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Abstract. In this article, we study Griess algebras generated by two
pairs of Ising vectors (a0, a1) and (b0, b1) such that each pair generates a
3A-algebra U3A and their intersection contains the W3-algebra W(4/5) ∼=
L(4/5, 0) ⊕ L(4/5, 3). We show that there are only 3 possibilities, up to iso-
morphisms and they are isomorphic to the Griess algebras of the VOAs VF (1A),
VF (2A) and VF (3A) constructed by Höhn–Lam–Yamauchi.

1. Introduction.

The study of vertex operator algebra (VOA) as a module of a simple Virasoro VOA
was first initiated by Dong–Mason–Zhu [DMZ], in which they showed that the famous
Moonshine VOA V \ has a full sub-VOA isomorphic to a tensor product of 48 copies of
the simple Virasoro VOA L(1/2, 0). Partially motivated by [DMZ] and Conway’s work
[Co], Miyamoto [Mi1] introduced the notion of simple conformal vectors of central charge
1/2, which we call Ising vectors in this article. In addition, he developed a method to
construct involutions in the automorphism group of a VOA V from Ising vectors. These
automorphisms are often called Miyamoto involutions. When V is the famous Moonshine
VOA V \, Miyamoto [Mi2] also showed that there is a 1− 1 correspondence between the
2A-involutions of the Monster group and Ising vectors in V \ (cf. [Hö]). This correspon-
dence turns out to be very important in the study of the Monster group. In particular,
many mysterious phenomena associated with the 2A-involutions of the Monster can be
interpreted using the theory of VOA. For instance, the McKay’s observation on the affine
E8-diagram has been studied in [LYY], [LYY2] using Miyamoto involutions and sev-
eral VOAs generated by two Ising vectors have been constructed explicitly and studied.
These VOAs are usually denoted by UnX , where nX = 1A, 2A, 3A, 4A, 5A, 6A, 4B,
2B, or 3C and we call them the nX-algebra. In [Sa], the Griess algebras generated by
two Ising vectors contained in a VOA with a positive definite invariant bilinear form over
R are classified. The main result is that the Griess algebras GUnX of the nine VOAs
UnX , nX ∈ {1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, 6A}, constructed in [LYY] exhaust all the
possibilities. He thus established another natural correspondence between the dihedral
groups generated by two 2A-involutions and Griess sub-algebras generated by two Ising
vectors in V \.

In [HLY], certain mysterious relations between the Fischer group Fi24 and the affine
E6-diagram are studied. In particular, some VOAs generated by a pair of 3A-algebras
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are constructed. These VOAs are denoted by VF (1A), VF (2A), and VF (3A) in [HLY]. In
this paper, we will study Griess sub-algebras generated by the Griess algebras of two
3A-algebras U and U ′ such that their intersection contains a sub-VOA isomorphic to
W(4/5) = L(4/5, 0)

⊕
L(4/5, 3). We will show that there are only three possibilities,

up to isomorphism and they are isomorphic to the Griess algebras of VF (1A), VF (2A),
and VF (3A). Our technique is similar to [LS], in which Griess algebras generated two
2A-algebras with a common Ising vector were studied.

The main idea is to analyze various Griess sub-algebras generated by two Ising
vectors using Sakuma’s Theorem. The organization of the paper is as follows. In Section
2, we review some basic definitions and results about VOAs over R and Griess algebras. In
particular, we recall the definition of Miyamoto involutions and some of the consequences.
A result of Sakuma is also reviewed. In Section 3, we recall some facts and list some
basic properties of the 3A and 6A-algebras. An automorphism associated to a W3-algebra
W3(4/5) = L(4/5, 0)

⊕
L(4/5, 3) and its real form W+

R will also be reviewed. In Section
4, we will state and prove our main theorem by case and case analysis.

2. Preliminary.

The following theorem is well-known (cf. [FLM, Theorem 8.9.5]).

Theorem 2.1. Let (V, Y,1, ω) be a VOA with V =
⊕

n∈Z Vn, Vn = 0 for n < 0,
dimV0 = 1, and V1 = 0. Then the weight 2 space V2 has a commutative (non-associative)
algebra structure defined by the product,

a · b = a(1)b (= b(1)a).

Moreover, there is a symmetric bilinear form 〈·, ·〉 defined by

〈a, b〉1 = a(3)b (= b(3)a), a, b ∈ V2,

which is the restriction of the contragredient (cf. [FHL, Section 5.2]) bilinear form of V

on V2. Note that the bilinear form on V2 is invariant in the sense that

〈a · b, c〉 = 〈a, b · c〉 for all a, b, c ∈ V2. (1)

Definition 2.2. The algebra G = GV = (V2, ·, 〈·, ·〉) in Theorem 2.1 is called
the Griess algebra. An automorphism of G is a linear automorphism that preserves the
product and the bilinear form. The group of all automorphisms of G is denoted by
Aut(G). It is clear that f ∈ Aut(V ) implies f |G ∈ Aut(G).

In this article, all VOAs are over the real field R, unless otherwise stated. The
following is our main assumption.

Assumption 1. Let (V, Y,1, ω) be a VOA over R with V =
⊕

n∈Z Vn, Vn = 0 for
n < 0, dimV0 = 1 and V1 = 0. We assume the contragredient bilinear form of V is
positive definite.
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The next theorem is important to our discussion. The proof can be found in [Mi1,
Theorem 6.3].

Theorem 2.3 (Norton inequality). Let V be a VOA satisfying Assumption 1.
Then for all a, b in G = V2, we have

〈a · a, b · b〉 ≥ 〈a · b, a · b〉.

In particular, if a, b are idempotents in G, then 〈a, b〉 = 〈a · a, b · b〉 ≥ 〈a · b, a · b〉 ≥ 0.

Next we recall the basic notion of Ising vectors and Miyamoto involutions. We
mainly follow the notations in [Mi1].

Definition 2.4. Let (V, Y,1, ω) be a VOA such that Vn = 0 for n < 0, dimV0 = 1
and V1 = 0. An element e ∈ V2 is called an Ising vector if the sub-VOA Vir(e) generated
by e is isomorphic to the simple Virasoro VOA L(1/2, 0).

To define the automorphisms τe and σe, we need to know the decomposition of V

as a Vir(e)-module. If V is a VOA over C, the decomposition is shown in [Mi1]; this
decomposition also holds for a VOA over R with a positive definite contragredient form
[Mi4, Theorem 2.4].

Proposition 2.5 ([Mi1], [Mi4]). Let (V, Y,1, ω) be a VOA over R with a positive
definite contragredient form. For an Ising vector e ∈ V , and a constant h ∈ R, let Ve(h)
be the sum of all irreducible Vir(e)-submodules of V isomorphic to L(1/2, h). Then we
have the submodule decomposition

V = Ve(0)
⊕

Ve

(
1
2

) ⊕
Ve

(
1
16

)
. (2)

Definition 2.6. Define a linear map τe : V → V by

τe =





1 on Ve(0)
⊕

Ve

(
1
2

)
,

−1 on Ve

(
1
16

)
.

Let V τe be the fixed point subspace of τe in V , i.e.,

V τe = {v ∈ V | τe(v) = v} = Ve(0)
⊕

Ve

(
1
2

)
.

Define a linear map σe : V τe → V τe by

σe =





1 on Ve(0),

−1 on Ve

(
1
2

)
.
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Theorem 2.7 (cf. [Mi1, Theorem 4.7 and Theorem 4.8]). Let e be an Ising vector
of a VOA V . Then the map τe defined in Definition 2.6 is an automorphism of V .
Moreover, for any ρ ∈ Aut(V ), we have ρτeρ

−1 = τρ(e).

On the fixed point sub-VOA V τe , we have σe ∈ Aut(V τe). In addition, for any
% ∈ Aut(V τe), we have %σe%

−1 = σ%(e).

Remark 2.8. Note that for any Ising vector e and x ∈ G, x + τe(x) ∈ V τe and
thus σe(x + τe(x)) is well-defined.

The following lemma can be found in [Sa, (2.2)].

Lemma 2.9. Let e be an Ising vector of a VOA V . Let Ge(h) = {x ∈ G | e ·x = hx}
be the h-eigenspace of e for h = 0, 2, 1/2, 1/16. Then for any x ∈ G = V2, we have the
decomposition x = x0 + x2 + x1/2 + x1/16, where xh ∈ Ge(h). Moreover,

x1/16 =
1
2
(x− τe(x)), x1/2 =

1
2

(
1
2
(x + τe(x))− σe

(
1
2
(x + τe(x))

))
, x2 = 4〈e, x〉e.

Hence

e · x = 8〈e, x〉e +
1
22

(
1
2
(x + τe(x))− σe

(
1
2
(x + τe(x))

))
+

1
25

(x− τe(x)).

If τe(x) = x, then

e · x = 8〈e, x〉e +
1
22

(x− σe(x)).

In particular, e · e = 2e and 〈e, e〉 = 1/22.

In [Sa], the Griess algebras generated by two Ising vectors in a VOA satisfying
Assumption 1 has been classified.

Notation 2.10. For x1, . . . , xn ∈ V2, we denote by G{x1, . . . , xn} the Griess sub-
algebra generated by x1, . . . , xn.

Theorem 2.11 (cf. [Sa] and [IPSS]). Let V be a VOA satisfying Assumption 1.
Let x0, x1 be Ising vectors in V2. Then the Griess sub-algebra G{x0, x1} generated by x0

and x1 is isomorphic to one of the following 9 cases.

G{x0, x1} GU1A GU2A GU2B GU3A GU3C GU4A GU4B GU5A GU6A

〈x0, x1〉 1
22

1
25

0
13
210

1
28

1
27

1
28

3
29

5
210

We will refer to [Sa] and [LYY2] for the exact structures of the Griess algebras GUnX

(cf. [IPSS, Tabe 3]).

Remark 2.12. By Sakuma’s Theorem (Theorem 2.11), it is easy to see that a = b
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if and only if 〈a, b〉 = 1/22 for any two Ising vectors a, b.

3. 3A-algebra U3A and 6A-algebra U6A.

In this section, we will review and list some properties of the 3A-algebra U3A and
U6A (cf. [LYY2], [IPSS]).

3.1. 3A-algebra.
Let GU3A be the Griess algebra of U3A. Then dimGU3A = 4 and it is spanned by

three Ising vectors x0, x1, x2 and a Virasoro vector µ of central charge 4/5 (cf. [IPSS,
Table 3]).

For {i, j, k} = {0, 1, 2}, the multiplication and the bilinear form are given by

xi · xj =
1
24

(2xi + 2xj + xk)− 135
210

µ, (3)

xi · µ =
2
32

(2xi − xj − xk) +
5
24

µ, (4)

µ · µ = 2µ, (5)

and

〈xi, xj〉 =
13
210

, 〈xi, µ〉 =
1
24

, 〈µ, µ〉 =
2
5
. (6)

Moreover, we have

τxi(xj) = xk and τxi(µ) = µ. (7)

For i ∈ {0, 1, 2}, the fixed point sub-algebra Gτxi has dimension 3 and is spanned by xi,

xj + xk and µ. Moreover we have

σxi
(xj + xk) = −3xi

24
+

xj + xk

22
+

135µ

27
, (8)

σxi
(µ) =

2xi

32
+

8(xj + xk)
32

− µ

22
. (9)

We call the ordered set (x0, x1, x2, µ) a normal GU3A basis.

3.2. 6A-algebra.
Let GU6A be the Griess algebra of U6A. Then dimGU6A = 8 and there is a basis

(x0, x1, x2, x3, x4, x5, x, µ) for GU6A such that the multiplication and the bilinear form
are given as follows (cf. [LYY2] and [IPSS, Table 3]).

• For k ≡ i + 2 (mod 6), m ≡ i − 2 (mod 6), the quadruple (xi, xk, xm, µ) forms a
normal GU3A basis. Hence their structures are shown as in GU3A.

• For l ≡ i+3 (mod 6), the triple (xi, xl, x) forms a normal GU2A basis. In particular,
we have xi · xl = (1/4)(xi + xl − x).
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• For j ≡ i + 1 (mod 6), {i, j, k, l, m, n} = {0, 1, 2, 3, 4, 5}, we have

xi · xj =
1
25

(xi + xj − xk − xl − xm − xn + x) +
45
210

µ. (10)

We also have

x · µ = 0, 〈x, µ〉 = 0 (11)

and

〈xi, xj〉 =
5

210
for j ≡ i + 1 (mod 6). (12)

Moreover, for i, j ∈ Z6, we have

τxi
(xj) = x2i−j . (13)

The fixed point sub-algebra Gτxi has dimension 6 and is spanned by xi, xl, x, µ, xj +xn,
xk + xm, where l ≡ i + 3 (mod 6), j ≡ i + 1 (mod 6), n ≡ i− 1 (mod 6), k ≡ i + 2 (mod 6),
m ≡ i− 2 (mod 6). Moreover we have

σxi
(xj + xn) =

xi

24
+

xl

22
+ (xj + xn) +

xk + xm

22
− x

22
− 45µ

27
.

We call the ordered set (x0, x1, x2, x3, x4, x5, x, µ) a normal GU6A basis.

3.3. The order 3 automorphism g induced by W+
R .

Let LC(4/5, 0) be the Virasoro VOA of central charge 4/5 and LC(4/5, 3) be the
irreducible LC(4/5, 0)-module of highest weight 3 over the complex field C.

In [Mi2], the real form W+
R of the W3-algebra WC(4/5) = LC(4/5, 0) ⊕ LC(4/5, 3)

(cf. [KMY], [LLY]) has been studied.

Proposition 3.1 ([Mi2, Theorem 6.1]). There is a unique real sub-VOA W+
R of

WC(4/5) which possesses a positive definite invariant bilinear form over R and W+
R ⊗R

C = WC(4/5). This VOA W+
R is rational.

Theorem 3.2 ([Mi2, Theorem 6.2]). Assume that a VOA V over R contains a
sub-VOA X ∼= W+

R . Then there is an order 3 automorphism g = gX of V induced by X.

Now suppose U ∼= U3A is contained in a real VOA V satisfying Assumption 1. Let
(a0, a1, a2, µ) be a normal GU3A basis of U . Then U contains a unique sub-VOA X

isomorphic to W+
R (cf. [LYY2], [SY]). In this case, the Virasoro element of X is µ. By

the theorem above, g defines an order 3 automorphism on V and U .

Lemma 3.3 ([LYY2], [SY]). Let (a0, a1, a2, µ) be a normal GU3A basis of U and
let g be as in Theorem 3.2. Then τa0τa1 = g or g−1.
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4. Main Result.

In [HLY], McKay’s E6-observation and the Fischer group Fi24 were studied. Along
with other results, three VOAs VF (1A), VF (2A), and VF (3A) generated by two 3A algebras
were constructed. We will denote their Griess algebras by GVF (1A), GVF (2A), and GVF (3A)

respectively.
The following is our main theorem.

Theorem 4.1. Let V be a VOA satisfying Assumption 1. Let U ∼= U3A and
U ′ ∼= U3A be sub-VOAs of V such that U ∩ U ′ contains a sub-VOA isomorphic to W+

R .
Let (a0, a1, a2, µ) and (b0, b1, b2, µ) be normal GU3A bases of GU and GU ′ respectively and
let G be the sub-Griess algebra generated by GU and GU ′. Then one of the following three
cases occur.

1. G{a0, b0} ∼= GU1A and G ∼= GVF (1A).
2. G{a0, b0} ∼= GU2A or GU6A and G ∼= GVF (2A).
3. G{a0, b0} ∼= GU3A and G ∼= GVF (3A).

Remark 4.2. In [HLY], it was shown that VF (1A)
∼= U3A, VF (2A)

∼= U6A and
VF (3A) is isomorphic to the ternary code VOA associated to the ternary tetra code (see
[KMY]). Its Griess algebra is of dimension 12 and is spanned by nine Ising vectors xi,j ,
i, j ∈ {0, 1, 2}, and four Virasoro vectors µ1, µ2, µ3 and µ4 of central charge 4/5 subject
to a relation

32
∑

i,j∈{0,1,2}
xi,j − 45(µ1 + µ2 + µ3 + µ4) = 0.

By Theorem 2.11, there are nine possible structures for G{a0, b0}. We will prove
Theorem 4.1 by analyzing these nine cases in details.

First we recall the order 3 automorphism g = gX discussed in Section 3.3 for a
sub-VOA X ∼= W+

R of U ∩U ′. By reindexing a0 and a1 or b0 and b1 if necessary, we may
assume that (see Lemma 3.3)

τa0τa1 = τb0τb1 = g.

Lemma 4.3. We have τai
g = g−1τai

and g commutes with τai
τbj

for any i, j ∈
{0, 1, 2}.

Proof. Since g = τa0τa1 = τb0τb1 , both τai
and τbj

invert g. Hence, we have

τai
τbj

g = τai
g−1τbj

= gτai
τbj

as desired. ¤

4.1. Case: G{a0, b0} ∼= GU1A.
In this case, a0 = b0. Hence {a0, a1, a2} = {b0, b1, b2} and G ∼= GU3A by the following

proposition.
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Proposition 4.4. Suppose ai = bj for some i, j ∈ {0, 1, 2}. Then {a0, a1, a2} =
{b0, b1, b2} and G ∼= GU3A. In particular, G ∼= GU3A if G{a0, b0} ∼= GU1A.

Proof. Without loss, we may assume a0 = b0. Then by (4) and (6),

〈a0 · µ, b1〉 =
〈

2
32

(2a0 − a1 − a2) +
5
24

µ, b1

〉

=
2
32

(
2 · 13

210
− 〈a1, b1〉 − 〈a2, b1〉

)
+

5
24
· 1
24

.

On the other hand,

〈a0, µ · b1〉 =
〈

b0,
2
32

(2b1 − b0 − b2) +
5
24

µ

〉

=
2
32

(
2 · 13

210
− 1

22
− 13

210

)
+

5
24
· 1
24

by (4) and (6). Since 〈a0 ·µ, b1〉 = 〈a0, µ ·b1〉 by (1), we have 〈a1, b1〉+ 〈a2, b1〉 = 267/210,
which implies max{〈a1, b1〉, 〈a2, b1〉} ≥ (1/2) · (267/210) > 1/25. Thus, we have b1 = a1

or b1 = a2 since by Theorem 2.11 and Remark 2.12, 〈ai, bj〉 ≤ 1/25 if ai 6= bj . In either
case, we have {a0, a1, a2} = {b0, b1, b2} and G is isomorphic to GU3A. ¤

4.2. Case: G{a0, b0} ∼= GU2A.
In this case, set c0 = σa0(b0). Then by [IPSS, Table 3], we have G{a0, b0} =

Span{a0, b0, c0},

a0 · b0 =
1
22

(a0 + b0 − c0) and 〈a0, b0〉 =
1
25

. (14)

Proposition 4.5. Suppose G{a0, b0} ∼= GU2A. Then G = G{a0, b1} = G{a0, b2} ∼=
GU6A.

Proof. We will first calculate the values of 〈a0, bj〉 for j = 1, 2. By (14) and (6),
we have

〈a0 · b0, b1〉 =
〈

1
22

(a0 + b0 − c0), b1

〉
=

1
22

(
〈a0, b1〉+

13
210

− 〈c0, b1〉
)

,

and by (3)

〈a0, b0 · b1〉 =
〈

a0,
1
24

(2b0 + 2b1 + b2)− 135
210

µ

〉

=
2
24
· 1
25

+
2
24
〈a0, b1〉+

1
24
〈a0, b2〉 − 135

210
· 1
24

.

Since 〈a0 · b0, b1〉 = 〈a0, b0 · b1〉 by (1), we obtain
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〈c0, b1〉 =
123
212

+
1
2
〈a0, b1〉 − 1

22
〈a0, b2〉. (15)

Since by Theorem 2.11,

〈a0, b1〉, 〈a0, b2〉, 〈c0, b1〉 ∈
{

1
22

,
1
25

,
13
210

,
1
27

,
3
29

,
5

210
,

1
28

, 0
}

, (16)

we have

〈c0, b1〉 =
123
212

+
1
2
〈a0, b1〉 − 1

22
〈a0, b2〉 ≤ 123

212
+

1
2
· 1
22

<
1
22

.

Hence c0 6= b1 and 〈c0, b1〉 ≤ 1/25.
We also note that a0 6= b1 and a0 6= b2; otherwise, {a0, a1, a2} = {b0, b1, b2} by

Proposition 4.4 and G{a0, b0} � GU2A. Therefore, 〈a0, b1〉 ≤ 1/25 and 〈a0, b2〉 ≤ 1/25.
Now by (15), we have

〈c0, b1〉 =
123
212

+
1
2
〈a0, b1〉 − 1

22
〈a0, b2〉 ≥ 123

212
− 1

22
· 1
25

=
91
212

>
13
210

,

and hence

〈c0, b1〉 =
1
25

. (17)

Therefore by (15), we have

211〈a0, b1〉 = 210〈a0, b2〉+ 5. (18)

Note that 211〈a0, b1〉 is an even integer, so 210〈a0, b2〉 is an odd integer and hence
〈a0, b2〉 = 5/210 or 13/210 by (16). If 〈a0, b2〉 = 13/210, then 〈a0, b1〉 = 9/210 which
is impossible. Hence, we have 〈a0, b2〉 = 5/210 and 〈a0, b1〉 = 5/210. That means
G{a0, b1} ∼= G{a0, b2} ∼= GU6A and G{c0, b1} ∼= GU2A.

Claim. G = G{a0, b1}.

Let (a0, b1, x2, x3, x4, x5, e, µ
′) be the normal GU6A basis for G{a0, b1} (see Section

3.2 for the definition). We will show that x3 = b0, x5 = b2, {x2, x4} = {a1, a2}, e = c0,
µ′ = µ and G = G{a0, b1}.

Since G{c0, a0} ∼= G{c0, b0} ∼= G{c0, a1} ∼= G{c0, b1} ∼= GU2A and G is generated by
a0, a1, b0, b1, the map σc0 is well-defined on G. Moreover,

τb0σc0τb0 = στb0 (c0) = σc0 , (19)

i.e., τb0 commutes with σc0 . Therefore,

τa0 = τσc0 (b0) = σc0τb0σc0 = τb0



462 C. H. Lam and C. S. Su

and hence by (13),

x5 = τa0(b1) = τb0(b1) = b2.

Since (b1, x5, x3, µ
′) is a normal GU3A basis for G{b1, b2}, we have

x3 = τb1(x5) = τb1(b2) = b0 and µ′ = µ.

Note that µ and µ′ are both determined by b0 (= x3), b1, b2 (= x5) using (3).
Recall that (a0, b1, x2, x3, x4, x5, e, µ

′) is the normal GU6A basis for G{a0, b1}. Thus,
we have

e = σa0(x3) = σa0(b0) = c0.

Finally, we will show that {a1, a2} = {x2, x4}. By (8), we have

σa0(a1 + a2) = − 3
24

a0 +
a1 + a2

22
+

135
27

µ,

σa0(x2 + x4) = − 3
24

a0 +
x2 + x4

22
+

135
27

µ′.

Note that µ = µ′ and hence

〈a1 + a2, x2 + x4〉
= 〈σa0(a1 + a2), σa0(x2 + x4)〉

=
〈
− 3

24
a0 +

a1 + a2

22
+

135
27

µ,− 3
24

a0 +
x2 + x4

22
+

135
27

µ

〉

=
3
24
· 3
24
· 1
22

+
1
24
〈a1 + a2, x2 + x4〉+

1352

214
· 2
5
− 2 · 3

24
· 1
22

(
13
210

+
13
210

)

− 2 · 3
24
· 135

27
· 1
24

+ 2 · 1
22
· 135

27

(
1
24

+
1
24

)

=
1
24
〈a1 + a2, x2 + x4〉+

8070
214

,

which implies

〈a1 + a2, x2 + x4〉 =
269
29

.

On the other hand, we also have

〈a1 + a2, a1 + a2〉 =
1
22

+
1
22

+ 2 · 13
210

=
269
29

,
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and similarly

〈x2 + x4, x2 + x4〉 =
269
29

.

Thus, by the Schwartz inequality, we get a1 + a2 = x2 + x4.
Taking inner product with a1, we get

〈a1, x2〉+ 〈a1, x4〉 = 〈a1, x2 + x4〉 = 〈a1, a1 + a2〉 =
1
22

+
13
210

=
77
210

,

which implies max{〈a1, x2〉, 〈a1, x4〉} ≥ (1/2) · (77/210) > 1/25. Then by Theorem 2.11,
we have

(〈a1, x2〉, 〈a1, x4〉) =
(

1
22

,
13
210

)
or

(
13
210

,
1
22

)
.

It implies x2 = a1 or x4 = a1. In either case, {x2, x4} = {a1, a2}. Therefore, G ⊂
G{a0, b1} and thus G = G{a0, b1}. ¤

4.3. Case: G{a0, b0} ∼= GU2B.
In this case, a0 · b0 = 0 and 〈a0, b0〉 = 0 (cf. [IPSS, Table 3]). Then, we have

0 = 〈a0 · b0, µ〉 = 〈a0, b0 · µ〉

=
〈

a0,
2
32

(2b0 − b1 − b2) +
5
24

µ

〉

=
−2
32

(〈a0, b1〉+ 〈a0, b2〉) +
5
24
· 1
24

by (1), (4) and (6). Therefore we have

〈a0, b1〉+ 〈a0, b2〉 =
45
29

,

which implies max{〈a0, b1〉, 〈a0, b2〉} ≥ (1/2) · (45/29) > 1/25. It means a0 = b1 or
a0 = b2 since 〈ai, bj〉 ≤ 1/25 if ai 6= bj . It is impossible since 〈b0, b1〉 = 〈b0, b2〉 = 13/210

by our assumption.

4.4. Case: G{a0, b0} ∼= GU3C .
In this case,

〈a0, b0〉 =
1
28

(20)

and there is an Ising vector c0 ∈ G such that

a0 · b0 =
1
25

(a0 + b0 − c0) (21)
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(cf. [IPSS, Table 3]). Therefore,

〈a0 · b0, b1〉 =
〈

1
25

(a0 + b0 − c0), b1

〉

=
1
25

(
〈a0, b1〉+

13
210

− 〈c0, b1〉
)

.

On the other hand,

〈a0, b0 · b1〉 =
〈

a0,
1
24

(2b0 + 2b1 + b2)− 135
210

µ

〉

=
1
24

(2〈a0, b1〉+ 〈a0, b2〉)− 127
214

by (3), (6) and (20). Hence (1) implies that

0 = (3〈a0, b1〉+ 2〈a0, b2〉+ 〈c0, b1〉)− 267
210

.

By Proposition 4.4, it is clear that a0 6= b1, a0 6= b2, c0 6= b1. Thus, 〈a0, b1〉, 〈a0, b2〉,
〈c0, b1〉 ≤ 1/25 and hence (3〈a0, b1〉 + 2〈a0, b2〉 + 〈c0, b1〉) − (267/210) ≤ 6 · (1/25) −
(267/210) = −75/210 < 0, which contradicts the above equation. So this case is impos-
sible.

4.5. Case: G{a0, b0} ∼= GU4A.
In this case, there exist Ising vectors c0, d0, and a Virasoro vector u of central charge

1 (cf. [IPSS, Table 3]) so that

G{a0, b0} = Span{a0, b0, c0, d0, u}.

In addition, τa0(b0) = d0 and G{b0, d0} ∼= GU2B . Applying τa0 to the normal GU3A

basis (b0, b1, b2, µ), we get another normal GU3A basis (d0, τa0(b1), τa0(b2), µ). Since
G{b0, d0} ∼= GU2B , this case is also impossible by the analysis of GU2B (see Section 4.3).

4.6. Case: G{a0, b0} ∼= GU4B.
In this case, there exist Ising vectors c0, d0, e ∈ G such that

G{a0, b0} = Span{a0, b0, c0, d0, e},

G{a0, c0} = Span{a0, c0, e} ∼= GU2A and G{b0, d0} = Span{b0, d0, e} ∼= GU2A (cf. [IPSS,
Table 3]). Moreover,

a0 · b0 =
1
25

(a0 + b0 − c0 − d0 + e), (22)

〈a0, b0〉 =
1
28

, (23)
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and

τb0(a0) = c0.

Applying τb0 to the normal GU3A basis
(
a0, a1, a2, µ

)
, we get another normal GU3A basis

(c0, τb0(a1), τb0(a2), µ). Then by Proposition 4.5, we have

G{a0, a1, a2, c0, τb0(a1), τb0(a2), µ} = G{c0, a1} = G{a0, τb0(a1)} ∼= GU6A.

Set x0 = a0, x1 = τb0(a1), x3 = c0, x5 = τb0(a2). Then there exists {x2, x4} =
{a1, a2} such that (x0, x1, x2, x3, x4, x5, e, µ) forms a normal GU6A basis for G{c0, a1}.

Similarly, set y0 = b0, y1 = τa0(b1), y3 = d0, y5 = τa0(b2). There exists {y2, y4} =
{b1, b2}, such that (y0, y1, y2, y3, y4, y5, e, µ) forms a normal GU6A basis for G{d0, b1}.

Lemma 4.6. For i = 1, 2, 4, 5, G{x0, yi} ∼= G{x3, yi} ∼= GU6A, and hence 〈x0, yi〉 =
〈x3, yi〉 = 5/210. Similarly, 〈xi, y0〉 = 〈xi, y3〉 = 5/210 for i = 1, 2, 4, 5.

Proof. Since (x0, x2, x4, µ), (y0, y2, y4, µ) are normal GU3A bases, by Lemma 4.3,
the order 3 element τyiτy0 commutes with τy0τx0 for i = 2, 4. Since G{x0, y0} ∼= GU4B ,
τy0τx0 has order 2 or 4. Hence τyiτy0 ·τy0τx0 has order 6 or 12. Since τyiτy0 ·τy0τx0 = τyiτx0 ,
by 6-transposition property (Theorem 2.11), τyi

τx0 must have order ≤ 6 and hence has
order 6 and G{x0, yi} ∼= GU6A for i = 2, 4.

Since (a0, d0)=(x0, y3), we have G{x0, y3}=G{a0, d0}∼=GU4B . Since (x0, x2, x4, µ),
(y1, y3, y5, µ) form normal GU3A bases, τyiτy3 commutes with τy3τx0 for i = 1, 5 and thus
we also have G{x0, yi} ∼= GU6A for i = 1, 5 by the same arguments as before. ¤

Proposition 4.7. It is impossible that G{a0, b0} ∼= GU4B.

Proof. By Lemma 4.6, (23) and (10), we have

〈x1 · x0, y0〉 =
〈

1
25

(x0 + x1 − x2 − x3 − x4 − x5 + e) +
45
210

µ, y0

〉

=
7

211
,

and by (22), Lemma 4.6 and (12),

〈x1, x0 · y0〉 =
〈

x1,
1
25

(x0 + y0 − x3 − y3 + e)
〉

=
3

212
.

Hence by (1) we get a contradiction. So this case is impossible. ¤

4.7. Case: G{a0, b0} ∼= GU5A.
In this case, τa0τb0 has order 5.
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Proposition 4.8. It is impossible that G{a0, b0} ∼= GU5A.

Proof. By Lemma 4.3, the order 3 element τa1τa0 commutes with τa0τb0 and
hence τa1τa0 · τa0τb0 has order 15. But τa1τa0 · τa0τb0 = τa1τb0 , which has order ≤ 6 by
the 6-transposition property (Theorem 2.11). It is a contradiction. ¤

4.8. Case: G{a0, b0} ∼= GU6A.
In this case, set x0 = a0, x1 = b0. Then there exist x2, x3, x4, x5, e, µ′ such that

the ordered set (x0, x1, x2, x3, x4, x5, e, µ
′) forms a normal GU6A basis for G{a0, b0}.

Proposition 4.9. Suppose G{a0, b0} ∼= GU6A. Then G = G{a0, b0} ∼= GU6A.

Proof. Since τxi
(xj) = x2i−j by (13) and µ is fixed by τx0 = τa0 and τx1 = τb0 ,

we have

〈x4, µ〉 = 〈τx0x2, µ〉 = 〈x2, µ〉 = 〈τx1x0, µ〉 = 〈x0, µ〉 =
1
24

.

Similarly, we also have

〈x3, µ〉 = 〈τx1x5, µ〉 = 〈x5, µ〉 = 〈τx0x1, µ〉 = 〈x1, µ〉 =
1
24

.

Now let h = τb0τa0 = τx1τx0 . Then G{h(b0), h(b1)} ∼= G{b0, b1} ∼= GU3A and the
set (h(b0), h(b1), h(b2), h(µ)) = (x3, h(b1), h(b2), µ) will form a normal GU3A basis for
G{h(b0), h(b1)}. Note that h(b0) = h(x1) = x3 and h(µ) = τb0τa0(µ) = µ.

Since G{a0, x3} ∼= GU2A and {a0, x3, e} forms a basis for G{a0, x3}, by Proposition
4.5, we have G{a0, a1, x3, h(b1)} = G{a0, h(b1)} ∼= GU6A. Hence 〈ai, e〉 = 1/25 for i = 1, 2
and 〈e, µ〉 = 0. Similarly we can also prove 〈bi, e〉 = 1/25 for i = 1, 2.

Finally, we will show that {a1, a2} = {x2, x4} and {b1, b2} = {x3, x5}. By the
structure of the 6A-algebra, we have

〈b0 · a0, µ〉 =
〈

1
25

(x0 + x1 − x2 − x3 − x4 − x5 + e) +
45
210

µ′, µ
〉

= − 1
28

+
45
210

〈µ′, µ〉

by (10) and (6), and

〈b0, a0 · µ〉 =
〈

b0,
2
32

(2a0 − a1 − a2) +
5
24

µ

〉

=
50

28 · 32
− 2

32
(〈b0, a1〉+ 〈b0, a2〉)

by (4) and (12). By (1), it implies
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〈µ′, µ〉 =
22

34 · 5
(
59− 29(〈b0, a1〉+ 〈b0, a2〉)

)
. (24)

Since G{x0, x2} ∼= GU3A, we have

〈x2 · x0, µ〉 =
〈

1
24

(2x0 + 2x2 + x4)− 135
210

µ′, µ
〉

=
5
28
− 135

210
〈µ′, µ〉

by (3) and

〈x2, x0 · µ〉 = 〈x2, a0 · µ〉 =
〈

x2,
2
32

(2a0 − a1 − a2) +
5
24

µ

〉

=
58

28 · 32
− 2

32
(〈x2, a1〉+ 〈x2, a2〉)

by (4), which implies

〈µ′, µ〉 =
22

35 · 5
(− 13 + 29(〈x2, a1〉+ 〈x2, a2〉)

)
(25)

by (1). From (24) and (25), we get

3〈b0, a1〉+ 3〈b0, a2〉+ 〈x2, a1〉+ 〈x2, a2〉 =
95
28

,

which implies

max{〈b0, a1〉, 〈b0, a2〉, 〈x2, a1〉, 〈x2, a2〉} ≥ 95
28(3 + 3 + 1 + 1)

>
1
25

. (26)

By Proposition 4.4, ai 6= bj for any i, j ∈ {0, 1, 2} and thus we must have x2 = a1 or
x2 = a2. A similar argument also shows that x3 = b1 or b2. Therefore, G = G{a0, b0} ∼=
GU6A. ¤

4.9. Case: G{a0, b0} ∼= GU3A.
In this case, there exists c0 and µ0 such that (a0, b0, c0, µ0) forms a normal GU3A

basis.

Lemma 4.10. Let (a0, a1, a2, µ) and (b0, b1, b2, µ) be normal GU3A bases. Suppose
G{a0, b0} ∼= GU3A. Then either

1. {a0, a1, a2} = {b0, b1, b2} and G ∼= GU3A; or
2. G{ai, bj} ∼= GU3A for i, j ∈ Z3.

Proof. By Lemma 4.3, for i = 1, 2, the order 3 element τai
τa0 commutes with

τa0τb0 , which has order 3 by assumption. Hence τai
τa0 · τa0τb0 = τai

τb0 has order 1 or 3
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for i = 1, 2.

Case 1. If τaiτb0 is of order 1, then τaiτa0 = (τa0τb0)
−1 and we have

aj = τai
τa0a0 = τb0τa0a0 = c0,

where {0, i, j} = {0, 1, 2}. Thus, by Proposition 4.4, we have b0 ∈ {a0, a1, a2} and
{a0, a1, a2} = {b0, b1, b2}.

Case 2. If τai
τb0 has order 3, then G{ai, b0} ∼= GU3A, GU3C or GU6A.

By the discussion in Section 4.4, G{ai, b0} ∼= GU3C is impossible.
If G{ai, b0} ∼= GU6A, then by Proposition 4.9, 〈a0, b0〉 = 1/32 or 5/210, which is again

impossible since G{a0, b0} ∼= GU3A. Therefore, G{ai, b0} ∼= GU3A is the only possible case.
Similarly, we also have G{ai, bj} ∼= GU3A for any i, j = 0, 1, 2. ¤

From now on, we assume {a0, a1, a2} 6= {b0, b1, b2}, which implies G{ai, bj} ∼= GU3A

for all i 6= j.
Recall that g = τa0τa1 = τa2τa0 is of order 3.

Notation 4.11. Let h = τa0τb0 . Then h is of order 3 and it commutes with g by
Lemma 4.3. Moreover, we have

τa2τb0 = τa2τa0 · τa0τb0 = gh,

τa1τb0 = τa1τa0 · τa0τb0 = g2h.

For i, j = 0, 1, 2, denote

xi,j = higj(a0).

Note that x0,0 = a0, x0,1 = g(a0) = a1, x0,2 = g2(a0) = a2, and x1,0 = h(a0) = b0. By
definition, it is also easy to see that

hkg`(xi,j) = xi+k, j+`, for i, j, k, ` ∈ Z3.

Notation 4.12. For any (i, j) 6= (0, 0), denote

Gi,j,0 = G{x0,0, xi,j} ∼= GU3A.

Then there exists a Virasoro vector µi,j,0 of central charge 4/5 such that (x0,0, xi,j ,

x2i,2j , µi,j,0) forms a normal 3A-basis of Gi,j,0. For k = 1, 2, we denote

G0,1,k = hk(G0,1,0) = hk(G0,2,0).

Then G0,1,k
∼= GU3A and there is a Virasoro vector µ0,1,k of central charge 4/5 such that

(xk,0, xk,1, xk,2, µ0,1,k) forms a normal basis for G0,1,k.
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Remark 4.13. By our assumption, we have µ0,1,0 = µ0,1,1 = µ0,1,2 = µ. We use
µ0,1 to denote µ0,1,0 = µ0,1,1 = µ0,1,2. Note that µ0,1 is fixed by τxi,j

for all i, j.

Notation 4.14. For (i, j) 6= (0, 0), (0, 1) and (0, 2), we denote

Gi,j,k = gk(Gi,j,0).

Then, Gi,j,k
∼= GU3A for any k = 0, 1, 2. Let µi,j,k be the Virasoro vector of central

charge 4/5 such that (x0,k, xi,j+k, x2i,2j+k, µi,j,k) forms a normal GU3A basis for Gi,j,k.
Note that µi,j,k = µ2i,2j,k and g`(µi,j,k) = µi,j,k+` for any i 6= 0.

We will show µ1,i,j = µ1,i,k for all i, j, k (Lemma 4.23). This turns out to be the
most complicated part of the proof.

Lemma 4.15. For any n, i, k, ` ∈ Z3, we have

τxn,n`+k
(µ1,`,i) = µ1,`,−k−i. (27)

Proof. By Lemma 4.3, we have

τxi,j (xk,`) = higjτa0g
−jh−ihkg`(a0) = h−k+2ig−`+2jτa0(a0) = x−i−k,−j−`.

Thus, τxn,n`+k
maps the normal GU3A basis (x0,i, x1,i+`, x2,i+2`, µ1,`,i) to

(x−n,−n`−k−i, x−n−1,−n`−k−i−`, x−n−2,−n`−k−i−2`, τxn,n`+k
(µ1,`,i)).

Then we have

{x−n,−n`−k−i, x−n−1,−n`−k−i−`, x−n−2,−n`−k−i−2`}
= {x0,−k−i, x−1,−k−i−`, x−2,−k−i−2`}
= {x0,−k−i, x2,−k−i+2`, x1,−k−i+`}.

Since (x0,−k−i, x1,−k−i+`, x2,−k−i+2`, µ1,`,−k−i) forms a normal GU3A basis, we have that
τxn,n`+k

(µ1,`,i) = µ1,`,−k−i. ¤

Lemma 4.16. For any i, j ∈ Z3, y ∈ {µ0,1, µ1,0,k, µ1,1,k, µ1,2,k | k = 0, 1, 2}, we
have

〈xi,j , y〉 =
1
24

(28)

and

〈µ1,i,j , µ1,k,`〉 = 0, 〈µ0,1, µ1,i,j〉 = 0 (29)

for all i, j, and for k 6= i.
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Proof. By (3),

〈x0,0, x0,1 · x1,0〉 =
〈

x0,0,
1
24

(2x0,1 + 2x1,0 + x2,2)− 135
210

µ1,2,1

〉

=
65
214

− 135
210

〈x0,0, µ1,2,1〉

and

〈x0,0, x0,1 · x1,0〉 = 〈x0,0 · x0,1, x1,0〉

=
〈

1
24

(2x0,1 + 2x1,0 + x2,2)− 135
210

µ0,1, x1,0

〉

=
65
214

− 135
210

· 1
24

.

Therefore, we have 〈x0,0, µ1,2,1〉 = 1/24. Similarly, we can get (28).
By (28),

〈µ1,0,1, x0,1 · x1,0〉 =
〈

µ1,0,1,
1
24

(2x0,1 + 2x1,0 + x2,2)− 135
210

µ1,2,1

〉

=
5
28
− 135

210
〈µ1,0,1, µ1,2,1〉

and

〈µ1,0,1, x0,1 · x1,0〉 = 〈µ1,0,1 · x0,1, x1,0〉

=
〈

2
32

(2x0,1 − x2,1 − x1,1) +
5
24

µ1,0,1, x1,0

〉

=
5
28

.

Thus, we get 〈µ1,0,1, µ1,2,1〉 = 0. Similar argument gives (29). ¤

Lemma 4.17. We have

µ1,i,j · µ1,k,` = 0 (30)

for i 6= k, and

µ0,1 · µ1,i,j = 0 (31)

for i ∈ Z3.

Proof. By Theorem 2.3, (5) and (29), we have
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〈µ1,i,j · µ1,k,`, µ1,i,j · µ1,k,`〉 ≤ 〈µ1,i,j · µ1,i,j , µ1,k,` · µ1,k,`〉
= 〈2µ1,i,j , 2µ1,k,`〉
= 0.

Since the inner product is positive definite by Assumption 1, we have (30). Similarly, we
can get (31). ¤

Lemma 4.18. For x ∈ {xi,j | i, j}, µ′ ∈ {µ0,1, µ1,i,j | i, j}, we have

x · µ′ =
1
2
x +

5
25

µ′ +
3
25

τx(µ′)− 1
23

σx(µ′ + τx(µ′)). (32)

Proof. By Lemma 2.9 and (28), we have

x · µ′ = 8〈x, µ′〉x +
1
22

(
1
2
(µ′ + τx(µ′))− σx

(
1
2
(µ′ + τx(µ′))

))
+

1
25

(µ′ − τx(µ′))

=
1
2
x +

5
25

µ′ +
3
25

τx(µ′)− 1
23

σx(µ′ + τx(µ′))

as desired. ¤

Lemma 4.19. For i ∈ {0, 1, 2}, we have

〈µ1,i,0, µ1,i,2〉 = 〈µ1,i,1, µ1,i,2〉 = 〈µ1,i,0, µ1,i,1〉. (33)

Proof. Since g ∈ Aut(G) preserve the inner product, we have

〈µ1,i,0, µ1,i,1〉 = 〈gj(µ1,i,0), gj(µ1,i,1)〉 = 〈µ1,i,j , µ1,i,1+j〉

for any j = 0, 1, 2. ¤

Lemma 4.20. For x = xk,`, µ′ = µ1,i,j, µ′′ = τx(µ′), we have

〈σx(µ′ + µ′′), µ′〉 =
−1
22

+
3
22
〈µ′, µ′′〉. (34)

Proof. By (32), (28), and (29), we have

〈x · µ′, µ′〉 =
〈

1
2
x +

5
25

µ′ +
3
25

µ′′ − 1
23

σx(µ′ + µ′′), µ′
〉

=
3
25

+
3
25
〈µ′, µ′′〉 − 1

23
〈σx(µ′ + µ′′), µ′〉.

By (5), we also have
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〈x · µ′, µ′〉 = 〈x, µ′ · µ′〉 = 2〈x, µ′〉 =
1
23

.

Hence we get

〈σx(µ′ + µ′′), µ′〉 =
−1
22

+
3
22
〈µ′, µ′′〉

as desired. ¤

Lemma 4.21. Let µ′ = µi,j,k and µ′′ = µi′,j′,k′ . If (i, j) 6= (i′, j′) or (2i′, 2j′), then
we have

〈σx(µ′ + τx(µ′)), µ′′〉 =
1
22

(35)

for any x = xk,`.

Proof. By Lemma 4.17, we have µ′ · µ′′ = 0 and 〈µ′, µ′′〉 = 〈τx(µ′), µ′′〉 = 0.
Hence by (1) and (32),

0 = 〈x, µ′ · µ′′〉 = 〈x · µ′, µ′′〉

=
〈

1
2
x +

5
25

µ′ +
3
25

τx(µ′)− 1
23

σx(µ′ + τx(µ′)), µ′′
〉

=
1
25
− 1

23
〈σx(µ′ + τx(µ′)), µ′′〉,

which implies (35). ¤

Lemma 4.22. We have

6075µ0,1 · µ1,1,1

= 64x0,1 − 656(x0,0 + x0,2)− 576(x1,2 + x2,0) + 384(x1,0 + x1,1 + x2,1 + x2,2)

+ 810µ0,1 + 1260µ1,1,1 − 135(µ1,1,0 + µ1,1,2) + 360(µ1,0,1 + µ1,2,1)

+ 45(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2)− 720(σx0,1(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2)

+ 180
(
σx0,0(µ1,1,1 + µ1,1,2) + σx0,2(µ1,1,0 + µ1,1,1)

)

= 0.

Proof. We will expand both sides of the equality

σx0,1

(
(x0,2 + x0,0) · (x1,2 + x2,0)

)
= σx0,1(x0,2 + x0,0) · σx0,1(x1,2 + x2,0).

By (8), we have
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σx0,1

(
(x0,2 + x0,0) · (x1,2 + x2,0)

)

= σx0,1

(
1
24

(2x0,2 + 2x1,2 + x2,2) +
1
24

(2x0,2 + 2x2,0 + x1,1) +
1
24

(2x0,0 + 2x1,2 + x2,1)

+
1
24

(2x0,0 + 2x2,0 + x1,0)− 135
210

(µ1,0,2 + µ1,2,2 + µ1,2,0 + µ1,0,0)
)

=
1
24

x0,0 − 15
27

x0,1 +
1
24

x0,2 +
1
26

x1,0 +
1
26

x1,1 +
1
24

x1,2 +
1
24

x2,0 +
1
26

x2,1

+
1
26

x2,2 +
135
29

µ0,1 +
135
29

µ1,1,1 +
135
211

µ1,0,1 +
135
211

µ1,2,1

− 135
210

σx0,1(µ1,0,0 + µ1,0,2)− 135
210

σx0,1(µ1,2,0 + µ1,2,2). (36)

By (8), (32), and (27), we also have

σx0,1(x0,2 + x0,0) · σx0,1(x1,2 + x2,0)

=
(−3

24
x0,1 +

1
22

x0,2 +
1
22

x0,0 +
135
27

µ0,1

)
·
(−3

24
x0,1 +

1
22

x1,2 +
1
22

x2,0 +
135
27

µ1,1,1

)

=
187
210

x0,0 − 33
28

x0,1 +
187
210

x0,2 − 7
27

x1,0 − 7
27

x1,1 +
43
28

x1,2 +
43
28

x2,0

− 7
27

x2,1 − 7
27

x2,2 +
945
213

µ0,1 − 135
214

(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2) +
135
212

µ1,1,1

+
405
214

(µ1,1,0 + µ1,1,2)− 135
212

(
σx0,0(µ1,1,1 + µ1,1,2) + σx0,2(µ1,1,0 + µ1,1,1)

)

+
18225
214

µ0,1 · µ1,1,1. (37)

Hence we have by (31), (36), (37),

0 = 6075µ0,1 · µ1,1,1

= 64x0,1 − 656(x0,0 + x0,2)− 576(x1,2 + x2,0) + 384(x1,0 + x1,1 + x2,1 + x2,2)

+ 810µ0,1 + 1260µ1,1,1 − 135(µ1,1,0 + µ1,1,2) + 360(µ1,0,1 + µ1,2,1)

+ 45(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2)− 720(σx0,1(µ1,0,0 + µ1,0,2 + µ1,2,0 + µ1,2,2)

+ 180
(
σx0,0(µ1,1,1 + µ1,1,2) + σx0,2(µ1,1,0 + µ1,1,1)

)
,

as desired. ¤

Lemma 4.23. For i, k, ` ∈ {0, 1, 2}, we have

〈µ1,i,k, µ1,i,`〉 =
2
5
. (38)
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Hence, µ1,i,k = µ1,i,` for any i, k, `.

Proof. By Lemma 4.22 and (33), (34), and (35), we have

0 = 〈6075µ0,1 · µ1,1,1, µ1,0,0〉

= 64 · 1
24
− 656

(
1
24

+
1
24

)
− 576

(
1
24

+
1
24

)
+ 384

(
1
24

+
1
24

+
1
24

+
1
24

)

+ 810 · 0 + 1260 · 0− 135(0 + 0) + 360(〈µ1,0,0, µ1,0,1〉+ 0)r

+ 45
(

2
5

+ 〈µ1,0,0, µ1,0,1〉+ 0 + 0
)
− 720

(
− 1

22
+

3
22
〈µ1,0,0, µ1,0,1〉+

1
22

)

+ 180
(

1
22

+
1
22

)

= 54− 135〈µ1,0,0, µ1,0,1〉,

which implies 〈µ1,0,0, µ1,0,1〉 = 2/5. Similarly, one can prove 〈µ1,i,k, µ1,i,`〉 = 2/5, also. ¤

Notation 4.24. We denote µ1,i,0 = µ1,i,1 = µ1,i,2 by µ1,i for i ∈ {0, 1, 2}.

Proposition 4.25. For any (i, j) 6= (i′, j′), we have

µi,j · µi′,j′ = 0. (39)

Moreover,

µ0,1 + µ1,0 + µ1,1 + µ1,2

=
32
45

(x0,0 + x0,1 + x0,2 + x1,0 + x1,1 + x1,2 + x2,0 + x2,1 + x2,2). (40)

Therefore, the dimension of G is 12.

Proof. The first assertion follows from (29) and Lemma 4.23.
To prove (40), let

µ̃ = µ0,1 + µ1,0 + µ1,1 + µ1,2,

x̃ =
32
45

(x0,0 + x0,1 + x0,2 + x1,0 + x1,1 + x1,2 + x2,0 + x2,1 + x2,2).

Then by Lemmas 4.16, 4.22, and 〈µi,j , µi′,j′〉 = 0 for (i, j) 6= (i′j′), we have

〈µ̃− x̃, µ̃− x̃〉 = 0

and thus µ̃ = x̃ as desired.
To check the dimension of G, for {a1, a2, . . . , a12} = {xi,j , µ0,1, µ1,0, µ1,1 | i, j ∈ Z3},

we can get det(〈ai, aj〉) = 342/286 · 52 6= 0 by computer. Hence the dimension of G
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is 12. ¤

Remark 4.26. From our proof, we have shown that (xi0,j0 , xi1,j1 , xi2,j2 , µi,j) forms
a normal GU3A basis of G{xi0,j0 , xi1,j1} if and only if

{
(i0, j0) + (i1, j1) + (i2, j2) ≡ (0, 0) (mod 3),

(i1, j1)− (i0, j0) ≡ ±(i, j) (mod 3).

The Griess algebra G is isomorphic to GVF (3A) and the structure is summarized as in
Figure 1.

Figure 1. Configuration for GVF (3A).
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[HLY] G. Höhn, C. H. Lam and H. Yamauchi, McKay’s E6-observation on the largest Fischer group,

Comm. Math. Phys., 310 (2012), 329–365.
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