∣

1
2π

∫ 2π

0

u∗(eiθ)(P (eiθ; r)− P (eiθ;−r))dθ

∣∣∣∣

≤
(

1
2π

∫ 2π

0

|P (eiθ; r)− P (eiθ;−r)|qP (eiθ; a0)1−qdθ

)1/q

(4.2)

where q = p/(p − 1). Moreover, the equality is achieved if and only if u∗Pr =
|Pr|q‖Pr‖−q/p

q,a0 almost everywhere on ∂D, where

Pr(·) = (P (·; r)− P (·;−r))P (·; a0)−1,

and ‖ · ‖q,a0 is the Lq-norm on ∂D with respect to dθa0 := P (eiθ; a0)dθ. Therefore,
ρDp (r,−r) is equal to the right hand side of (4.2).

If a0 = 0, the midpoint between −r and r, then Pr(·) = P (·; r) − P (·;−r) and
dθa0 = dθ. We also see that

Pr(z) = r2Re
(

z

1− r2z2

)

for z ∈ ∂D. Since r = tanh(dD(a, b)/4) and ρDp is a conformal invariant, we have

ρDp (a, b) = ‖vdD(a,b)‖hq , (4.3)

where

vd(z) = (tanh(d/4))2Re
(

z

1− (tanh(d/4))2z2

)
(z ∈ D)

and the base point a0 for the Hardy norm is the midpoint between a and b.
When the base point a0 is not the midpoint between a and b, ρDp (a, b) depends on

hyperbolic distances among the three points, a0, a and b. We may take a0 = 0. Then,
the same method as (4.2) shows
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|u(b)− u(a)| ≤
(

1
2π

∫ 2π

0

∣∣P (eiθ; b)− P (eiθ; a)
∣∣qdθ

)1/q

for u ∈ hp(D) with ‖u‖hp = 1. Putting

Pa,b(z) = Re
(

2(b− a)z̄
(1− az̄)(1− bz̄)

)
,

we see that Pa,b(z) is harmonic on D and Pa,b(·) = P (·; b)−P (·; a) on ∂D. Therefore, for
a, b ∈ D, we obtain

ρDp (a, b) = ‖Pa,b‖hq (4.4)

for the Hardy norm with respect to the origin. Although it is hard to describe the Lq-
norm of Pa,b by using hyperbolic distances among a0, a and b, we may express ρDp (a, b)
by means of the hyperbolic distance between a and b if a0 = a. When a0 = a, we may
assume that a0 = a = 0 and b = r ∈ (0, 1). Then,

P0,r(z) = Re
(

2rz

1− rz

)
.

Hence, we have

ρDp (a, b) = ‖ṽdD(a,b)‖hq , (4.5)

where

ṽd(z) = Re
(

2 tanh(d/2)z
1− tanh(d/2)z

)
(z ∈ D),

and the base point for the Hardy norm is a.
Now, we give the main results of this section.

Theorem 4.1. Let R be an open Riemann surface and hp(R) the harmonic Hardy
space of rank p (1 < p < ∞) with the Hardy norm ‖ · ‖hp with respect to a0 ∈ R. Then,

(1) if a0 is the midpoint of the shortest geodesic between a and b, then ρR
p (a, b) ≤

‖vdR(a,b)‖hq ;
(2) ρR

p (a0, a) ≤ ‖ṽdR(a0,a)‖hq ;
(3) ρR

p (a, b) ≤ ‖Pα,β‖hq , where α, β ∈ D are points satisfying conditions: π(α) = a and
π(β) = b for a universal covering π : D→ R with π(0) = a0.

Moreover, one of the equalities in the above inequalities holds if and only if R is confor-
mally equivalent to the unit disk.

Proof. All statements are proved by the same argument. It follows from Lemma
4.1 that ρR

p (a, b) ≤ ρDp (ã, b̃), where ã, b̃ ∈ D are lifts of a, b via π : D→ R with dR(a, b) =
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dD(ã, b̃). Since we have already calculated ρDp (·, ·), we obtain immediately the above
inequality in each case. Furthermore, it is easy to see that vd, ṽd and Pa,b are not
automorphic for any non-trivial Fuchsian group. Thus, we conclude that R is conformally
equivalent to the unit disk if an equality holds. ¤

We also have a similar result for βR
p (z)|dz| as follows.

Theorem 4.2. Let R be an open Riemann surface and hp(R) the harmonic Hardy
space of rank p (1 < p < ∞) with the Hardy norm ‖ · ‖hp with respect to a0 ∈ R. Then,

βR
p (z)|dz| ≤

(
1
2π

∫ 2π

0

| cos θ|qdθ

)1/q

λR(z)|dz| (p−1 + q−1 = 1) (4.6)

at a0. Moreover, the equality holds if and only if R is conformally equivalent to the unit
disk.

Proof. From Lemma 4.1 we have

π∗(βR
p (w)|dw|) ≤ βDp (z)|dz| (w = π(z)) (4.7)

for a universal covering map π : D→ R.
We consider βDp (z)|dz| at the base point a0 ∈ D of the Hardy norm of hp(D). We

may assume that a0 = 0. Let u be a function in hp(D) with ‖u‖hp = 1. Then,

u(z) =
1
2π

∫ 2π

0

u∗(eiθ)P (eiθ; z)dθ (4.8)

for some u∗ ∈ Lp(∂D) with ‖u∗‖p = 1 (cf. [1]). Hence, we have

∣∣∣∣∣
d

dr
u(r)

∣∣∣∣
r=0

∣∣∣∣∣ =
∣∣∣∣
1
π

∫ 2π

0

u∗(eiθ) cos θdθ

∣∣∣∣

≤ 2
(

1
2π

∫ 2π

0

|u∗(eiθ)|pdθ

)1/p( 1
2π

∫ 2π

0

| cos θ|qdθ

)1/q

= 2
(

1
2π

∫ 2π

0

| cos θ|qdθ

)1/q

, (4.9)

and the equality holds only if u∗(eiθ) = | cos θ|q cos−1 θ‖ cos θ‖q−1
q almost everywhere.

We consider

|ux(0)− iuy(0)| = |grad u|(0) = max
ϕ

∣∣∣∣∣
d

dr
u(reiϕ)

∣∣∣∣
r=0

∣∣∣∣∣.

Thus, if ϕ = 0 gives the maximum, then
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βDp (z)|dz| = 2
(

1
2π

∫ 2π

0

| cos θ|qdθ

)1/q

|dz|

at z = 0. Since λD(z)|dz| = 2|dz| at z = 0, we have

βDp (z)|dz| =
(

1
2π

∫ 2π

0

| cos θ|qdθ

)1/q

λD(z)|dz|.

By the same argument, we obtain the same conclusion when other angle ϕ gives the
maximum. Hence, from (4.7) we verify that the desired inequality (4.6) holds. Obviously,
u∗(eiθ) = | cos θ|q cos−1 θ‖ cos θ‖q−1

q which gives the equality is not automorphic for any
non-trivial Fuchsian group. Thus, we see that the equality holds in (4.6) if and only if
the Riemann surface R is simply connected. ¤

5. The Martin compactification and the Harnack distance.

In this section, we consider the Harnack distance dR
H(p1, p2) (p1, p2 ∈ R) from view

point of the Martin compactification by using an idea in Section 3.
Let R∗M be the Martin compactification of R with base point a0. We denote by

HP0(R) the set of positive harmonic functions u on R with u(p1) = 1. Then,

dR
H(p1, p2) = sup{|log u(p2)| : u ∈ HP0(R)}.

It follows from Theorem 2.1 that there exists a measure µ on ∆1 such that

u(p) =
∫

∆1

kq(p)dµ(q)

for u ∈ HP0(R). Since u(p1) = 1, we have

1 = u(p1) =
∫

∆1

kq(p1)dµ(q).

Hence, dν = kq(p1)dµ is a probability measure on ∆1 and

u(p) =
∫

∆1

kq(p)
kq(p1)

dν(q).

Conversely, if we put

hν(p) =
∫

∆1

kq(p)
kq(p1)

dν(q)

for a probability measure dν on ∆1, then hν is in HP0(R). Therefore, we verify that
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dR
H(p1, p2) = sup

{∣∣∣∣ log
∫

∆1

kq(p2)
kq(p1)

dν(q)
∣∣∣∣ : dν is a probability measure on ∆1

}
.

Since kq(a0) = 1, we obtain:

Proposition 5.1. Let R∗M be the Martin compactification of R with base point a0.
Then

dR
H(p1, p2) = sup

q∈∆1

∣∣∣∣ log
kq(p2)
kq(p1)

∣∣∣∣ (5.1)

and

dR
H(a0, p) = sup

q∈∆1

| log kq(p)|. (5.2)

A subset E of R is called polar if for every p ∈ E there exist a neighborhood U of p

and a positive superharmonic function s on U such that s|E = +∞. Then, we have the
following;

Theorem 5.1. Let E be a closed polar subset of R. Then, for p1, p2 ∈ RE := R\E

dRE

H (p1, p2) = max
{

dR
H(p1, p2), sup

q∈E

∣∣∣∣ log
gR(p1, q)
gR(p2, q)

∣∣∣∣
}

, (5.3)

where gR(·, p) is Green’s function of R with pole at p.

Remark 5.1. Using a different method, Herron [3] shows the same result on sub-
domains of the Euclidean space. It is not hard to see that our proof below works on the
Euclidean space.

Proof. For a point p ∈ RE , we consider Green’s function gRE (·, p) of RE with
pole at p. From the minimality of Green’s functions, we see that gRE (·, p) ≤ gR(·, p) on
RE . On the other hand, since E is polar, gRE (·, p) is extended to a harmonic function
to any point of E. Thus, we have gR(·, p) ≤ gRE (·, p) on R because of the minimality of
Green’s functions again. So, we conclude that gRE (·, p) = gR(·, p).

Since the Martin compactification is defined by using Green’s functions, we verify
that the Martin compactification (RE)∗M of RR is identified with the Martin compactifi-
cation R∗M of R. More precisely, the inclusion map ι : RE ↪→ R extends to a homeomor-
phism from (RE)∗M onto R∗M and limp→q ι(p) = q for every q ∈ E. We also see that the
set of minimal points of ∂(RE)∗M \ E corresponds exactly to that of R∗M . Furthermore,
every point q ∈ E is a minimal point as a boundary point of (RE)∗M . Indeed, if a sequence
{pn}∞n=1 in RE converges to q ∈ E, then obviously

lim
n→∞

gR(z, pn)
gR(a0, pn)

=
gR(z, q)
gR(a0, q)

=: uq(z) ∈ HP (RE).
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If v ∈ HP (RE) is less than uq, then it is extended to R \ {q} as a positive harmonic
function. Hence, by the minimality of Green’s functions, we conclude v = cuq for some
constant c > 0 and uq is a minimal function on RE .

Let kq and kq,E denote Martin kernels on R∗M and (RE)∗M , respectively. We also
denote by ∆1 and ∆1,E the sets of minimal points of R∗M and on (RE)∗M , respectively.
From (5.1), we have

dRE

H (p1, p2) = sup
q∈∆1,E

∣∣∣∣ log
kq,E(p1)
kq,E(p2)

∣∣∣∣.

Since ∆1,E = (∆1,E \ E) ∪ E,

dRE

H (p1, p2) = max
{

sup
q∈∆1,E\E

∣∣∣∣ log
kq,E(p1)
kq,E(p2)

∣∣∣∣, sup
q∈E

∣∣∣∣ log
kq,E(p1)
kq,E(p2)

∣∣∣∣
}

.

As we have already seen that ∆1,E \ E is identified with ∆1,

sup
q∈∆1,E\E

∣∣∣∣ log
kq,E(p1)
kq,E(p2)

∣∣∣∣ = sup
q∈∆1

∣∣∣∣ log
kq(p1)
kq(p2)

∣∣∣∣ = dR
H(p1, p2).

Obviously, for q ∈ E

kq,E(p) =
gR(p, q)
gR(a0, q)

(p ∈ RE),

and we have

kq,E(p1)
kq,E(p2)

=
gR(p1, q)
gR(p2, q)

.

Thus, we verify that (5.3) is true. ¤

It is an important problem to find a condition under which the Harnack pseudo
distance becomes a distance on a Riemann surface R (see [7] for a discussion). We assume
that the Harnack pseudo distance is a distance on R. Then, we have the following:

Proposition 5.2. If the Harnack pseudo distance dR
H is a distance on R, then ∆1

consists of more than two points.

Proof. If ∆1 consists of one point, then it follows from Theorem 2.1 that HP (R)
does not contain non-constant functions. Hence, dR

H(p, q) = 0 for any p, q ∈ R and dR
H is

not a distance.
If ∆1 consists of two points, then Theorem 2.1 implies that there exists a non-

constant function u1 ∈ HP (R) such that every u ∈ HP (R) is represented by

u = c0 + c1u1
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for some constants c0, c1 ≥ 0. We may take a constant α > 0 such that Lα := {p ∈ R :
u1(p) = α} is not empty. In fact, Lα contains an analytic arc. Then, for any distinct
points p, q ∈ Lα we have

u(p) = c0 + c1u1(p) = c0 + c1α = u(q).

Thus, we see that dR
H(p, q) = 0 and dR

H is not a distance.
Therefore, we conclude that ∆1 contains more than two points if dR

H is a distance.
¤

We consider conditions of R for the Harnack distance to be complete.
An open Riemann surface R is called regular for Green’s functions if for any ε > 0,

{p ∈ R : gR(p, q) ≥ ε} is compact on R.

Theorem 5.2. Let E be a non-empty closed polar subset of R. If R is regular for
Green’s functions, then the Harnack distance dRE

H on RE = R \ E is complete.

Proof. Let {pn}∞n=1 be a Cauchy sequence with respect to dRE

H . Then, there
exists a constance M > 0 such that dRE

H (p1, pn) < M for any n ∈ N. It follows from
Theorem 5.1 that

sup
q∈E

∣∣∣∣ log
gR(pn, q)
gR(p1, q)

∣∣∣∣ < M,

for any n ∈ N. If pn → q ∈ E, then gR(pn, q) →∞ and we obtain gR(pn, q)/gR(p1, q) →
∞. This is a contradiction. Next, assume that there exists a subsequence {pnk

}∞k=1 of
{pn}∞n=1 such that it tends to the ideal boundary of R. Then, from the regularity of R

for Green’s functions, we see that gR(pnk
, q) → 0. Hence, we have

∣∣∣∣ log
gR(pnk

, q)
gR(p1, q)

∣∣∣∣ →∞.

This is also a contradiction.
We have seen that the Cauchy sequence {pn}∞n=1 lies in a compact subset of R and

every accumulation point is not in E. Let p′, p′′ be accumulation points of the sequence.
Then, we see that dRE

H (p′, p′′) = 0. Since dR
H is a distance and dRE

H ≥ dR
H on RE × RE ,

we conclude that p′ = p′′ and {pn}∞n=1 converges to p′ = p′′ ∈ RE . Thus, we verify that
the Harnack distance on RE is complete. ¤

Remark 5.2. The above argument shows that a Cauchy sequence {pn}∞n=1 with
respect to dRE

H is in a compact subset of RE even if dR
H is not a distance.

Now, we introduce a property of the Martin compactification (cf. [5]): A Riemann
surface R is said to have Picard existence property (PEP) if every Martin kernel kq

extends to ∆ \ {q} and vanishes there.

Theorem 5.3. If a Riemann surface R has PEP, then the Harnack distance dR
H
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is complete on R.

Proof. Let {pn}∞n=1 be a Cauchy sequence with respect to dR
H . We may show that

the sequence is contained in a compact subset of R. If not, by taking a subsequence, we
may assume that pn tends to a point q0 in the Martin boundary ∆ of R as n →∞. Since
dR

H is a distance on R, ∆1 consists on more than two points (Proposition 5.2). Therefore,
we may take a point q1 ∈ ∆1 other than q0. Since R has PEP, limn→∞ kq1(pn) = 0.
Thus, we conclude that dR

H(p1, pn) → ∞. It is absurd because {pn}∞n=1 is a Cauchy
sequence with respect to dR

H . Hence, {pn}∞n=1 is contained in a compact subset of R.
Applying the same argument as the proof of Theorem 5.2, we may show that {pn}∞n=1

converges to a point in R. ¤
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