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Abstract. In this article, we study Griess algebras generated by two
pairs of Ising vectors (ag,a1) and (bg,b1) such that each pair generates a
3A-algebra Uss and their intersection contains the W3-algebra W(4/5) =
L(4/5,0) @ L(4/5,3). We show that there are only 3 possibilities, up to iso-
morphisms and they are isomorphic to the Griess algebras of the VOAs V(1 4,
Vr(24) and Vp(34) constructed by Hohn-Lam-Yamauchi.

1. Introduction.

The study of vertex operator algebra (VOA) as a module of a simple Virasoro VOA
was first initiated by Dong—Mason—Zhu [DMZ], in which they showed that the famous
Moonshine VOA V' has a full sub-VOA isomorphic to a tensor product of 48 copies of
the simple Virasoro VOA L(1/2,0). Partially motivated by [DMZ] and Conway’s work
[Co|, Miyamoto [Mil] introduced the notion of simple conformal vectors of central charge
1/2, which we call Ising vectors in this article. In addition, he developed a method to
construct involutions in the automorphism group of a VOA V' from Ising vectors. These
automorphisms are often called Miyamoto involutions. When V' is the famous Moonshine
VOA V%, Miyamoto [Mi2] also showed that there is a 1 — 1 correspondence between the
2 A-involutions of the Monster group and Ising vectors in V¥ (cf. [H&]). This correspon-
dence turns out to be very important in the study of the Monster group. In particular,
many mysterious phenomena associated with the 2A-involutions of the Monster can be
interpreted using the theory of VOA. For instance, the McKay’s observation on the affine
Eg-diagram has been studied in [LYY], [LYY2] using Miyamoto involutions and sev-
eral VOAs generated by two Ising vectors have been constructed explicitly and studied.
These VOAs are usually denoted by U,x, where nX = 14, 24, 34, 4A, 5A, 64, 4B,
2B, or 3C and we call them the nX-algebra. In [Sa], the Griess algebras generated by
two Ising vectors contained in a VOA with a positive definite invariant bilinear form over
R are classified. The main result is that the Griess algebras GU, x of the nine VOAs
Unx, nX € {1A4,2A,2B,3A,3C,4A,4B,5A,6A}, constructed in [LYY] exhaust all the
possibilities. He thus established another natural correspondence between the dihedral
groups generated by two 2A-involutions and Griess sub-algebras generated by two Ising
vectors in V.

In [HLY], certain mysterious relations between the Fischer group F'ios and the affine
Es-diagram are studied. In particular, some VOAs generated by a pair of 3A-algebras
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are constructed. These VOAs are denoted by Vi(14), Vr(24), and Vpsa) in [HLY]. In
this paper, we will study Griess sub-algebras generated by the Griess algebras of two
3A-algebras U and U’ such that their intersection contains a sub-VOA isomorphic to
W(4/5) = L(4/5,0) @ L(4/5,3). We will show that there are only three possibilities,
up to isomorphism and they are isomorphic to the Griess algebras of Vi), Vr(24),
and Vp34). Our technique is similar to [LS], in which Griess algebras generated two
2A-algebras with a common Ising vector were studied.

The main idea is to analyze various Griess sub-algebras generated by two Ising
vectors using Sakuma’s Theorem. The organization of the paper is as follows. In Section
2, we review some basic definitions and results about VOAs over R and Griess algebras. In
particular, we recall the definition of Miyamoto involutions and some of the consequences.
A result of Sakuma is also reviewed. In Section 3, we recall some facts and list some
basic properties of the 34 and 6 A-algebras. An automorphism associated to a W3-algebra
Ws(4/5) = L(4/5,0) €D L(4/5,3) and its real form Wy will also be reviewed. In Section
4, we will state and prove our main theorem by case and case analysis.

2. Preliminary.

The following theorem is well-known (cf. [FLM, Theorem 8.9.5]).

THEOREM 2.1.  Let (V,Y,1,w) be a VOA with V = @,, ., Vo, Vo = 0 for n <0,
dimVy =1, and Vi = 0. Then the weight 2 space Vo has a commutative (non-associative)
algebra structure defined by the product,

a-b= a(l)b (: b(l)a).
Moreover, there is a symmetric bilinear form (-,-) defined by
(a,b)1 :a(g)b (= b(3)a), a,be Vs,

which is the restriction of the contragredient (cf. [FHL, Section 5.2]) bilinear form of V
on V,. Note that the bilinear form on Vs, is invariant in the sense that

(a-b,e)=(a,b-c) foralla,b,céeVa. (1)

DEFINITION 2.2. The algebra G = GV = (Va,-,(-,-)) in Theorem 2.1 is called
the Griess algebra. An automorphism of G is a linear automorphism that preserves the
product and the bilinear form. The group of all automorphisms of G is denoted by
Aut(G). Tt is clear that f € Aut(V) implies f|g € Aut(G).

In this article, all VOAs are over the real field R, unless otherwise stated. The
following is our main assumption.

AssuMPTION 1. Let (V,Y,1,w) be a VOA over R with V =P, c; Vo, Voo = 0 for
n < 0,dmVy =1 and Vi = 0. We assume the contragredient bilinear form of V 1is
positive definite.
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The next theorem is important to our discussion. The proof can be found in [Mil,
Theorem 6.3].

THEOREM 2.3 (Norton inequality). Let V be a VOA satisfying Assumption 1.
Then for all a, b in G = V,, we have

(a-a,b-b) > {a-bya-b).
In particular, if a, b are idempotents in G, then {a,b) = {a-a,b-b) > (a-b,a-b) > 0.

Next we recall the basic notion of Ising vectors and Miyamoto involutions. We
mainly follow the notations in [Mil].

DEFINITION 2.4.  Let (V,Y,1,w) be a VOA such that V,, =0 for n < 0, dim Vp =1
and V3 = 0. An element e € V5 is called an Ising vector if the sub-VOA Vir(e) generated
by e is isomorphic to the simple Virasoro VOA L(1/2,0).

To define the automorphisms 7, and o., we need to know the decomposition of V'
as a Vir(e)-module. If V' is a VOA over C, the decomposition is shown in [Mil]; this
decomposition also holds for a VOA over R with a positive definite contragredient form
[Mi4, Theorem 2.4].

PROPOSITION 2.5 ([Mil], [Mid4]). Let (V,Y,1,w) be a VOA over R with a positive
definite contragredient form. For an Ising vector e € V, and a constant h € R, let V,(h)
be the sum of all irreducible Vir(e)-submodules of V' isomorphic to L(1/2,h). Then we
have the submodule decomposition

vzve(O)@ve(;)@Ve@)- (2)

DEFINITION 2.6. Define a linear map 7. : V' — V by
1 on V.(0) ED Ve L
e e 2 )

1
1 Vo[ —).
on (16)

Let V7 be the fixed point subspace of 7. in V, i.e.,

1
Vie={veV|r1(v)=v}= Ve(O)@Ve<2).
Define a linear map o, : V¢ — V7 by

1 on V.(0),

O = 1
—1 Vol = ).
on (2>
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THEOREM 2.7 (cf. [Mil, Theorem 4.7 and Theorem 4.8]).  Let e be an Ising vector
of a VOA V. Then the map 7. defined in Definition 2.6 is an automorphism of V.
Moreover, for any p € Aut(V), we have prep~! = To(e)-

On the fized point sub-VOA V', we have o, € Aut(V7). In addition, for any
0 € Aut(V7™), we have goco™! = 0,

REMARK 2.8. Note that for any Ising vector e and x € G, z + 7.(x) € V™ and
thus o(z + Te(z)) is well-defined.

The following lemma can be found in [Sa, (2.2)].

LEMMA 2.9. Let e be an Ising vector of a VOAV. Let G.(h) ={x € G| e-x = hx}
be the h-eigenspace of e for h = 0,2,1/2,1/16. Then for any x € G = Va, we have the
decomposition © = xo + T2 + T1/2 + T1/16, where xp € Ge(h). Moreover,

2116 = %(z (@), @ = ;(;(x +ro(2)) — o0 (;(:17 + Te(x))>), 22 = 4e, z)e.

Hence

e o = 8(e, x)e + 212(;(33 r(2) — ae<1(a: + Te(x))» + e r@)

If .(x) =z, then
e-x=28(e,x)e+ 2%(56 —oe(T)).

In particular, e - e = 2e and (e, e) = 1/22.

In [Sa], the Griess algebras generated by two Ising vectors in a VOA satisfying
Assumption 1 has been classified.

NoTATION 2.10. For zy,...,x, € V3, we denote by G{x1,...,z,} the Griess sub-
algebra generated by x1,...,x,.

THEOREM 2.11 (cf. [Sa] and [IPSS]). LetV be a VOA satisfying Assumption 1.
Let xg, x1 be Ising vectors in Vo. Then the Griess sub-algebra G{xo,x1} generated by xg
and 1 is isomorphic to one of the following 9 cases.

G{xo,z1} | GU1a | GU2a | GUsp | GUsa | GUsc | GUsa | GUap | GUsa | GUga

1 1 13 1 1 1 3 5

(o) | 55 | 5 | 0 9w | | ¥ | 3 | ¥ | 9w

We will refer to [Sa] and [LYY?2] for the exact structures of the Griess algebras GU, x
(¢f. [IPSS, Tabe 3]).

REMARK 2.12. By Sakuma’s Theorem (Theorem 2.11), it is easy to see that a = b
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if and only if (a,b) = 1/22 for any two Ising vectors a, b.

3. 3A-algebra Uz, and 6A-algebra Ugy4.

In this section, we will review and list some properties of the 3A-algebra Us4 and
Usa (cf. [LYY?2], [IPSS]).

3.1. 3A-algebra.

Let GUs 4 be the Griess algebra of Us4. Then dim GUs 4 = 4 and it is spanned by
three Ising vectors xg, 21,22 and a Virasoro vector p of central charge 4/5 (cf. [IPSS,
Table 3]).

For {i,j,k} = {0, 1,2}, the multiplication and the bilinear form are given by

1 135
T T = 2—4(2xi +2x; +ap) — 5101 (3)
2 5
xi'N:§(2xi_xj_$k)+2jﬂa (4)
wep=2p, ()
and
13 1 2
Moreover, we have
Tz () = 2 and 75, (1) = p. (7)

For i € {0,1,2}, the fixed point sub-algebra G has dimension 3 and is spanned by x;,
2; + xp and p. Moreover we have

3v;  wj+x  135u

Ox; (xj +xp) = — 24 22 o7 ? (8>
2¢;  8(xj+xr)
o) = iy ST S Q

We call the ordered set (zg,x1, 22, 1) a normal GUs4 basis.

3.2. 6A-algebra.

Let GUg4 be the Griess algebra of Ugs. Then dimGUsa = 8 and there is a basis
(zo, 21, %2, T3, T4, x5, x, 1) for GUga such that the multiplication and the bilinear form
are given as follows (cf. [LYY2] and [IPSS, Table 3]).

e For k =i+ 2(mod6), m = i — 2(mod6), the quadruple (x;, x, T, 1) forms a
normal GUs 4 basis. Hence their structures are shown as in GUs 4.

e For [ = i+3 (mod6), the triple (x;, z;, x) forms a normal GUs 4 basis. In particular,
we have z; - &) = (1/4)(z; + z; — ).
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e For j =i+ 1(mod6), {i,4,k,I,m,n} ={0,1,2,3,4,5}, we have

:cio:rj:2%(172-+xjkafxlfa:mfa:n+x)+24%u. (10)
We also have
z-p=0, (x, 1) =0 (11)
and
) L
(i, x5) = 210 for j =4+ 1 (mod6). (12)
Moreover, for i,j € Zg, we have
To (X)) = Toiej. (13)

The fixed point sub-algebra G™: has dimension 6 and is spanned by z;, x;, ©, (1, T; +Tp,
Xk + L, where I =i+ 3 (mod6), j =i+ 1(mod6), n=1i—1(mod6), k =i+ 2 (mod6),
m =i — 2 (mod 6). Moreover we have

Tr + Tm x 450
22 22 2T

We call the ordered set (xq,x1, T2, 3, T4, X5, T, u) & normal GUga basis.

3.3. The order 3 automorphism g induced by Wﬂ{.

Let Lc(4/5,0) be the Virasoro VOA of central charge 4/5 and L¢(4/5,3) be the
irreducible L¢(4/5,0)-module of highest weight 3 over the complex field C.

In [Mi2], the real form Wy of the Ws-algebra Wc(4/5) = L¢(4/5,0) & Le(4/5,3)
(cf. [KMY], [LLY]) has been studied.

PROPOSITION 3.1 ([Mi2, Theorem 6.1]).  There is a unique real sub-VOA Wy of
We(4/5) which possesses a positive definite invariant bilinear form over R and Wﬂ'{ R
C = Wc(4/5). This VOA Wy is rational.

THEOREM 3.2 ([Mi2, Theorem 6.2]). Assume that a VOA V over R contains a
sub-VOA X = WH{. Then there is an order 3 automorphism g = gx of V induced by X.

Now suppose U = Us4 is contained in a real VOA V satisfying Assumption 1. Let
(ap,a1,as, ) be a normal GUsy basis of U. Then U contains a unique sub-VOA X
isomorphic to Wy (cf. [LY'Y2], [SY]). In this case, the Virasoro element of X is u. By
the theorem above, g defines an order 3 automorphism on V and U.

LeMMA 3.3 ([LYY?2], [SY]). Let (ag,a1,az2, 1) be a normal GUs4 basis of U and

let g be as in Theorem 3.2. Then ToyTa, =g or g~ .
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4. Main Result.

In [HLY], McKay’s Eg-observation and the Fischer group Fliay were studied. Along
with other results, three VOAs Vg (14), Vr(24), and Vi(34) generated by two 34 algebras
were constructed. We will denote their Griess algebras by GVir14), GVr(24), and GVr(34)
respectively.

The following is our main theorem.

THEOREM 4.1. Let V be a VOA satisfying Assumption 1. Let U = Uz and
U' = Usy be sub-VOAs of V' such that U NU’ contains a sub-VOA isomorphic to W]I‘{.
Let (ag, a1, az, i) and (b, by, ba, i) be normal GUs 4 bases of GU and GU' respectively and
let G be the sub-Griess algebra generated by GU and GU'. Then one of the following three
cases occur.

1. G{ao,bo} = GUia and G = GVp(1 ).
2. G{ao,bo} = GUaa or GUsa and G = GVp(a4).
3. Glao,bo} = GUza and G = GVp(3a)-

REMARK 4.2. In [HLY], it was shown that Vpa) = Usa, Vpea) = Usa and
Vp(3a) is isomorphic to the ternary code VOA associated to the ternary tetra code (see
[KMY]). Its Griess algebra is of dimension 12 and is spanned by nine Ising vectors z; j,
i,7 € {0,1,2}, and four Virasoro vectors p1, pz, 3 and pug of central charge 4/5 subject
to a relation

32 ) wij—A45(uy 4 p2 + ps + pa) = 0.
4,j€{0,1,2}

By Theorem 2.11, there are nine possible structures for G{ag,bp}. We will prove
Theorem 4.1 by analyzing these nine cases in details.

First we recall the order 3 automorphism g = gx discussed in Section 3.3 for a
sub-VOA X = Wfi of UNU’. By reindexing ag and a; or by and by if necessary, we may
assume that (see Lemma 3.3)

TaoTal = TboTbl = g'

LEMMA 4.3. We have 74,9 = g_1

{0,1,2}.

Ta; and g commutes with 74,7y, for any i,j €

PROOF.  Since g = T4yTa; = ToyTh,, both 7,4, and 7, invert g. Hence, we have

—1
Tai Tb]g = Ta,;g Tbj = gTainj
as desired. 0

4.1. Case: G{ag,bo} =2 GU1a.
In this case, ag = by. Hence {ag, a1,a2} = {bo,b1,b2} and G = GUs 4 by the following
proposition.
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PROPOSITION 4.4.  Suppose a; = b; for some i,j € {0,1,2}. Then {ap,a1,a2} =
{bo,b1,b2} and G =2 GUs 4. In particular, G = GUsa if G{ag,bo} = GU1 4.

PROOF. Without loss, we may assume ag = by. Then by (4) and (6),

2 5
(ag - p,b1) = <32(200 — a1 —a2) + 24M,b1>

2(y. 13 51
- 32<2.210_<a1’b1>_<a27b1>) +2727

On the other hand,

2 5
(ag, p-b1) = <bo7 37(%1 —bo —ba) + 24M>

2 13 1 13 5 1
=3 \% 90 9 aw) T g

by (4) and (6). Since (ag-p,b1) = {ag, u-b1) by (1), we have (ay,b1) + (az,b1) = 267/210,
which implies max{(aq,b1), (az,b1)} > (1/2) - (267/21°) > 1/25. Thus, we have b = a1
or by = ag since by Theorem 2.11 and Remark 2.12, (a;,b;) < 1/25 if a; # b;. In either
case, we have {ag, a1,as} = {bo,b1,b2} and G is isomorphic to GUs 4. O

4.2. Case: g{ao,bo} = gUzA.
In this case, set ¢g = 04,(bp). Then by [IPSS, Table 3], we have G{ag,bo} =
Span{a07 b07 CO}?

1

1
ap - bo = —(ao + bo — Co) and <a0, b0> = 25 .

92 (14)

PROPOSITION 4.5.  Suppose G{ag,bo} = GUsa. Then G = G{ag,b1} = G{ap, b2} =
GUsa.

PrOOF. We will first calculate the values of (ag,b;) for j =1,2. By (14) and (6),
we have

1 1 13
(ag - bo, b1) = <22(ao +bo — Co),b1> = 22<<a0,b1> + 51— <CO»b1>>7

and by (3)
1 135
(ao,bo - b1) = <ao, 57 (2bo + 20y + by) 2wu>
2 1.2 1 135 1
= oo+ (a0 by) + 5y (a0, ba) -

24795 T ot 21 PRI

Since <a0 . bo, b1> = <(10, bo . b1> by (1), we obtain
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123 1 1
(co,b1) = iz T §<a0,b1> - ﬁ(aoabﬁ' (15)
Since by Theorem 2.11,
1 1 13 1 3 5 1
<a07 b1>7 <a/07 b2>7 <CO7 b1> S {227 2757 2T07 ?a 2797 2T07 278’ 0}7 (16)
we have

123 1 1 123 1 1 1

(co,b1) = ot §<a0,b1) - §<ao,b2> Somty @ <gm

Hence cq # by and {(cg,b1) < 1/25.
We also note that ag # by and ag # by; otherwise, {ag,a1,a2} = {bo,b1,b2} by
Proposition 4.4 and G{ag, by} 2 GUaa. Therefore, (ag,b1) < 1/2° and (ag, ba) < 1/25.
Now by (15), we have

123 1 1 123 1 1 91 13
(co,b1) = o1z + §<ao,b1> - 27<a0,b2> > 912 T 5235 — 912 ~ 510
and hence
1
<Co,b1> = 275 (17)

Therefore by (15), we have
2" (ag, by) = 2'%ag, by) + 5. (18)

Note that 2'1{ag,b;) is an even integer, so 2'%(ag,bs) is an odd integer and hence
<a0,b2> = 5/210 or 13/210 by (16) If <a(],b2> = 13/210, then <a0,b1> = 9/210 which
is impossible. Hence, we have (ag,b2) = 5/2'0 and (ag,b1) = 5/2'°. That means
Glao, b1} = G{ao, b2} = GUsa and G{co, b1} = GUsa.

Cram. G = G{ag,b1}.

Let (ag, b1, z2, 23,24, T5, €, 14') be the normal GUgy basis for G{ag, b1} (see Section
3.2 for the definition). We will show that x5 = by, x5 = be, {z2, 24} = {a1,a2}, e = co,
w = pand G = G{ag, b1 }.

Since G{co, a0} = G{co,bo} = G{co,a1} = G{co,b1} = GUz4 and G is generated by
ag, a1, bo, b1, the map o, is well-defined on G. Moreover,

TboOcoTby — UTbO (co) — Ocos (19)
i.e., 7, commutes with o.,. Therefore,

Tao = Toeq(bo) = TcoTboTco = Tho
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and hence by (13),
Iy — Tao(bl) = Tbo(bl) = bg.

Since (b1, x5, x5, 1') is a normal GUs4 basis for G{by, b}, we have

x3 =Ty, (T5) = T, (b2) = by and p' = p.
Note that p and p' are both determined by by (= x3), b1, ba (= z5) using (3).

Recall that (ag, b1, 22, 3, T4, x5, e, 1’) is the normal GUgy basis for G{ag, b1 }. Thus,

we have

€= 04,(x3) = 04, (bo) = co.

Finally, we will show that {a1,as2} = {z2,24}. By (8), we have

3 a + as 135
Taolon T 02) = “gpto b o b g

3 To + 135
Oaqo (T2 + ¥4) = —7a0 + 222 : -1

ot
Note that g = p’ and hence
(a1 + ag, z9 + 4)

= <Uao (al + aQ)’Utlo ($2 + £L’4)>

3 a1 + as 135 3 To + X4 135 >

S\ Tt T T Tt T Tk
3 3 1 1 1352 2 3 1/13 13
TR T T R T A C T
3 135 1 1 135/1 1
BT T TR A T ST T
1 8070
—274<a1+a271’2+1'4>+ﬁ,
which implies
269
(a1 + az, 22 +24) = —5-.
On the other hand, we also have
1 13 269

1
<a1+a2,a1+a2>:2f2+?+ 'ﬁ—?,
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and similarly

269

<$2 + X4, X2 +$4> = ?

Thus, by the Schwartz inequality, we get a1 + as = x5 + x4.

Taking inner product with a;, we get

1 13 7

(a1,72) + (a1, 24) = (a1, 22 + 24) = (a1, a1 + az) = 22 + 510 = 510

which implies max{ (a1, z2), (a1, 24)} > (1/2) - (77/21°) > 1/25. Then by Theorem 2.11,

we have
1 13 13 1
({a1,2), (a1, 24)) = (22, 210) or (210, 22)

It implies x5 = a; or x4 = a;. In either case, {x2, 24} = {a1,a2}. Therefore, G C
G{ap, b1} and thus G = G{aop, b1 }. O

4.3. Case: G{ag,bo} =2 GU;p.
In this case, ag - bp = 0 and (ag, bg) = 0 (cf. [IPSS, Table 3]). Then, we have

0= <a’0 'bo,,lt> = <a’07b0 ,LL>

2 5
= <a0, §(250 — b1 —b2) + 24M>

-2 5 1

= §(<aovbl> + {ao, b2)) + 51 51

by (1), (4) and (6). Therefore we have

45
<(l0,b1> + <a07b2> = ﬁa

which implies max{{ag, b1), (ag,b2)} > (1/2) - (45/2°) > 1/25. It means ap = by or
ag = by since (a;,b;) < 1/2° if a; # bj. It is impossible since (bg, b1) = (bo, ba) = 13/210
by our assumption.

4.4. Case: G{ag,bo} = GUsc.
In this case,

(0,b0) = 5 (20)

and there is an Ising vector ¢y € G such that

1
ap - b() = 27(@0 + b() — C()) (21)
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(cf. [IPSS, Table 3]). Therefore,

On the other hand,

1 135
(ag,bo - b1) = <ao, 27(2b0 +2b1 +bo) — 210“>

1 127
= ?(2<a0,b1> + <a0,b2>) — 2?

by (3), (6) and (20). Hence (1) implies that

267
0= (3<a0,b1> + 2<a0,b2> + <Co,b1>) — ﬁ
By Proposition 4.4, it is clear that ag # b1, ag # ba, co # bi1. Thus, (ag, b1), {(ao, b2),
{co,b1) < 1/25 and hence (3{ag,b1) + 2{ag, ba) + {(co,b1)) — (267/21%) < 6 - (1/2°) —
(267/21%) = —75/210 < 0, which contradicts the above equation. So this case is impos-
sible.

4.5. Case: G{ag,bo} = GU,a4.

In this case, there exist Ising vectors ¢y, dy, and a Virasoro vector u of central charge
1 (cf. [IPSS, Table 3]) so that

Q{ao ) bo} = Span{ao, bo, co, do, u}.

In addition, 74,(bo) = do and G{bg,do} = GUsp. Applying 7,, to the normal GUsx
basis (bo, b1, b2, 1), we get another normal GUsa basis (do, 7ao(b1), Tao(b2), ). Since
G{bo,dp} = GUyp, this case is also impossible by the analysis of GUsp (see Section 4.3).

4.6. Case: g{ao, bo} = gU4B.
In this case, there exist Ising vectors ¢y, dy, e € G such that

G{ao, bo} = Span{ao, by, co, do, €},

G{ag, co} = Span{ag, co, e} = GUaz4 and G{by, do} = Span{bg, dy, e} = GUs 4 (cf. [IPSS,
Table 3]). Moreover,

ag - by = (Cbo—l—bo—C()—do-i-e), (22)

1
25
1
<a05 b0> = 58

5 (23)

\v}
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and
The (@0) = Co.

Applying 7, to the normal GUs 4 basis (ao, ai,as, u), we get another normal GU3 4 basis
(co, Tvy (@1), v, (a2), ). Then by Proposition 4.5, we have

G{ao, a1, az, co, T, (a1), 7oy (a2), n} = G{co, a1} = G{ao, Ty, (a1)} = GUsa.

Set kg = ag, 1 = Tpy(a1), 3 = co, T5 = Tp,(az). Then there exists {zo, x4} =
{a1,as} such that (zg, 1,22, x3,24, 5, €, 1) forms a normal GUg4 basis for G{cg, a1 }.

Similarly, set yo = bo, Y1 = Ta, (1), Y3 = do, Ys = Ta,(b2). There exists {ya,ys} =
{b1,ba}, such that (yo,y1, Y2, Y3, Y4, Ys, €, 1) forms a normal GUg4 basis for G{dy, b1 }.

LEMMA 4.6. Fori=1,2,4,5, G{xo,y:} = G{ws,y;} = GUsa, and hence (xg,y;) =
(w3, y;) = 5/2'0. Similarly, (z;,yo) = (xi,y3) = 5/210 fori=1,2,4,5.

PROOF.  Since (xg, T2, 24, 1t), (Yo, Y2, Y4, i) are normal GUs4 bases, by Lemma 4.3,
the order 3 element 7,,7,, commutes with 7,,7,, for i = 2,4. Since G{xo,yo} = GUap,
TyoTao has order 2 or 4. Hence 7, Ty, Ty, Tz, has order 6 or 12. Since 7y, Ty, Ty, Tzo = Ty: Tzo >
by 6-transposition property (Theorem 2.11), 7,,7,, must have order < 6 and hence has
order 6 and G{xo,y;} = GUgx for i = 2,4.

Since (ag,do) = (z0,y3), we have G{xg, y3} =G{ag,do} 2 GUysp. Since (xq,x2, T4, 1),
(y1,Y3,ys5, ) form normal GUs4 bases, T, Ty, commutes with 7,,7,, for ¢ = 1,5 and thus
we also have G{xg,y;} = GUga for i = 1,5 by the same arguments as before. O

PROPOSITION 4.7. It is impossible that G{ag, by} = GUyp.

PrROOF. By Lemma 4.6, (23) and (10), we have

1 45
(z1 -0, Y0) = 2*5(300 +x1 —xy—x3—x4 —T5+€)+ 5101 Yo

2117

and by (22), Lemma 4.6 and (12),

1
(w1,20 - yo) = { 71, 2*5(900 +yo—x3 —ys+e)

Hence by (1) we get a contradiction. So this case is impossible. O

4.7. Case: G{ag,bo} = GUs4.
In this case, 74,7p, has order 5.
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PROPOSITION 4.8. It is impossible that G{ap,bo} = GUs4.

Proor. By Lemma 4.3, the order 3 element 7,,7,, commutes with 7,,7, and
hence 7,, 7o, - Tao o, has order 15. But 7o, Ty, - TagThy = Tas Thy» Which has order < 6 by
the 6-transposition property (Theorem 2.11). It is a contradiction. O

4.8. Case: G{ag,bo} = GUsa.
In this case, set xg = ag, 1 = bg. Then there exist xo, x3, x4, Ts5, €, ¢/ such that
the ordered set (xg,x1, %2, T3, x4, x5, e, p') forms a normal GUga basis for G{ag, bo}.

PROPOSITION 4.9.  Suppose G{ag,bo} = GUsa. Then G = G{ag,bo} = GUsA.

PROOF. Since 7, (x;) = x2,—; by (13) and pu is fixed by 7, = 74, and 7, = 7,
we have

(s 15 = (oo, ) = (T2 1) = {7y 0 1) = (0, 1) = o

24
Similarly, we also have
1
<x37:u> = <Tx1x5vﬂ> = <(E5,,U,> - <Tx0xlvﬂl> - <$1,,U,> = ?

Now let h = Tp,Tay = TuyTzo- Then G{h(bg), h(b1)} = G{bo,b1} = GUs4 and the
set (h(bg), h(b1), h(b2),h(u)) = (a3,h(b1),h(by), ) will form a normal GUz4 basis for
G{h(by),h(b1)}. Note that h(by) = h(z1) = x5 and h(u) = Tp,Ta, (1) = p-

Since G{ag, x3} = GUaz4 and {ag, x3,e} forms a basis for G{ag, 3}, by Proposition
4.5, we have G{ag, a1, 23, h(b1)} = G{ao, h(b1)} = GUga. Hence (a;,e) =1/2° fori = 1,2
and (e, u) = 0. Similarly we can also prove (b;,e) = 1/25 for i = 1,2.

Finally, we will show that {a1,a2} = {x2,z4} and {b1,b2} = {z3,25}. By the
structure of the 6A-algebra, we have

1 45
<b0'a07ﬂ>:<(1'0+£L'1—.’E2—.’E3—.’E4—$5—|—e)+QM)M/,M>

25
1 45,
= —ﬁ+2ﬁ<l$7ﬂ>

by (10) and (6), and

2 5
<b07a0 . ,LL> = <b0, ?(2040 —ay; — (12) + 241u>

50 2

=3 3—2(<b0,a1> + (bo, az))

by (4) and (12). By (1), it implies
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2
<,LL/7,U’> = 34 .5 (59 - 29(<b07 al> + <bO7a2>))' (24)
Since G{xg, x2} = GUs4, we have
1 135
(T2 - 0, 1) = <24(2330 + 225 + 24) — 210M/7M>

5 135
= 28 2T0<MI7M>

by (3) and

2 5
(T2, 20 - ) = (2,00 - p1) = <£l?2, 55 (2a0 — a1 —az) + 4#>

3 2
= % - %((wzaaﬁ + (@2, a2))
by (4), which implies
2
(', ) = ﬁ( — 13+ 2°((z2, a1) + (w2, a2))) (25)

by (1). From (24) and (25), we get

95
3<b07a1> 3<b07a’2> + <$27a1> + <.'172,a,2> = —287
which implies
maxc{(bo, a1), (bo, az), (2, a1), (w2, az)} > 9 1 26)
0T AT TR AT T AT T2 = 083+ 3+ 14+ 1) ~ 25

By Proposition 4.4, a; # b; for any ¢,j € {0,1,2} and thus we must have x3 = a; or
2o = ag. A similar argument also shows that x3 = by or by. Therefore, G = G{ag, bo} =
GUsa.- O

4.9. Case: G{ao,bo} = GU;z4a.
In this case, there exists ¢o and po such that (ag, bg, co, o) forms a normal GUsx
basis.

LEMMA 4.10.  Let (ag, a1,az2, ) and (bg,b1,be, 1) be normal GUs 4 bases. Suppose
G{ao,bo} =2 GUsx. Then either

1. {aOaalaaZ} = {b07b17b2} and g = gUSA; or
2. g{ai,bj} >~ GUsx fOT 1,] € Zs.

ProoF. By Lemma 4.3, for i = 1,2, the order 3 element 7,,7,, commutes with
Tao Thy» Which has order 3 by assumption. Hence 74,74, * TagTby = Ta; T, has order 1 or 3
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fori=1,2.
Case 1. If 7,7, is of order 1, then 7,74, = (TagTh,) ' and we have
Gj = Ta;Tag@0 = TbyTag@0 = Co,

where {0,4,7} = {0,1,2}. Thus, by Proposition 4.4, we have by € {ag,a1,as} and
{a07a17a2} = {bOablabQ}-

CASE 2. If 7,7, has order 3, then G{a;,bp} = GUsa, GUsc or GUsa.

By the discussion in Section 4.4, G{a;,bo} = GUs¢ is impossible.

If G{ai, bo} = GUg 4, then by Proposition 4.9, {(ag, bo) = 1/32 or 5/2'°, which is again
impossible since G{ag, bo} = GU3 4. Therefore, G{a;, bo} = GUs 4 is the only possible case.
Similarly, we also have G{a;,b;} = GUsy4 for any i,j =0, 1,2. O

From now on, we assume {ag, a1, az} # {bo, b1, b2}, which implies G{a;,b;} = GUsa

for all i # j.
Recall that g = 74, Ta, = TayTa, is of order 3.

NOTATION 4.11. Let h = 7,,Tp,. Then h is of order 3 and it commutes with g by
Lemma 4.3. Moreover, we have

Taszo - TGQT(I(] : TaoTbo = gh7

Tay Ty = TayTao * TaoThe = g2h.
For ¢,7 =0,1,2, denote
x5 = h'g (ap).

Note that zoo = ag, To1 = g(ao) = a1, To2 = g*(ag) = ag, and x19 = h(ag) = by. By
definition, it is also easy to see that

hkge(xi,j) = Titk, jre, fori, g, k.l € ZLs.
NoTAaTION 4.12.  For any (¢,7) # (0,0), denote
Gi,jo = G{x0,0,2i;} = GUsa.

Then there exists a Virasoro vector p; ;o of central charge 4/5 such that (x¢,0,2; ;,
Z9;,25, i j,0) forms a normal 3A-basis of G; ;0. For k = 1,2, we denote

Goak = h¥(Goa0) = W (Goan).

Then Gy 1,5 = GUsa and there is a Virasoro vector pg 1,5 of central charge 4/5 such that
(Tk,0, Tk 1, T2, Ho,1,k) forms a normal basis for Go 1 .
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REMARK 4.13. By our assumption, we have (91,0 = fo,1,1 = Ho,1,2 = . We use
Ho,1 to denote g 1,0 = po,1,1 = po,1,2- Note that g is fixed by 7, ; for all i, j.

NoTaTION 4.14.  For (4,5) # (0,0),(0,1) and (0,2), we denote
Gijk=9"(Gijo)-

Then, G; 1, = GUsx for any k = 0,1,2. Let p; 5, be the Virasoro vector of central
charge 4/5 such that (2o g, Zi j+k, T2i,2j+k, [ k) forms a normal GUs4 basis for G, ; .
Note that Wi gk = 20,25k and ge(ui%k) = Wi, j,k+e for any i #£ 0.

We will show w14 = p1,4 for all 4,5,k (Lemma 4.23). This turns out to be the
most complicated part of the proof.

LEmMA 4.15.  For any n,i, k,{ € Z3, we have
Tan men (11,0,i) = H1,6,—k—i- (27)
Proor. By Lemma 4.3, we have
Ta;; (Thy0) = higjraogfjhfihkge(ao) = hik+2igf”2j7'a0 (a0) = T—i—k,—j—s-
Thus, 7, ..., maps the normal GUz 4 basis (2o,i, T1,i4+¢, T2,i42¢, 1,0,6) tO

(T, —nlk—ir Tl —h—i s T2, —nl—k—i—20> Ty i (H1,6,))-
Then we have
{x—n,—nf—k—ia LTon—1,—nb—k—i—{ z—n—2,—nl—k—i—2£}

={T0,—k—ir T—1,—k—i—t, T2, —f—i—20}

= {xo,fkfiaflfkfzﬁr%a $1,7k7i+e}~

Since (X0, —k—i, T1,—k—it0, T2, —k—i+20, l1,6,—k—s) forms a normal GUs 4 basis, we have that
Tap mern (H1,0) = H1,0,—k—i- O

LEMMA 4.16. For any 7’?] € Z3; NS {H0,17/’L1,0,k7ul,1,ka/-1/1,2,/6 ‘ k= 05172}} we
have

<$i,jay> = ? (28>
and
(1 1ke) =0, (poa, pr1ig) =0 (29)

for alli,j, and for k # 1.
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Proor. By (3),

1 135
<$0,07330,1 '961,0> = <360,0, 27(2$0,1 + 2561,0 + 332,2) - 210#1,2,1>

65 135
911 2T0<$0,07M1,2,1>

and

<1’0,0,930,1 '331,o> = <500,0 '1’0,1,951,0>

1 135
= <24(2xo,1 + 21,0+ 122) — 10 H0.1; x1,0>
65 135 1
T2l 910 Tt

Therefore, we have (200, pt1,2,1) = 1/2%. Similarly, we can get (28).
By (28),

1 135
(11,0,15,T0,1 - T1,0) = { M1,0,15 57 (220,1 + 21,0 + T2,2) — Z50 H1,2,1
4 210

2
5 135
=58 ﬁ<ﬂ1,0,1a/ﬁ1,2,1>
and
(1,01, 20,1 - 1,0) = (K1,0,1 - T0,1,T1,0)
2 5
= <32(2x071 — @21 —21,1) + 241#1,0,1,171,0>
5
= o8-
Thus, we get (@101, #1,2,1) = 0. Similar argument gives (29). O
LEmMA 4.17.  We have
g - fike =0 (30)
fori#k, and
Po,1 - g =0 (31)
fori e Zs.

ProOOF. By Theorem 2.3, (5) and (29), we have
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<M1,i,j AW NN RN 'Ml,k,e> < (WG By M1k, M1,k,e>

= (201,15, 211, k0)
=0.

Since the inner product is positive definite by Assumption 1, we have (30). Similarly, we
can get (31). O

LEMMA 4.18.  Forx € {x;; |i,j}, 1 € {po,1, 11,5 | 4,5}, we have

1 5 3 1
vop = grt i+ 5 Te() = gzou(l + (). (32)

PROOF. By Lemma 2.9 and (28), we have

o = 8foahat 35 (004 - 0 (304700 ) ) + 08—l

1 5, 3 ., 1
=5t pph () — 53

57+ 53 oz (' + 7 (1))

as desired. 0
LEMMA 4.19.  Fori € {0,1,2}, we have
(11,05 1i2) = (1,05 H1i2) = (1,405 H1,01)- (33)
PROOF. Since g € Aut(G) preserve the inner product, we have
(11,10 11,6,1) = (97 (11,3,0)> 9 (1,6,1)) = (Bai g 11,5145
for any j =0,1,2. O

LEMMA 4.20. Foraz =g, ' = p1,i,5, 1 = 12(1'), we have

-1 3
7l + 27<MI7MI/>~ (34)

(o’ + "), 1) =
PrROOF. By (32), (28), and (29), we have

1 5 3 1
CRTNIOES <2x +osh s = ggoe(u’ + u”),u’>

3 3 1
=5t 2*50/»//’) = 27<0x(u’ +u"), ).

By (5), we also have
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1
(- ps') = (o, ') = 2, ') = o3

Hence we get
/ " no__ —1 3 ’n
(oo’ +p7) 1) = 53 + 55 (W 1)
as desired. 0

LEMMA 4.21.  Let ' = p; jx and p”" = pyr jr g If (3,5) # (@', 5') or (2i,25'), then
we have

(ou(p' +72(p), 1") = 55 (35)

for any x = .

ProoFr. By Lemma 4.17, we have ' - ¢ = 0 and (u/,p") = (7 (¢'), ') = 0.
Hence by (1) and (32),

0= (z,u' - p") = (-, 1)

1 5 A 3 / 1 i / 1
<233 + o5 H + ﬁTw(M ) — ?Ua:(ﬂ + 7 (1)), 1

11
=5 ﬁm(u’ + 7o (1)), 1),

which implies (35). O
LEMMA 4.22. We have
6075#0,1 CH1,1,1

= 64x0,1 — 656(x0,0 + T0,2) — 576(x12 + T2,0) + 384(x1,0 + T1,1 + 2,1 + T2.2)
+ 810p0,1 + 1260p1,1,1 — 135(p1,1,0 + p1,1,2) + 360(11,0,1 + f1,2,1)
+45(p1,0,0 + 1,02 + p1,2,0 + p1,2,2) — T20(040 , (111,0,0 + p1,0,2 + H1,2,0 + f11,2,2)
+ 180(0wg o (111,11 + p1.1.2) + Oy (B0 + f11,1,1))

=0.

PrOOF. We will expand both sides of the equality

Ozo.1 (($0,2 +x00) (12 + $2,0)) = Oz, (20,2 + 20,0) - Oxp,1 (1,2 +220).

By (8), we have
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a0 (20,2 +20,0) - (w12 + 72,0))

1
2xo2 + 220 +211) + ?(2560,0 +2210+221)

1
= Oz, 24(2$02+2$12+$22)+27(

1 3
+ 27(2$o,0 + 2290 + 21,0) — ﬁ(ﬂl,o,z + p1,22 + p1,2,0 + M1,0,0)>

1 15
= 5270,0 T 57 %01+ 55%0,2 T 55 T10 T opTL1 T g2+ 55 P20 T o5

1 135 135 135 135
+ 56722 + 99 Mo + 99 M1.11 + i1 1,01 + i1 H1.2.1

135 135
- ﬁamo,l (#1,0,0 + p1,0,2) — QTOUIO,l (p1,2,0 + p11,2,2)- (36)
By (8), (32), and (27), we also have

O, (T0,2 +20,0) - Oag, (T1,2 + T20)

-3 1 1 135 -3 1 1 135
= gr%o1 T 5302+ 5To0 T S bon | - | rTon T ozTie o op P20+ o

22 22 22 22
_ 187 33 187 7 7 43
- ﬁxo;o 28 801+ o5g 210 Z0,2 — ?ml 0~ 271‘1 1+ 28 12T o5 28
7 7 945 135 135
— o721 — 57 %2,2 + Sy Mol — Sip (1,00 + p1,02 + 1,20 + f1,2,2) + 513 M1,1,1
2 2 2 2 2
405 135
+ ﬁ(m,m +p11,2) — ﬁ(%o,o(um@ + p1,1,2) + Oy (1,10 + 411,1,1))
18225
ota K01 11,1 (37)

Hence we have by (31), (36), (37),
0=06075u0,1 - 41,11
= 6433071 — 656(1‘0,0 + $072) — 576($172 =+ .732,0) + 384(33170 + 211 +x21 + $272)
+ 810p0,1 + 1260p1,1,1 — 135(p1,1,0 + p1,1,2) + 360(p1,0,1 + p1,2,1)
+45(p1,0,0 + H1,0,2 + p1,2,0 + p1,2,2) — 720(040 , (111,0,0 + p1,0,2 + H1,2,0 + [1,2,2)
+ 180(0ug o (11,1,1 + p11,1,2) + 0 (1,10 + p1,1,1)).
as desired. O

LEMMA 4.23.  Fori,k,l €{0,1,2}, we have

<M1,i,k7 Nl,i,£> = g
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Hence, p ik = pi1,i0 for any i, k, L.

PrOOF. By Lemma 4.22 and (33), (34), and (35), we have
0= (607540,1 * p41,1,15 141,0,0)
1 1 1 1 1 1 1 1
=64 — 656 576 384 —
09+ ) =570+ ) + 384 )
48100+ 1260 - 0 — 135(0 + 0) + 360({te1.0.0, f11.01) + O)r
2
+ 45 <5 + (11,0,0, #1,0,1) + 0 + 0) - 720(

1
riso(h e )

= 54 — 135(11,0,0, 141,0,1),

1 3 1
2 + 27(#170,0,M1,0,1> + 52

which implies (11,00, t1,0,1) = 2/5. Similarly, one can prove (1 ; k, ft1,:,0) = 2/5, also. O
NOTATION 4.24.  We denote p1,;0 = f1,i,1 = f1,4,2 by p1,; for i € {0,1,2}.

PROPOSITION 4.25.  For any (i,7) # (¢, 7'), we have

fij - pirjr = 0. (39)
Moreover,
Mo, 1+ 1,0 + 1,1+ 1,2
32
45(56004-&601 + 202+ 21,0+ T11 + T12 + oo+ T21 + T22). (40)

Therefore, the dimension of G is 12.

PROOF. The first assertion follows from (29) and Lemma 4.23.
To prove (40), let

= o1 + f1,0 + p1,1 + p1,2,

.32
T = 45($00+$01+$02+$10+3311+$12+$20+$21+$22)

Then by Lemmas 4.16, 4.22, and (i, 5, ptir j+) = 0 for (i, j) # (¢'j'), we have
and thus i = Z as desired.

To check the dimension of G, for {a1,aq,...,a12} = {xi j, po,1, 1,0, 1,1 | 4,J € Zs},
we can get det((a;,a;)) = 3%2/286.52 £ 0 by computer. Hence the dimension of G
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O

REMARK 4.26. From our proof, we have shown that (2, j,, Ti, j1 s Tis,j», Hi,;) forms
a normal GUs 4 basis of G{x;, j,, T, j, } if and only if

(i0, jo) + (i1,71) + (i2,j2) = (0,0) (mod 3),
(i1,41) — (d0, jo) = *(i,7) (mod 3).

The Griess algebra G is isomorphic to GVp34) and the structure is summarized as in
Figure 1.

[Co]

[DMZ]

[KMY]
(L]
[LLY]
[LS]

[LYY]

X, xT T
0,2 1,2 2,2

’No 1

w
oMo

To,1 Ty Ty
3R
*

T T . Ly -
0.0, . .
1.0 0 o

Figure 1. Configuration for GVp(34).
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