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Abstract. Let R be a Noetherian prime ring with an automorphism σ
and a left σ-derivation δ, and let X be an invertible ideal of R with σ(X) = X.
We define an Ore-Rees ring S = R[Xt; σ, δ] which is a subring of an Ore
extension R[t; σ, δ], where t is an indeterminate. It is shown that if R is
a maximal order, then so is S. In case σ = 1, we define the concepts of
(δ; X)-stable ideals of R and of (δ; X)-maximal orders and prove that S is a
maximal order if and only if R is a (δ; X)-maximal order. Furthermore we
give a complete description of v-S-ideals, which is used to characterize S to
be a generalized Asano ring. In case δ = 0, we define the concepts of (σ; X)-
invariant ideals of R and of (σ; X)-maximal orders in order to show that S
is a maximal order if and only if R is a (σ; X)-maximal order. We also give
examples R such that either R is a (δ; X)-maximal order or is a (σ; X)-maximal
order but they are not maximal orders.

1. Introduction.

Throughout this paper, R denotes a Noetherian prime ring with quotient ring Q

otherwise stated (in other word, R is a Noetherian prime order in a simple Artinian ring
Q), σ is an automorphism of R, δ is a left σ-derivation on R and X is an invertible ideal
of R. A subset S = R[Xt;σ, δ] = R⊕Xt⊕· · ·⊕Xntn⊕· · · of the Ore extension R[t;σ, δ]
in an indeterminate t is called an Ore-Rees ring if S is a ring (see Lemma 2.2).

Generalized Rees rings were studied in [4] and [19] under PI condition and in the
book [20], they summarized them from torsion theoretical view-point under PI condition.
In this paper, we do not assume that Ore-Rees rings satisfy PI conditions.

The aim of this paper is to study the order theoretical properties of S.
The paper is organized as follows:
In Section 2, first we show that if R is a maximal order, then so is S (Theorem 2.4).
Secondly, we define the concepts of (σ, δ;X)-stable ideals of R, of (σ, δ;X)-maximal

orders and study some properties of prime ideals of S which are derived from the based
ring R and from the Ore extension Q[t;σ, δ] (Propositions 2.12 and 2.14). If R is a
(σ, δ;X)-maximal order, then the set of (σ, δ;X)-stable v-R-ideals is an Abelian group
generated by maximal (σ, δ;X)-stable v-ideals of R (Proposition 2.17).

These results are used to obtain more detailed properties of S in case either σ = 1
or δ = 0 in Sections 3, and 4, respectively.

In case σ = 1, we write S = R[Xt; δ] for R[Xt; 1, δ]. We just say (δ;X)-stable ideals
for (1, δ;X)-stable ideals and (δ;X)-maximal orders for (1, δ;X)-maximal orders.
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In Section 3, we show that S = R[Xt; δ] is a maximal order if and only if R is a
(δ;X)-maximal order (Theorem 3.5). Furthermore if R is a (δ;X)-maximal order, then
we give a complete description of v-S-ideal A as follows; A = wa[Xt; δ] for some (δ;X)-
stable v-R-ideal a and w ∈ Z(Q(T )), the center of Q(T ) which is the quotient ring of
T = Q[t; δ], the differential polynomial ring over Q (Proposition 3.6).

Proposition 3.6 is applied to get a characterization of a generalized Asano ring S

(Corollary 3.7).
In case δ = 0, we write S = R[Xt;σ] for R[Xt;σ, 0]. We say (σ;X)-invariant ideals

for (σ, 0;X)-stable ideals and (σ;X)-maximal orders for (σ, 0;X)-maximal orders.
In Section 4, we show that S = R[Xt;σ] is a maximal order if and only if R is

a (σ;X)-maximal order (Thereom 4.4). If R is a (σ;X)-maximal order, then any v-S-
ideal is of the form tnwa[Xt;σ], where a is a (σ;X)-invariant v-R-ideal, w ∈ Z(Q(T ))
(T = Q[t;σ], the skew polynomial ring over Q) and n is an integer.

In Section 5, we provide examples of orders such that either (δ;X)-maximal orders
or (σ;X)-maximal orders but not maximal orders. Furthermore we give an example R

such that S = R[Xt;σ] is a maximal order but the skew polynomial ring R[t;σ] is not a
maximal order.

We refer the readers to the books [16] and [17] for some elementary properties and
some definitions of order theory which are not mentioned in the paper.

2. Ore-Rees rings.

Let σ be an automorphism of R, δ be a left σ-derivation on R. σ is naturally
extended to an automorphism σ of Q by σ(rc−1) = σ(r)σ(c)−1, where r, c ∈ R and c is
regular, and δ is extended to a left σ-derivation on Q by δ(c−1) = −σ(c−1)δ(c)c−1.

Let R[t;σ, δ] be an Ore extention of R in an indeterminate t, that is tr = σ(r)t+δ(r)
for any r ∈ R and put T = Q[t;σ, δ] throughout the paper. For symmetric argument,
it is sometimes convenient to write the coefficients of a polynomial in T the right hand
side. In this case T = Q[t;σ′, δ′], where σ′ = σ−1 and δ′ = −δσ−1, a right σ′-derivation
on Q.

Let X be an invertible ideal of R. We need the following lemmas for symmetric
argument.

Lemma 2.1. Let X be an invertible ideal of R with σ(X) = X. Then for any
natural numbers l and n,

(1) δ(X l) ⊆ X l−1 (X0 = R).
(2) X ltn ⊆ ∑n

i=0 tn−iX l−i and tnX l ⊆ ∑n
i=0 X l−itn−i, where we put X l−i = R if

n− i > 0 and l − i ≤ 0, and X l−i = δ(R) if n− i = 0 and l − i ≤ 0.

Proof. (1) is clear by induction on l.
(2) Xt ⊆ tσ′(X) + δ′(X) ⊆ tX + δ(R), X2t = X(Xt) ⊆ X(tX + R) ⊆ (tX + R)X +

XR = tX2 + X. So it inductively follows that X lt ⊆ tX l + X l−1. By induction on n,
we may assume that X ltn ⊆ ∑n

i=0 tn−iX l−i. Then the following formula is proved by
checking in case l ≥ n and l < n separately:
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X ltn+1 = (X ltn)t ⊆
( n∑

i=0

tn−iX l−i

)
t ⊆

n∑

i=0

{
tn−i(tX l−i + δ′(X l−i))

}

⊆
n+1∑

i=0

tn+1−iX l−i.

The second statement follows by symmetric argument. ¤

Now let X be a fixed invertible ideal of R. Put

S = R[Xt;σ, δ] = R
⊕

Xt
⊕

X2t2
⊕

· · ·
⊕

Xntn
⊕

· · ·

and

S1 = R
⊕

tX
⊕

t2X2
⊕

· · ·
⊕

tnXn
⊕

· · · ,

which are both subsets of T . If S is a ring, then it is called an Ore-Rees ring associated
to X. In this case S and R[t;σ, δ] have the same quotient ring Q(S) = Q(R[t;σ, δ]) which
is a simple Artinian ring.

Lemma 2.2. S is a ring if and only if σ(X) = X if and only if σ′(X) = X if and
only if S1 is a ring. In this case, S = S1 and is Noetherian.

Proof. If S is a ring, then for any x, y ∈ X, we have

xtyt = x
(
σ(y)t + δ(y)

)
t = xσ(y)t2 + xδ(y)t ∈ X2t2 + Xt,

that is σ(X) ⊆ X and so σ(X) = X, because R is Noetherian. Conversely if σ(X) = X,
then, for any natural numbers l, n,

XntnX ltl ⊆ Xn

( n∑

i=0

X l−itn−i

)
tl ⊆

n∑

i=0

Xn+l−itn+l−i ⊆ S

by Lemma 2.1. Hence S is a ring. If S is a ring, then S1 is a ring and S = S1 by Lemma
2.1. That S is Noetherian is proved in the similar way as [9, Proposition 2.1]. ¤

In the remainder of this paper, we assume that σ(X) = X. First we show that if R

is a maximal order, then so is S by using following lemma.

Lemma 2.3. If A is an ideal of S, then AT is an ideal of T .

Proof. We first prove that c−1AT = AT for any regular elememt c of R and
X−1AT = AT . Since cAT ⊆ AT , AT ⊆ c−1AT ⊆ c−2AT ⊆ · · · ⊆ T . Hence c−nAT =
c−(n+1)AT for some n because T is Noetherian, in fact, it is a principal ideal ring ([16,
Corollary 2.3.7]) and so AT = c−1AT . Similarly AT = X−1AT holds.

Next, for any q(t) ∈ T , there exists a regular element c ∈ R such that cq(t) = r(t) ∈
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R[t;σ, δ]. If deg q(t) = n, then

q(t)AT = c−1r(t)AT ⊆ c−1Rr(t)AT = c−1X−nXnr(t)AT ⊆ c−1X−nAT

= c−1AT = AT

because Xnr(t) ⊆ S. Thus AT is an ideal of T . ¤

Theorem 2.4. If R is a maximal order, then so is the Ore-Rees ring S =
R[Xt;σ, δ].

Proof. For any ideal A of S, let

Cn(A) = {a ∈ R | ∃ h(t) = atn + · · ·+ a0 ∈ A} ∪ {0}.

Then Cn(A) is an ideal of R (note: Cn(A) ⊆ Xn). For a ∈ Cn(A), there is some h(t) =
atn +an−1t

n−1 + · · ·+a0 ∈ A. Then (Xt)h(t) = Xσ(a)tn+1 +(the lower degree parts) ⊆
A and so Xσ(a) ⊆ Cn+1(A) holds. Hence Xσ(Cn(A)) ⊆ Cn+1(A), that is Cn(A) ⊆
X−1σ−1(Cn+1(A)) for any n. Thus we have a following chain of right ideals of R,

C0(A) ⊆ X−1σ−1(C1(A)) ⊆ X−2σ−2(C2(A)) ⊆ · · · ⊆ X−nσ−n(Cn(A)) ⊆ · · · ⊆ R.

Because R is Noetherian, X−mσ−m(Cm(A)) = X−(m+k)σ−(m+k)(Cm+k(A)) for some m

and for any k ≥ 1. Thus we have

Xkσk(Cm(A)) = Cm+k(A)

for any k ≥ 1.
Now let f ∈ Q(S) such that fA ⊆ A, where Q(S) is the quotient ring of S. Then

fAT ⊆ AT and AT is an ideal of T by Lemma 2.3. Since T is a maximal order,
f ∈ Ol(AT ) = T and so f = fktk + · · · + f0, where fi ∈ Q. Let a ∈ Cm(A) and
h = atm + am−1t

m−1 + · · ·+ a0 ∈ A. Then

fh = fkσk(a)tm+k + (the lower degree parts) ∈ A

and so fkσk(a) ∈ Cm+k(A). Hence fkσk(Cm(A)) ⊆ Cm+k(A) holds and

Cm+k(A) ⊇ fkσk(Cm(A)) = fkRσk(Cm(A)) = fkX−kXkσk(Cm(A))

= fkX−kCm+k(A).

Thus fkX−k ⊆ Ol(Cm+k(A)) = R because R is a maximal order and so we have fk ∈ Xk.
Hence fktk ∈ S ⊆ T . Then f − fktk = fk−1t

k−1 + (the lower degree parts) ∈ T and

(f − fktk)A ⊆ fA− fktkA ⊆ A,
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and we obtain fk−1 ∈ Xk−1 in the similar way. Continuing this process, we have f ∈ S

and so Ol(A) = S. The symmetric argument shows that Or(A) = S (Lemma 2.2) and
hence S is a maximal order. ¤

Second we study ideals of R and S which are induced by the properties of (σ, δ;X),
some of which are used in Sections 3 and 4 to give a necessary and sufficient conditions
for S to be a maximal order and to describe the complete structure of v-ideals in Q(S)
in case either σ = 1 or δ = 0.

Lemma 2.5. Let a be an ideal of R. Then A = a[Xt;σ, δ] is an ideal of S if and
only if Xσ(a) = aX and Xδ(a) ⊆ a.

Proof. Suppose A is an ideal of S. For any x ∈ X and a ∈ a, we have xta =
xσ(a)t + xδ(a). So Xσ(a) ⊆ aX and Xδ(a) ⊆ a. Since Xa ⊆ σ−1(a)X, we have
a ⊆ X−1σ−1(a)X which gives X−1σ−1(a)X ⊆ X−2σ−2(a)X2. Thus inductively we have

a ⊆ X−1σ−1(a)X ⊆ X−2σ−2(a)X2 ⊆ · · · ⊆ X−nσ−n(a)Xn ⊆ · · · ⊆ R.

There is an n such that X−nσ−n(a)Xn = X−(n+1)σ−(n+1)(a)Xn+1 and so σ(a) =
X−1aX, that is Xσ(a) = aX. Conversely suppose Xσ(a) = aX and Xδ(a) ⊆ a. To
prove that A is an ideal of S, it is enough to show that A is a left ideal. Since σ(X) = X,
we have

tXa ⊆ σ(Xa)t + δ(Xa) ⊆ aXt + a ⊆ A.

Inductively assume that tnXna ⊆ A. Then, by Lemma 2.1,

tn+1Xn+1a = tn(tXn+1a) ⊆ tn(Xn+1σ(a)t + δ(Xn+1a)) ⊆ tn(XnaXt + Xna) ⊆ A.

Thus for any n and l, tnXnaX ltl ⊆ AX ltl ⊆ A and hence A is a left ideal. ¤

An (R, R)-bimodule a in Q is called (σ, δ;X)-stable if Xσ(a) = aX and Xδ(a) ⊆ a.
We can see from Lemma 2.5 that the concept of (σ, δ;X)-stable is natural to study
Ore-Rees rings.

Lemma 2.6. Let a be an R-ideal in Q. Then a is (σ, δ;X)-stable if and only if it
is (σ′, δ′;X)-stable, that is Xa = σ′(a)X and δ′(a)X ⊆ a.

Proof. It is clear that Xσ(a) = aX if and only if Xa = σ′(a)X. If Xδ(a) ⊆ a,
then for any a ∈ a and x ∈ X, we have σ−1(a)x ∈ Xa. So δ(σ−1(a)x) ∈ δ(Xa) ⊆
Xδ(a) + δ(X)a ⊆ a, that is δ′(a)x ∈ a since δ(σ−1(a)x) = aδ(x) + δσ−1(a)x. Hence
δ′(a)X ⊆ a follows. If δ′(a)X ⊆ a, then we have Xδ(a) ⊆ a similarly. ¤

Lemma 2.7. If a is a (σ, δ;X)-stable ideal of R, then

A = a[Xt;σ, δ] = a[tX;σ′, δ′] = S1a.
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Proof. By the right versions of Lemmas 2.5 and 2.6, S1a is an ideal of S1 = S.
Hence A = aS ⊇ Sa = S1a ⊇ aS1 = aS. Hence A = S1a. ¤

Corollary 2.8. XS = X[Xt;σ, δ] is an ideal of S with XS = SX.

Proof. This is clear because X is (σ, δ;X)-stable. ¤

Lemma 2.9. (1) P1 = XtS is an ideal of S which is equal to P ∗1 = Xδ(R) ⊕∑∞
i=1 Xntn.

(2) P2 = StX is an ideal of S which is equal to P ∗2 = δ(R)X ⊕∑∞
i=1 tnXn.

Proof. (1) By using Lemma 2.1, we have tlX lXδ(R) ⊆ X ltl + · · ·+ Xt + Xδ(R)
and so it is easily proved that P ∗1 is a left ideal of S. Thus, to prove P1 is an ideal, it
is enough to prove P1 = P ∗1 . Note P1 = XtS1 =

∑∞
n=1 XtnXn−1 (X0 = R). It follows

that XtR ⊆ X(Rt + δ(R)) ⊆ Xt + Xδ(R) ⊆ P ∗1 . We may inductively assume that
XtnXn−1 ⊆ Xntn + · · ·+ Xt + Xδ(R) ⊆ P ∗1 . Then

Xtn+1Xn = XtntXXn−1 ⊆ Xtn(Xt + δ(X))Xn−1 ⊆ XtnXtXn−1 + XtnXn−1

⊆ XtnX(Xn−1t + δ(Xn−1)) + XtnXn−1 ⊆ XtnXn−1Xt + XtnXn−1

⊆ (Xntn + · · ·+ Xt + Xδ(R))Xt + XtnXn−1,

and for each i ≥ 1,

XitiXt ⊆ Xi(Xti + Rti−1 + · · ·+ Rt + δ(R))t ⊆ P ∗1

by Lemma 2.1. Therefore we have Xtn+1Xn ⊆ P ∗1 and P1 ⊆ P ∗1 follows.
To prove the converse inclusion, let x ∈ X and r ∈ R. Then P1 3 xtr = x(σ(r)t +

δ(r)) = xσ(r)t + xδ(r) and so xδ(r) ∈ P1. Thus Xδ(R) ⊆ P1 Since Xt ⊆ P1, we may
assume that Xntn ⊆ P1 for a natural number n ≥ 1. Then, by Lemma 2.1,

Xn+1tn+1 = XXntn+1 ⊆ X(tn+1Xn + · · ·+ tR + δ(R))

⊆ Xtn+1Xn + · · ·+ XtR + Xδ(R) ⊆ P1.

Hence P ∗1 = P1 follows.
(2) Similar to the proof of (1). ¤

We now introduce some notation and terminology in a prime Goldie ring R with its
quotient ring Q: For any fractional right R-ideal I and left R-ideal J , let

(R : I)l = {q ∈ Q | qI ⊆ R} and (R : J)r = {q ∈ Q | Jq ⊆ R},

which is a left (right) R-ideal, respectively and

Iv = (R : (R : I)l)r and vJ = (R : (R : J)r)l,
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which is a right (left) R-ideal containing I(J). I(J) is called a right (left) v-ideal if
Iv = I (vJ = J). In case I is a two-sided R-ideal, it is said to be a v-ideal if Iv = I = vI,
and if I ⊆ R, we just say I is a v-ideal of R. An R-ideal A is said to be v-invertible if
v((R : A)lA) = R = (A(R : A)r)v. The following properties are well known and we use
them without reference:
Let A be an R-ideal and I be a right R-ideal. Then

(1) If A is v-invertible, then Or(A) = R = Ol(A) and (R : A)l = A−1 = (R : A)r, where
A−1 = {q ∈ Q | AqA ⊆ A} (e.g. [13]).

(2) (IAv)v = (IA)v. If A is v-invertible, then (IvAv)v = (IA)v (e.g. [13]).

Lemma 2.10. Let P1 = XtS. Then P1v = S = vP1 if δ 6= 0.

Proof. By Lemma 2.9, P1 ∩ R = Xδ(R) 6= (0) which is an ideal since so is
P1. So we have P1T = T . Let α ∈ (S : P1)l. Then α ∈ αT = αP1T ⊆ T . Write
α = qntn + · · ·+ q1t + q0, where qi ∈ Q. It follows that, for any x ∈ X,

S ⊇ αXt 3 (qntn + · · ·+ q1t + q0)xt = qnx′tn+1 + (the lower degree parts)

for some x′ ∈ X. Thus qnX ⊆ Xn+1 and qn ∈ Xn, that is qntn ∈ S. Put β = qntn − α.
Then βP1 = (qntn − α)P1 ⊆ S and inductively we get α ∈ S, that is, (S : P1)r = S.
Hence P1v = (S : (S : P1)l)r = (S : S)r = S. Similarly we have vP1 = S. ¤

Lemma 2.11. Let I be a right S-ideal and J be a left S-ideal. Then

(1) (T : IT )l = T (S : I)l and (T : TJ)r = (S : J)rT .
(2) (IT )v = IvT and v(TJ) = TvJ .
(3) If I ′ is a right ideal of T , then I ′ = (I ′ ∩ S)T . If I ′ is an essential right ideal, then

(I ′ ∩ S)v = I ′ ∩ S.

Proof. (1) It is clear that (T : IT )l ⊇ T (S : I)l. Let q ∈ (T : IT )l and
I =

∑n
i=1aiS, where ai ∈ Q(S). Then qai = qi(t) ∈ T . Write qi(t) =

∑
j qijt

j for some
qij ∈ Q, there exists a regular element c ∈ R such that cqij ∈ R and so cqai ∈ R[t;σ, δ].
Let l = max

1≤i≤n
{deg qi(t)}. Then

X lcqai = X l

( ∑

j

cqijt
j

)
⊆

∑

j

XjX l−jcqijt
j ⊆ S.

Thus X lcqI ⊆ S and so X lcq ∈ (S : I)l which implies q ∈ c−1X−l(S : I)l ⊆ T (S : I)l.
Hence (T : IT )l = T (S : I)l follows and similarly (T : TJ)r = (S : J)rT .

(2) By (1) we have

IT = (IT )v = (T : (T : IT )l)r = (T : T (S : I)l)r = (S : (S : I)l)rT = IvT.

Similarly TJ = TvJ .
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(3) It is clear that (I ′∩S)T ⊆ I ′T = I ′. Since T is a principal ideal ring, I ′ = q(t)T ,
for some q(t) ∈ T with n = deg q(t). There exists a regular element c ∈ R such that
q(t)c ∈ R[t;σ, δ] and q(t)cXn ⊆ I ′ ∩S which gives q(t) ∈ q(t)T = q(t)cXnT ⊆ (I ′ ∩S)T .
Thus, I ′ = (I ′ ∩ S)T . If I ′ is an essential right ideal, then I ′ = I ′v = ((I ′ ∩ S)T )v =
(I ′ ∩ S)vT and so I ′ ∩ S = (I ′ ∩ S)v follows. ¤

Proposition 2.12. There is a (1− 1)-correspondence between

Spec0(S) = {P : prime ideal of S | P ∩R = (0)} and Spec(T )

via P 7−→ PT and P ′ 7−→ P ′ ∩ S. In particular, P is a v-ideal.

Proof. Let P ∈ Spec0(S). Then P ′ = PT = TP , a proper ideal of T by Lemma
2.3 and its right version. Put P =

∑
pi(t)S and TP ∩S =

∑
Sqj(t) where pi(t) ∈ P and

qj(t) ∈ TP ∩S. Since PT =
∑

pi(t)T , we have qj(t) =
∑

pi(t)uij(t), for some uij(t) ∈ T .
Then there exist a regular element c in R and n ≥ 1 such that uij(t)cXn ⊆ S1 = S. It
follows that (TP ∩S)cXn =

∑
Sqj(t)cXn ⊆ P . Since P ∩R = (0), we have TP ∩S ⊆ P

and P = TP ∩ S follows. Now it is clear from Lemma 2.11 (3) that P ′ = PT = TP is a
prime ideal of T .

Conversely, let P ′ ∈ Spec(T ) and P = P ′∩S. It is easy to check that P ∈ Spec0(S).
The last statement is clear from Lemma 2.11 (3) and its left version. ¤

Lemma 2.13. Let P be a prime ideal of S such that P 6⊇ Xt and P 6⊇ X. Then
XP = PX.

Proof. If X2t ⊆ P , then P ⊇ SX2t = SXXt and SX is an ideal of S by Corollary
2.8, which is impossible by the assumption. So X2t 6⊆ P and then XPX−1X2t ⊆ P

implies XPX−1 ⊆ P and hence XP = PX follows. ¤

Proposition 2.14. Let P be a prime ideal of S such that p = P ∩R is (σ, δ;X)-
stable. Then P0 = p[Xt;σ, δ] is a prime ideal. Furthermore, if P0 is a v-invertible ideal
and P = Pv, then P = P0 (see Lemmas 3.3 and 4.2).

Proof. We may assume that p 6= (0). On the contrary assume that P0 is not a
prime ideal. Then there are ideals A, B of S such that AB ⊆ P0, A ⊃ P0 and B ⊃ P0.
We may assume that A = (P0 : B)l ∩ S, where (P0 : B)l = {q ∈ Q(S) | qB ⊆ P0}.
Let a(t) = alt

l + · · · + a0 ∈ A\P0 and l = deg(a(t)) is minimal for this property, where
al ∈ X l and al 6∈ pX l. Then we claim that

X−lσ−l(al) ⊆ A ∩R = a and X−lσ−l(al) 6⊆ p.

It is easy to see that X−lσ−l(al) 6⊆ p because σl(p) = X−lpX l.
Consider a(t)−1P0 = {b(t) ∈ S | a(t)b(t) ∈ P0} ⊇ B. If we prove

X−lσ−l(al)(a(t)−1P0) ⊆ P0, then P0 ⊇ X−lσ−l(al)B. Hence X−lσ−l(al) ⊆ A ∩R.
Assume that X−lσ−l(al)(a(t)−1P0) 6⊆ P0. Then there exists b(t) = bmtm + · · ·+b0 ∈

a(t)−1P0 with X−lσ−l(al)b(t) 6⊆ P0. We may assume that deg b(t) = m is minimal
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for this property. Since P0 3 a(t)b(t) = alσ
l(bm)tl+m + (the lower degree parts), we

have alσ
l(bm) ∈ pX l+m. This shows alσ

l(bm)X−m ⊆ pX l. On the other hand, A ⊇
a(t)bmX−m and deg a(t)bmX−m ≤ l with alσ

l(bm)X−m ⊆ pX l. So, by the choice of a(t),
a(t)bmX−m ⊆ P0 and so a(t)bmtm ∈ a(t)bmX−mXmtm ⊆ P0. Thus a(t)(b(t)− bmtm) ∈
P0, that is, b(t)− bmtm ∈ a(t)−1P0 with deg(b(t)− bmtm) < m. Hence, by the choice of
b(t),

X−lσ−l(al)(b(t)− bmtm) ⊆ P0. (∗)

Again alσ
l(bm) ∈ pX l+m implies X−lalσ

l(bm) ⊆ X−lpX l+m = σl(p)Xm. So
X−lσ−l(al)bm ⊆ pXm and X−lσ−l(al)bmtm ⊆ P0. Hence, by (∗), X−lσ−l(al)b(t) ⊆ P0

which is a contradiction. Thus X−lσ−l(al) ⊆ A ∩ R = a, that is a ⊃ p. The symmetric
argument shows b = B ∩R ⊃ p.

Now since AB ⊆ P0 ⊆ P , we have either A ⊆ P or B ⊆ P and so either a ⊆ p

or b ⊆ p, a contradiction. Hence P0 is a prime ideal. Assume that P0 is v-invertible
and P = Pv. To prove P = P0, suppose on the contrary, P ⊃ P0. Since (S : P )l ⊆
(S : P0)l = P−1

0 , we have P0(S : P )l ⊆ S and P0(S : P )lP ⊆ P0. So P0(S : P )l ⊆ P0

and hence (S : P )l ⊆ Or(P0) = S. It follows that Pv = S, a contradiction and P = P0

follows. ¤

Lemma 2.15. Let a be a right R-ideal and b be a left R-ideal. Then

(S : a[Xt;σ; δ])l = S(R : a)l and (S : Sb)r = (R : b)rS.

In particular, (a[Xt;σ, δ])v = av[Xt;σ, δ] and v(Sb) = Svb.

Proof. It is clear that S(R : a)l ⊆ (S : a[Xt;σ, δ])l. To prove the converse
inclusion, let q ∈ (S : a[Xt;σ, δ])l. Then q ∈ T , because a[Xt;σ, δ]T = T . Write
q = q0 + tq1 + · · · + tnqn and qa ⊆ S = S1 entails tiqia ⊆ tiXi. Thus X−iqi ⊆ (R : a)l,
that is qi ∈ Xi(R : a)l and tiqi ∈ tiXi(R : a)l ⊆ S(R : a)l. Hence q ∈ S(R : a)l, showing
(S : a[Xt;σ, δ])l = S(R : a)l. Similarly (S : Sb)r = S(R : b)r. Hence (a[Xt;σ, δ])v =
av[Xt;σ, δ] and v(Sb) = Svb. ¤

Lemma 2.16. Let a and b be R-ideals which are (σ, δ;X)-stable. Then the following
are all (σ, δ;X)-stable;

(1) ab and a ∩ b.
(2) (R : a)l and (R : a)r.
(3) c = {r ∈ R | ra ⊆ R} and d = {r ∈ R | ar ⊆ R}.

Proof. (1) It is easy to see that ab and a ∩ b are (σ, δ;X)-stable.
(2) To prove that (R : a)l is (σ, δ;X)-stable, first note that σ(a) = X−1aX. So

σ((R : a)l) = (R : σ(a))l = (R : X−1σ(a)X)l = X−1(R : a)lX

and Xσ((R : a)l) = (R : a)lX follows. To prove Xδ((R : a)l) ⊆ (R : a)l, let x ∈ X, q ∈
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(R : a)l and a ∈ a. Then

R 3 xδ(qa) = x(σ(q)δ(a) + δ(q)a) = xσ(q)δ(a) + xδ(q)a

and

xσ(q)δ(a) ∈ Xσ((R : a)l)X−1Xδ(a) ⊆ (R : a)la ⊆ R.

Thus xδ(q)a ∈ R and Xδ((R : a)l)a ⊆ R, that is Xδ((R : a)l) ⊆ (R : a)l. Hence (R : a)l

is (σ, δ;X)-stable. Similarly (R : a)r is (σ, δ;X)-stable.
(3) This follows from (2), because X is flat, c = (R : a)l ∩S and d = (R : a)r ∩S. ¤

R is called a (σ, δ;X)-maximal order in Q if Ol(a) = R = Or(a) for any (σ, δ;X)-
stable ideal a of R. If R is a (σ, δ;X)-maximal order in Q, then for any (σ, δ;X)-stable
R-ideal a, we have Ol(a) = R = Or(a) by using Lemma 2.16. Hence (R : a)l = a−1 =
(R : a)r, where a−1 = {q ∈ Q | aqa ⊆ a} and av = a−1−1 = va follows.

Let Dσ,δ;X(R) be the set of all (σ, δ;X)-stable v-ideals. For any a, b ∈ Dσ,δ;X(R),
we define a ◦ b = (ab)v. Then we have the following.

Proposition 2.17. Let R be a (σ, δ;X)-maximal order in Q. Then Dσ,δ;X(R) is
an Abelian group generated by maximal (σ, δ;X)-stable v-ideals of R.

Proof. This is proved in a standard way by using Lemma 2.16 (cf. [16, Theorem
2.1.2]). ¤

3. Differential Rees rings which are maximal orders.

In case σ = 1 and δ 6= 0, we write S = R[Xt; δ] for R[Xt; 1, δ], which is called
a differential Rees ring. We just say (δ;X)-stable ideals for (1, δ;X)-stable ideals and
(δ;X)-maximal orders for (1, δ;X)-maximal orders. Let R be a (δ;X)-maximal order.
Then we write Dδ;X(R) for D1,δ;X(R).

In this section, we will prove that the differential Rees ring S = R[Xt; δ] is a maximal
order if and only if R is a (δ;X)-maximal order. Furthermore, we describe the structure
of v-ideals of S in case R is a (δ;X)-maximal order by using some properties prepared
in Section 2. Note that δ is naturally extended to a derivation δ on Q[t; δ] by δ(q(t)) =∑l

i=0 δ(qi)ti, where q(t) =
∑l

i=0 qit
i ∈ Q[t; δ].

Lemma 3.1. Let A be an ideal of S with XA = AX. Then a = A ∩ R and A are
both (δ;X)-stable, that is Xa = aX, Xδ(a) ⊆ a and Xδ(A) ⊆ A.

Proof. Since A = X−1AX, we have a = X−1AX∩R ⊇ X−1(A∩R)X = X−1aX.
Hence aX = Xa. For any a ∈ a and x ∈ X, xta = xat+xδ(a) and xat ∈ Xat = aXt ⊆ A.
Hence xδ(a) ∈ A, that is Xδ(a) ⊆ a follows. To prove A is (δ;X)-stable, let x ∈ X and
a(t) =

∑l
i=0 ait

i ∈ A. Then
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xta(t) = x

( l∑

i=0

tait
i

)
= x

( l∑

i=0

(
ait + δ(ai)

)
ti

)

= x

{( l∑

i=0

ait
i

)
t +

( l∑

i=0

δ(ai)ti
)}

= xa(t)t + xδ(a(t)).

By assumption, xa(t)t ∈ XAt = AXt ⊆ A and so xδ(a(t)) ∈ A. Hence Xδ(A) ⊆ A. ¤

Lemma 3.2. Let P be a prime ideal of S such that P 6⊇ Xt and P ⊇ X. Then
p = P ∩R is (δ;X)-stable.

Proof. For any x ∈ X and p ∈ p, we have xpt = txp − δ(xp) = txp − δ(x)p −
xδ(p) ∈ P since P ⊇ X. So Xpt ⊆ P and XpX−1P1 = XpX−1XtS = XptS ⊆ P .
Thus XpX−1 ⊆ P by Lemma 2.9 and Xp = pX follows. Hence p is (δ;X)-stable since
Xδ(p) ⊆ P ∩R = p. ¤

Lemma 3.3. Suppose R is a (δ;X)-maximal order in Q. Let A be an ideal of S

with A = Av and a = A ∩ R 6= (0). Then A = a[Xt; δ] and a ∈ Dδ;X(R). In particular,
A is v-invertible.

Proof. First assume that A is maximal in the set B = {B : ideal | Bv = B}.
Then A is a prime ideal and A 6⊇ Xt by lemma 2.10. So, by Lemmas 2.13, 3.1 and
3.2, a is (δ;X)-stable and av = a by Lemma 2.15, that is a ∈ Dδ;X(R). It follows that
A0 = a[Xt; δ] is v-invertible. Hence A = a[Xt; δ] by Proposition 2.14.

If there is an A in B such that A ⊃ a[Xt; δ], then there exists maximal P with
P ⊃ A and P = p[Xt; δ], where p = P ∩ R ∈ Dδ;X(R). We assume that A is maximal
for this property. Then S ⊇ AP−1 ⊇ A. If AP−1 = A, then AP−1SP = ASP , where
SP is a localization of S at P wihch is a local Dedekind prime ring with J(SP ) =
PSP by [13, Lemma 2.1], and since AP−1SP = ASP P−1SP and ASP is an ideal of
SP , we have P−1SP ⊆ Or(ASP ) = SP and SP = P−1SP , a contradiction. Hence
(AP−1)v ⊃ A and so (AP−1)v = b[Xt; δ] for some b ∈ Dδ;X(R). It follows that A =
(AP−1P )v = ((AP−1)vP )v = (b[Xt; δ]p[Xt; δ])v = (bp)v[Xt; δ] by Lemma 2.15, where
(bp)v ∈ Dδ;X(R), which is a contradiction. This completes the proof. ¤

Lemma 3.4. Suppsoe R is a (δ;X)-maximal order. Let A be an ideal of S such
that A = Av and A ∩R = (0). Then A is v-invertible.

Proof. By Lemma 2.3, AT is an ideal of T . Thus, by Lemma 2.11, T = AT (T :
TA)r = A(S : A)rT , which implies A(S : A)r ∩ R 6= (0). So (A(S : A)r)v = a[Xt; δ]
for some a ∈ Dδ;X(R) by Lemma 3.3. Thus (A(S : A)r · a−1[Xt; δ])v = ((A(S :
A)r)va−1[Xt; δ])v = S by Lemma 2.15 and (S : A)ra

−1[Xt; δ] = (S : A)r. Hence
(A(S : A)r)v = S. Similarly S = v((S : A)lA) and hence A is v-invertible with vA = A.

¤

We are now in position to prove the main theorem of this section:

Theorem 3.5. Let R be a Noetherian prime ring with a non-zero derivation δ and
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X be an invertible ideal. Then R is a (δ;X)-maximal order if and only if the differential
Rees ring S = R[Xt; δ] is a maximal order.

Proof. Let R be a (δ;X)-maximal order and A be an ideal of S. Since S ⊆
Ol(A) ⊆ Ol(Av), it suffices to prove Ol(Av) = S in order to prove Ol(A) = S. By
Lemmas 3.3 and 3.4, Av is v-invertible and so Ol(Av) = S. By left versions of Lemmas
3.3 and 3.4, Or(A) = S. Hence S is a maximal order.

Conversely, let S be a maximal order and a be a (δ;X)-stable ideal. To prove that R

is a (δ;X)-maximal order, we may assume that av = a. Put A = a[Xt; δ]. Then A = Av

by Lemma 2.15 and so A is a v-ideal. Since (S : A)l = (R : a)l[Xt; δ], we have

S = v((S : A)lA) = v((R : a)l[Xt; δ] a[Xt; δ]) = v((R : a)la)[Xt; δ].

Hence R = v((R : a)la) and similarly (a(R : a)l)v = R. Hence a is v-invertible and so
Ol(a) = R = Or(a). Hence R is a (δ;X)-maximal order. ¤

Now we explicitly give the structure of all v-ideals in Q(S) in case R is a (δ;X)-
maximal order as follows:

Proposition 3.6. Suppose R is a (δ;X)-maximal order. Let A be a v-ideal in
Q(S). Then A = a[Xt; δ]w for some a ∈ Dδ;X(R) and w ∈ Z(Q(T )), the center of Q(T ).

Proof. Since S is a maximal order, it is well known that the set of all v-ideals
in Q(S) is an Abelian group generated by maximal v-ideals of S and that a v-ideal of S

is a maximal v-ideal if and only if it is a prime v-ideal. Thus, by Proposition 2.12 and
Lemma 3.3, any maximal v-ideal is of the form either P = p[Xt; δ] with p ∈ Dδ;X(R) or
B, a v-ideal such that BT is a maximal ideal of T .

Let A be a v-ideal in Q(S). If A ⊆ S, then AT is an ideal of T and so
AT = wT for some w ∈ Z(T ), the center of T by [5, Corollary 6.2.11] (also, see
[16, Corollary 2.3.11]). Then w−1AT = T and w−1A is a v-ideal in Q(S) and so
w−1A = (P e1

1 · · ·P er
r Bf1

1 · · ·Bfs
s )v, where Pi = pi[Xt; δ] are maximal v-ideals with

pi ∈ Dδ;X(R), Bj are maximal v-ideals such that Bj ∩ R = (0) and BjT are maxi-
mal ideals of T and ei, fj are integers. It follows that

T = w−1AT = (P e1
1 · · ·P er

r Bf1
1 · · ·Bfs

s )vT = (P e1
1 · · ·P er

r Bf1
1 · · ·Bfs

s )T = Bf1
1 · · ·Bfs

s T.

Hence f1 = · · · = fs = 0, that is w−1A = (P e1
1 · · ·P er

r )v = a[Xt; δ], where a =
(pe1

1 · · · per
r )v ∈ Dδ;X(R) and thus A = a[Xt; δ]w as desired.

If A is a fractional v-ideal, then CA ⊆ S for an ideal C of S. So Cv = cv[Xt; δ]w1

for some c ∈ Dδ;X(R), w1 ∈ Z(T ) and (CA)v = bv[Xt; δ]w2 for some b ∈ Dδ;X(R) and
w2 ∈ Z(T ). Hence

A = (C−1CA)v = (c−1[Xt; δ]w−1
1 b[Xt; δ]w2)v = (c−1b)v[Xt; δ]w−1

1 w2,

where (c−1b)v ∈ Dδ;X(R) and w−1
1 w2 ∈ Z(Q(T )). This completes the proof. ¤
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We recall that a ring is Asano if any non-zero ideal is invertible. Any Asano ring is
a maximal order. We say that a ring is a generalized Asano ring if it is a maximal order
and any v-ideal is invetible. Furthermore, a ring is called a generalized (δ;X)-Asano ring
if it is a (δ;X)-maximal order and any (δ;X)-stable v-ideal is invertible.

From Theorem 3.5 and Proposition 3.6, we have

Corollary 3.7. R is a generalized (δ;X)-Asano ring if and only if S = R[Xt; δ]
is a generalized Asano ring.

4. Skew Rees rings which are maximal orders.

In case δ = 0, as in Section 3 we write S = R[Xt;σ] for R[Xt;σ, 0], which is called
a skew Rees ring. A (σ, 0;X)-stable ideal a is called a (σ;X)-invariant ideal, because
X0(a) ⊆ a is always satisfied and a (σ; 0; X)-maximal order is called a (σ;X)-maximal
order. If R is a (σ;X)-maximal order, then we write Dσ;X(R) for Dσ,0;X(R).

In this section, we will prove that a skew Rees ring S = R[Xt;σ] is a maximal order
if and only if R is a (σ;X)-maximal order.

Lemma 4.1. Let P be a prime ideal of S.

(1) If P 6⊇ Xt, then p = P ∩R is (σ;X)-invariant (we do not assume p 6= 0).
(2) If P ⊇ Xt with P = Pv then P = XtS and is invertible.

Proof. (1) First we will prove that P is (σ;X)-invariant, that is Xσ(P ) = PX.
Consider XtP (Xt)−1Xt ⊆ P . Then we have P ⊇ XtP (Xt)−1 = Xσ(P )X−1. Hence
Xσ(P ) ⊆ PX. To prove the converse inclusion, consider P ⊇ tX(tX)−1PtX then we
have P ⊇ (tX)−1PtX = X−1σ−1(P )X and PX ⊆ Xσ(P ). Hence Xσ(P ) = PX and
P is (σ;X)-invariant. σ(P ) = X−1PX entails that σ(p) = σ(P ) ∩ R = X−1PX ∩ R =
X−1(P ∩R)X = X−1pX and hence p is (σ;X)-invariant.

(2) It is enough to prove that Pv = S if P ⊃ XtS. Suppose P ⊃ XtS. Then
P = p⊕Xt⊕X2t2 ⊕ · · · ⊕Xntn ⊕ · · · for some non zero ideal p of R. Let q ∈ (S : P )l.
Then q = qntn + · · ·+ q1t + q0 ∈ T since PT = T . It follows that qXt ⊆ qP ⊆ S and so
for each i, qiXti+1 = qit

iXt ⊆ Xi+1ti+1, which implies qi ∈ Xi and thus q ∈ S. Hence
(S : P )l = S and Pv = S. ¤

Suppose R is a (σ;X)-maximal order. Let P be an ideal of S which is maximal
in the set B = {B : ideal of S | B = Bv} and p = P ∩ R 6= (0). Then P is a prime
ideal and p is a (σ;X)-invariant v-ideal by Lemmas 2.15 and 4.1. Thus P = p[Xt;σ] by
Proposition 2.14, v-invertible and p ∈ Dσ;X(R). So the following lemmas 4.2 and 4.3 are
obtained in similar ways as one in Lemmas 3.3 and 3.4.

Lemma 4.2. Suppose R is a (σ;X)-maximal order in Q. Let A be an ideal of S

with A = Av and a = A ∩R 6= (0). Then A = a[Xt;σ] and a ∈ Dσ;X(R).

Lemma 4.3. Suppose R is a (σ;X)-maximal order in Q. Let A be an ideal of S

such that A = Av and A ∩R = (0). Then A is v-invertible.

Now we obtain a necessary and sufficient conditions for S = R[Xt;σ] to be a maximal
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order by using Lemmas 4.2 and 4.3, whose proof is similar to one in Theorem 3.5.

Theorem 4.4. Let R be a Noetherian prime ring with its quotient ring Q, σ be an
automorphism of R and S = R[Xt;σ] be a skew Rees ring associated to X, where X is
an invertible ideal with σ(X) = X. Then R is a (σ;X)-maximal order if and only if S

is a maximal order in Q(R).

It is well known that any ideal of T = Q[t;σ] is of the form tnwT , where n is a
non-negative integer and w ∈ Z(T ) (see [5, Corollary 6.2.11] or [16, Corollary 2.3.11]).
Hence we have the following proposition whose proof is similar to one in Proposition 3.6.

Proposition 4.5. Suppose R is a (σ;X)-maximal order and let A be a v-ideal in
Q(S). Then A = tnwa[Xt;σ] for some a ∈ Dσ;X(R), w ∈ Z(Q(T )) and n is an integer.

As in case σ = 1 and δ 6= 0, we can define the concept of a generalized (σ;X)-Asano
ring, that is it is a (σ;X)-maximal order and any (σ;X)-invariant v-ideal is invertible.

From Theorem 4.4 and Proposition 4.5, we have

Corollary 4.6. R is a generalized (σ;X)-Asano ring if and only if S = R[Xt;σ]
is a generalized Asano ring.

5. Examples.

In this section, we provide examples of (δ;X)-maximal orders and (σ;X)-maximal
orders but not maximal orders. Furthermore we provide examples R with invertible
ideals X satisfying; R[t;σ] is a maximal order but R[Xt;σ] is not a maximal order, and
R[Xt;σ] is a maximal order but R[t;σ] is not a maximal order.

Let D be an HNP ring satisfying the following conditions:

(a) There is a cycle m1, m2, . . . ,mn (n ≥ 2) so that p0 = m1 ∩ m2 ∩ · · · ∩ mn is an
invertible ideal.

(b) Any maximal ideal different from mi (1 ≤ i ≤ n) is invertible.

See [1] and [10] for examples of HNP rings satisfying the conditions (a) and (b). It
follows from [8, Theorem 14] and [7, Proposition 2.8] that

( i ) p0m1p
−1
0 = m2, . . . , p0mnp−1

0 = m1 and
( ii ) p0np−1

0 = n for all maximal ideals n with n 6= mi (1 ≤ i ≤ n).

Let R = D[x], a polynomial ring over D in an indeterminate x. It is shown in [13] that
R is a v-HC ordre with enough v-invertible ideals since D has enough invertible ideals
(“v-HC orders” is a Krull type generalization of HNP rings. See [12] and [13] for the
definition of v-HC orders and some ideal theoretical properties of v-HC orders).

We define a derivation δ on R as follows; δ(x) = 1 and δ(a) = 0 for all a ∈ D and
put X = p0[x], an invertible ideal of R. We will show that the differential Rees ring
S = R[Xt; δ] is a maximal order in case char D = 0.

Recall some properties of v-ideals of R = D[x] as follows.

(iii) For any ideal a of R, if a = av (or a = va), then it is a v-ideal ([12, Lemma 1.2]).
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(iv) {n[x], X = p0[x], a | n are maximal ideals different from mi (1 ≤ i ≤ n), and
a is a v-ideal of R such that aQ(D)[x] is a maximal ideal of Q(D)[x]} is the set
of maximal v-invertible ideals of R ([13]). Since gl. dimR ≤ 1, any v-ideal is
projective and so v-invertible R-ideals in Q(R) are invertible. Hence D(R), the
set of all invertible R-ideals in Q(R) is a free Abelian group generated by maximal
invertible ideals of R ([12, Theorem 1.13]).

( v ) Let m be a maximal v-ideal of R with m0 = m ∩D 6= (0). Then either m = mi[x]
for some i or m = n[x] for some maximal ideal n different from mi.

Proof. Since m is a prime ideal, it follows that m0 is a prime ideal. Thus either
m0 = mi for some i or m0 = n and so either m ⊇ mi[x] or m ⊇ n[x]. Hence either
m = mi[x] or m = n[x] since mi[x] and n[x] are both maximal v-ideals. ¤

A v-ideal a of R is called v-idempotent if a = (a2)v. It is called eventually v-
idempotent if (an)v is v-idempotent for some n ≥ 1.

(vi) Let a be eventually v-idempotent. Then there are mi1 , . . . ,mir (i1 < · · · < ir, r <

n) which are the full set of maximal v-ideals containing a and (ar)v =
(
(mi1 [x] ∩

· · · ∩mir [x])r
)
v
. This follows from [13, Proposition 1.4], (iv) and (v).

(vii) Let a be a v-ideal of R. Then a = (bc)v for a v-invertible ideal b of R and eventually
v-idempotent c ([14, Proposition 3]).

Lemma 5.1. Let a be a v-ideal of R = D[x]. Then

(1) If a is eventually v-idempotent, then XaX−1 6= a and a is not (δ;X)-stable.
(2) If char D = 0 and a ∩D = (0), then a is not (δ;X)-stable.

Proof. (1) Let mi1 [x], . . . ,mir [x] be the full set of maximal v-ideals containing
a. By (i), mi1+1[x], . . . ,mir+1[x] is the full set of maximal v-ideals containing XaX−1

(ir + 1 = 1 if ir = n). Hence XaX−1 6= a.
(2) Let f(x) = alx

l + · · · + a0 be a non-zero element in a such that l is minimal.
δ(f(x)) = lalx

l−1+ · · ·+a1 6∈ a and Xδ(f(x)) 6⊆ a, because Xδ(f(x)) contains a non-zero
polynomial whose degree is l − 1. Hence a is not (δ;X)-stable. ¤

Example 5.2. Let D be an HNP ring satisfying the conditions (a) and (b) with
char D = 0. Let R = D[x], X = p0[x] and δ be a derivation on R such that δ(x) = 1
and δ(a) = 0 for all a ∈ D. Then the differential Rees ring S = R[Xt; δ] is a maximal
order but R is not a maximal order.

Proof. It is clear that R is not a maximal order. To prove that S is a maximal
order, it is enough to prove that any (δ;X)-stable v-ideal of R is invertible by Theorem
3.5. Let a be a v-ideal of R. Then a = (bc)v = bc for some invertible ideal b and
some eventually v-idempotent c by (vii). Suppose a is (δ;X)-stable. Then bcX = aX =
Xa = Xbc = bXc by (iv) and cX = Xc follows. Thus c = R by Lemma 5.1. Hence
R is a (δ;X)-maximal order. To describe (δ;X)-stable invertible ideals, let b = b1b2,
where b1 = Xene1

1 [x] · · · ner
r [x], where nj are maximal invertible ideals different from

mi (1 ≤ i ≤ n), e, ej are non-negative integers, b2 = pf1
1 · · · pfs

s , where pi are maximal
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invertible ideals such that piQ(D)[x] are maximal ideals of Q(D)[x] and fj are non-
negative integers. If b2 6= R, then d(b2) = l > 1 and d(δ(b2)) = l − 1, where d(s) =
min{n : natural number | 0 6= f(x) = anxn + · · ·+ a0 ∈ s} for a subset s of R. Since

d(Xδ(b1b2)) = d(δ(b1b2)) = d(δ(b2)) < d(b2) = d(b1b2),

it follows that b = b1b2 is not (δ;X)-stable and so b2 = R. Since b1 = Xe ∩ne1
1 [x]∩ · · · ∩

ner
r [x], we have

Xδ(b1) ⊆ X(δ(Xe) ∩ δ(ne1
1 [x]) ∩ · · · ∩ δ(ner

r [x]) ⊆ Xe ∩ ne1
1 [x] ∩ · · · ∩ ner

r [x] = b1,

which implies that b1 is (δ;X)-stable by (iv). Hence {Xene1
1 [x] · · · ner

r [x] | nj are maximal
invertible ideals different from mi (1 ≤ i ≤ n) and e, ej are non-negative integers} is the
set of (δ;X)-stable ideals of R. ¤

In order to obtain an example of a (σ;X)-maximal order but not a maximal order,
suppose that p0 is principal, say p0 = aD = Da for some a ∈ p0. Define an automorphism
σ of D by σ(r) = ara−1 for all r ∈ D. Then we have the following examples:

Example 5.3. (1) Put X = ne1
1 · · · nes

s , where nj are maximal ideals different from
mi (1 ≤ i ≤ n). Then D is a (σ;X)-maximal order which is not a maximal order. So the
skew Rees ring S = D[Xt;σ] is a maximal order.

(2) Put X = p0. Then

( i ) If n = 2l, an even number, then D is not a (σ;X)-maximal order so that S =
D[Xt;σ] is not a maximal order.

( ii ) If n = 2l + 1, an odd number, then D is a (σ;X)-maximal order so that S =
D[Xt;σ] is a maximal order.

Proof. (1) Since the set of invertible D-ideals is an Abelian group generated by
maximal invertible ideals, say p0 and n, we have, for any invertible ideal a, Xa = aX

and a is σ-invariant, that is σ(a) = a. Hence a is (σ;X)-invariant. Let a be an ideal
such that it is not invertible and (σ;X)-invariant. Then a = bc, where b is invertible
and c is eventually idempotent ([7, Theorem 4.2]). Hence c is also (σ;X)-invariatnt. As
in Example 5.2, let mi1 , . . . ,mir

be the full set of maximal ideals containing c. Then
σ(mi1), . . . , σ(mir

) is the set of maximal ideals containing σ(c) = X−1cX = c (the last
equality follows from [7, Proposition 2.8]), which is a contradiction. Hence an ideal is
(σ;X)-invariant if and only if it is invertible. Therefore D is a (σ;X)-maximal order.

(2) Let a be eventually idempotent which is (σ;X)-invariant. Then σ(a) =
X−1aX = σ−1(a), that is σ2(a) = a.

(i) Put a = m1 ∩m3 ∩ · · · ∩m2l−1. Then σ2(a) = m3 ∩ · · ·m2l−1 ∩m1 = a. Hence a is
(σ;X)-invariant. Suppose Or(a) = D = Ol(a). Then it is easy to see that a is invertible,
which is a contradiction. Hence D is not a (σ;X)-maximal order so that S = D[Xt;σ]
is not a maximal order.

(ii) Let a be eventually idempotent which is (σ;X)-invariant and s = {mi1 , . . . ,mir}
be the set of maximal ideals containing a. We may assume that mi1 = m1. Since σ2(a) =
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a, {m1, m3, . . . ,m2l+1} ⊆ s and so σ2(m2l+1) = m2. Thus we have s = {m1, . . . ,m2l+1},
a contradiction. Thus a (σ;X)-invariant ideal must be invertible. Hence D is a (σ;X)-
maximal order and S = D[Xt;σ] is a maximal order. ¤

Remark 5.4. (1) In case (1) and (2) (ii) in Example 5.3, as it is seen from the
proofs, D is a generalized (σ;X)-Asano ring and S = D[Xt;σ] is a generalized Asano
ring.

(2) Suppose p0 = aD = Da. As in Example 5.2, put R = D[x]. Then p0[x] = aR =
Ra and let σ be an automorphism induced by a. We have the following, by using the
properties of (iii) ∼ (vii), whose proofs are similar to one in Example 5.3:

(1) Put X = ne1
1 [x] · · · nes

s [x], an invertible ideal. Then R is a (σ;X)-maximal order but
not a maximal order and S = R[Xt;σ] is a maximal order.

(2) Put X = p0[x]. Then
(i) If n = 2l, an even number, then R is not a (σ;X)-maximal order so that S =

R[Xt;σ] is not a maximal order.
(ii) If n = 2l+1, an odd number, then R is a (σ;X)-maximal order and S = R[Xt;σ]

is a maximal order.

We are also interested in relations between R[Xt;σ] and the skew polynomial ring
R[t;σ] from order theoretical view-point. It is known that R[t;σ] is a maximal order if
and only if R is a σ-maximal order, that is Ol(a) = R = Or(a) for any σ-invariant ideal a

of R (see, e.g., [16, Theorem 2.3.19]). It is easy to see, from our observation in Example
5.3, that D is a σ-maximal order so that D[t;σ] is a maximal order. However, as we have
already shown, in case (2) (i), D[Xt;σ] is not a maximal order and in case either (1) or
(2) (ii), D[Xt;σ] is a maximal order.

We finally give examples of rings which are (σ;X)-maximal orders but not σ-maximal
orders.

Let k be a field with automorphism σ and let K =
(

k k
k k

)
, the ring of 2× 2 matrices

over k. Then we can extend σ to an automorphism of K by σ(q) =
(

σ(a) σ(b)
σ(c) σ(d)

)
, where

q =
(

a b
c d

)
. Let U = K[x;σ] and I = eK + xU , where e =

(
1 0
0 0

)
. Then I is a σ-invariant

maximal right ideal of U with UI = U . We consider R = {u ∈ U | uI ⊆ I}, the idealizer
of I. By [17, Theorem 5.5.10], R is an HNP ring and I is an idempotent maximal
ideal of R. We note that R = K(1 − e) + eK + xU and σ(R) = R. R has another
idempotent maximal ideal J = K(1− e) + xU , which is a σ-invariant maximal left ideal
of U with JU = U . Put X = I ∩ J = eK(1 − e) + xU . Since Or(I) = U = Ol(J) and
Or(J) = x−1(eK(1 − e)) + R = Ol(I), {I, J} is a cycle and X is an invertible ideal of
R by [7, Proposition 2.5].

Example 5.5. Under the same notation and assumptions,

(1) R is not a σ-maximal order and R[t;σ] is not a maximal order.
(2) R is a (σ;X)-maximal order and S = R[Xt;σ] is a maximal order. In fact, it is a

generalized Asano ring.

Furthermore
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( i ) If σ is of infinite order, then XS and XtS are only maximal v-ideals of S.
( ii ) If σ is of finite order, say n, then there are infinite number of maximal v-ideals of

S.

Proof. (1) I is σ-invariant ideal of R, and Or(I) = U ⊃ R. Hence R is not a
σ-maximal order and R[t;σ] is not a maximal order.

(2) First we note that X is σ-invariant and so X is (σ;X)-invariant. Next we have

IX = eK(1− e) + x(eK + K(1− e)) + x2U = XJ = IJ and XI = JX = JI = xU

and IX 6= XI follows. Since I is σ-invariant, Xσ(I) = XI 6= IX. Hence I is not
(σ;X)-invariant. Similarly J is not (σ;X)-invariant, either. As U is a principal ideal
ring, each ideal of U is invertible and I contains non-zero prime ideal xU of U . Then
{I, J} is the full set of idempotent maximal ideals of R by [17, Theorem 5.6.11]. Other
maximal ideals of R are invertible by [7, Proposition 2.2].

Let a be any ideal of R. Then, a = bc for an eventually idempotent ideal b and an
invertible ideal c. But there are no idempotent maximal ideals of R different from I and
J , and I ∩ J = X is invertible. Hence b = I or b = J by [7, Proposition 4.5] and so
a is invertible or of the form Ic or Jc. If a = Ic, then aX = IcX = IXc = XJc. On
the other hand, Xσ(a) = Xσ(Ic) = XIσ(c). Thus, if a is (σ;X)−invariant, we have
XJc = XIσ(c) and Jc = Iσ(c) follows. Since UI = U and UJ = J ,

Iσ(c) = Jc = UJc = UIσ(c) = Uσ(c)

and we obtain I = U , a contradiction. Hence a = Ic is not (σ;X)-invariant. Similarly
Jc is not (σ;X)-invariant. Thus (σ;X)-invariant ideals of R are all invertible. Hence R

is a (σ;X)-maximal order and so S is a maximal order. In fact, S is a generalized Asano
ring, because R is a generalized (σ;X)-Asano ring.

(i) If σ is of infinite order, then xU is the unique maximal ideal of U by [11,
Theorem 2]. Thus I and J are only maximal ideals of R by [17, Theorem 5.6.11] and
Dσ;X(R) = {Xn | n ∈ Z}. Let P be a maximal v-ideal of S with p = P ∩R 6= (0). Then
P = p[Xt;σ] with p ∈ Dσ;X(R) by Lemma 4.2 and so p = X. Furthermore T = Q(R)[t;σ]
has the unique maximal ideal tT∩S = XtS by Lemma 4.1 and Poroposition 2.12, because
tT ∩ S ⊇ Xt. Hence XS and XtS are only maximal v-ideals of S.

(ii) If σ is of finite order, say n, then Z(U) = kσ[xn], where kσ = {a ∈ k | σ(a) = a},
because U ∼=

(
k[x;σ] k[x;σ]
k[x;σ] k[x;σ]

)
. Let P be a maximal ideal of U different from xU . Then

P = wU for some w ∈ kσ[xn], an irreducible element, by [3, Lemma 2.3] and p = P ∩R is
invertible and prime by [17, Theorem 5.6.11]. Furthermore, since σ(w) = w, σ(p) = p and
Xσ(p) = Xp = pX. So p is (σ;X)-invariant. It follows that {p, X | p = P∩R, where P =
wU} is the set of maximal (σ;X)-invariant invertible ideals and that p[Xt;σ] are all
maximal v-ideals. Therefore there are infinite number of maximal v-ideals of S, because
there are infinite number of irreducible elements w in kσ[xn]. This completes the proof.

¤
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