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Abstract. We consider in this paper the family of exponential Lie
groups Gn, ., whose Lie algebra is an extension of the Heisenberg Lie alge-
bra by the reals and whose quotient group by the centre of the Heisenberg
group is an ax + b-like group. The C*-algebras of the groups Gn,, give new
examples of almost Cp(K)-C*-algebras.

1. Introduction and notations.

~

Let A be a C*-algebra and A be its unitary spectrum. The C*-algebra [°°(A4) of all
bounded operator fields defined over A is given by

~

1°(A) = { A = (A(m) € B(Ho)) e 15 |Allse 2= sp [ A(T) o < o0}

where H, is the Hilbert space on which 7 acts. Let F be the Fourier transform of A,
ie.,

Fla) :=a:=(m(a)),cz for acA
It is an injective, hence isometric, homomorphism from A into loo(uzl\). Hence one can
analyze the C*-algebra A by recognizing the elements of F(.A) inside the (big) C*-algebra

[ (A).

We know that the unitary spectrum C/*(\G) of the C*-algebra C*(G) of a locally
compact group G can be identified with the unitary dual G of G. If G is an exponential
Lie group, i.e., if the exponential mapping exp : g — G from the Lie algebra g to its Lie
group G is a diffeomorphism, then the Kirillov-Bernat-Vergne-Pukanszky-Ludwig-Leptin
theory shows that there is a canonical homeomorphism K : g*/G — G from the space of
coadjoint orbits of GG in the linear dual space g* onto the unitary dual space G of G (see
[LepLud] for details and references). In this case, one can therefore identify the unitary
spectrum C’/*(\G) of the C*-algebra of an exponential Lie group with the space g*/G of
coadjoint orbits of the group G.

The C*-algebra of an ax + b-like group was characterised in [LinLud] and the C*-
algebras of the Heisenberg group and of the threadlike groups were described in [LuTu]
as algebras of operator fields defined on the dual spaces of the groups. The method of
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describing group C*-algebras as algebras of operator fields defined on the dual spaces
was first used in [Fell] and [Lee].

In this paper, we consider the exponential solvable Lie group G, ,,, whose Lie algebra
is an extension of the Heisenberg Lie algebra §,, by the reals, which means that R acts on
b, by a diagonal matrix with real eigenvalues. The quotient group of G, ,, by the centre of
the Heisenberg group is then an ax + b-like group, whose C*-algebra has been determined
in [LinLud]. Since the orbit structure of exponential groups is well understood (see for
instance [ArLuSc]), we can write down the spectrum of the group G, ,, explicitly and
determine its topology.

In [ILL] the example of the group Ngas motivated the introduction of a special
class of C*-algebras which we called almost Cy(K)-C*-algebra, where K is the algebra
of all compact operators on some Hilbert space. In Section 2, we recall the definition
and the properties of almost Cy(K)-C*-algebras. In Section 3 we introduce the family
of the G, groups and describe the space of coadjoint orbits Q:W/Gn,u- We show that

the spectrum Cjn\# of Gy, is a disjoint union of the sets I'g,I'1,I's,I's, where I'g is the
set of the characters of G, ,,, I'1 and I'; are the sets of the representations corresponding
to the two-dimensional coadjoint orbits of G, ,,, and I's is the union of the two generic
irreducible representations 7, 7_ which correspond to the two open orbits. Note that
each of the sets I'; needs a special treatment. The sets I'y and I's have been treated in the
paper [LinLud]. In Subsection 4.2, we discover the almost Cy(K) conditions for I's. This
is the most intricate part of the paper and the treatment is inspired by the study of the
boundary condition for a class of 4-dimensional orbits in [ILL, Subsection 6.3]. At the
end (Subsection 4.4), we describe the actual C*-algebra of G, ;, as an algebra of operator
fields and we see that this C*-algebra has the structure of an almost Cy(KC)-C*-algebra.

2.  Almost Cy(IC)-C*-algebras.

The following definitions were given in [ILL]; for completeness, we recall them here.

DEFINITION 2.1.  Let A be a C*-algebra and A be the spectrum of A.

(1) Suppose there exists a finite increasing family Sy C S; C --- C Sy = A of subsets of
A such that for i = 1,...,d, the subsets I'o = Sy and I'; := S; \ S;—1 are Hausdorff in
their relative topologies. Furthermore we assume that for every i € {0,...,d} there
exists a Hilbert space H; and a concrete realization (7, H;) of v on the Hilbert space
H; for every v € T';. Note that the set Sy is the collection X of all characters of A.

(2) For asubset S C A\, denote by C'B(S) the *-algebra of all uniformly bounded operator
fields (¢(v) € B(Hi))yesnr,,i=1,...,d, which are operator norm continuous on the
subsets I'; NS for every i € {1,...,d} for which T';N.S # (). We provide the *-algebra
CB(S) with the infinity-norm:

[¥]ls = sup [[4:(7)lop-
~ES

DEFINITION 2.2. Let H be a Hilbert space and K := K(H) be the algebra of all
compact operators defined on H. A C*-algebra A is said to be almost Cy(K) if for every
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a€ A:

(1) The mappings v — F(a)(y) are norm continuous on the different sets I';, where
F: A —[*(A) is the Fourier transform given by

F(a)(y) =a(y) :=my(a) for ~e A and a € A.

(2) For each i = 1,...,d, we have a sequence (0, : CB(S;—1) — CB(S;))) of linear
mappings which are uniformly bounded in k (and independent of a) such that

lim dis ((05,%(F(a)s,_,) — Fla)r,), Co(Ts, K(H;))) =0,

— 00

and

lim dis ((0;,1(F(a)fs, ,) — F(a*)r,), Co(Ts, K(H))) = 0,

— 00

where Cy(T';, K(H;)) is the space of all continuous mappings ¢ : I'; — K(H;) vanish-
ing at infinity.

DEFINITION 2.3. Let D*(A) be the set of all operator fields ¢ defined over A such
that

(1) The field ¢ is uniformly bounded, i.e., we have that [|¢|| := sup_ 7 [¢(7)[lop < co.

(2) ¢, € CB(I) for every i =0,1,...,d.

(3) For every sequence (x)gen going to infinity in A, we have that limy_, o le(vi)llop =
0.

(4) For each i =1,2,...,d,

lim dis ((Jiyk(@lsi—l) — 90|ri), Co(FiJC(Hi))) =0

k—o0

and

Jim dis (0245, ,) — (2ir,)"): Colli () =0.
We see immediately that if A is almost Cy(K), then for every a € A, the operator field
F(a) is contained in the set D*(A). In fact it turns out that D*(A) is a C*-subalgebra

-~

of [*°(A) and that A is isomorphic to D*(A).

THEOREM 2.4 ([ILL, Theorem 2.6]). Let A be a separable C*-algebra which is
almost Co(K). Then the subset D*(A) of the C*-algebra 1°°(A) is a C*-subalgebra which
is isomorphic to A under the Fourier transform.

3. The groups G .

Let n € N* = N\ {0}, V,, = R*" and denote by w,, the canonical non-degenerate
skew-symmetric bilinear form on V,,. Let
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hn =V, ®R.
Choose a symplectic basis B := {X1,...,Xp,Y1,...,Y,} of V.. Let
Onpu =R xb, and A= (1,0y,,0), Z=(0,0v,,1) € gn -

Then {4, X1,...,X,,Y1,...,Y,, Z} is a basis of g, ,. For

=LA, A AL C R
with A\; + A, =2 for all i = 1,...,n, we define the brackets

[A, X;] = NX,, [A Y] =\Y;, [A, Z] =2Z forall i=1,...,n
and
[(X;:,Y;]=0,,Z for i,j=1,...,n.

Eventually by exchanging X, and Y; and replacing X; by —X, we can assume that
)\9 > 0 for all j. We then obtain a structure of an exponential solvable Lie algebra on

On,u, and its subalgebra b, is the Heisenberg Lie algebra.
Define the diagonal operator [, : V,, — V;, by

v) = Z NiviX; + Ny, for v = ZviXi + ngYi cV,.
i i— i—
For v =3%""  v;X; +vY; €V, and a € R, we write
n
a-v:= Z ey X 4 ey
i=1

The corresponding simply connected Lie group G which is exponential solvable, can

[N
be identified with the space R x V,, X R equipped with the multiplication

/ 1
(a,v,¢)- (a0, c) = (a+d,(—a) v+v e c+c + §wn((—a’) cv,0"). (3.0.1)

The inner automorphism Ad(a,u) on b, is given by

Ad(avu)(ovvaz) (CL )(071)72)(76%7(&'“’);0)

= (a,0,0)(0,u,0)(0,v, 2)(0, —u, 0)(—a,0,0)
= (a,0,0)(0,v, z + wp(u,v))(—a,0,0)

= (

0,a-v,e2 2+ e**w,(u,v)) for (v,2) € b,
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The centre Z of the normal subgroup H,, := {0} x V,, x R of G, , is the subset Z =
exp (RZ) = {0} x {Oy, } x R. Denote by Gy, the quotient group G,, ,,/Z which can be
identified with R x V,, equipped with the multiplication
(s,0) - (t,w) := (s +t,(=t) v+ w).
We write V,, = Vo & VL @ V_ =V, & Vi, where

Vi = span{X;, Yi; A; > 0,\}, > 0},
V_ :=span{X;; \; < 0},
Vo = span{ X}, Y; A; = 0, A}, = 0},
and V; :=V, @ V_. Let
py = pNRY, po = pNRY, g == N {0},

then we can write

V, = Z Viyx and Vo= Z Vo

AEp4 AEpU—

where V » and V_ ) are the respective eigenspaces of the operator [,,.
We can also identify g;, , with RA* @ V,y @ RZ* ~ R x V,, x R, and then

(Ad*(a,u)(a*,v*, \*), (0,v,2)) = {(a*,v*, \*), Ad((a,u) 1) (0,v, 2))

{(a*,v*,X*), (0, (—a) -v,e 2"z + e 2w, (—(a - u),v)))

0,v*, (—a) - v) + \'e 2%z + XNe 2w, (—(a-u),v).
Hence

Ad*(a,u)(a*, 0", X*)p, = (a*, (—a) - v* = Xe > (a-u) X wy, Ae >%).
Here we denote by u X w, the linear functional on V,, as

U X wy(v) :=wp(u,v) forall veV,.

The coadjoint orbit €2 of an element ¢ = (a*,v*, \*) € g;, , is given by
Q= {(a* +v*([A,u]) + 222", (—a) - v* = Xe Y a-u) X wp, e ) :a,2 € R,ucV,}.
Hence if A* # 0 then the corresponding coadjoint orbit is the subset

Q- =R x V7 xRN,
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where V¥ is the linear dual space of V,,. Therefore we have two open coadjoint orbits
Qe :=Ad"(Gpp)le =R x V) xR for ee{+,—}, (3.0.2)
where ¢, = £Z*. The other orbits are contained in Z+ with the form
Qe =RA* +R-v* for v* € V) \ V,
or the one point orbits
{a*A" +v*} for a* €R,0" € V.
We can decompose the linear dual space V¥ of V,, into

Vii={f eV f(V-UTh) = {0},
Ve = {f e Vi £V UVY) = {0},
Vi = 1{f eV f(Veuvl) = {0}

The following definition was given in [LinLud2].

DEFINITION 3.1. Denote by || - || the norm on V,* coming from the scalar product
defined by the basis {Xy,...,X,,Y1,...,Y,}. For f, = EAeu+ fr € Vi and fo =
Z)\Eu_ f)\ e V*, let

— — 1/X; — — —1/A;
Pl = el = mac [ 13 and |f-], = 1] := maxc [lf, 71

Then for ¢t € R, we have the relation
[t fr|=€'|fs] and |t-f_|=eT"|f-| for fr € V], fo V™ (3.0.3)

On V* we shall use the norm coming from the scalar product. This gives us a global
gauge on V*:

|(fos 4, ) := max{[| foll, | F |, [ £~ 1}

We denote by V7 the open subset of V,* consisting of all the f = (fo, f4+,f-) €

gen

Voo x Vi x V* for which fi # 0 and f_ # 0. The subset Vj consists of all the
f = (fo, f+, f-) for which either fy #0, f- =0or f; =0, f- # 0. We see that for every
= (fo, f+, f-) € V., there exists exactly one element f' = (fo, f, f) in its G, ,-orbit
such that |f | = |f”|. In the same way, for f = (fo, f+,0) (vesp. f = (f0,0,f-)) € Vi,
there exists exactly one element f' = (fo, f},0) (resp. f' = (fo,0, f)) in its G, ,-orbit
for which |f} | =1 (resp. [f.|=1).

For fi € V}\ {0}, let us denote by r(fy) the unique real number for which the
vector 7(f4) - f4 in V} has gauge 1. This means that
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F(f4) = —In(|f1]).
Similarly, for f_ € V*\ {0} we define the number q(f_) by
q(f-) ==(|f_))
such that |q(f_) - f_| = 1. Let

D = {(fo, f+: f-) : |[f+] = |f-] # 0},
St ={(fo, f+,0) : |[f+| =1}, S- ={(f0,0,f-) : |f-| =1}, and
S=8,US_.

The orbit space g;’u/Gn,u can then be written as the disjoint union I of the sets

I'o =R x Vi, corresponding to the unitary characters of Gy, ,,
[y =8>Va,/Gup

Lo =D>V,,/Gnpu

Dy = {+.—} ~ {242} /G

in the case where Vi, # 0, i.e., py # 0 and i # (). In case V., = ), we have T' as the
union of

I'o = R x Vi, corresponding to the unitary characters of Gy, ,,
Iy =8 ~V5,/Gup,
Ty ={+ -} = {2, Q. }/G, .

In order to simplify notations, we shall treat only the first case in the following, i.e., we
shall assume that V5, is nonempty. The other case is similar and easier.

The topology of the orbit space gy, /Gy, of the quotient group Gy ,/Z has been
described in [LinLud]. We recall that a sequence y = (yx ) is called properly converging
if y has limit points and if every cluster point of the sequence is a limit point, i.e., the
set of limit points of any subsequence is always the same, indeed, it equals to the set of
all limit points of the sequence y.

THEOREM 3.2 ([LinLud, Theorem 2.3)).

(1) A properly converging sequence (Qy, )x with fi = (fr,0, fey, fx_) € D has either a
unique limit point Qy for some f € D and then f = limy fi, or limg(fr,, fr_) =0
and then the limit set L of the sequence is given by

L ={Q,1:.0) 2 f0,0.5_), R},

where fo = limy fro, f+ = limgr(fr,) - fo, € Sy and f- =limgq(fr_) - fr. € S—.
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(2) A properly converging sequence (S5, ) with fr, = (fr,0, frr, fu_) €S has the limit set
L= {va R}v

where f =limy fr, € S.

COROLLARY 3.3.  The orbit Qy for f € D is closed in g;, ,. The closure of the
orbit Qg for f € S is the set {Q,R}.

From the description (3.0.2) of the open orbits €., € = +, we have the boundary of
Q. as the following.

COROLLARY 3.4. For e € {+,—}, the boundary of the open orbit Q. is the subset
RxVix{0}=2Z"~gj .

On the other hand, for every coadjoint orbit we can write down a corresponding
irreducible representation as an induced representation by using Kirillov’s orbit theory.

(1) Let P, = exp(Z;.L:1 RY; +RZ). This is a closed connected normal abelian subgroup
of Gy . Let also r, := Z;;l RX; and v, := Z?:l RY; C V,, (an abelian subalge-
bra of g, ), then &, := exp(r,) and Y, = exp (y,) are closed connected abelian
subgroups of G, ,. We have

Gnu=exp(RA)- X, - P, =5, - Py,

where S, := exp(RA) - X, is a subgroup of G, ,,. The irreducible representations
me,& = +, corresponding to the orbits §2. are of the form

Te 1= indg;““ Xez* -
The Hilbert space of m. is the L?-space L*(Gy, ./ P, xe) =~ L?*(S,,), where x.(y, z) :=
e~27m= for (y,z) € P,. The elements of this space are the measurable functions

¢ : Gp,, — C satisfying the relations

&(gp) = x=(p~")é(g) for g € Gy, p € Py, and

/ £(9)2dj < oo,
Gn,u/Pn

where dg is the left invariant measure on G, ,/P,. For F € L'(G, ,) and ¢ €
L*(Gp,u/Pr), we have

re(F)E(s') = / F(sp)e(pts™" ') dsdp

- / F(s'sp)e(p~ts ™ dsdp
S’I’LP’VL
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F(s's™'p)As, (s7HE(p™ s)dsdp

F(s's™'p)As, (s7)&(s(s™'p's))dsdp

/.
/.
= [ P A (s s (dsdp
s
/ F(s's ™ p)Ag, (s~ 1)o7 Ad" (0050 ¢ (5)dsdp
s

:/ FPr(s's™1 Ad*(s)12)¢(s)As, (s~ )ds.
Sn
Here FP» is the partial Fourier transform of F' in the direction P, given by
ﬁp“(s;ﬂ) = / F(sp)e~ 2 &1os®) gy for s € S,,,0 € pr.
Py,

Hence the operator 7. (F') is given by the kernel function
F.((a, "), (a,2)) = FPr(d' — a,a- (2 — 2); (—ee 2% (a - x) X wy, ce”2%))elMe,

where |A] := 22‘;1 A;. In fact the linear functional ee=2%(a - z) X w, is given by

ee”*(a-x) X wy = 6(2 e(’\j2)“ijj*> for a e R,z € &,
j=1
Therefore,

FE((a/,J;/), (a,2)) = A (a/ —a,a- (x/ —2); (_5( e()\j—Q)axjyj*)7Ee_2a>)eAla.
=1

J

(2) For v* € V,*, we have the irreducible representation m,+ on L*(R) defined by

. .G
Ty 1= ind """ X,

n

where H,, := exp(h,). The kernel function F, of the operator 7« (F), F € L'(Gy, ),
is given by

Fye(a,b) = F' (a —b,b-v*,0) for a,beR. (3.0.4)

(3) Finally, for (a*,v§) € R x V;* we have the unitary characters

X(a*,v$)(a,vo0,v,¢) *= e~ ?milaatvo(vo)) for a,c € R v € Vo,v € V5.
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DEFINITION 3.5. We denote by [°°(T") the C*-algebra
() = {(6(3) € B )ert 6] = sup [6() o < o).
yel

The Fourier transform F,, ,, : C*(G, ) — (I for C*(G, ) is given by
Fupu(a)(e) =ale) :=m(a) for € € {+, -},

Fnpla)(f) =a(f) :=7(a) for feDUS,
Fnu(a)(@*,v5) = X(a* wz)(a) for (a*,v5) € R x V7,

(:/ F(s,vg,v1,2)e 2™ 8712700 (v0) s dvodvy dz
RxVoxV xR

for F € Ll(Gn,H)).

4. The C*-conditions.

4.1. The continuity and infinity conditions.
THEOREM 4.1.  For every a € C*(G,,,), the mapping

SUD— BUIA(R)) : £+ a(f),
is norm continuous. We also have that

lim 77 (a)op = 0.

[ f|—o00
feD

PrOOF. See [LinLud, Proposition 4.2]. O

4.2. The condition for the open orbits 2..

To understand the case of open orbits, we have to take into account the boundary
points of such an orbit. It is well known that for a € C*(G) the operator m.(a) is
compact if and only if w(a) = 0 for every 7 in the boundary of the representation 7., i.e.,
if my(a) = 0 for every v € 'y UT'; UT'5. In this subsection we shall give a description of
the algebra of operators m.(C*(Gy, ,.)).

DEFINITION 4.2. For k € Z and r € R, let I,.;; be the half-open interval:
Iy = [kr,kr +r[C R.
(1) Let S51:={(a,x) € R x X,;e~% > §3}.

(2) Let 6 — 75 € Ry be such that lims_grs = +oo and lims_¢ e™s§1/2 = (), where
1 <m :=max;(2 — \j).
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(3) For constants D = (D1, ...,D,) € (R})" and k = (ko, k1,...,ky) € Z"T, let

Ss.0k2 ={(a,z1,...,2,) ERX Xy;e ¢ < 53,

a€ Ik, x; € IDjézeTé(zij)koykj,j =1,... ,n}.

PROPOSITION 4.3.  For every compact subset K C R x X, and § > 0 small enough,
we have that

KSspr2C |J S5.055 82 = Rspko2,

Jo€EZ
liol<1

where Ds ;, = (Dye~7s(2=A)00) | D, e e (2= An)00)) € (RE)™.

PROOF. Indeed, there is an M > 0 such that K C [-M, M|"*1 C Rl Let
rs > M. For (s,u) € K and (a,z) € S5,p k.2, it follows that

C = (57u) ! (a,x) = (S+aa(7a) U+I)7
and (ko+jo)rs < s+a < (ko+jo+1)rs for some ko € Z and jo € {—1,0, 1}. Furthermore
‘e—akjuﬂ _ |Uj‘6_2a6(2_/\j)a
S M672ae7‘5(27)\j)(k?0+1)

< Dj(g?e*ﬁs(?*)\j)joem(2*/\j)(’€0+ja),
since for ¢ small enough Me~2%es(2=%i) < M §%ems(2=Xi) < D;5? for every j. Hence

zj+e Ny < (b + 1)Djera(24\;‘)(*jo)(g?eré(?*&)(koﬂo) + ey,

< (k’j + 2)Dj€7“<s(2*>\_7')(*jo)(52e?”(s(2*>\j)(ko+jo)7

and also
x; + e~ uj > ijjeT5(2—>\j)(—jo)(;?ers(?—/\j)(ko-l-jo) _ e—a)\j|uj|
> (kj — 1)Dje7“5(2—>\j)(—jo)(;?ers(2—>\j)(ko+jo).
Therefore ¢ is contained in the set Rs p g 2. O

REMARK 4.4.

(1) The family of sets {S51,S5.pk,2;0 > 0,k € Z"1} forms a partition of R"+1.

(2) Denote by My, the multiplication operator in L?(R" 1) ~ L*(G,, ,,/ Py, x-) with the
characteristic function of the set Ss ;. Similarly let Ms p j 2 be the multiplication op-
erator on L?(G,, /Py, X-) with the characteristic function of the set Ss p 5 2. These
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multiplication operators are pairwise disjoint orthogonal projections and the sum of
them is the identity operator.

Let Ns p k2 be the multiplication operator with the characteristic function of the
set Rsp 2 for § > 0 and k € Z"™'. We have the following property of the operator

Ns,Dk,2-

PRrROPOSITION 4.5.  There exists a constant C' > 0 such that for any bounded linear
operator L on the Hilbert space L*(Gy, i/ Pn, Xe), we have that

E Ns,pk,20LoMspr,2
kezn+1

< Csup||Ns,pk20 Lo Mspga2lop
k
op K

PROOF. See Propositions 6.2 and 6.18 in [ILL]. O

DEFINITION 4.6. For k € Z"*! and 6§ > 0, let

s =—c Y D;s%enCbopy s gy,

j=1
Let o5 := indg:’” X¢..s- The Hilbert space of this representation is the space

H@,a - Lz(Gn,,u/Pna XE&(;)

and for F € L'(G,, ), € € Hy,s we have that

o s(F)E(da) = /5 Fon (/s 15 Ad® (5)0.9)€ (5) A (s~ 1) ds.

Hence this operator has a kernel function given by
FE,5((a/a xl)a (a7 l’)) = ﬁpn (a/ —a,a- ((E/ - (E); ((_a) : g&,a, 0))e|)\\a'

Moreover, the representation oy s is equivalent to the representation

S5}
On by s ::/ 7Tf+€5,5df7
p

£ *
n CV;L

and an equivalence is given by

UTL fk

)

(&)
s PR X X) = L (G /Py Xty 5) = /L LG/ Hp, X 40,5 )df 5
Pn

Un iy (()g) : = /H | Xrtus U )E(gha)din for g €G.f €pl. (421)
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Let Csup be the C*-algebra of all uniformly bounded continuous mappings from
S UD into B(L?*(R)). It follows from Theorem 4.1 that for every a € C*(Gy, ) we have
that @ syup is contained in Csup.

For each f = (fo,f+,f-) € V.5, we denote by f; the unique element in its
coadjoint orbit Q contained in S UD. Let Unps(f) : L*(Gnp/Hno Xfte,5) —
L?(Gpou/Hp, X(f+£,.5),) be the canonical intertwining operator of 7y, , and ’7T(f7+g&5)1.
Formula (4.2.1) allows us to define a representation of the algebra Csup on the space
L*(Gp,u/Pn) by

)

Totes () = Uppy O/ Unk,s(f)" 0 o((f +Lrs),) © Un s (f)df o Un gy 5.
pL

n

We have that
Ontys(a) = Tne, s (@s) for all a € C*(Gy ). (4.2.2)
DEFINITION 4.7. For § >0, k € Z"* and a € C*(G,, ), let

On,k,5(@) = T ey 5 (@) © Ms p g 2,

ons(@)i= Y Nspr2oonks(a)
EGZ”+]

PROPOSITION 4.8. Let a € C*(G,,,) and € € {+,—}. Then

(%i_r)r(l) dis((7e(a) — opn.s(a)), K(L*(R x X))) = 0.

PrOOF. Let L} be the space of all F € L'(G,,,) for which the partial Fourier
transform FP=((a, ), (v*,s)) is a C*-function with compact support on S, X p. Take
F € L} and choose C' > 0 such that F*=((a,z), (v*,s)) = 0, whenever |a| + ||z|| > C or
|lv*|| + |s| > C. By Proposition 4.3, for § > 0 small enough, we have that

e(F) o Ms,p g2 = Nsprz2ome(F)oMspg2

for every k and hence
wo(F) o (L= M) = osF) = melF) o (3 Misa ) — ona(F)
k

= Y Nspr2o (7e(F) = Fniy s (F)) 0 Ms p o,
kezn+1

and the kernel function Fjj of the operator a, sk := Nsp k2 o (m(F) — En,zm(F)) o
Ms p k2 is therefore given by
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Fsx((a’,2"), (a,2)) = (ﬁ"" (a’ —a,a-(a' - x); ( = g(i ew—maxjyj*) 7 Ee-ga»

j=1
— FPr(d —a,a- (2 — 2); (—e(—a) A5, 0))>
X ewalsé,Dykvz(a, 2)lRs . ,(a, @) for a,a’ e Rz, 2" €V,
We see that
eQi=Dag _ =Nap §2ersCAkog = o=Na(y D g2ersAkog Y,
Hence,
|e(>\j—2)axj _ e—A;aDj(Szem(z—,\j)kij'
< efkgaDj(sQeTg(Qf)\j)ko
— D522 A rsko—a)
< ) g

S er(;ijéQ

< 6. (4.2.3)

Since F' € L, there exists a continuous function ¢ : S,, — R with compact support
such that

|FPr(s10) — FPr(s;0')| < p(s)|[€ — £'||  for £,0 € p*,s € S
Whence for any (a,z), (a/,2') € S, and any § > 0 small enough,

\Fg@((a’,x’), (av‘T))'

n
FPn (a’ —a,a- (2 —x); ( - 5(2 e()‘j_z)aijj*> , 86_2a)>
j=1

— ﬁp”(a' —a,a- (2" —x);(—e(—a) - lg,s,0))

elMalss,D,E,z (aa $>1R5,D£,2 (alv '75,)

n

< pld —a,a-(z' — m))H ( — E(Z ew—2>axjyj*) , ae‘2“> + (e(=a) - Ly, O)H

Jj=1

X el)\‘alsfs,D,gz (a7 "E)]‘Ré,D,EQ (a/7 xl)
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< old ~a,a- (2’ - 2))

’ (Z(e(kj—2)fl;[;j — e_A;aDj52€T6 (2—Xj)ko kj)}/;k’ 56_2a> H

=1
X e‘klalsé,D,ga <a7 ‘/L.)lR(S,D,EQ (a/a 33/)

< Cop(a' —a,a- (z' — x))elPl

for some constant C' > 0 independent of ¢ by (4.2.3). Therefore by Young’s inequality
we have that

HG’F,é,EHOp S C for E € Zn+1,
and finally
||7TE(F) o (H - M§71) — 0n75(F)||0p <(C'§

for a new constant C’, by Proposition 4.5.
On the other hand, the operator 7. (F') o Ms; is compact since

[ (F) © Mz

2
H-S

B /JR /{ea>63} /(anXn)

x 2N dada’ drdx’

B /]R/{e“>53} /(anXn)
< 0.

Therefore,

2

FPn (a' —a,a- (2" —x); ( - 5(2 e()‘j_z)“ijj*> ) 56_26‘)>
j=1

n
2 (a’,x’; ( — s(ij}’j*>,se_2“>>
i=1

2
" dada’ dxdx’

dlb((ﬂ'a(F) - Un,5(F))a’C(L2(R X X)))
< l7e(F) o (I = Ms1) — 05 (F)llop

—0 as 6 — 0.

The Proposition follows, since L! is dense in C* (G, ,,). O

4.3. The two-dimensional orbits €, and the characters.

The C*-algebras of the groups Gy, = G ,/Z have been determined as algebras
of operator fields in [LinLud]. We adapt this result to our present setting of almost
Co(K)-C*-algebras.

DEFINITION 4.9.  For a € C*(Gp,,), let ®(a) be the element of C*(R x Vp) defined
by ®(a)(0) := (xs,a) for all # € R x V. The mapping ® : C*(G,,,) — C*(R x Vp) is a
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surjective homomorphism. Let the kernel of ® be denoted by Ix, then C*(G, ,.)/Ix ~
C*(Rx Vy). Forn € Co(Gr ), the element ®(n) € C*(R x Vy) is the continuous function
with compact support given by

O(n)(t,vo) = / n(t,vo,v,s)dvds for teR, vy € V.
Vi xR

Choose ¢ € Cc(Vi x R) with ¢ > 0 and [, ((v,s)dvds = 1, define the mapping
B:Ce(R x Vo) — Ce(Gr,p) C C*(Gr ) by

B(p)(a,vo,v,8) = p(a,v9)((v,s) for ¢ € C.(RxVp),s €R and v € V4.

It has been shown in [LinLud] that 8 can be extended to a linear mapping bounded
by 1 from C*(R x V) into C*(Gy ), such that for every ¢ € C*(R x Vj) we have
(B(p)) = .

DEFINITION 4.10.  Let (Qf,)x (fk = (fa,,fr_) € D for all k) be a properly

converging sequence in G, ,, whose limit set contains the orbits Q. o) and Qs ).
Let rr,qx € R be such that |ry-fi,| = 1 and |gx-fx_| = 1 for & € N. Then
limg rp, = —oo and limy ¢x = 400. Choose two positive sequences (pg)g, (kk)r such
that xkr > g, —7rx < pi for all k € N, limg_, oo kg — g = 00, limyg_.oo pr + 7% = 0
and limg oo ((kx — qx) /7)) = 0, limg— oo ((pr + 7%)/qr) = 0. We say that the sequences
(pr, ki )k are adapted to the sequence (fi)-

For r € R, let U(r) be the unitary operator on L?(R) defined by
U(r)é(s) :==€&(s+r) for all € € L*(R) and s € R.

DEFINITION 4.11. Let A = (A(f) € B,f € T') be a field of bounded operators.
We say that A satisfies the generic condition if for every properly converging sequence
(e )k C CTT; with fr € D for every k € N, which admits limit points 7(z,.0,7_), T(fo,14,0)
and for every pair of sequences (pg, ki )r adapted to the sequence (fy)r we have that

(1) kh—>ngo HU(T/C) © A(fk) ° U(_rk) o M(PkHrOO) - A(an f+70) © M(Pk»JrOO)HOP =0,
(2) khigo ||U(Qk) © A(fk) © U(_Qk) © M(*OO,KIC) - A(an 0, f,) © M(*OO,I‘UC) ||0p =0.

The following proposition had been proved in [LinLud, Proposition 5.2].

PROPOSITION 4.12.  For every a € C*(G,,,.), the operator field F(a) satisfies the
generic condition.

We must show that on D, our C*-algebra satisfies the almost Cy(K) conditions given
in Definition 2.2. For a € C*(Gy, ) and f = (fo, f+, f-) € V., we define the operator
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of(a) = U(=r(f)) om(s, 1y ,00(a) o U(r(f)) © Mi—co,n(s)+r()]
+U(=q(f)) o m(so,0,5-y(@) o U(q(f)) © Mig(s)—p( ) 400l

where

r(f) = —In(|f+]), q(f) = In(|f-|),
p(f) = alH)? =r(f),  w(f)=a(f)—r(H)>

We have the following proposition.

PRrROPOSITION 4.13.  For all f € D, the operator field
frop(f)(a) :i=mp(a) —of(a) (a€C(Gnu))

is contained in Co(D, K(L*(R))).

PrROOF. Let a € C*(G, ). We know that ms(a) is a compact operator for any
f € Vj.,, that the mapping f — 7(a) is norm continuous and that limy_., 7¢(a) = 0
by Corollary 3.2 and Proposition 4.2 in [LinLud]. If F € L!, then the kernel function
Fy,.r, of the operator m(y, r, 0y © M[y(s),00[ is given by

Ffo’f+ (S,t) = Fhn (S —t,t- f+)1[p(f),oo[(t)'

The function Fy, ;. is of compact support and p is continuous. Hence the mapping
I = T(f0.51,0) © Mip(s),00[ s norm continuous on D and for every f € D, the operator
T(fo,f4+.,0) © Mp(f),00] 18 compact. Since

p(f) =In(|f~)*% +In(|f+])
=In(|f+)"/® + In(| £1)

goes to infinity as || f|| goes to infinity, it follows that ms, ¢. o) © Mjy(f),00f = 0 if || f]] is
big enough. Similar properties hold for the mapping f +— m(f,.0,7_) © M]_oo,x(s)] 00 D.
Since the boundary 9D of D is the set S U R, the generic condition tells us
that lims_sp |lop(f)(a)|| = 0. Hence the mapping f +— op(f)(F) is contained in
Co(D, K(L*(R))). The proposition follows from the density of L} in C*(G,,,.). O

4.4. The C*-algebras of the groups G, .
Let T'; C g;‘;y#/Gny# be given as in Section 3 and I' = |JT;.

DEFINITION 4.14. (1) For f € D and ¢ € I*°(T"), let

ap(¢) == U(=r(f)) o ¢(fo, f+,0) o U(r(f)) © Mj_oo w()+r(f)]
+U(=q(f)) © ¢(f0,0, f-) o U(a(f)) © Mig()—p(f).+ool-
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(2) Let ¢ = (¢(f) € B, f € T') be a field of bounded operators such that the restriction
of the field ¢ to the set of characters I'y is contained in Cy(I'g). We get the element
©(0) € C*(R x Vp) determined as in Definition 4.9 by the condition v(p(0)) = ¢ (v)
for v € T'y. We can then define as in Definition 4.9 that

a5(p) = B(p(0)) € B(L*(R)) for f € S.

—

DEFINITION 4.15.  Let D*(G, ) be the subset of [*°(G), ) defined as a set of all

the operator fields ¢ defined over CT,:L such that the mappings v — ¢(7) are norm
continuous and vanish at infinity on the sets I'g and I'y and such that ¢(f) € K(L?(R))
for all f € D. Moreover, each ¢ must fulfills the following conditions:

(1) For e € {+, -},

lim dis((6(€) — on,5(6)), K(LA(R x X)) =0, and

lim dis((67() = 7.5(6")), K(LA(R x X)) = 0.
(2) The mappings
D3 [ (0(f)—05(¢)) and D3 [ ($(f)" —os(6"))

are contained in Cy(D, K(L%(R))).
(3) The mappings

S>3 [ = (o(f) —os(9)) and 85 f—= (o(f)" —os(67))

are contained in Cy(S, K(L%(R))).

THEOREM 4.16.  The C*-algebra of G, ,, is an almost Cy(K)-C*-algebra. In par-
ticular, the Fourier transform maps C*(G,, ) onto the subalgebra D*(G,, ) of I°(T).

PROOF.  Propositions 4.8 and 4.13 show that the Fourier transform maps C*(Gy, ,,)
into D*(Gy,,). The conditions on D*(G,, ) imply that D*(Gy, ) is a closed involutive
subspace of {>°(T"). It follows from [ILL] that D*(Gy, ;) is a C*-subalgebra of [*°(I") and
that F,, ,(C*(Gn,u)) = D*(Gr ). O
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