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Abstract. We give a classification of all complex Delsarte surfaces with
only isolated ADE singularities. This results in 83 types of surfaces. For each
of these types, we give a closed formula for the Picard number depending only
on the degree.

1. Introduction.

In [11] Shioda introduced Delsarte surfaces as a generalization of Delsarte curves.
In the same paper he introduced an algorithm to compute the Picard number of these
surfaces. This algorithm works for arbitrary characteristic. In this text we will only
consider the case where the surfaces are defined over the complex numbers. The compu-
tation of the Picard number is in general a hard problem. In [9], the algorithm of [11]
is one of the methods used to find Picard numbers of quintic surfaces with only isolated
ADE singularities. In the current paper we extend these results to Delsarte surfaces of
any degree with only isolated ADE singularities. For non-singular Delsarte surfaces this
has already been done in [7].

The main result of this paper is:

THEOREM 1.1.  For any degree n > 6, there are up to isomorphism at most 83
Delsarte surfaces of degree n > 6 with only isolated ADE singularities. The possible cases,
and for every case a closed formula for the Picard number, are given in Appendiz A.

Of particular interest to us are surfaces where the Picard number is the highest
possible. These are called maximal (see 2). Using the list in Appendix A, and considering
the cases with n = 5 as well, a short search gives the following.

COROLLARY 1.2.  There are up to isomorphism precisely three maximal Delsarte
surfaces with degree n > 5. These are given by:

X3YZ+Y32ZU + XZ3U + XYU® =0,

X°Y + XY° + Z°U + ZU° = 0 and
X6 4+yo4+ 28+ Ub=o.
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Note that we do not address the question of describing generators of the Néron-Severi
groups of the surfaces described here; we refer to [4] for work on this for generators over
Z. See also [3] for work on generators on Fermat surfaces.

The author would like to thank Victor Gonzélez, Matthias Schiitt, Tetsuji Shioda,
Jaap Top and an anonymous referee for several helpful suggestions and corrections.

2. Some general theory about Delsarte surfaces.

In this section we explain some of the theory on Delsarte surfaces that we will use.
We use Shioda’s definition of Delsarte surface [11].

DEFINITION 2.1. A Delsarte surface is an irreducible two dimensional subvariety
in P2, which is defined as the zero set of a polynomial consisting of the sum of four
monomials, such that the exponent matrix is invertible.

Note that there always is a scaling of coordinates so that the constants in the poly-
nomial are all one. Hence we will assume we are in this situation.

In [11] an algorithm is presented to compute the Picard number of these surfaces.
For later use we state an adapted version of this algorithm as given in [6].

Let S be a projective Delsarte surface defined by the homogeneous polynomial

4
F= Z X ey iz 70 i
i=1

We construct the exponent matrix:
a11 @12 G13 Qa4
a1 QG22 Q23 @24
A= s

az1 G32 33 34
a41 Q42 A43 Q44

We define three row vectors e; = (1,0,0,—1), e2 = (0,1,0,—1) and e3 = (0,0,1, —1).
From these we construct three vectors o = e; A™!, @ = esA™! and 4 = e3A~!. Let V be
the Z-module given by V = {(v1,v2,v3,v4) € (Q/Z)* : v1 +va +v3+ vy = 0(1)}. We will
view v, w and u as elements of V. These vectors generate a finite Z-module

L= {it + ji + ki € (Q/Z)* : i, j,k € Z}.

We construct the set Ly as the subset of L where at least one of the coordinates is zero
and Ly as its complement.

Lo := {v = (v1,v2,v3,v4) € L : Ji:v; =0}.
Ly := {’U = (U1,7}2,’U3,’U4) eL:Vi:v; 75 0}

We now define A C Ly by the following property. An element v = (v1,ve,vs,v4) € L1
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is an element of A precisely when there exists a t € Z such that > {tv;} # 2 and for all
i we have ord, (tv;) = ordy (v;). Here {-} is the natural bijection between the set Q/Z
and the interval [0,1) N Q and ord, (-) stands for the order in the additive group Q/Z.

The Lefschetz number A = \(S) is defined as follows. Fix a desingularisation S of S.
Then ) is the difference between the second Betti number of S and the Picard number
p(S): p(S) = by(S) — A\. This is independent of the choice of S. The main result of [11],
rephrased in terms of A, is that the Lefschetz number can be computed by

A = #A.

Let X be the minimal resolution of the surface X in P? over C of degree n with only
ADE singularities. Then by(X) = n® — 4n? + 6n — 2. The Hodge number A (X) =
(2n3 +7)/3 — 2n? is an upper bound for the Picard number over the complex numbers:
p(X) < hMY(X). We call the surface X maximal when we have equality in the last
equation. See [9] for more details.

REMARK 2.2. It is important to note that if two surfaces are birationally equiv-
alent, then they have the same Lefschetz number. In particular we can compute the
Lefschetz number on a singular (Delsarte) surface and use it to compute the Picard
number of the desingularization.

The set L; \ A consists of elements of a specific form. This has been shown originally
in [10] for Fermat surfaces, but the results extend trivially to Delsarte surfaces. There
are three different types of elements v € Ly \ A.

e v is such that v; + v; = 0(1) for some j € {2,3,4}. In this case v is called
decomposable. The set of decomposable elements will be denoted by D.

e v is a permutation of a vector of the form (a,1/2,1/2+4a, —2a) or (a,1/2+a,1/2+
2a,—4a) or (a,1/3 + a,2/3 + a,—3a). Here a should be such that none of the
coordinates is zero and the vector is not decomposable. These v are called regularly
indecomposable. The set of indecomposable elements will be denoted by R.

e v is an exceptional element. It was proven in [1] and correctly formulated in [2]
that there are only a finite number of exceptional cases for all Fermat surfaces.
One can easily see that these give all the possible cases for a Delsarte surface as
well. The set of exceptional elements is explicitly known and has cardinality 22080.
We will refer to these cases as irregularly indecomposable. In any given example
below, the set of all such v is denoted by I.

3. 83 surfaces.

In this paper we consider Delsarte surfaces with only isolated ADE singularities over
C. There are several equivalent definitions of ADE singularities, see [5].

DEFINITION 3.1. A singular point P on a complex surface S is ADE if it is locally
isomorphic to one of the following types of singularities:

o X"t 4+ V24 7Z2: this is a singularity of type A, with n > 1,



104 B. HELINE

X" 4 XY? 4 Z?; this is a singularity of type D,,, with n > 4,
X3 4+ Y%+ Z2; this is a singularity of type Eg,

X3 4+ XY?3 4+ Z2; this is a singularity of type Er,

X3 4+ Y5+ Z2; this is a singularity of type Es.

It is not hard to determine whether a given isolated singular point is ADE: compare,
for example, [8].

THEOREM 3.2.  There are up to isomorphism at most 83 Delsarte surfaces of degree
n > 6 with only isolated ADE singularities.

REMARK 3.3. For most degrees the number of different Delsarte surfaces will in
fact be 83. However, we did not check whether any of the surfaces we found might still
be isomorphic for certain degrees.

ProOOF. We will first bound the number of Delsarte surfaces of a fixed degree n > 6
with only isolated ADE singularities.

Let S be a Delsarte surface of degree n. Consider the point P, = (1 : 0: 0 : 0).
Unless one of the monomials equals X™, the point P, lies on S. A necessary (but
not sufficient) condition for P, to be either smooth or of ADE type is that one of the
monomials defining S is divisible by X2

A similar argument applies for the points (0:1:0:0), (0:0:1:0),(0:0:0:1).
From this we see that if S has only isolated ADE singularities, then possibly after scaling
it is defined by a polynomial of the form:

F=X" Mx +Y" ?My + 2" 2Myz + U"*My. (1)

Here Mx, My, Mz and My are degree 2 homogeneous monomials. This already implies
that there are at most 10* possibilities for the equation F. We will now in various steps
reduce this number to 83.

Now since n > 6 we see that the point (1:0:0:0) is not of ADE type if Mx is one
of Y2, Z2 or U?. A similar condition applies to My, Mz and My .

For fixed n there are 7* = 2401 degree n polynomials for which this does not occur.
Hence we have at most 2401 degree n Delsarte surfaces with only ADE singularities.

Using a computer algebra package we remove all F’s that are divisible by a coor-
dinate, as well as duplicates after permutations of coordinates. This leaves us with 90
surfaces.

For these 90 surfaces we still have to check whether all the singular points are of
ADE type. The following results will be helpful:

LEMMA 3.4. Let S be a Delsarte surface given by:
F = My + My + Mz + My.
Here M; are monomials in X, Y, Z and U. Let P be a singular point on S. Then

M;(P) =0, fori=1,2,3,4.
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PROOF. Let A be the exponent matrix of S. By considering the partial derivatives
of F we find for a singular point P that:

M, 0
Mo 10
A M3 (P) = 0
M, 0
Since A is nonsingular this means that we have M; = 0 for all 7. O

COROLLARY 3.5. Let S be the Delsarte surface given by (1). Let P be a singular
point, then it has at least two zero coordinates.

PrOOF. Assume that P has only one zero coordinate. We can assume this is the
first coordinate. Then X divides all monomials M;. This would imply that suface is
reducible. O

We first consider the singular points with three coordinates zero. Without loss of
generality we can assume that the singular point is the point (0:0:0: 1).

If My = U2, then the point (0 : 0 : 0 : 1) does not lie on the surface. If My =
XU, YU, ZU then this point is non-singular. Consider the case that My is one of XY,
XZ or YZ. Without loss of generality we can then assume that My = XY. The local
equation of the point will then be:

XY + Z"2My + terms of higher order in X and Y.

The point (0:0:0:1) is of ADE type if and only if Mz # XY. For 7 of the 90 surfaces
we find in this way a singular point not of ADE type.

The remaining possible singular points are permutations of the point P = (n:0:0:
1), with n nonzero. We will assume that the singular point is the point P and consider
what happens depending on Mx.

e Assume that My € {X2 XU}. For P to be a point on the surface this means
that My € {U?, XU}. (Recall that My = X2,Y?, Z? is excluded since we assume
(0:0:0:1) is non-singular or of ADE type.) In this case n has to be a specific
root of unity. It turns out that the partial derivatives with respect to X and U
are then nonzero. So in this case, the point P is non-singular.

e Assume that Mx € {XY,UY}. Then by considering the partial derivative with
respect to Y we find that My € {XY,UY}. Consider the affine chart with U =1
and transform the singular point to the origin. Then we find a local equation of
the form:

n* + 7)Y + (an® ' +n® )XY + higher order terms,

with a # b. In case n® + n® # 0, this point is non-singular, otherwise it is of ADE
type.
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e The case Mx € {XZ,UZ} is symmetric to the previous case.

e The final case is Mx = YZ. If My # Y Z, then by interchanging the roles of X
and U we see from the previous cases that the point is not singular. In the case
that Mx = My =Y Z we find that the singularity in the point P is not isolated.
This case however has already been excluded by looking at the singularities with
only one non-zero coordinate. O

The explicit equations of the 83 surfaces are given in the appendix.

REMARK 3.6. The table in Appendix A was computed using the condition n > 6.
Also for n = 5 the entries in the table are Delsarte surfaces with at most ADE singulari-
ties. In case n = 5 there is (up to permutation) precisely one more Delsarte surface with
only ADE singularities, namely the surface with p = 25 given by the equation:

Y2XP 4+ 22V 4+ X2 Z° + UP,
This surface has three Eg singularities.

4. Computation of the Picard number: An example.

Here we illustrate how we computed the Picard numbers in the table. We do this
for one example only. The same ideas work for the other cases. We compute the Picard
number of the surface S given by the equation

X"+ Y "4+ 2" U+ XYU" 2 =0, (2)

for all n > 3.
This corresponds to case 26 in the table of Appendix A.
We determine the exponent matrix:

0 0 0
n 0 0
0 n—1 1
1 0 n—2

— o o 3

From this we find the three vectors in V' that generate L:

' <7l(nn__12)7 n(nl— 2)’ " n_—12)’
W= (n(nl 2)’ nzln_,lg) 0, n_12)’
" <<n_1)1(n_2>’ <n—1>1<n—2>’ni U n- 13?”‘”)'

We use the following formula to compute #A:
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#A = #L — #(LoUD) — #I — #R.
We first determine the sets N; = {v = (v1,v9,v3,v4) € L : v; =0}, for i = 1,2,3,4.
N1 = {i(n(n —2))0+j((1 —=n)o + @) + k((n —n®)o + (n — 1)a) : 4,4, k € Z},
Ny ={i(n(n —2))o+j((1 —n)o + @) + k(—nv + (n—1)a) : 4,5,k € Z},
Ny = {i5 + j@ + k(n — 1)@ : i, j,k € Z),
Ny ={iln—2)0+j(—0+ ) + k(—n0+ (n—1)a) : 4,4,k € Z}.

We compute the intersection of these sets:
(VN = {i(n(n = 2))3 + j((1 = n)o + @) + k((n — n*)0 + (n — 1)a@) : i,j, k € Z}.

From this we see that L can be described by
L={it+jw+ki:0<i<n(n-2), j=0,0<k<n-—1}.

Note that we can assume that j = 0 since (n—1)9 = w. This implies #L = n(n—1)(n—2)
since this description gives a bijection between the set L and the set

{(i,j,k) €Z>:0<i<n(n—2), j=00<k<n—1}.

We compute the number of elements of Lg using

4

#LOZZ(—l)i“ Z #LmﬂNd,i.

i=1 1<d; <--<d; <4

This can be computed by a computer. #Lg = n(n — 2).

Let N5, Ng and N7 consist of all elements of the form (a,—a,b, —b), (a,b, —a, —b),
(a,b,—b, —a). These are the decomposable elements comprising D. These sets are given
by:

n—1._

— 0+ u):i,j,kGZ} if n = 1mod?2

{i(n2)6+j(6+w) +k

7N\

N =
{itn —2)0+j(0+0) + k(=20 4+n —14a) : 4,5,k € Z} if n = 0mod 2
Ng = {i(n(n —2))0+j((1 —n)v

+ @)+ k(—nn—1)0+a):14,5,k € Z}.
N7y ={i(n(n —2))o+ j((1 —n)0 + @) + k(—nv + 1) : 4,5,k € Z}.

Note that for N5 this result will depend on nmod 2. This behavior is quite standard and
happens for more cases.
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We use this to compute

7 n? -3 if n=1(2)

#(LoUD) =) ()™ Y #LN[|Na = {nz_n_z if n=0(2).

i=1 1<dy <--<d; <7

We now compute the number of irregularly indecomposable elements. To do this
we consider vectors of the form r = (a,1/2,1/2 4+ a, —2a). We determine for which a we
have r € L. If r belongs to L then there exists a vector (k,l,m) € Z3 such that

100 —1
(k,m)| 01 0 =1 | A =0
001 —1

Note that r and A are constructed in such a way that a rational solution for (k,I, m)
always exists. We only need to find out whether this solution is integral.
Multiplying both sides of this equality on the right by A shows

n—1 -1 0
(k,I,m) = (a,1/2,1/2 + a) -1 n-1 0
-1 -1 n-1

If (k,1,m) is computed in this way the last coordinate of r will always be —2a. No check
is needed.

The vector (k,I,m) is only integral when n = 0(2) and a = 1/2. This corresponds
to the solution r = (1/2,1/2,0,0). Since the third and fourth coordinates of r are zero
we find that r € Ly and hence r ¢ R.

We now consider the cases where r is a permutation of (a,1/2,1/2 + a,—2a). It
turns out that we only find the result r = (1/2,1/2,0,0), three more times, and no
other integer solutions. So none of the permutations of (a,1/2,1/2 + a, —2a) makes a
contribution to the set R.

We move on to elements of R that are permutations of (a,1/2 + a,1/2 + 2a, —4a).
We will give three examples in detail.

Consider the case r = (a,1/24a,1/242a, —4a). With the same argument as before,
we need to find a solution for

n—1 -1 0
(k,l,m) = (a,1/24 a,1/2 + 2a) -1 n—-1 0 ,
-1 -1 n-1

with k, [ and m integers. We find solutions with a = 1/4,3/4 and n = 0(4), furthermore
we find solutions with @ = 1/12,5/12,7/12,11/12 and n = 4(12).

The solutions a = 1/4,3/4 give respectively r = (1/4,3/4,0,0) and r = (3/4,1/4,
0,0). Since both solutions have a zero coordinate they are elements of Ly, and hence not of
R. The solutions a = 1/12,5/12,7/12,11/12 give respectively r = (1/12,7/12,2/3,2/3),
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r = (5/12,11/12,1/3,1/3), r = (7/12,1/12,2/3,2/3) and r = (11/12,5/12,1/3,1/3).
These vectors are all elements of R.
Now we consider r = (a,1/2 + 2a, —4a,1/2 + a). We find

n 0 0
(k,l,m)=(a,1/24+a,1/24+2a) 0 n—1 1
1 0 n—2

This equation has no integer solutions at all.
Let us now consider the vector r = (a,1/2 + 2a,1/2 + a,—4a). We need integral
solutions for

n—1 0 -1
(k,l,m)=(a,1/2+ a,1/2 4 2a) -1 n-1 -1
-1 0 n-1

We find that the only solution is given by a = 3 with n = 0(2). This solutions corresponds
to the vector (1/2,0,1/2,0), and this is an element of Ly and not of R.

Considering further permutations of (a,1/2 4+ a,1/2 + 2a, —4a), yields no new ele-
ments of R.

We will now look at the solutions of the form r = (a,1/3 + a,2/3 + a,—3a). As
before r is an element of L precisely when

n—1 -1 0
(k,l,m)=(a,1/3+a,2/3+ a) -1 n—-1 0
-1 -1 n-1

has an integral solution for k, [ and m. The only solutions occur when ¢ = 1/3 and n =
0(3) or when a = 5/6 and n = 3(6). In the case a = 1/3 we find that » = (1/3,2/3,0,0),
hence we find r € Ly and r € R. In the case a = 5/6 we find r = (5/6,1/6,1/2,1/2).
This vector is decomposable, so we have r € D. Both cases yield no elements of R.
Finally considering permutations of r = (a,1/3+a,2/3+ a, —3a) yields no elements
of R.
In total there are only four potential elements of R namely:

17 22 5 11 1 1
127127373)7\12712’373 )’

T 122) (115 11
127127373/ \12712’3’3 )"

These elements exist in A precisely when n = 4(12).

Finally we will consider the finite set of exceptional solutions. We have 22080 po-
tential elements of the set I. For each of these 22080 elements r we can easily check
whether indeed r € I. We simply compute rA and if the result consists of only integers
then r belongs to I, otherwise not. For example take r = (1/24,19/24,1/3,5/6), one of
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the 22080 elements. We find:
TA* §+£ §+197n E 5£+2
S \6 24’6 247 3 76 3)

These coeflicients are all integers if and only if n = 4(24).
Since we have to check 22080 elements we resort to a computer search here. The
number of exceptional solutions is given by the formula:
#1 = 804,24 + 83(5,6,10,30 + 1606 40 + 1239 42
+ 16010,48 + 1605 6,10},60 + 240(3 91,84 + 32022,120-

Here

0ij = {0 lfn%Z(]) 5S,j:Z5i,j'
1 ifn=14(j4), pyore
We now have enough information to compute the Lefschetz number using:
H#AN=H#L —#(LoUD) — #I — #R.
This gives:

A=n®—4n® +2n+ 3+ (n — 1)80,2 — 404,12 — 804,24 — 86{5.6,10},30 — 165640

— 1209 42 — 16010,48 — 160(5,6,10},60 — 2408,9},84 — 32022,120-

For a surface of degree n with only isolated ADE singularities recall that the minimal
resolution has by = n® — 4n2% + 6n — 2. So the Picard number of the resolution of the
surface given by (2) is :

p=4n—>5—(n—1)d2 + 404,12 + 854,24 + 80(5,6,10},30 + 166,40
+ 1209 42 + 16010,48 + 1665, 6,10},60 + 240(8,9} 84 + 32022, 120-

A. Appendix.

In this table we will give the formula’s of all Delsarte surfaces with only ADE
singularities. The number on the left is simply an index. This is followed by the equation
of the Delsarte surface and in the third column the singular points. Below the second
and third column the equation for the Picard number is given. We assume that n > 6.

The case of the Fermat surface was already computed for many degrees by Shioda
[10] and in general by Aoki [1]. Several examples of smooth Delsarte surfaces where
given by [11], and a systematic treatment of all smooth Delsarte surfaces was given in
[7]. These cases have been marked in the table.
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1 [ X" 2YZ+Y" 220+ Z" + XU L [(0:1:0:0)
(1:0:0:0)
n2—2n+2—|—250,3
2 [ X" Y Z+Y" 220 + Z" +YU" ' [(0:1:0:0)
(1:0:0:0)
2n? — 3n — 2
3| X" 2YZ+ XYY" 2Z+ 2"+ XU 1] (0:1:0:0)
(1:0:0:0)
(1: "*y/=1:0:0)
2n? —5n 44 4 6679 + 601315
4 X" 2YZ+ XY" 20U + Z" + XU L[ (0:1:0:0)
(1:0:0:0)
(0:1:0: "2/~=1)
n2—2—|—454710
5| X" 2YZ4+ XY " 2U+2Z"+YU™ ! | (0:1:0:0)
(1:0:0:0)
2
6 | X" 2YZ+XY"2U+2"+2ZU" ! | (0:1:0:0)
(1:0:0:0)
2n? — bn + 4
TIXVYUAY2ZU+ 20+ XU [(0:1:0:0)
(1:0:0:0)
n2—n+51,2
8 | X" 2YU+Y"2ZU+2Z"+YU" ! [(0:1:0:0)
(1:0:0:0)
("?y/=1:0:0:1)
2n? —3n — 2
9 | X" 2YU+Y"2ZU+2Z"+ 22U [(0:1:0:0)
(1:0:0:0)
(0: "2y/=1:0:1)
2n? —5n+ 4+ (n — 2)dp 2 + 661715
10 X" 2YU + XY 2U + Z" + XU 1 [(0:1:0:0)
(1:0:0:0)
(" 3/=1:1:0:0)
(0: "2y/=1:0:1)
m?—b5n+4+ (TL — 2)(50,2 + 4(5075 + 657714 + 656,18 + 86{15720}730
11| X" 2YU + XY™ 2U+2Z"+ 20" | (0:1:0:0

)
(1:0:0:0
("*y/=1:1:0:0)

2n% —5n+4

111
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12

Xy 4 yn 1z 4+ 27+ XYU"=2 | (0:0:
(1:0:

onZ—5n+4

13

XY + Y124+ 2"+ X202 [(0:0:

o2n% —5n+4

14

Xy 4y iz 420+ YZU 2 | (0:0

2n% — 5n + 4 + 401112 + 651615

15

X ly 4 yn=1lg 4+ 27 4+ XYyun—2 (0:0:
(1:0:

0:1)
0: "*y/-1)

n* —2n 42+ ndo 2 + 2003 — 2024 + 805,15 + 8046 8},24 + 812,30

+12614,42 + 160412 201 60

16

Xy 4 yn-lUy 4 2n + XZ0"2 ‘ (0:0:

0:1)

n -+ 45375

17

Xy 4 yn-lu 4 Zn + Y ZU 2 ‘ (0:0:

n?—2

18

XY + XY™ 14 27+ XYU" 2] (0: 0
(1:0:
(0:1:

0:1)
0: "2y/-1)
0: "2y/-1)

2712 —5n + 4 —+ (3’11 — 10)50_]2 + 45214 + 85{6,8},12 —+ 16612_’15
+16012,20 + 160414,18,20},24 + 160512 201,30 + 320132,42,50},60

19

Xy 4 Xyn-l 4 Zn 4 XZUn 2 ‘ (0:0:

0:1)

n?—2

20

X" IZ Y Z+ 2"+ XYU™ 2 [(0:0:
(1: ™

0:1)
'WV=1:0:0)

377,2 —10n +8 + 25172 + n5072 + 455712 + 1268714
+24017,24 + 85{7 11},30 + 72016,30 + 1661740 + 60622 42 + 16817 48
+48037,41},60 + 16046 60 + 40023 66 + 48040,78 + 240122 371 84 + 32041120

21

X1 Z+ Y lU+2"+ XYU" 2 [(0:0:

0:1)

3n—2 + 854715 + 859_’20 + 1055722

22

Xn-lz o yrn=ly 4 7204 X202 (0:0:
(1:0:

n? —2n+2+ (n—1)81,2 + 664,15

23

X 1Z4Y W+ 2" +YZU 2 [(0:0:

n2 -2+ 459710

24

XTI+ Y ™ U+ 2"+ XYU™ 2 [(0:0:
"ly/=1:0:0)

0:1)

n2 —-n-+ 5172 + 7150,2 + (27L - 2)5173
—204,6 + 895,20 + 866,30 + 1209 36
+16615,40 + 1201042 + 16036,60 + 24021 84

25

XU+ Yy ltU+ 27+ X202 | (0:0:
(1: "'/=1:0:0)

0:1)

n?—2




Picard numbers of Delsarte surfaces

26

X"4+Y"r 427l + XyUn—2

‘(0:

0:

0:1)

3n—5+nbi 2+ 602 + 464,12
+804,24 + 89(5,6,10},30 + 1606,40 + 1209 42

+16010,48 + 1605 6,10},60 + 24018 91,84 + 32022 120

27| X" +Y" + 271U + X ZU" 2 [(0:0:0:1)
3n—2+ 4(54,10
W X" +Y"+ X271 XYU" 2 [(0:0:0:1)

n? — 3+ (n—2)d1,2 + o2 + 4010,12 + 822,26} 30

29 | X"+ Y+ X7 4 XZ0m 2 (0:0:0:1)
(0:0: "2y/=1:1)
2n% —5n + 4+ (n —2)dg 2
30| X"+ Y4+ Xzl yZzun—? ‘(0:0:0:1)
n? — 2+ 405 12 + 8077,113,30
31| X" Y + Y"1 Z+ XZ"2U + XYU™ 2 [(0:0:0:1)
(0:0:1:0)
(1:0:0: "2/-1)
3n? — 10n + 7 + nd1,2 + 360,2 + 89{14,20},30
32| XY + Yl Z 4+ XZn2U + XZU 2| (0:0:0: 1)
(0:0:1:0)
(0:0:1: "2/-1)
2n% — 5n + 4
B XY + Y 124+ X2 2U4+YZU 2 | (0:0:0:1)
(0:0:1:0
(0:1:0: "2/-1)
3n? —10n + 10
3| XY Yl Z 4 YZ 22U+ XZU 2 [(0:0:0: 1)
(0:0:1:0)
2n% —5n +6
B XY + Y"1 Z+ XYZ 2+ XZU™ 2 [ (0:0:0:1)
(0:0:1:0)
(1:0: "2y/=1:0)
3n% —10n + 10 + 460,38 + 8620,24
36 | X" lY + XY+ XZn2U+YZU2[(0:0:0:1)
(0:0:1:0)
4n? — 15n + 16 + 461012 + 8(5{22’26}’30
37| X1 Z 4+ Y 1 Z+ X2 2U+ XYU 2 [(0:0:0:1)
(0:0:1:0)
(1: "'/=1:0:0)
2n? — bn + 4
3| X1 Z 4+ Y WU+ XZ" 20 + XYU™2[(0:0:0:1)
(0:0:1:0)

2 —5n+4
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39| X" 1 Z 4+ Y WU+ X2 2U + X202 (0:0:0: 1)
(0:0:1:0)
(1:0:0: "2/-1)
(0:0:1: "3/=1)
4n2 —15m 416 + 4510,12 + 85{22,26},30
40 | X1 Z 4y lWU+ X220+ YZU 2 | (0:0:0: 1)
(0:0:1:0)
3n? —Tn + 612
A X" Z 1Yy ™ U+ YZ" 20 + XYU™ 2 [(0:0:0:1)
(0:0:1:0)
(0: "2y/=1:1:0)
3n? — 10n + 10
2| X174y lU4+YZn 22U+ X202 [ (0:0:0: 1)
(0:0:1:0)
(1:0:0: "2/-1)
(0:1: "2/=1:0)
4n? —15n + 16 + (n — 4)dp.2 + 2024
+808 12 + 12018 14,18 + 16012 20 + 16014 24 + 32032 60
43| X"+ Y+ XZn2U + XYU" 2 (0:0:0:1)
(0:0:1:0)
n? — 2+ 6659 + 605,18
44 | XY+ XZn20 + XZUn2 (0:0:0:1)
(0:0:1:0
(0:0:1: "3/-1)
2n% — 5n + 4 4 2046 + 1609 24 + 8321 24
+866,30 + 3292160 + 32055,120
45 | X"+ Y + XZn 72U + Y ZU™ 2 (0:0:0:1)
(0:0:1:0)
n? +n — 8+ ndi o + 4002 + 2814 + 404,12
+807 24 + 89(6,10,13},30 + 1201042 + 16013 60
46 | X"+ Y™ + 27U + XU First calculated in [11]
Case VII in [7]

n 4 46312 + 694,13

47

X" Y™+ 20U 4 20t | Case III in [7]

n? —n+1+ (4n —9)do2 + (4n — 4)d2,3 + 850 4

—402,6 — 84,8 + 800,10 — 498,12 + 1250,12 + 32d(6,12},24 + 1605 24
+24614,28 + 240{12,201,30 + 1600,30 + 2401836 + 64020,40

+48014,42 + 64024 48 + 1440112 20},60 + 192030,60 + 4004466 + 48054,72
+216042 84 + 72056 84 + 640(30,72},120 + 128060,120 + 96078 156 + 96072180

48

X" +Y"+ X721+ XU ! [(0:0: "'\/=1:1)

o2n% —5n + 4(51’2 + 2’11(50)2 - 254,6 + 8(59,12 + 12610,18 + 859,24 + 24616,30
+48021 30 + 32025 30 + 48022 42 + 326121 25} 60 + 48955,90 + 32025 120




Picard numbers of Delsarte surfaces

49 X"+ Y+ X2 pyunt | Case IV in [7]
2n% — 5n + 4 + 484,12 + 2466 30 + 8510,30
50 | X" 2YZ+ Y 22U + XZ" 22U+ XU 1| (1:0:0:0
(0:1:0:0)
(0:0:1:0)
(0:0: "2*y/-1:1)
4n? — 15n + 16 + 4610,12 + 8622,30
5L X" 2YZ + Y" 220 + XZ" 20U + YU 1 [ (1:0:0:0)
(0:1:0:0)
(0:0:1:0)
3n2 —10n + 10
52 | X" 2YZ + Y 2ZU +YZ"2U + XU [(1:0:0:0)
(0:1:0:0)
(0:0:1:0)
(0: "3y/=1:1:0)
3n? —10n + 10 + (n — 3)01,2 + 8d19,15},15 + 80415,19},20
53| X" 2YZ + Y" 220 + XY Z" 2+ XU L[ (1:0:0:0)
(0:1:0:0)
(0:0:1:0)
("*y/=1:0:1:0)
4n? — 15n + 16 + 480,12 + 6017 18
54| X" 2YZ 4+ Y" 220 + XZ"2U + U" [ (1:0:0:0)
(0:1:0:0)
(0:0:1:0)
2n% —Bn 4+ 4+ 400 5
55 | X" 2YZ + Y 2ZU +YZ"2U + U™ (1:0:0:0)
(0:1:0:0)
(0:0:1:0)
(0: "?y/=1:1:0)
3n? — 8n + 4612 + ndo 2 + 401112 + 802324
+80(23,27,28},30 T 16037 40 + 12036 42 + 16041 48
+160153,57,58},60 + 24078 79} 84 + 320101,120
56 | X" 2YZ + Y" 220 + XYZ" 2+ U" [ (1:0:0:0)
(0:1:0:0)
(0:0:1:0)
("*y/=1:0:1:0)

2712 —3n—2+ 459,10
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o7

X" YZ+ XY " 2Z+XYZ" 24" (1:0:0:0)
(0:1:0:0)
(0:0:1:0)
(0: "3/=1:1:0)
("5y=T:0:1:0)
("3*yv—=1:1:0:0)

32 —9n—4+ 11612 + 3ndo 2 + (2n — 6)50’3 — 6d0,6 + 12010,14 + 3601518

+24015,20 + 24024 28 + 72618 30 + 36027 36 + 48035.40

+60024,42 + 48048 60 + 48042,78 + 72063 84

o8

XY 4yl Z4 727U+ XYU2

(0:
(1:

o O

2n% — 5n + 4 + 436 12 + 8512,30

99

XY Y 1Z4 20+ X202 [ (0

o

n®—2n+4

60

Xy 4 yn- 1z 4+ 27U+ yzun—2

= O

3n? — 10n + 10

61

Xy 4 yn-lz 4+ Xzn-t 4 Xyun—2

2% —b5n+4+ 260’6

62

Xy yn-lz 4 yzn-t + X202

:0:
: "2/=1:0)

1)

3n? — 10n + 10

63

Xn71Y+Yn71U+Z7L71U+XYUn72

0:
0:0:

—

)
n2\/T)
~V/-1:0)

3n? —10n + 10

64

Xy 4y lUy + 271U + X Zun—2

:0:

1)
'V-1:0)

2n? —bn+4+ 4(54’12 + 6(55718

65

Xy 4yl + 277U + Y ZUn—2

:0:

N
“V/=1:0)

n—5n+4

66

Xy 4 yn-lUu +yZzr—t 4 XZU" 2

(1:

:0:
0:

0:

1)

"ly/=1:0)

n? —2n+2+ (n — 1)1 2 + 85(4.10},15 + 805,9}.20

67

Xy ¢ Xyn—t 4 Zzn-1lU + Xyun—2

(0:0:0:1)

(1:0:0: "
(0:1:0: "

2 /77)
2 /=1)

4n? —15n + 13 + n(5172 + 35072 + 4(510712 + 12(59714 + 24(510724
+72617,30 + 80422,26},30 + 16026 40 + 60523 42 + 16034 48 + 16017 60
+480(22,26),60 + 40046 66 + 4804178 + 240(50,65},84 + 32082,120
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68 [ X" Y + XY" 14 2 WU+ X20" 2 [(0:0:0:1)
2n% — 3n — 2 + 814,30
69| X" 1Yy + Y172 4+ Zn»- 1y + U™ ‘ Case IX in [7]
n + 4938 + 867,24
0/ Xly +yr-lz L xzn1 1 un First calculated in [11]

Case VIII in [7]

1+ 60,2 +2nd0,3 + 6644,6},14
+12074 20,28 + 12046,18} 42 + 240(18,24} 78

X Y 4y Z+yzr iy on [(1:0: "/=1:0)
n? —2n+ 2+ (n — 1)1 5 + 404,12 + 86(6,10},30
72| XY 4+ YU+ 27U+ U [(0:1: "'V/=1:0)
2n% —5n 44+ (n — 3)01,2 + 2014 + 807,12
+12647 131,18 + 16011 20 + 16813 24 + 32031 60
3 XlY Yy lU+ Y2 4 U [(1:0: "'V/=1:0)
2n? —5n +4
74| XY + Xyl 4 20U + U | Case V in [7]
n? —2n + 2012 +200,3 + 2012416
+804,24 + 835,30 + 326,120
5 XY+ 20+ XY U2 [(0:0:0:1)
3n—2+ (3n— 8)(50,2 + 4604 + 85{6,8},12 + 160515
+16010,20 + 1606 8,12},24 + 160712 20,30 + 320412 20,32} 60
76| X"+ Y+ 2"+ XUT! | Case 11 in [7]
n? —2n + 2nd1,2 + 200,2 — 2036 + 804,12 + 1269 13
+8016,24 + 320630 + 48010,30 + 2401530 + 4802142 + 320¢36,40},60
+48036,90 + 32096,120
TTI X" 2YZ+Y" 22U + XZ"2U+ XYU™ 2| (1:0:0:0)
(0:1:0:0)
(0:0:1:0)
(0:0:0:1)
5n% — 21n + 24 + 61 2 + 80{16,20},20 + 80{20,26},30 + 160{20,26,50,56},60
+320(86,110},120
78| XYY + Yl 4 Znly 4+ XUt First calculated in [11]
Case X in [7]
n® —n+ 012+ 8074.8},20 + 805,14},30 + 160(s 14,38 44} 60 + 320{14,38},120
9 XY 4 Y Z 4 27U 4 YU ! [('V/=1:0:0:1)
n? —2n+2+ 2536
80| X" Y Y™ Z 20U 4+ 20" [(0: "'V/=1:0:1)
2n?2 —5n+4
81| Xty 4+ yn-lz4vyzn-t 4 zun—! (1:0: "'y/=1:0)
(0: "'/=1:0:1)

4n? — 150 + 16 + 410,12 + 822,30 + 2402630
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(1]

(8]
(9]
[10]

(11]

B. HELNE

82 | X"y + Xy~ 4 271U + ZU"! | Case VI in [7]
3n? —9n + 7+ 0p,2 + 8d(6,5},12 + 1681220 + 16665 143,24 + 3201230
+16020,30 + 48030,42 + 96012 60 + 320120,32,42,50},60 + 48014,84 + 64072 120

8| X" +Y"+ 2"+ U" The Fermat surface described
in [1] and [11]

Case Iin [7]

32 —9In+7+ (24’11 — 47)(5072 + (STL — 24)5073 — 485074 — 96(50,6
—4860,8 — 48J0,10 + 1440¢,12 + 4860,14 + 1929915

+43260,18 + 62409 20 + 28800,21 + 91260,24 + 2409 28

+225600,30 + 43260,36 + 38480,40 + 398400 42 + 38400 43

+4896(50,60 + 72060,66 + 288(50,72 + 768(50)78 + 158450784

+57600,90 + 17280¢,120 + 57600,156 + 57600,180
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