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Abstract. A construction of general formal solutions for members
(PJ)m (J = II, IV) of the second and the fourth Painlevé hierarchies with
a large parameter is discussed. We also investigate a relation between formal
solutions of (PJ)m (J = II, IV).

1. Introduction.

For the traditional Painlevé equations with a large parameter η, in 1990’s, T. Aoki,
T. Kawai and Y. Takei constructed formal solutions with two free parameters called
instanton-type solutions and they succeed in giving the concrete descriptions of the Stokes
phenomenon and the connection formula among these solutions (see [11], [6], [12] and
[10]). Since this success, from a viewpoint of the exact WKB analysis, the higher-order
Painlevé equations have been studied in the series of papers [9], [13] and [14]. T. Kawai
and Y. Takei [14] established structure theorem for instanton-type solutions of Painlevé
hierarchies near simple P -turning points of the first kind and instanton-type solutions
are expected to be suitable formal solutions for the description of Stokes phenomenon
of Painlevé hierarchies with η. The construction of such solutions has been studied in
[1], [6], [10], [19], [21] and [2], and so far the existence of the solutions for Painlevé
hierarchies (PJ)m (J = I, II, 34, IV) has been proved by the method which is based on
their Hamiltonian structures (see Y. Takei [21], [15] and [16]). On the other hand, there
is another method to construct instanton-type solutions. The solutions of traditional
Painlevé equations with η were constructed by multiple-scale analysis (for example, see
[1] and [10]). Recently, T. Aoki, N. Honda and the author [5] showed how to implement
the concrete computation of instanton-type solutions for (PI)m by the multiple-scale
analysis and gave the explicit forms of the solutions. The concrete forms of instanton-
type solutions of (PII)m and (PIV)m have not been obtained yet. We are interested in a
question: What kind of classes of differential equations can we apply the method given in
[5] to? In this paper, following [5], we construct instanton-type solutions to (PII)m and
(PIV)m. More specifically, we first introduce a new auxiliary variable θ and rewrite (PII)m

and (PIV)m in the systems described by generating functions of their unknown functions.
Then we consider our problem in the expanded space A(Ω) consisting of formal power
series of θ with suitable coefficients and construct instanton-type solutions of (PII)m and
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(PIV)m so that the solutions are expressed by proper generating functions in A(Ω). In
the paper, it is interesting that we show not only the concrete forms of solutions but
also the shared algebraic structures between (PJ)m (J = I, II, 34, IV) which appear in
the procedure of the construction of solutions. As is shown in [5], (PI)m is associated
with a system of partial differential equations expressed by the characteristic map Q

and, thanks to the map Q, the system has a special multiplicative structure which plays
an essential role in the construction of solutions. This fact is a key of success in the
construction of solutions for (PI)m. This paper clarifies that (PII)m and (PIV)m also
have the completely same structure as what we stated for (PI)m. In addition, we see
that instanton-type solutions of (PII)m and (PIV)m are transformed each other by the
replacement of the corresponding variables. (See Theorem 6.1 below for more precise
statements.)

The rest of this paper is organized as follows. We first construct instanton-type
solutions for (PII)m. In Section 2, we give the explicit form of (PII)m and some results
concerning its 0-parameter solution by using generating functions. In Section 3, we begin
with considering a linearized equation of (PII)m along its 0-parameter solution. We also
investigate its algebraic structure (cf. Lemma 3.1) and the system of partial differential
equations associated with (PII)m is given by (45). In Section 3.3, we observe that the
system is simplified by results in Section 3.2. To obtain the leading and subleading terms
of solutions, we need to see the first member (E1) of the non-secularity conditions which
naturally appear by the multiple-scale analysis. Although (E1) is a system of non-linear
equations with 2m unknown functions, we can solve globally the system (see Section
4). As a matter of fact, we have the explicit forms of the leading and subleading terms
of solutions for (PII)m in Lemmas 4.1, 4.4 and Proposition 4.8. In Section 5, we prove
that the higher-order terms of solutions can be constructed and we obtain our main
theorem (Theorem 5.3). In Section 6, instanton-type solutions of (PIV)m are obtained
and the relation of solutions of (PII)m and (PIV)m is given by Theorem 6.1. For the
sake of completeness, in the appendix, we give some long proofs to be needed in previous
sections.

Acknowledgements. At the end of the introduction, the author would like to
express her sincere gratitude to Professors N. Honda and T. Aoki for many valuable
advices. The author is also grateful to Professors T. Kawai, Y. Takei, T. Koike and their
students for the comments given in RIMS symposium on algebraic analysis. The author
would like to thank the referee for reading this paper completely and for giving her the
helpful advise.

2. The second Painlevé hierarchy in terms of generating functions.

For m = 1, 2, . . . , the m-th member (PII)m of the second Painlevé hierarchy with a
large parameter η is given by T. Koike [15] (See also [7]):





η−1 duj

dt
= −2(u1uj + vj + uj+1) + 2cju1, j = 1, 2, . . . , m,

η−1 dvj

dt
= 2(v1uj + vj+1 + wj)− 2cjv1, j = 1, 2, . . . , m

(1)
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with um+1 = γt and vm+1 = κ. Here uj , vj are unknown functions of t and cj , γ(6= 0), κ

are constants, and wj denotes a polynomial of uk, vl (1 ≤ k, l ≤ m) recursively defined
by

wj :=
j−1∑

k=1

uj−kwk +
j∑

k=1

uj−k+1vk +
1
2

j−1∑

k=1

vj−kvk −
j−1∑

k=1

cj−kwk. (2)

As is mentioned in [15], if we set m = 1 and c1 = 0, then we have the traditional second
Painlevé equation PII with a large parameter η given in [10]:

d2u

dt2
= η2(2u3 + 8γtu + c), (3)

where u = −2u1 and c = 8κ + 4η−1γ. In [8], the parametric Stokes phenomena for
1-parameter solutions of (3) are deeply studied by the exact WKB analysis.

2.1. The form of (PII)m by generating functions.
Following the idea of [5], we represent (PII)m in terms of generating functions of uk,

vk, wk and ck (k = 1, 2, . . . ) defined by

U(θ) :=
∞∑

k=1

ukθk, V (θ) :=
∞∑

k=1

vkθk, W (θ) :=
∞∑

k=1

wkθk+1 and C(θ) :=
∞∑

k=1

ckθk, (4)

respectively. Here θ denotes an independent variable. Using generating functions, we
have the following system:





η−1 dU

dt
θ = 2(u1(1− U + C)θ − U − V θ),

η−1 dV

dt
θ = 2(−v1(1− U + C)θ + W + V )

(5)

with

W = UW + UV +
1
2
V 2θ − CW, that is, W =

2UV + V 2θ

2(1− U + C)
. (6)

Putting (4) into (5) (resp. (6)) and comparing the coefficients of θk (2 ≤ k ≤ m + 1) on
the both sides, we have (1) (resp. (2)). In what follows, by A ≡ B we mean that A−B

is zero modulo θm+2 and we consider

η−1 d

dt

(
Uθ
V θ

)
≡ 2




u1(1− U + C)θ − U − V θ

−v1(1− U + C)θ +
2UV + V 2θ

2(1− U + C)
+ V


 (7)

with the condition that the coefficients of θm+1 of U and V are equal to γt and κ

respectively.
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2.2. Generating functions of 0-parameter solutions for (PII)m.
Equation (1) has a 0-parameter solution of the form

uk(t) =
∞∑

j=0

η−j ûk,j(t), vk(t) =
∞∑

j=0

η−j v̂k,j(t), k = 1, . . . , m. (8)

The construction and existence of 0-parameter solutions for higher-order Painlevé equa-
tions have been deeply investigated by [9], [3], [4], and we know that the higher-order
terms ûk,j , v̂k,j (j ≥ 1) of (8) can be obtained uniquely once the leading terms ûk,0, v̂k,0

(1 ≤ k ≤ m) are determined by the following system of algebraic equations for ûk,0, v̂k,0:

−(û1,0ûk,0 + v̂k,0 + ûk+1,0) + ckû1,0 = 0,

(v̂1,0ûk,0 + v̂k+1,0 + ŵk,0)− ckv̂1,0 = 0, k = 1, 2, . . . , m
(9)

with ûm+1,0 = γt and v̂m+1,0 = κ. Here ŵk,0 is defined in the similarly way as that of
wk by (2).

We define the generating functions of leading terms ûi,0, v̂i,0 (i ≥ 1) of (8) by

û0(θ) :=
∞∑

i=1

ûi,0θ
i and v̂0(θ) :=

∞∑

i=1

v̂i,0θ
i, (10)

respectively. By (10), the system (9) is rewritten in the form

û0 + v̂0θ

1− û0 + C
= û1,0θ,

2û0v̂0 + (v̂0)2θ
2(1− û0 + C)

= v̂1,0(1− û0 + C)θ − v̂0 (11)

with ûm+1,0 = γt and v̂m+1,0 = κ. The above equations imply

(1 + û1,0θ)2 − 2v̂1,0θ
2 =

(1 + C)2

(1− û0 + C)2
. (12)

Hence, we have

û0 = (1 + C)
(

1−
√

1
(1 + û1,0θ)2 − 2v̂1,0θ2

)
,

v̂0θ = (1 + C)
(
− 1 + (1 + û1,0θ)

√
1

(1 + û1,0θ)2 − 2v̂1,0θ2

)
.

(13)

As is shown in (13), û0 and v̂0 are determined once û1,0 and v̂1,0 are given. Noticing that
ûm+1,0 = γt and v̂m+1,0 = κ, we determine û1,0 and v̂1,0 so that the coefficients of θm+1

in û0 and v̂0 of (13) are γt and κ, respectively.
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3. Multiple-scale analysis for (PII)m with generating functions.

We first prepare some definitions. Let α be a negative real number and τ :=
(τ1, . . . , τm) be m-independent variables. We denote by Ω an open subset in Ct sat-
isfying the conditions (S1) and (S2) which will be given later in Section 3.2. Then the
solution space to which formal solutions of instanton-type of (7) belong is defined by

Aα(Ω) := M(Ω)
[[

ηαeτ1 , . . . , ηαeτm , ηαe−τ1 , . . . , ηαe−τm , θ

]]
,

AOα (Ω) := O(Ω)
[[

ηαeτ1 , . . . , ηαeτm , ηαe−τ1 , . . . , ηαe−τm , θ

]]
,

(14)

where M(Ω) (resp. O(Ω)) denotes the set of multi-valued holomorphic functions with
a finite number of branching points and poles (resp. holomorphic functions) on Ω. We
also denote by Âα(Ω) (resp. ÂOα (Ω)) the subset in Aα(Ω) (resp. AOα (Ω)) consisting of a
formal power series of order less than or equal to α with respect to η. The subsequence
arguments go well if α satisfies α = −1/k for an integer k ≥ 2. For details, see Lemma
3.2 in [5]. Hence, from now on, we fix α = −1/2 and abbreviate Âα(Ω) to Â(Ω).

In this section, by multiple-scale analysis with generating functions (cf. [5], [10]),
we compute the system of partial differential equations in Â(Ω) associated with (7) and
study the algebraic structure of (PII)m.

3.1. A linearized equation of (PII)m along the leading term of the 0-
parameter solution.

We consider a linearized equation of (7) along (û0, v̂0) defined by (10). Let ui,jα and
vi,jα (i, j ≥ 1) be unknown functions of the variable t and we define (u, v) ∈ Â2(Ω) :=
(Â(Ω))2 by

u :=
∞∑

i=1

∞∑

j=1

ui,jα(t) θi ηjα, v :=
∞∑

i=1

∞∑

j=1

vi,jα(t) θi ηjα. (15)

We also define σθ
k(u) (resp. σθ

k(v)) by the coefficient of θk in u (resp. v). Then (7) is
transformed, by a change of

U = û0 + (1− û0 + C)u, V = v̂0 + (1− û0 + C)v, (16)

into the system of non-linear equations for (u, v):

η−1 d

dt

(
û0

v̂0

)
θ + η−1

(
d

dt
(1− û0 + C) + (1− û0 + C)

d

dt

)(
u
v

)
θ

≡ 2(1− û0 + C)
((

(σθ
1(u)− û1,0u− v)θ − u

(−σθ
1(v) + 2v̂1,0u + û1,0v)θ + v

)
+

(−σθ
1(u)u

σθ
1(v)u

)
θ

)

+ (1− û0 + C)
1

1− u

(
0

2u(v̂1,0u + û1,0v)θ + (2uv + v2θ)

)
. (17)
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Here we use (11) in order to obtain (17). Dividing (17) by 1− û0 + C, we have

− η−1

(
%
δ

)
θ + η−1

(
% +

d

dt

)(
u
v

)
θ

≡ 2
((

(σθ
1(u)− û1,0u− v)θ − u

(−σθ
1(v) + 2v̂1,0u + û1,0v)θ + v

)
+ 2

(−σθ
1(u)u

σθ
1(v)u

)
θ

+
1

1− u

(
0

2u(v̂1,0u + û1,0v)θ + (2uv + v2θ)

)
, (18)

where % and δ are defined by

% :=
d

dt
(log(1− û0 + C)) and δ :=

d/dt(−v̂0)
1− û0 + C

, (19)

respectively. A characteristic feature common to (PI)m, (PII)m, (P34)m and (PIV)m is
that the systems obtained as above are described by their special maps Q and each map
is defined by the leading term of the right-hand side with respect to η. Now we confirm
this fact for (PII)m. Let us define Θ by the set of formal power series of θ without
constant terms and the map Q : (Θθ)2 → Θ2 by

Q

(
x θ
y θ

)
:= 2

(
(σθ

1(x)− û1,0x− y)θ − x
(−σθ

1(y) + 2v̂1,0x + û1,0y)θ + y

)
(20)

for any x =
∑∞

j=1 xjθ
j , y =

∑∞
j=1 yjθ

j ∈ Θ. Then Eq. (18) can be written in the form

− η−1

(
%
δ

)
θ + η−1

(
% +

d

dt

)(
u
v

)
θ

≡ Q

(
uθ
vθ

)
+ 2

(−σθ
1(u)u

σθ
1(v)u

)
θ +

1
1− u




0
1
2
(−v, u)Q

(
uθ
vθ

)
+ (σθ

1(u)v + σθ
1(v)u)θ


 (21)

and (21) is equivalent to

(
η−1 d

dt
−Q

)(
uθ
vθ

)
≡

((−2σθ
1(u)uθ

S(u, v)

)
+ η−1

(
%
δ

)
θ − uQ

(
uθ
vθ

))

−
(

2u2

(−σθ
1(u)

σθ
1(v)

)
+ η−1

(
2%u

δu + %v

))
θ

+ η−1u

(
% +

d

dt

)(
u
v

)
θ. (22)

Here %, δ and S(u, v) are defined by (19) and



Instanton-type solutions of (PII)m and (PIV)m with a large parameter 949

S(u, v) :=
1
2
(−v, u)Q

(
uθ
vθ

)
+ (σθ

1(u)v + 3σθ
1(v)u)θ, (23)

respectively. To obtain a solution of the original system (1) from (22), noticing (16),
we naturally impose the condition that the coefficients of θm+1 of (1 − û0 + C)u and
(1− û0 + C)v are identically zero.

3.2. The algebraic structure associated with Q.
Let us obtain the eigenvector (x, y) ∈ Θ2 corresponding to an eigenvalue λ of Q in

the sense of

Q

(
xθ
yθ

)
= λ

(
x
y

)
θ with x =

∞∑

j=1

xjθ
j , y =

∞∑

j=1

yjθ
j . (24)

By the definition of Q, (24) has the form

(E + M(λ)θ)
(

x
y

)
=

(
σθ

1(x)
σθ

1(y)

)
θ. (25)

Here E and M(λ) are defined by

E =
(

1 0
0 1

)
and M(λ) =

(
û1,0 + (λ/2) 1

2v̂1,0 û1,0 − (λ/2)

)
, (26)

respectively. By the assumption det(E + M(λ)θ) 6= 0, (25) is solved. Let us try to find
g(λ) so that the following relation holds.

(
x
y

)
=

χ(λ)θ
1− g(λ)θ

with χ(λ) =
(

σθ
1(x)

σθ
1(y)

)
, (27)

that is,

χ(λ)
1− g(λ)θ

= (E + M(λ)θ)−1χ(λ).

It is sufficient to find g(λ) satisfying M(λ)χ(λ) = −g(λ)χ(λ) below.

(
û1,0 +

λ

2

)
σθ

1(x) + σθ
1(y) = −g(λ)σθ

1(x),

2v̂1,0σ
θ
1(x) +

(
û1,0 − λ

2

)
σθ

1(y) = −g(λ)σθ
1(y).

(28)

Eq. (28) is solved and by σθ
1(x) 6= 0 we have
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g(λ) = −û1,0 ±
√

λ2

4
+ 2v̂1,0, σθ

1(y) =
(
− λ

2
∓

√
λ2

4
+ 2v̂1,0

)
σθ

1(x). (29)

Note that 1− θg(λ) = det(E + M(λ)θ) 6= 0. Therefore we obtain

(
x
y

)
=

θ

1− θg(λ)




1

−λ

2
∓

√
λ2

4
+ 2v̂1,0


× σθ

1(x). (30)

Taking (30) into account, the eigenvector A(λ) corresponding to an eigenvalue λ of Q

has two forms determined by the choice of the signs ± of g(λ) as follows.

A(λ) :=
(

a(λ)
ρ(λ)a(λ)

)
with a(λ) :=

θ

1− θg(λ)
, (31)

where ρ(λ) and g(λ) are given by (i) or (ii).

(i) ρ(λ) := −λ

2
+

√
λ2

4
+ 2v̂1,0, g(λ) := −û1,0 −

√
λ2

4
+ 2v̂1,0. (32)

(ii) ρ(λ) := −λ

2
−

√
λ2

4
+ 2v̂1,0, g(λ) := −û1,0 +

√
λ2

4
+ 2v̂1,0. (33)

Remark that the difference of the choice of (i) and (ii) has no effect on the procedure
of the construction of solutions in the rest of this paper. However, after we construct a
solution, if we substitute the values ρ(λ) and g(λ) for the solution, the difference might
be seen in the coefficients of the solution. For example, as is shown in Remark E.3 (see
Appendix E), when we put ρ(λ), g(λ) into Jk and Rk, then the difference may appear in
the coefficients of the non-secularity conditions. Hence there is a possibility that (PII)m

has instanton-type solutions of two forms determined by the choice of (i) and (ii).
The following relations are often used later.

(
a(λ)

0

)
=

1
λ

(ρ(−λ)A(λ)− ρ(λ)A(−λ)),

(
0

a(λ)

)
= − 1

λ
(A(λ)−A(−λ)).

(34)

Next we explain how to determine λ. We construct the solution (u, v) for (22) so that
it is expressed by A(λ). By the condition that the coefficients of θm+1 of (1− û0 + C)u
and (1 − û0 + C)v are identically zero, those in (1 − û0 + C)A(λ) are zero. Hence the
following equation must hold.

g(λ)m −
m∑

k=1

(ûk,0 − ck)g(λ)m−k = 0, (35)



Instanton-type solutions of (PII)m and (PIV)m with a large parameter 951

where ûk,0 and ck have been defined by (8) and (1). On the other hand, by (29), g(λ)
satisfies

g(λ)2 + 2û1,0 g(λ)− λ2

4
+ (û1,0)2 − 2v̂1,0 = 0. (36)

We determine λ so that the resultant of the following two polynomials of X equals zero.

Xm −
m∑

k=1

(ûk,0 − ck)Xm−k = 0,

X2 + 2û1,0X + (û1,0)2 − λ2

4
− 2v̂1,0 = 0.

(37)

We remark that the resultant coincides with the characteristic equation of the Fréchet
derivative of (PII)m at its 0-parameter solution. For the details, see Appendix A. Noticing
that the resultant becomes an even polynomial of λ and its degree is 2m, we define
ν±1(t), . . . , ν±m(t) by the roots of the resultant with ν−k = −νk. Throughout this paper
we always suppose conditions:

(S1) The roots νi(t)’s (1 ≤ |i| ≤ m) are mutually distinct for each t in Ω, i.e. t is neither
a turning point of the first kind nor a turning point of the second kind.

(S2) The function p1ν1(t) + · · · + pmνm(t) does not vanish identically on Ω for any
(p1, . . . , pm) ∈ Zm \ {0}.

It follows from the specific form of a(λ) that we obtain the following lemma.

Lemma 3.1. 1. For any k 6= j (1 ≤ k, j ≤ m), we have

a(νk)a(νj) =
1

g(νk)− g(νj)
(a(νk)− a(νj)). (38)

Furthermore, for any integers 1 ≤ i1 < i2 < · · · < ik ≤ m, we get

a(νi1) · · · a(νik
)

=
k∑

l=1

a(νil
)

(g(νil
)− g(νi1)) · · · (g(νil

)− g(νil−1))(g(νil
)− g(νil+1)) · · · (g(νil

)− g(νik
))

.

(39)

Note that these equations are strict (not ≡).
2. For any 1 ≤ k ≤ m, we have

a(νk)2 ≡
m∑

j=1

hk,ja(νj), (40)

where hk,j are defined by
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hk,j =

∏
1≤l≤m,
l 6=k,j

(g(νk)− g(νl))
∏

1≤l≤m,
l 6=j

(g(νj)− g(νl))
(j 6= k), hk,k =

m∑

l=1,
l 6=k

1
g(νk)− g(νl)

. (41)

3. We have

∂a(νk)
∂t

≡ g(νk)′
m∑

j=1

hk,ja(νj), (42)

where g(νk)′ denotes the derivative of g(νk) with respect to t.

The proof of Lemma 3.1 has already been given at Appendix A in [5]. The multi-
plicative relations in the lemma are common to (PJ)m (J = I, II, 34, IV) and the more
common structure of (PJ)m (J = I, II, 34, IV) is well understood when we compare this
subsection with Section 3.2 in [5].

3.3. The system of partial differential equations associated with (PII)m.
We define the morphism ι by

ι(ψ) = ψ

(
η

∫ t

ν1(s)ds, . . . , η

∫ t

νm(s)ds, t, θ, η

)
(43)

for ψ(τ1, . . . , τm, t, θ, η) ∈ Â(Ω). Let us go back to (22) and replace d/dt in (22) by

∂

∂t
+ ην1

∂

∂τ1
+ ην2

∂

∂τ2
+ · · ·+ ηνm

∂

∂τm
. (44)

Then we have the system of partial differential equations associated with (PII)m.

P

(
uθ
vθ

)
≡

((−2σθ
1(u)uθ

S(u, v)

)
+ η−1

(
%
δ

)
θ + uP

(
uθ
vθ

))

−
(

2u2

(−σθ
1(u)

σθ
1(v)

)
+ η−1

((
2%u

δu + %v

)
+

∂

∂t

(
u
v

)))
θ

+ η−1u

(
% +

∂

∂t

)(
u
v

)
θ. (45)

Here the operator P is defined by

P := χτ −Q, χτ := ν1
∂

∂τ1
+ ν2

∂

∂τ2
+ · · ·+ νm

∂

∂τm
. (46)

For a solution (u, v) ∈ Â2(Ω) of (45), (ι(u), ι(v)) becomes a formal solution of (22).
We recall the definition (cf. [14], [21]) of instanton-type solutions for (PII)m in our
formulation.
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Definition 3.2. We say that a formal solution (U, V ) on Ω of (7) is of instanton-
type if (U, V ) has the form (û0, v̂0) + (1− û0 + C)(ι(u), ι(v)) for (u, v) ∈ Â2(Ω) which is
a solution of (45).

In the rest of this subsection, we see that Lemma 3.1 neatly manipulates the alge-
braic structure of (PII)m and the computation of non-linear terms of (45) is extremely
simplified. Now we assume that an element (u, v) in Â2(Ω) has the expansion

(
u
v

)
=

∑

1≤|k|≤m

fk(τ, t; η)A(νk) with fk(τ, t; η) :=
∞∑

j=1

fk,jα(τ, t)ηjα. (47)

We remark that A(νk)’s contain θ and fk’s are independent of θ. By putting the above
expansion into (45), we obtain some results which imply that the right-hand side of
(45) is written by a linear combination of eigenvector A(νk)’s. In what follows, for the
simplicity, we use the notation below.

ρk,j := ρ(νk) + ρ(νj) (∀k, ∀j ∈ Z), (48)

where ρ(νk)’s have been defined by (32) or (33).

Proposition 3.3. We have

(−2σθ
1(u)uθ

S(u, v)

)
+ η−1

(
%
δ

)
θ ≡

∑

1≤|k|≤m

1
νk

(
Λk(t) + η−1(γkρ(ν−k)− δk)

)
A(νk)θ. (49)

Here Λk(t) is expressed by

Λk(t) := − 2
∑

1≤|j|≤m,
k+j 6=0

(
2νk + νj

νk + νj
(ρk,jfkfj + ρ−k,−jf−kf−j) + νkfkfj

)

+
m∑

j=1

ν2
j hj,kfjf−j − 2(3ρk,−k + νk)fkf−k, (50)

where hj,k have been given by (41) with convention hj,k := h|j|,|k|, and γk, δk (k > 0) are
multi-valued functions of t satisfying

γ−k = γk, δ−k = δk (1 ≤ k ≤ m). (51)

More precisely, see Appendix B.

Proof. This is proved by Lemmas 3.4 and 3.5 below. ¤

Lemma 3.4. We have
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(−2σθ
1(u)u θ

S(u, v)

)
≡

∑

1≤|k|≤m

1
νk

Λk(t)A(νk)θ. (52)

Here Λk(t) has been defined by (50).

Proof. Note that Q(A(νk)θ) = νkA(νk)θ (1 ≤ |k| ≤ m) holds. Taking (38) and
(40) into account, we have

1
2
(−v, u)Q

(
u θ
v θ

)

=
1
2

∑

1≤|k|≤m

νkfk(−v, u)A(νk)θ

=
1
2

∑

1≤|k|≤m

νkfk(ρ(νk)u− v)a(νk)θ

=
1
2

∑

1≤|k|≤m

∑

1≤|j|≤m

νk(ρ(νk)− ρ(νj))fkfja(νk)a(νj)θ

≡
∑

1≤|k|≤m,
1≤|j|≤m,

k+j 6=0

2νk(ρ(νk)− ρ(νj))
ν2

k − ν2
j

(g(νk) + g(νj) + 2û1,0)fkfj(a(νk)− a(νj))θ

−
m∑

j=1

ν2
j fjf−j

m∑

k=1

hj,ka(νk)θ

=
∑

1≤|k|≤m,
1≤|j|≤m,

k+j 6=0

νk

νk + νj
ρk,jfkfj(a(νk)− a(νj))θ −

m∑

j=1

ν2
j fjf−j

m∑

k=1

hj,ka(νk)θ

=
∑

1≤|k|≤m,
1≤|j|≤m,

k+j 6=0

νk − νj

νk + νj
ρk,jfkfja(νk)θ −

m∑

j=1

ν2
j fjf−j

m∑

k=1

hj,ka(νk)θ. (53)

In the same way, noticing σθ
1(u) =

∑
1≤|j|≤m fj and σθ

1(v) =
∑

1≤|j|≤m ρ(νj)fj , we obtain

σθ
1(u)v =

∑

1≤|k|≤m

∑

1≤|j|≤m,
k+j 6=0

ρ(νk)fkfja(νk) +
∑

1≤|k|≤m

ρ(νk)fkf−ka(νk). (54)

3σθ
1(v)u = 3

∑

1≤|k|≤m

∑

1≤|j|≤m,
k+j 6=0

ρ(νj)fkfja(νk) + 3
∑

1≤|k|≤m

ρ(ν−k)fkf−ka(νk). (55)

It follows from (53), (54) and (55) that we have
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S(u, v) ≡
∑

1≤|k|≤m

∑

1≤|j|≤m,
k+j 6=0

(
2(2νk + νj)

νk + νj
ρk,j − 2ρ(νk)

)
fkfja(νk)θ

+ 4
∑

1≤|k|≤m

ρ(νk)fkf−ka(νk)θ −
m∑

k=1

m∑

j=1

ν2
j hj,kfjf−ja(νk)θ. (56)

Hence, using the second equation of (34), we have

(
0

S(u, v)

)
≡

∑

1≤|k|≤m

1
νk

Λ̃k,1(t)A(νk)θ, (57)

Λ̃k,1(t) :=
∑

1≤|j|≤m,
k+j 6=0

−2(2νk + νj)
νk + νj

(
ρk,jfkfj + ρ−k,−jf−kf−j

)

+ 2
∑

1≤|j|≤m,
k+j 6=0

(
ρ(νk)fkfj + ρ(ν−k)f−kf−j

)− 4ρk,−kfkf−k +
m∑

j=1

ν2
j hj,kfjf−j .

Finally, the following fact is shown by the first equation of (34).

(−2uσθ
1(u)θ
0

)
=

∑

1≤|k|≤m

1
νk

Λ̃k,2(t)A(νk)θ, (58)

Λ̃k,2(t) := −2
∑

1≤|j|≤m,
k+j 6=0

ρ(ν−k)(fkfj + f−kf−j)− 4ρ(ν−k)fkf−k.

Therefore we can see

Λk(t) = Λ̃k,1(t) + Λ̃k,2(t). (59)

This proves the lemma. ¤

Let us continue to calculate the second term on the right-hand side of (45).

Lemma 3.5. We obtain

(
%
δ

)
≡

∑

1≤|k|≤m

1
νk

(γkρ(ν−k)− δk)A(νk), (60)

where γk and δk are multi-valued functions of t satisfying (51).

Proof. By (12), the following equation is shown.

(
(1 + û1,0θ)2 − 2v̂1,0θ

2
)
(1− û0 + C)2 = (1 + C)2. (61)
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Taking the derivative of the above equation with respect to t, we get

% = −
(
(1 + û1,0θ)2 − 2v̂1,0θ

2
)′

2
(
(1 + û1,0θ)2 − 2v̂1,0θ2

) . (62)

Using the first equation of (11), we also have

δθ = −(1 + û1,0θ)ρ− (û1,0)′θ. (63)

Hence, putting (62) into (63), we see

δ =
−(v̂1,0)′(1 + û1,0θ) + 2(û1,0)′v̂1,0θ

(1 + û1,0θ)2 − 2v̂1,0θ2
θ. (64)

On the other hand, as ρ and δ can be written in the forms

% ≡
m∑

k=1

γk(t)a(νk) and δ ≡
m∑

k=1

δk(t)a(νk), (65)

we have

m∑

k=1

γk(t)
1− θg(νk)

=
−(û1,0)′(1 + û1,0θ) + (v̂1,0)′θ

(1 + û1,0θ)2 − 2v̂1,0θ2
,

m∑

k=1

δk(t)
1− θg(νk)

=
−(v̂1,0)′(1 + û1,0θ) + 2(û1,0)′v̂1,0θ

(1 + û1,0θ)2 − 2v̂1,0θ2
.

(66)

We solve the systems obtained by comparing the expansions in θ of (66), then we have
γk and δk. For the explicit forms of γk and δk, see Appendix B. Finally (60) follows from
(34) and (65), and the relation (51) can be verified. This completes the proof. ¤

Similarly, we also get Proposition 3.6 whose proof will be given in Appendix C.

Proposition 3.6. We have

u

(
%
δ

)
≡

∑

1≤|k|≤m

1
νk

(
m∑

j=1

(γjρ(ν−k)− δj)(fj + f−j)hj,k

+
m∑

j=1,
j 6=±k

(γjρ(ν−k)− δj)(fk + f−k) + (γkρ(ν−k)− δk)(fj + f−j)
g(νk)− g(νj)

)
A(νk) (67)

and obtain
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∂

∂t

(
u
v

)
≡

∑

1≤|k|≤m

(
1
νk

Λ̃k +
∂fk

∂t

)
A(νk). (68)

Here Λ̃k has the form

∑

1≤|j|≤m,
j 6=±k

(ρ(ν−k)− ρ(νj))g(νj)′hj,kfj

+
(
− ∂ρ(νk)

∂t
+ νkg(νk)′hk,k

)
fk − ∂ρ(ν−k)

∂t
f−k. (69)

4. The first member of the non-secularity conditions.

In this section, we get the leading term fk,α and subleading term fk,2α of (47).

4.1. The leading and subleading terms.
Substituting (47) for (45) and looking at the coefficient of ηα, we have

P

( ∑

1≤|k|≤m

fk,α(τ, t)A(νk)θ
)

=
(

0
0

)
. (70)

Since KerP is equivalent to the subspace generated by the vectors ηαeτiA(νi) over
M(Ω)[[η−1]], the following lemma holds.

Lemma 4.1. We obtain a solution to (70) of the form

fk,α = ω
(1)
k eτk (1 ≤ |k| ≤ m). (71)

Here ω
(1)
k (t)’s (1 ≤ |k| ≤ m) are arbitrary functions of t.

The corollary below follows from the above lemma.

Corollary 4.2. The leading term (ση
α(u), ση

α(v)) of (u, v) ∈ Â2(Ω) is given by

ση
α(u) =

m∑

k=1

(
ω

(1)
k eτk + ω

(1)
−ke−τk

)
a(νk),

ση
α(v) =

m∑

k=1

(
ρ(νk)ω(1)

k eτk + ρ(ν−k)ω(1)
−ke−τk

)
a(νk).

(72)

In what follows, we abbreviate ω
(1)
k to ωk (1 ≤ |k| ≤ m) and we decide ωk’s containing

free parameters by the first member (E1) of the non-secularity conditions. Specifically,
we first solve the equation for fk,2α. Next we calculate the equation for fk,3α, then the
terms containing eτkA(νk) (1 ≤ |k| ≤ m) appear in the right-hand side. The (E1) is the
condition that the coefficients of eτkA(νk) (1 ≤ |k| ≤ m) are zero and (E1) becomes the
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system of non-linear differential equations for ωk’s. By solving (E1), we have the explicit
forms of ωk’s. The reason why we determine ωk’s by the non-secularity conditions has
been explained in [5] and [10].

Now let us calculate the form of fk,2α.

Lemma 4.3. The fk,2α satisfies

P

( ∑

1≤|k|≤m

fk,2αA(νk)θ
)
≡

∑

1≤|k|≤m

1
νk

Λk,2α(t)A(νk)θ. (73)

Here Λk,2α is defined by

Λk,2α(t) := − 2
∑

1≤|j|≤m,
k+j 6=0

(
2νk + νj

νk + νj
ρk,j + νk

)
ωkωje

τk+τj

− 2
∑

1≤|j|≤m,
k+j 6=0

2νk + νj

νk + νj
ρ−k,−j ω−kω−je

−τk−τj

+
m∑

j=1

ν2
j hj,kωjω−j − 2(3ρk,−k + νk)ωkω−k + γkρ(ν−k)− δk, (74)

where hj,k have been defined by (41).

Proof. Proposition 3.3 immediately implies the lemma. ¤

Lemma 4.4. For any k (1 ≤ |k| ≤ m), we obtain

fk,2α = −2
∑

1≤|j|≤m,
k+j 6=0

(
2νk + νj

νkνj(νk + νj)
ρk,j +

1
νj

)
ωkωje

τk+τj

+ 2
∑

1≤|j|≤m,
k+j 6=0

1
νk(νk + νj)

ρ−k,−j ω−kω−je
−τk−τj

− 1
ν2

k

( m∑

j=1

ν2
j hj,kωjω−j − 2(3ρk,−k + νk)ωkω−k

)

− 1
ν2

k

(γkρ(ν−k)− δk). (75)

Proof. Taking (73) into account, we see that fk,2α (1 ≤ |k| ≤ m) satisfies

(χτ − νk)fk,2α(t, τ) =
1
νk

Λk,2α(t), (76)
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where χτ is the first-order differential operator with respect to τ given by (46). Looking
at the form of Λk,2α, we seek for fk,2α in the form

fk,2α =
∑

1≤|j|≤m,
j 6=−k

(l1(νk, νj)ωkωje
τk+τj + l2(νk, νj)ω−kω−je

−τk−τj ) +
m∑

j=1

l3(νk, νj). (77)

Here the coefficients l1(νk, νj), l2(νk, νj) and l3(νk, νj) are unknown functions of νi’s. As
Q(A(νi)θ) = νiA(νi)θ (1 ≤ |i| ≤ m) holds, we have

(χτ − νk)fk,2α(t, τ)

=
∑

1≤|j|≤m,
j 6=−k

(νj l1(νk, νj)ωkωje
τk+τj − (2νk + νj)l2(νk, νj)ω−kω−je

−τk−τj )

− νk

m∑

j=1

l3(νk, νj). (78)

Clearly the coefficients are obtained by (74), (76) and (78). This completes the proof of
lemma. ¤

4.2. The first member of the non-secularity conditions.
As mentioned previously, the first member of the non-secularity conditions is ob-

tained by seeing the right-hand side of the equation for fk,3α. We first compare the
coefficients of η3α on the both sides of (45), then we have

P

( ∑

1≤|k|≤m

fk,3αA(νk)θ
)

≡



0

(−v̄α, ūα)Q
(

ū2α θ
v̄2α θ

)
+

ūα

2
(−v̄α, ūα)Q

(
ūα θ
v̄α θ

)



+
(

0
ūα(σθ

1(ūα)v̄α + σθ
1(v̄α)ūα)

)
θ

+ 2
( −σθ

1(ūα)ū2α − σθ
1(ū2α)ūα

σθ
1(ū2α)v̄α + σθ

1(v̄α)ū2α + 2σθ
1(v̄2α)ūα

)
θ −

(
% +

∂

∂t

)(
ūα

v̄α

)
θ. (79)

Here we set ūjα := ση
jα(u) and v̄jα := ση

jα(v) (j = 1, 2). The following lemma simplifies
(79) (See Appendix D for the proof of Lemma 4.5).

Lemma 4.5. We have

(−v̄α, ūα)Q
(

ū2α θ
v̄2α θ

)
+

ūα

2
(−v̄α, ūα)Q

(
ūα θ
v̄α θ

)
+ ūα

(
σθ

1(ūα)v̄α + σθ
1(v̄α)ūα

)
θ
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= %v̄α − δūα +
∑

1≤|k|≤m,
1≤|j|≤m

∑

1≤|i|≤m,
i 6=±k

4
νj

(ρ(νk)− ρ(νi))a(νk)fi,αfj,αfk,αθ, (80)

where % and δ have been defined by (19).

As a consequence of Lemma 4.5, we can reduce (79) to

P

( ∑

1≤|k|≤m

fk,3αA(νk)θ
)

≡ 2
( −σθ

1(ūα)ū2α − σθ
1(ū2α)ūα

σθ
1(ū2α)v̄α + σθ

1(v̄α)ū2α + 2σθ
1(v̄2α)ūα

)
θ − ūα

(
%
δ

)
θ − ∂

∂t

(
ūα

v̄α

)
θ

+
∑

1≤|k|≤m

∑

1≤|j|≤m

∑

1≤|i|≤m,
i 6=±k

4
νkνj

(
(ρ(νi)− ρ(νk))fi,αfj,αfk,α

− (ρ(ν−i)− ρ(ν−k))f−i,αf−j,αf−k,α

)
A(νk)θ. (81)

We have the following proposition by Lemmas E.1 and E.2 which will be given in Ap-
pendix E.

Proposition 4.6. For any k (1 ≤ |k| ≤ m), there exist functions ϕ(k, j) of the
variables ν`’s and multi-valued functions Jk and Rk of finite determination in Ω satisfying
the conditions

ϕ(k, j) = ϕ(−k, j) (1 ≤ j ≤ m), Jk = J−k, Rk = R−k (∗)

such that the coefficient of eτkA(νk) on the right-hand side of the equation for fk,3α is
given by

1
νk

( m∑

j=1

ϕ(k, j)ωjω−j + Jk − νkRk

)
ωk − dωk

dt
. (82)

Therefore the first member (E1) of the non-secularity conditions is obtained.

Theorem 4.7. The first member (E1) of the non-secularity conditions has the
following form: For any 1 ≤ k ≤ m,

dωk

dt
=

1
νk

( m∑

j=1

ϕ(k, j)ωjω−j + Jk − νkRk

)
ωk, (83)

dω−k

dt
= − 1

νk

( m∑

j=1

ϕ(−k, j)ωjω−j + J−k + νkR−k

)
ω−k, (84)

where ϕ(k, j), Jk and Rk satisfy the condition (∗) in Proposition 4.6 and their concrete
forms are given by Remark E.3 in Appendix E.
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4.3. Global solvability of the first member of the non-secularity condi-
tions.

Thanks to the condition (∗) given in Proposition 4.6, the first member of the non-
secularity conditions can be solved globally except for turning points. Similarly to the
case of (PI)m, by multiplying (83) (resp. (84)) by ω−k (resp. ωk) and summing them up,
we obtain

d(ωk(t)ω−k(t))
dt

= −2Rkωk(t)ω−k(t). (85)

Therefore we have, for a constant bk,

ωk(t)ω−k(t) = bk exp
(
− 2

∫ t

Rk(t)dt

)
, 1 ≤ k ≤ m. (86)

Putting (86) into (83) and (84), we obtain the following system of first-order linear
homogeneous differential equations for ωk (1 ≤ |k| ≤ m):

dωk

dt
=

1
νk

( m∑

j=1

ϕ(k, j)bj exp
(
− 2

∫ t

Rj(t)dt

)
+ Jk − νkRk

)
ωk, (87)

dω−k

dt
= − 1

νk

( m∑

j=1

ϕ(−k, j)bj exp
(
− 2

∫ t

Rj(t)dt

)
+ J−k + νkR−k

)
ω−k. (88)

We can solve the above system and we have

ωk = β
(1)
k Sk,1(t), ω−k = β

(1)
−kS−k,1(t), (89)

Sk,1(t) := exp
( ∫ t 1

νk

( m∑

j=1

ϕ(k, j)bj exp
(
− 2

∫ t

Rjdt

)
+ Jk − νkRk

)
dt

)
,

S−k,1(t) := exp
( ∫ t

− 1
νk

( m∑

j=1

ϕ(k, j)bj exp
(
− 2

∫ t

Rjdt

)
+ Jk + νkRk

)
dt

) (90)

for 1 ≤ k ≤ m. Note that the product of ωk and ω−k satisfies (86), we see β
(1)
k β

(1)
−k = bk.

Hence we have the following.

Proposition 4.8. The system (83) and (84) has the multi-valued holomorphic
solution ωk on Ω in the form

ωk = β
(1)
k exp

( ∫ t 1
νk

( m∑

j=1

ϕ(k, j)β(1)
j β

(1)
−j exp

(
− 2

∫ t

Rjdt

)
+ Jk − νkRk

)
dt

)
,

ω−k = β
(1)
−k exp

( ∫ t

− 1
νk

( m∑

j=1

ϕ(k, j)β(1)
j β

(1)
−j exp

(
− 2

∫ t

Rjdt

)
+ Jk + νkRk

)
dt

) (91)
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for 1 ≤ k ≤ m.

5. Construction of higher-order terms of instanton-type solutions for
(PII)m.

We prove that we can construct the higher-order terms of (47) by induction, and
hence the existence of instanton-type solutions for (PII)m is shown.

Assume that l(≥ 2) is a natural number and fk,jα (j = 1, . . . , 2(l − 1)) have been
constructed in a similar way as that for the proof in Section 4. Let us see that fk,(2l−1)α

and fk,2lα are determined by the l-th member of the non-secularity conditions. We first
have fk,(2l−1)α of the form

fk,(2l−1)α = dk,(2l−1)α + ξ
(l)
k (t)eτk , 1 ≤ |k| ≤ m, (92)

where dk,(2l−1)α depends only on fk,jα’s (1 ≤ j ≤ 2(l − 1)) and ξ
(l)
k (t) (1 ≤ |k| ≤ m) are

new arbitrary functions of t. Actually, the right-hand side of the equation for fk,(2l−1)α

is expressed in terms of known quantities by the induction hypothesis and the coefficients
of A(νk)eτk (1 ≤ |k| ≤ m) in the right-hand side have vanished by the (l− 1)-th member
of the non-secularity conditions. Hence we have fk,(2l−1)α of the form (92).

Next, let us see that we can determine ξ
(l)
k (t) (1 ≤ |k| ≤ m) by the l-th member of

the non-secularity conditions. The following lemma can be proved in the same way as
Lemmas 4.3 and 4.4. We abbreviate ξ

(l)
k to ξk (1 ≤ |k| ≤ m).

Lemma 5.1. For any k (1 ≤ |k| ≤ m), we have fk,2lα of the form

− 2
∑

1≤|j|≤m,
j 6=−k

(
2νk + νj

νkνj(νk + νj)
ρk,j +

1
νj

)
(ωkξj + ξkωj)eτk+τj

+
∑

1≤|j|≤m,
j 6=−k

2
νk(νk + νj)

ρ−k,−j(ω−kξ−j + ξ−kω−j)e−τk−τj

− 1
ν2

k

( m∑

j=1

ν2
j hj,k(ωjξ−j + ξjω−j)− 2(3ρk,−k + νk)(ωkξ−k + ξkω−k)

)
+ dk,2lα, (93)

where ωk’s have been given by (91) and dk,2lα can be determined in terms of known
quantities that do not contain ξk(t) (1 ≤ |k| ≤ m).

Proof. Set ūjα := ση
jα(u) and v̄jα := ση

jα(v). On the right-hand side of the
equation for fk,2lα, the terms containing ξk(t) (1 ≤ |k| ≤ m) are given only in




−2ū(2l−1)ασθ
1(ūα)θ

1
2
(−v̄(2l−1)α, ū(2l−1)α)Q

(
ūα θ
v̄α θ

)
+ (σθ

1(ū(2l−1)α)v̄α + 3σθ
1(v̄(2l−1)α)ūα)θ



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+




−2ūασθ
1(ū(2l−1)α)θ

1
2
(−v̄α, ūα)Q

(
ū(2l−1)α θ
v̄(2l−1)α θ

)
+ (σθ

1(ūα)v̄(2l−1)α + 3σθ
1(v̄α)ū(2l−1)α)θ


 . (94)

It follows from Lemma 3.4 that (94) can be written in the form

∑

1≤|k|≤m

1
νk

Ψk(t)A(νk)θ. (95)

Here Ψk(t) is defined by

− 2
∑

1≤|j|≤m,
j 6=−k

(
2νk + νj

νk + νj
ρk,j + νk

)
(ωkξj + ξkωj)eτk+τj

− 2
∑

1≤|j|≤m,
j 6=−k

2νk + νj

νk + νj
ρ−k,−j(ω−kξ−j + ξ−kω−j)e−τk−τj

+
m∑

j=1

ν2
j hj,k(ωjξ−j + ξjω−j)− 2(3ρk,−k + νk)(ωkξ−k + ξkω−k).

From the above equation, we have (93). This completes the proof of lemma. ¤

We study the equation for fk,(2l+1)α obtained by comparing the coefficients of
η(2l+1)α in (45). To get the form of l-th member of the non-secularity conditions, it
suffices to observe only the terms containing fi,(2l−1)α’s and fi,2lα’s in the right-hand
side of the equation for fk,(2l+1)α, which appear in




0

(−v̄α, ūα)Q
(

ū2lα θ
v̄2lα θ

)
+ (−v̄(2l−1)α, ū(2l−1)α)Q

(
ū2α θ
v̄2α θ

)



+




0
ū(2l−1)α

2
(−v̄α, ūα)Q

(
ūα θ
v̄α θ

)



+




0
ūα

2
(−v̄(2l−1)α, ū(2l−1)α)Q

(
ūα θ
v̄α θ

)
+

ūα

2
(−v̄α, ūα)Q

(
ū(2l−1)α θ
v̄(2l−1)α θ

)



+
(

0
ū(2l−1)α

(
σθ

1(ūα)v̄α + σθ
1(v̄α)ūα

)
)

θ

+

(
0

ūα

(
σθ

1(ū(2l−1)α)v̄α + σθ
1(ūα)v̄(2l−1)α + σθ

1(v̄(2l−1)α)ūα + σθ
1(v̄α)ū(2l−1)α

)
)

θ
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+ 2

(
−σθ

1(ūα)ū2lα − σθ
1(ū(2l−1)α)ū2α − σθ

1(ū2lα)ūα − σθ
1(ū2α)ū(2l−1)α

σθ
1(ū2α)v̄(2l−1)α + σθ

1(ū2lα)v̄α + σθ
1(v̄α)ū2lα + σθ

1(v̄(2l−1)α)ū2α

)
θ

+ 4
(

0
σθ

1(v̄2α)ū(2l−1)α + σθ
1(v̄2lα)ūα

)
θ −

(
% +

∂

∂t

)(
ū(2l−1)α

v̄(2l−1)α

)
θ. (96)

Comparing (79) and (96), we observe that the coefficient of A(νk)eτk containing ξj ’s in
the above equation is expressed as

1
νk

( m∑

j=1

ϕ(k, j)(ξjω−jωk + ωjξ−jωk + ωjω−jξk) + Jkξk

)
−Rkξk − dξk

dt
(97)

for k (1 ≤ |k| ≤ m). Therefore the l-th member of the non-secularity conditions for the
higher-order terms is obtained.

Theorem 5.2. The l-th (l ≥ 2) member of the non-secularity conditions has the
following form: For 1 ≤ k ≤ m,

dξk

dt
=

1
νk

( m∑

j=1

ϕ(k, j)(ω−jωkξj + ωjωkξ−j + ωjω−jξk) + Jkξk

)
−Rkξk + qk,

dξ−k

dt
= − 1

νk

( m∑

j=1

ϕ(−k, j)(ω−jω−kξj + ωjω−kξ−j + ωjω−jξ−k) + J−kξ−k

)

−R−kξ−k + q−k.

(98)

Here ϕ(k, j), Jk, Rk and ωj have been defined by (82), (91), and q±k are the inhomoge-
neous terms containing only the known quantities. For the more explicit forms of ϕ(k, j),
Jk and Rk, see Remark E.3 in Appendix E.

Thus, as l-th (l ≥ 2) member is a system, which can be solved globally, of first-order
linear differential equations, we have fk,(2l−1)α and fk,2lα. Hence we can successively
construct the higher-order terms. Summing up, we have the main theorem.

Theorem 5.3. Let Ω be an open subset in Ct and we assume the conditions (S1)
and (S2). Then we have instanton-type solutions for (PII)m with 2m free parameters
(β−m, . . . , βm) ∈ C2m[[η−1]]. Especially, we can construct the solution (u, v) in Â2(Ω)
for (45) of the form

(
u
v

)
=

∑

1≤|k|≤m

fk(τ, t; η)A(νk) (99)

with

fk(τ, t; η) =
∞∑

j=1

( ∑

`≥0, p∈Zm, 2`+|p|=j

fk,p,`(t)ep·τ
)

η−j/2.
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The more precise forms of the leading term fk,α and the subleading term fk,2α of fk are
given in Lemmas 4.1, 4.4 and Proposition 4.8.

As an application of the results in this paper and [22], taking parameters suitably, we
can prove that the solution (u, v) with (m+1) free parameters of (45) is also constructed
in (ÂOα (D))2 where D is a specific region described in [22].

6. Instanton-type solutions for (PIV)m with a large parameter.

In the last section, we explain that we can construct instanton-type solutions for
general members of the fourth Painlevé hierarchy with η by using previous sections.

6.1. The fourth Painlevé hierarchy with η.
For m = 1, 2, . . . , the m-th member (PIV)m of the fourth Painlevé hierarchy with η

(cf.[15], [7]) is a system of non-linear differential equations with 2m unknown functions
u1, . . . , um, v1, . . . , vm of t:

(PIV)m





η−1 duj

dt
= −2(u1uj + vj + uj+1) + 2cju1, j = 1, 2, . . . , m,

η−1 dvj

dt
= 2(v1uj + vj+1 + wj)− 2cjv1, j = 1, 2, . . . , m

(100)

with

um+1 = −
(

γtu1 + α1 +
1
2
η−1γ

)
, vm+1 = −wm − γtv1 − (vm − α1)2 − α2

2

2(um − γt− cm)
.

Here γ(6= 0), α1, α2 and cj are constants, and wj are polynomials of uk, vl (1 ≤ k, l ≤ m)
recursively defined by

wj :=
j−1∑

k=1

uj−kwk +
j∑

k=1

uj−k+1vk +
1
2

j−1∑

k=1

vj−kvk −
j−1∑

k=1

cj−kwk. (101)

Note that the definition of wj in (101) is same as that in (2).
As um+1 contains a large parameter η, we adopt the formulation below which is

obtained by replacing um − γt in (100) with um:

(PIV)m





η−1 duj

dt
= −2(u1uj + vj + uj+1) + 2cju1 − 2δj,m−1γt,

j = 1, 2, . . . , m,

η−1 dvj

dt
= 2(v1uj + vj+1 + wj)− 2cjv1, j = 1, 2, . . . , m

(102)

with

um+1 = −α1, vm+1 = −wm − (vm − α1)2 − α2
2

2(um − cm)
.
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Here γ(6= 0), α1, α2 and cj are constants, δjm stands for Kronecker’s delta, and wj is
defined by

wj :=
j−1∑

k=1

uj−kwk +
j∑

k=1

uj−k+1vk +
1
2

j−1∑

k=1

vj−kvk −
j−1∑

k=1

cj−kwk + δjmγtv1. (103)

If we can construct a solution (u1, . . . , um, v1, . . . , vm) of (102), then (u1, . . . , um−1, um+
γt, v1, . . . , vm) becomes a solution of (100). From now on, we prove that we obtain
instanton-type solutions to (102).

6.2. The form of (PIV)m by generating functions.
Firstly (102) can be written in the form

η−1 d

dt

(
Uθ
V θ

)
≡ 2




u1(1− U + C)θ − U − V θ − γtθm

−v1(1− U + C)θ +
2UV + V 2θ

2(1− U + C)
+ V + γtv1θ

m+1


 , (104)

where U , V and C are defined by the same forms as (4). Let us define the generating
functions of ûi,0 and v̂i,0 (i ≥ 1) by

û0(θ) :=
∞∑

i=1

ûi,0θ
i and v̂0(θ) :=

∞∑

i=1

v̂i,0θ
i, (105)

respectively. Here ûi,0, v̂i,0 (i ≥ 1) denote the leading terms of a 0-parameter solution of
(102). Then û0 and v̂0 satisfy

û0 + v̂0θ = û1,0(1− û0 + C)θ − γtθm,

2û0v̂0 + (v̂0)2θ
2(1− û0 + C)

= v̂1,0(1− û0 + C)θ − v̂0 − γtv̂1,0θ
m+1.

(106)

It follows from the above equations that we have

(1 + û1,0θ)2 − 2v̂1,0θ
2 =

(1 + C)2 − γ2t2θ2m

(1− û0 + C)2
+

2γtθm
(
(1 + û1,0θ)− v̂1,0θ

2
)

1− û0 + C
. (107)

Hence we get

(1 + û1,0θ)2 − 2v̂1,0θ
2 ≡ (1 + C)2

(1− û0 + C)2
+ 2γtθm(1 + 2û1,0θ − c1θ). (108)

Comparing (11) (resp. (12)) with (106) (resp. (108)), we can see

û0 ≡ (1 + C)
(

1−
√

1
f(t, θ)

)
,
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v̂0θ ≡ (1 + C)
(
− 1 + (1 + û1,0θ)

√
1

f(t, θ)

)
− γtθm. (109)

Here f(t, θ) is defined by

f(t, θ) := (1 + û1,0θ)2 − 2v̂1,0θ
2 − 2γtθm(1 + 2û1,0θ − c1θ). (110)

Note that ûi,0 and v̂i,0 (2 ≤ i ≤ m) can be described by û1,0 and v̂1,0. By the defining
equation of the leading terms of a 0-parameter solution of (102), the following equations
should hold.

ûm+1,0 = −α1 v̂m+1,0 = −ŵm,0 − (v̂m,0 − α1)2 − α2
2

2(ûm,0 − cm)
, (111)

where ŵm,0 is defined by (103) with uk, vk and wk being replaced by ûk,0, v̂k,0 and ŵk,0,
respectively. Therefore we determine û1,0 and v̂1,0 so that the coefficients of θm+1 in û0

and v̂0 of (109) are the right-hand sides of (111), respectively.

6.3. The system of partial differential equations associated with (PIV)m.
By the same argument as that for (PII)m, we consider a linearized equation of (104)

along (û0, v̂0) given by (109). We take the following change of the unknown functions:

U = û0 + (1− û0 + C)u, V = v̂0 + (1− û0 + C)v. (112)

Here we use the same notations u and v as that of (15). Putting (112) into (104), as
(106) holds, we have

− η−1

(
%
δ

)
θ + η−1

(
% +

d

dt

)(
u
v

)
θ

≡ 2
(

(σθ
1(u)− û1,0u− v)θ − u

(−σθ
1(v) + 2v̂1,0u + û1,0v)θ + v

)
+ 2u

(−σθ
1(u)

σθ
1(v)

)
θ

+
1

1− u

(
0

2u(v̂1,0u + û1,0v)θ + (2uv + v2θ)

)
. (113)

Here % and δ are defined by (19) with û0 and v̂0 of (109). An important fact is that the
above system has the completely same form as (18): The only difference between (PII)m

and (PIV)m is that the algebraic equation that determines û0 and v̂0 differ (cf. (11) and
(106)) and consequently they have different values. Now we list up the relevant variables
of (PII)m and how they are determined by the 0-parameter solution of (PII)m:
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(PII)m

(û0, v̂0) by (13)
(%, δ) by (19)

γk, δk (1 ≤ k ≤ m) by (65), (66)
νk, ν−k (1 ≤ k ≤ m) by (35)

A(λ), a(λ), ρ(λ) g(λ) by (31), (32), (33)

If we replace the variables of (PII)m in the above list with the corresponding ones of
(PIV)m, then we find that the arguments after (18) for (PII)m run also for (PIV)m in the
exactly same manner. As a consequence, we have the following.

Theorem 6.1. Let Ω be an open subset in Ct and we assume the conditions (S1)
and (S2) for (PIV)m. Then (PIV)m has instanton-type solutions with 2m free parameters
(β−m, . . . , βm) ∈ C2m[[η−1]] of the same form as (99). Moreover, instanton-type solutions
of (PII)m are transformed to those of (PIV)m by replacing the variables of (PII)m in the
above list with the corresponding ones of (PIV)m.

Appendix

A. The resultant of (37).

In this appendix, we see that the resultant of (37) coincides with the characteristic
equation of the Fréchet derivative of (PII)m at its 0-parameter solution. We define the
polynomials dj (1 ≤ j ≤ 2m) by

dj = −2(u1uj + vj + uj+1) + 2cju1, j = 1, 2, . . . , m,

dj+m = 2(v1uj + vj+1 + wj)− 2cjv1, j = 1, 2, . . . , m
(114)

with um+1 = γt and vm+1 = κ. We set

V := {(t, u, v) ∈ Ct × Cm
u × Cm

v ; d1 = 0, d2 = 0, . . . , d2m = 0}.

Let Ju,v be the Jacobian matrix of functions (d1, d2, . . . , d2m) with respect to the variables
ui, vj (1 ≤ i, j,≤ m). By (6) and (11), we obtain the explicit form of the restriction Ju,v|V
of Ju,v to V as follows.

Ju,v|V =
( −A −2Em

4v̂1,0Em A

)
, A :=




2a1 + 2û1,0 2 0 · · · · · · · · · 0
2a2 2û1,0 2 0 · · · · · · 0

2a3 0 2û1,0
. . . . . .

...

2a4

... 0
. . . . . . . . .

...
...

...
...

. . . 2 0
2am−1 0 0 · · · 0 2û1,0 2
2am 0 0 · · · 0 2û1,0




.

(115)



Instanton-type solutions of (PII)m and (PIV)m with a large parameter 969

Here ûj,0, v̂j,0 denote the leading terms of (8), Em is the identity matrix of size m and
aj := ûj,0 − cj . By using elementary transformations of matrices, we find that the
characteristic polynomial of Ju,v|V has the following form.

Λ(λ, u, v) = det(λE2m − Ju,v|V ) = 22m detB, (116)

where B is given by




a2 + (a1 + 2û1,0)a1 − b(λ) a1 + 2û1,0 1 0 · · · · · · 0
a3 + (a1 + 2û1,0)a2 a2 − b(λ) 2û1,0 1 0 · · · 0

a4 + (a1 + 2û1,0)a3 a3 −b(λ) 2û1,0 1
. . .

...
...

... 0 −b(λ) 2û1,0 1 0
...

...
...

. . . 2û1,0 1
am + (a1 + 2û1,0)am−1 am−1 0 · · · 0 −b(λ) 2û1,0

(a1 + 2û1,0)am am 0 · · · 0 −b(λ)




(117)

with b(λ) := λ2/4− û2
1,0 + 2v̂1,0.

We can easily see that the resultant of (37) coincides with (116).

B. Remark on Lemma 3.5.

We consider the explicit forms of γj and δj given in Lemma 3.5. Firstly, we define
Gk and Hk by the coefficients of θk in the right-hand sides of (66) respectively:

−(û1,0)′(1 + û1,0θ) + (v̂1,0)′θ
(1 + û1,0θ)2 − 2v̂1,0θ2

=
∞∑

k=0

Gk(t)θk,

−(v̂1,0)′(1 + û1,0θ) + 2(û1,0)′v̂1,0θ

(1 + û1,0θ)2 − 2v̂1,0θ2
=

∞∑

k=0

Hk(t)θk.

(118)

Taking (66) into account, we find the following system of unknown functions γj = γj(t)
and δj = δj(t) (1 ≤ j ≤ m):

g(ν1)kγ1 + g(ν2)kγ2 + · · ·+ g(νm)kγm = Gk(t) (k = 0, 1, . . . , m− 1),

g(ν1)kδ1 + g(ν2)kδ2 + · · ·+ g(νm)kδm = Hk(t) (k = 0, 1, . . . , m− 1).
(119)

Therefore, by the Cramer’s formula, we have

γj = γ−j =
detM(g(ν1), . . . , g(νj−1), Gj(t), g(νj+1), . . . , g(νm))
detM(g(ν1), . . . , g(νj−1), g(νj), g(νj+1), . . . , g(νm))

,

δj = δ−j =
det M(g(ν1), . . . , g(νj−1), Hj(t), g(νj+1), . . . , g(νm))
detM(g(ν1), . . . , g(νj−1), g(νj), g(νj+1), . . . , g(νm))

,

(120)
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where the m×m matrix M is defined by

M(κ1, . . . , κm) :=




1 1 · · · 1
κ1 κ2 · · · κm

κ2
1 κ2

2 · · · κ2
m

...
...

...
κm−1

1 κm−1
2 · · · κm−1

m




(121)

with m-variables κ1, . . . , κm. Note that we obtain detM(g(ν1), . . . , g(νm)) =∏
1≤i<j≤m(g(νj)− g(νi)) 6= 0.

C. Proof of Proposition 3.6.

Let us first prove (67). By using (47), (65), (38) and (40), we have

u% ≡
∑

1≤|k|≤m,
1≤|j|≤m,

j 6=±k

1
2(g(νk)− g(νj))

(γjfk + γkfj)a(νk) +
∑

1≤|j|≤m

γjfj

m∑

k=1

hj,ka(νk). (122)

It follows from the first equation of (34) and (122) that
( u%

0

)
is equal to

∑

1≤|k|≤m

1
νk




m∑

j=1,
j 6=±k

γj(fk + f−k) + γk(fj + f−j)
g(νk)− g(νj)

+
m∑

j=1

γj(fj + f−j)hj,k


 ρ(ν−k)A(νk)

(123)

modulo θm+2. On the other hand, note that uδ is writtem by (122) with γj being replaced
by δj . By the second equation of (34), we can see that

(
0
uδ

)
is equal to

−
∑

1≤|k|≤m

1
νk




m∑

j=1,
j 6=±k

δj(fk + f−k) + δk(fj + f−j)
g(νk)− g(νj)

+
m∑

j=1

δj(fj + f−j)hj,k


 A(νk) (124)

modulo θm+2. Hence, by summing (123) and (124) up, we have (67).
We repeat the same argument as above by using (34) and (42), then we have (68).

This completes the proof.

D. Proof of Lemma 4.5.

Taking (53) into account, we have

ūα

2
(−v̄α, ūα)Q

(
ūα θ
v̄α θ

)
= ūα

m∑

k=1

Lka(νk)θ (125)
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with

Lk :=
∑

1≤|i|≤m,
i+k 6=0

νk − νi

νk + νi
(ρk,ifk,αfi,α + ρ−k,−if−k,αf−i,α)−

m∑

i=1

µ(k, i)fi,αf−i,α,

where µ(k, i) := ν2
i hi,k and ρk,i’s have been defined by (48). On the other hand, a direct

computation shows

(−v̄α, ūα)Qū2α θ
v̄2α θ

=
∑

1≤|k|≤m

νkfk,2α(−v̄α + ρ(νk)ūα)a(νk)θ

= −v̄α

m∑

k=1

νk(fk,2α − f−k,2α)a(νk)θ

+ ūα

m∑

k=1

νk

(
ρ(νk)fk,2α − ρ(ν−k)f−k,2α

)
a(νk)θ. (126)

We also see

νk(fk,2α − f−k,2α)

=
∑

1≤|i|≤m

4
νi

(
−

(
ρk,i +

νk

2

)
fk,αfi,α +

(
ρ−k,−i − νk

2

)
f−k,αf−i,α

)
− γk

and

νk

(
ρ(νk)fk,2α − ρ(ν−k)f−k,2α

)

=
∑

1≤|i|≤m,
i+k 6=0

(
− 4

νi

(
ρk,i +

νk

2

)
ρ(νk)− 2νk

νk + νi
ρk,i

)
fk,αfi,α

+
∑

1≤|i|≤m,
i+k 6=0

(
4
νi

(
ρ−k,−i − νk

2

)
ρ(ν−k)− 2νk

νk + νi
ρ−k,−i

)
f−k,αf−i,α

+
m∑

i=1

µ(k, i)fi,αf−i,α − 4ρk,−kfk,αf−k,α − δk.

Finally, it is easy to check that we have

ūα

(
v̄ασθ

1(ūα) + ūασθ
1(v̄α)

)
θ = ūα

∑

1≤|k|≤m,
1≤|i|≤m

ρk,ifk,αfi,αa(νk)θ. (127)

Summing (125), (126) and (127) up, we can obtain (80). This proves the assertion of
lemma.
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E. Proof of Proposition 4.6.

Let us prove the proposition which plays an essential role in solving the first member
of the non-secularity conditions. It suffices to show the subsequent Lemmas E.1 and E.2.

Lemma E.1. For any k (1 ≤ |k| ≤ m), there exist functions ϕ(k, j) of the variables
ν`’s and multi-valued functions Jk,1 of finite determination in Ω satisfying the conditions

ϕ(k, j) = ϕ(−k, j) (1 ≤ j ≤ m), Jk,1 = J−k,1 (∗)

such that the coefficient of eτkA(νk) in the first and the fourth terms of the right-hand
side for (81) is given by

1
νk

( m∑

j=1

ϕ(k, j)ωjω−j + Jk,1

)
ωk. (128)

Proof. We compute the first term of right-hand side of (81). Noticing (47) and
the definition of σθ

1(ūiα) (i = 1, 2), we have

− σθ
1(ūα)ū2α − ūασθ

1(ū2α) = −
∑

1≤|k|≤m

∑

1≤|j|≤m

(
fj,αfk,2α + fk,αfj,2α

)
a(νk), (129)

σθ
1(ū2α)v̄α + σθ

1(v̄α)ū2α + 2σθ
1(v̄2α)ūα

=
∑

1≤|k|≤m

∑

1≤|j|≤m

(
ρ(νk)fj,2αfk,α + ρ(νj)fj,αfk,2α + 2ρ(νj)fj,2αfk,α

)
a(νk). (130)

Using (34), we obtain

( −σθ
1(ūα)ū2α − ūασθ

1(ū2α)
σθ

1(ū2α)v̄α + σθ
1(v̄α)ū2α + 2σθ

1(v̄2α)ūα

)
= −

∑

1≤|k|≤m

∑

1≤|j|≤m

1
νk

Γk,jA(νk), (131)

where Γk,j has the form

(ρk,j + ρ−k,j)fj,2αfk,α + ρ−k,jfj,α(fk,2α + f−k,2α) + 2ρ−k,jfj,2αf−k,α. (132)

For any fixed k (1 ≤ |k| ≤ m), we set

I1 := −
∑

1≤|j|≤m

(ρk,j + ρ−k,j)fj,2αfk,α,

I2 := −
∑

1≤|j|≤m

ρ−k,j fj,α(fk,2α + f−k,2α), (133)

I3 := −
∑

1≤|j|≤m

2ρ−k,jfj,2αf−k,α.
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Let us compute I1 of (133). For the simplicity, we put

l(j, i) :=
1

νj + νi
ρ−j,−i, µ(j, i) := ν2

i hi,j ,

n(j) := 6ρj,−j + 2νj , r(j) := γjρ(ν−j)− δj .

(134)

Here hi,j , γj and δj have been defined by (41) and Proposition 3.3. Then, by Lemma
4.4, for any j (1 ≤ |j| ≤ m), fj,2α is written in the form

fj,2α =
∑

1≤|i|≤m,
i+j 6=0

((
2(2νj + νi)

νjνi
l(−j,−i)− 2

νi

)
fi,αfj,α +

2
νj

l(j, i)f−i,αf−j,α

)

− 1
ν2

j

( m∑

i=1

µ(j, i)fi,αf−i,α − n(j)fj,αf−j,α + r(j)
)

. (135)

Putting (71) and (135) into the right-hand side of I1 in (133), we have

I1 =
∑

1≤|j|≤m

∑

1≤|i|≤m,
i+j 6=0

4
νi

(
− (ρk,−k + ρj,−j)l(−j,−i) +

1
2
ρk,−k − ρ(νi)

)
ωkωjωie

τk+τj+τi

+
∑

1≤|j|≤m

1
ν2

j

(ρk,j + ρ−k,j)
( m∑

i=1

µ(j, i)ωiω−i − n(j)ωjω−j + r(j)
)

ωkeτk . (136)

For k (1 ≤ |k| ≤ m), the terms containing eτk in I1 are given by

∑

1≤|j|≤m

1
ν2

j

(ρk,j + ρ−k,j)
( m∑

i=1

µ(j, i)ωiω−i − n(j)ωjω−j + r(j)
)

ωkeτk . (137)

Next, for I2 of (133), we repeat the same arguments as those for I1. Using (135), we
have

I2 =
∑

1≤|j|≤m

∑

1≤|i|≤m,
i+k 6=0

ρ−k,j

(
− 4

νi
l(−k,−i) +

2
νi

)
ωkωjωie

τk+τj+τi

+
∑

1≤|j|≤m

∑

1≤|i|≤m,
i+k 6=0

ρ−k,−j

(
4
νi

l(k, i)− 2
νi

)
ω−kω−jω−ie

−τk−τj−τi

+
∑

1≤|j|≤m

2
ν2

k

ρ−k,j

( m∑

i=1

µ(k, i)ωiω−i − 6ρk,−kωkω−k +
γk

2
ρk,−k − δk

)
ωje

τj , (138)

where l(k, i), µ(k, j) are given by (134). The terms containing eτk on the right-hand side
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of (138) for k (1 ≤ |k| ≤ m) are given by

∑

1≤|j|≤m,
j 6=k

ρ−k,j

(
4
νj

l(−k, j)− 2
νj

)
ωjω−jωkeτk

+
2
ν2

k

ρ−k,k

( m∑

i=1

µ(k, i)ωiω−i − 6ρk,−kωkω−k +
γk

2
ρk,−k − δk

)
ωkeτk . (139)

Finally, let us compute I3 of (133). The following fact can be easily shown.

I3 =
∑

1≤|j|≤m

∑

1≤|i|≤m,
i+j 6=0

(
4
νi

(ρk,−k + ρj,−j)l(j, i) +
4νk

νi
l(j, i) +

4
νi

(ρ(ν−i)− ρ(ν−k))
)

× ω−kω−iω−je
−τk−τj−τi

+
∑

1≤|j|≤m

2
ν2

j

ρ−k,j

( m∑

i=1

µ(j, i)ωiω−i − n(j)ωjω−j + r(j)
)

ω−ke−τk . (140)

The terms containing eτk in the right-hand side of (140) for k (1 ≤ |k| ≤ m) are given by

(
− 4

νk
(ρk,−k + ρ−k,k)l(−k,−k)− 4l(−k,−k)− 4

νk
(ρ(νk)− ρ(ν−k))

)
ω2

kω−keτk . (141)

By summing (137), (139) and (141) up, we have

( m∑

j=1

ϕ̃1(k, j)ωjω−j + Jk,1

)
ωkeτk , (142)

where ϕ̃1(k, j) and Jk,1 are given by

ϕ̃1(k, j) :=
m∑

i=1,
i 6=|k|

2
ν2

i

(ρk,−k + ρi,−i)µ(i, j)− 12
ν2

j

ρj,−j(ρk,−k + ρj,−j)

+
2

ν2
j − ν2

k

(ρk,−k + ρj,−j)2 +
6
ν2

k

ρk,−kµ(k, j) + 4 (j 6= |k|),

ϕ̃1(k, k) :=
m∑

i=1,
i 6=|k|

2
ν2

i

(ρk,−k + ρi,−i)µ(i, k)− 32
ν2

k

(ρk,−k)2 +
8
ν2

k

ρ(νk)ρ(ν−k)

+
6
ν2

k

ρk,−kµ(k, k) + 8, (143)
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Jk,1 :=
m∑

j=1,
j 6=|k|

4
ν2

j

(
γj

(
1
4
ρk,−kρj,−j + ρ(νj)ρ(ν−j)

)
− δj

2
(
ρk,−k + ρj,−j

))

+
4
ν2

k

(
γk

(
1
2
(ρk,−k)2 + ρ(νk)ρ(ν−k)

)− 3
2
ρk,−kδk

)
. (144)

Therefore, noticing ρk,−k = ρ−k,k, µ(i, k) = µ(i,−k) and µ(k, k) = µ(−k,−k), we can
see ϕ̃1(k, j) = ϕ̃1(−k, j) (j 6= |k|), ϕ̃1(k, k) = ϕ̃1(−k,−k) and Jk,1 = J−k,1. The terms
containing eτkA(νk) in the first term of (81) are written by

2
νk

( m∑

j=1

ϕ̃1(k, j)ωjω−j + Jk,1

)
ωkeτkA(νk)θ. (145)

On the other hand, we take the terms containing eτkA(νk) in the fourth term of (81).
Then we have

m∑

j=1,
j 6=|k|

4
νk

ωjω−jωkeτkA(νk)θ. (146)

Hence, by (145) and (146), we have the explicit forms of the coefficients of (128) as
follows.

ϕ(k, j) = 2ϕ̃1(k, j) + 4 (j 6= |k|), ϕ(k, k) = 2ϕ̃1(k, k). (147)

The assertions of lemma have been obtained. ¤

Lemma E.2. For any k (1 ≤ |k| ≤ m), there exist multi-valued functions Jk,2 and
Rk of finite determination in Ω satisfying the conditions

Jk,2 = J−k,2, Rk = R−k, (∗)

such that the coefficient of eτkA(νk) in the second and third terms of the right-hand side
for (81) is given by

(
1
νk

Jk,2 −Rk

)
ωk − dωk

dt
. (148)

Proof. By Proposition 3.6, we can easily see

Jk,2 :=
m∑

j=1,
j 6=|k|

2(ρk,−k + ρj,−j)
ν2

j − ν2
k

(
δj − γj

2
ρk,−k

)
+

(
δk − γk

2
ρk,−k

)
hk,k +

1
2
(ρk,−k)′,
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Rk :=
ν′k
2νk

+
m∑

j=1,
j 6=|k|

ρk,−k + ρj,−j

ν2
j − ν2

k

γj +
1
2
γkhk,k + (g(νk))′hk,k. (149)

Hence we have the assertion of lemma. ¤

By using Lemmas E.1 and E.2, we have Proposition 4.6. Especially, the coefficients
are given by (147), (149) and

Jk = 2Jk,1 + Jk,2. (150)

Finally, we give the remark below.

Remark E.3. More precise forms of the coefficients appearing in Proposition 4.6
are given by

ϕ(k, j) :=
m∑

i=1,
i 6=|k|

4ν2
j

ν2
i

(ρk,−k + ρi,−i)hj,i − 24
ν2

j

ρj,−j(ρk,−k + ρj,−j)

+
4

ν2
j − ν2

k

(ρk,−k + ρj,−j)2 +
12ν2

j

ν2
k

ρk,−khj,k + 12 (j 6= |k|),

ϕ(k, k) :=
m∑

i=1,
i 6=|k|

4ν2
k

ν2
i

(ρk,−k + ρi,−i)hk,i − 64
ν2

k

(ρk,−k)2 +
16
ν2

k

ρ(νk)ρ(ν−k)

+ 12ρk,−khk,k + 16,

Jk :=
m∑

j=1,
j 6=|k|

8
ν2

j

(
γj

(
1
4
ρk,−kρj,−j + ρ(νj)ρ(ν−j)

)
− δj

2
(ρk,−k + ρj,−j)

)

+
8
ν2

k

(
γk

(
1
2
(ρk,−k)2 + ρ(νk)ρ(ν−k)

)
− 3

2
ρk,−kδk

)

+
m∑

j=1,
j 6=|k|

2(ρk,−k + ρj,−j)
ν2

j − ν2
k

(
δj − γj

2
ρk,−k

)
+

(
δk − 1

2
ρk,−kγk

)
hk,k +

1
2
(ρk,−k)′,

Rk :=
ν′k
2νk

+
m∑

j=1,
j 6=|k|

(ρk,−k + ρj,−j)
ν2

j − ν2
k

γj +
1
2
γkhk,k + (g(νk))′hk,k. (151)

Here hi,j , γj and δj have been defined by (134), (41) and Proposition 3.3.
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- Local reduction of 0-parameter solutions for Painlevé hierarchies (PJ) (J = I, II-1 or II-2), Adv,
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