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On the ideal class groups of the maximal cyclotomic extensions

of algebraic number fields
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Abstract. We shall consider the maximal cyclotomic extension of a
totally real finite algebraic number field and its ideal class group. We shall
investigate the structure of the ideal class group with the action of the cyclo-
tomic Galois group.

Introduction.

Let k0 be a finite algebraic number field contained in the field of complex numbers
C and ζn denote a primitive n-th root of 1 (n ≥ 1). Let k∞ be the maximal cyclotomic
extension of k0, i.e. the field obtained by adjoining all ζn (n ≥ 1) to k0. Further, let k1

be the subextension of k∞/k0 which is obtained by adjoining ζ4 and ζl for all odd prime
l to k0 and consider the Galois group g = Gal(k∞/k1). As readily seen, g is isomorphic
to the additive group of the profinite completion Ẑ of the ring of rational integers Z.

In our previous paper [1], we have determined the profinite g-module structure of the
Galois group of the maximal abelian extension of k∞ with certain restricted ramifications.
In this paper, by a similar method, we shall investigate the ideal class group of k∞, which
is a discrete g-module.

The ideal class group C∞ of k∞ is, by definition,

C∞ = lim
−→

CFλ
,

where {Fλ} is the family of all finite subextensions of k∞/k0, CFλ
denotes the ideal class

group of Fλ and the inductive limit is taken with respect to natural homomorphisms
CFλ

→ CFµ
for Fλ ⊂ Fµ. As CF is a finite abelian group, C∞ is a discrete torsion

abelian group. Therefore, C∞ is a direct sum of its p-primary components C∞(p) for all
prime numbers p;

C∞ =
⊕

p

C∞(p).

It is known, by Brumer [2], that C∞ is isomorphic to the direct sum of countable number
of copies of Q/Z, where Q and Z denote the additive group of rational numbers and that
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of rational integers respectively. Therefore, C∞(p) is isomorphic to the direct sum of
countable number of copies of Qp/Zp, Qp and Zp being the additive group of p-adic
numbers and that of p-adic integers respectively;

C∞(p) '
∞⊕

N=1

(Qp/Zp).

The Galois group Gal(k∞/k0) acts naturally on C∞ and to describe the structure of
C∞ as Gal(k∞/k0)-module seems to be a fundamental but difficult problem. When we
restrict the action of Gal(k∞/k0) to that of the subgroup g and assume that k0 is totally
real, we can determine the g-module structure of the minus part C∞(p)− of C∞(p) for
an odd prime p completely. This is the main result of this paper.

To be precise, let k+
∞ denote the maximal totally real subfield of k∞. The complex

conjugation ρ, which is a generator of the Galois group Gal(k∞/k+
∞), acts on C∞(p).

Put

C∞(p)± = {c ∈ C∞(p) | cρ = ±c}.

Then, as p is odd, we have the direct sum decomposition

C∞(p) = C∞(p)+ ⊕ C∞(p)−

as discrete g-modules. A result of Kurihara [6] indicates that C∞(p)+ = {0} so that we
have C∞(p) = C∞(p)−.

Let W (p) denote the group of all p-powerth roots of unity. For a pro-p g-module X,
let Hom(X, W (p)) denote the set of continuous homomorphisms from X to W (p). The
group g acts on Hom(X, W (p)) by

σ(f)(x) = σ(f(σ−1(x))) (σ ∈ g, f ∈ Hom(X, W (p)), x ∈ X),

so that Hom(X, W (p)) is a discrete g-module.
Let Ap denote the completed group algebra of g over Zp, which is a pro-p g-module,

and let Cp = Hom(Ap,W (p)). Our main result is the following

Main Theorem. Let p be an odd prime. Then, as discrete g-modules, C∞(p)− is
isomorphic to the direct sum of countable number of copies of Cp;

C∞(p)− '
∞⊕

N=1

Cp.

Let M+
p denote the maximal pro-p abelian extension of k+

∞ unramified outside p

and k+
1 denote the maximal totally real subfield of k1. As M+

p is a Galois extension of
k+
1 , the Galois group Gal(M+

p /k+
∞) is naturally a pro-p Gal(k+

∞/k+
1 )-module, and hence

a pro-p g-module via the isomorphism Gal(k+
∞/k+

1 ) ' g. It is known that we have, as
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g-modules, an isomorphism

C∞(p)− ' Hom
(
Gal(M+

p /k+
∞), W (p)

)
.

This will be recalled in Section 1. Therefore, the above theorem can be formulated as
the following

theorem. Let p be an odd prime. Then, as pro-p g-modules, Gal(M+
p /k+

∞) is
isomorphic to

∏∞
N=1Ap, the direct product of countable number of copies of Ap.

What we shall prove is this theorem. That C∞(p) is isomorphic to the dual of a
certain Galois group holds for an arbitrary finite algebraic number field k0 and for an
arbitrary prime p. We can not, however, determine the structure of this Galois group in
general cases.

For the proof of the above theorem, as an algebraic tool, we use a characterization
of the pro-p g-module

∏∞
N=1Ap in terms of the solvability of embedding problems and

an obvious topological condition. This will be recalled in Section 2.
To solve embedding problems for the Ap-module Gal(M+

p /k+
∞), we shall show, in

Section 4, that the Galois group Gal(M̃+
p /k+

1 ) is projective (Theorem 4.1). Here M̃+
p de-

notes the maximal pro-p extension of k+
∞ unramified outside p. An arithmetical point for

this is that, for every prime l, the field k+
1 Ql contains the maximal unramified extension

of Ql.
Although the proof of Theorem 4.1 is a modification of that of our previous result

[1, Theorem 2.1], which originates in that of a result of Uchida [10, Theorem 1], we
shall give details of the proof, since there are some technical points arising from the fact
that k+

1 does not contain a primitive p-th root of unity. As preparations of Section 4,
we summarize in Section 3, after Reichardt [7] and Shafarevich [9], Galois theoretical
results on embedding problems for p-groups. In Section 5 we shall complete the proof of
the above theorem.

The author expresses his sincere gratitudes to Professor Humio Ichimura for stimu-
lating discussions, especially for explaining corresponding results of Iwasawa theory.

1. Ideal class groups.

1.1. The ideal class group C∞(p) is canonically isomorphic to the character group
of a certain Galois group (Iwasawa [5], cf. also Horie [3]). We shall briefly explain this.

Let k0 be an arbitrary finite algebraic number field and k∞ be the maximal cyclo-
tomic extension of k0. Let p be an arbitrary prime and Mp denote the maximal pro-p
abelian extension of k∞ unramified outside p. Further, let Np be the field obtained by
adjoining to k∞ all p-powerth roots of all units of k∞. Then, Mp and Np are both Galois
extensions of k0 and Np is a subfield of Mp.

Let X = Gal(Mp/Np). For each element c of C∞(p), a character χc of X is associated
as follows. Take an ideal A belonging to c. Then, for some power m of p, Am is principal;
Am = (a) (a ∈ k∞). Let α be an m-th root of a and define the character χc of X by
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χc(σ) = σ(α)α−1 (σ ∈ X).

As can be easily verified, χc does not depend on the choices of A,m, a, α and is uniquely
determined by c. Further, this correspondence c → χc gives an isomorphism of abelian
groups

C∞(p) ' Hom(X, W (p)). (1)

1.2. Now we shall restrict ourselves to the case that k0 is a totally real finite
algebraic number field and p is an odd prime.

As before, let k1 denote the field obtained by adjoining ζ4 and ζl for all odd prime l

to k0. Let k+
1 denote the maximal totally real subfield of k1. Since k∞, Np, and Mp are

all Galois extensions of k+
1 , the Galois group Gal(k∞/k+

1 ) acts on Hom(X, W (p)) by

σ(χ)(x) = σ(χ(σ−1(x)))
(
σ ∈ Gal(k∞/k+

1 ), χ ∈ Hom(X, W (p)), x ∈ X
)
.

The Galois group Gal(k∞/k+
1 ) also acts on C∞(p) naturally and (1) is an isomorphism

as Gal(k∞/k+
1 )-modules.

Put

X± = {x ∈ X | xρ = ±x},

where ρ ∈ Gal(k∞/k+
1 ) denotes, as before, the complex conjugation. Then, (1) induces

an isomorphism

C∞(p)− ' Hom(X/X−, W (p)).

Let M+
p denote the maximal pro-p abelian extension of k+

∞ unramified outside p.
As M+

p is a Galois extension of k+
1 , the Galois group Gal(M+

p /k+
∞) is naturally a pro-p

g-module via the isomorphism Gal(k+
∞/k+

1 ) ' g, on which ρ acts trivially.
On the other hand, ρ acts on Gal(Np/k∞) as the (−1)-multiplication. This follows

from the fact that the unit group of k∞ is generated by that of k+
∞ and all roots of unity.

Therefore we have X/X− = Gal(M+
p Np/Np) and, as g-modules, an isomorphism

C∞(p)− ' Hom
(
Gal(M+

p /k+
∞), W (p)

)
.

2. Embedding problems of Ap-modules.

2.1. In our previous paper [1], we have given a characterization of pro-p Ap-module∏∞
N=1Ap in terms of embedding problems of Ap-modules. We shall briefly recall this.

Let Γ be an infinite cyclic group and x1, x2, . . . be a countable number of letters.
Let F be the free group generated by the symbols (γλ, xi), where γλ ∈ Γ, i ≥ 1. The
group Γ operates on F via γ(γλ, xi) = (γγλ, xi), γ ∈ Γ. Let p be a fixed prime and S be
the category of finite abelian p-groups. We define the pro-S group FS by
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FS = lim
←−

F/N,

where N runs over all index finite normal Γ-subgroups containing all (γλ, xi) except for
a finite number such that F/N is an object of S. As readily seen, the cardinality of open
subgroups of FS is countable and the profinite completion g of Γ operates naturally on
FS .

Let Ap denote the completed group algebra of g over Zp, i.e.

Ap = lim
←
Zp/(pm)[g/h],

where the projective limit is taken with respect to all integers m and all index finite
subgroups h of g. Then, as FS is a pro-p abelian g-group, it is naturally an Ap-module.
As can be easily verified, FS is, as an Ap-module, isomorphic to the direct product of
countable number of copies of Ap;FS '

∏∞
N=1Ap.

2.2. An embedding problem for a pro-p Ap-module X is the following diagram:

X

ϕ

²²
0 // A // B

α // C // 0

(PAp
)

Here, the horizontal sequence is an exact sequence of finite Ap-modules with p-power
orders and ϕ is a surjective Ap-homomorphism. A weak solution of this problem is an
Ap-homomorphism ψ : X → B such that αψ = ϕ. If, moreover, ψ is surjective, then ψ

is called a proper solution, or simply a solution.
Let X be a pro-p Ap-module with at most countable open Ap-submodules. A variant

of classical Iwasawa’s theorem [4, Theorem 4] is that X is isomorphic to FS , and hence
to

∏∞
N=1Ap, as Ap-modules if and only if every embedding problem (PAp

) has a solution
([1, Theorem 1.1]).

2.3. The solvability of every embedding problem (PAp
) is reduced to two condi-

tions. To state these, let us introduce certain finite Ap-modules. For each n ≥ 1, let
Cn denote the unique quotient of g such that Cn is cyclic of order n. Let Fp[Cn] denote
the group algebra of Cn over the prime field Fp of characteristic p. Via the projection
g → Cn, Fp[Cn] is naturally regarded as a g-module, and hence an Ap-module. We
denote this module by En(p).

Now we have the following theorem ([1, Theorem 1.3]).

Theorem 2.1. Let X be a pro-p Ap-module with at most countable open Ap-
submodules. Then X is isomorphic to

∏∞
N=1Ap if and only if the following conditions

(Ip) and (IIp) are satisfied ;

(Ip): Every embedding problem (PAp
) has a weak solution whenever A, B and C are

finite Ap-modules with p-power orders.
(IIp): For any m,n ≥ 1, there exists an open Ap-submodule Y of X such that X/Y is

isomorphic to En(p)⊕m.
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Remark. Let Γ be the identity group, instead of an infinite cyclic group, and F

be a free group generated by a countable number of letters. Then the pro-S group FS is
defined similarly and is isomorphic to

∏∞
N=1 Zp, the direct product of countable number

of copies of Zp. A variant of Theorem 2.1 holds, Ap being replaced by Zp and En(p)
being replaced by Z/pZ, which gives a characterization of the profinite abelian group∏∞

N=1 Zp. This immediately gives a characterization of
⊕∞

N=1(Qp/Zp), the character
group of

∏∞
N=1 Zp. As readily seen, this is equivalent to the result of infinite abelian

group theory which Brumer used in [2].

3. Embedding problems for p-groups.

3.1. Let k be an algebraic number field, not necessarily finite over the rationals
Q, and p be a prime number. Let us consider the following embedding problem for the
absolute Galois group Gal(k̄/k) of k;

Gal(k̄/k)

ϕ

²²
1 // Cp // E

α // H // 1.

Here, the horizontal sequence is an exact sequence of finite p-groups, Cp being a cyclic
group of order p, and ϕ is a surjective homomorphism. Note that the group E is a central
extension of H.

Assume that this embedding problem has a proper solution ψ : Gal(k̄/k) → E, i.e.,
ψ is a surjective homomorphism such that αψ = ϕ.

In this section, after Reichardt [7] and Shafarevich [9], we shall summarize how other
proper solutions will be obtained, especially in the case that the ground field k does not
contain a primitive p-th root of unity.

Let F and F̃ be the fields corresponding to the kernel of ϕ and that of ψ respectively.
Let F1 and F̃1 be the fields obtained by adjoining ζp to F and F̃ respectively, where ζp

is a primitive p-th root of unity. Then there exists an element µ ∈ F ∗1 \ (F ∗1 )p such that
F̃1 = F1( p√µ).

Let G be the Galois group of F̃1/F1, V be the subgroup of F ∗1 /(F ∗1 )p generated by
the class of µ, and Wp denote the group of p-th roots of unity. By Kummer theory, G is
isomorphic to Hom(V, Wp), the group of homomorphisms from V to Wp;

G ' Hom(V, Wp).

Since F1 and F̃1 are both Galois extensions of k, the Galois group Gal(F1/k) acts
naturally on G and Hom(V, Wp), and this is an isomorphism as Gal(F1/k)-modules. (The
action on Hom(V, Wp) is defined similarly as the action of g on Hom(X, W (p)).)

Let ∆ denote the subgroup Gal(F1/F ) of Gal(F1/k), ρ a generator of the cyclic
group ∆, and n be the order of ∆. The group ∆ acts on Wp, so that we have a character

ω : ∆ → (Z/(p))∗
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such that ζρ
p = ζr

p , r ∈ Z and ω(ρ) is the residue class of r.

Lemma 3.1. The element µ satisfies the following conditions:

(i) µσ ≡ µmod (F ∗1 )p for any σ ∈ Gal(F1/k(ζp)).
(ii) µρ ≡ µr mod (F ∗1 )p.

Proof. Since F̃1/k(ζp) is a central extension of the extension F1/k(ζp), the Galois
group Gal(F1/k(ζp)) acts trivially on G. As it also acts trivially on Wp, it acts trivially
on V . This shows (i).

If ∆ acts on V via a character ε : ∆ → (Z/(p))∗, then ∆ acts on G via the character
ε−1ω. Since the extension F̃1/F1 is abelian, we have ε−1ω = 1, i.e., ∆ acts on V via the
character ω. This shows (ii). ¤

Remark. Conversely, assume that an element µ of F ∗1 \ (F ∗1 )p is given and that
it satisfies the condition (ii) in Lemma 3.1. Then, F1( p√µ)/F is a Galois extension.
Furthermore, it is an abelian extension. This follows from the above proof and the fact
that the Galois group Gal(F1( p√µ)/F ) is a split extension of Gal(F1/F ).

Let Fp[∆] be the group algebra of ∆ over Fp and regard the abelian group F ∗1 /(F ∗1 )p

as Fp[∆]-module. Let eω ∈ Fp[∆] denote the projector from F ∗1 /(F ∗1 )p to its ω-eigenspace.
Then we have

eω =
1
n

∑

σ∈∆

ω(σ)σ−1.

As in Reichardt [7], let

T = ρn−1 + rρn−2 + · · ·+ rn−2ρ + rn−1,

which is an element of the group algebra Z[∆] of ∆ over Z. Then, nρ−1eω coincides with
the image of T under the reduction modulo p : Z[∆] → Fp[∆]. From this we have the
following

Lemma 3.2. The condition (ii) in Lemma 3.1 is equivalent to the following condi-
tion (ii)′:

(ii)′ There exists an element ν of F ∗1 such that µ ≡ νT mod(F ∗1 )p.

3.2. Let a be an arbitrary element of k(ζp)∗ such that µaT 6∈ (F ∗1 )p and consider
the extension F1(

p√
µaT )/k.

Proposition 3.1. (i) The field F1(
p√

µaT ) is a Galois extension of k and is an
abelian extension of F .
(ii) The Galois group Gal(F1(

p√
µaT )/k(ζp)) is isomorphic to E.

Proof. One verifies at once, by using Lemma 3.1, that
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(µaT )σ ≡ µaT mod (F ∗1 )p

for any σ ∈ Gal(F1/k(ζp)) and that

(µaT )ρ ≡ (µaT )r mod (F ∗1 )p.

From this and the remark after Lemma 3.1, (i) follows.
Let c ∈ H2(H;Cp) be the cohomology class associated with the extension E of H.

Then, it is easily verified that c is determined by the elements µσ−1, σ ∈ H. If we replace
µ with µaT , these elements are invariant. From this (ii) follows. ¤

Proposition 3.2. There exists a Galois extension F̃ ′ of k such that k ⊂ F ⊂ F̃ ′,
F̃ ′ ∩ k(ζp) = k, and F̃ ′k(ζp) = F1(

p√
µaT ).

Proof. Let G = Gal(F1(
p√

µaT )/k) and E = Gal(F1(
p√

µaT )/k(ζp)). It suffices
to show that E is a direct summand of G.

First, one sees immediately that there exists a subgroup D of G such that
Gal(F1(

p√
µaT )/F ) = Cp × D, where Cp = Gal(F1(

p√
µaT )/F1). Then, as the order

n of D is prime to p and E is a finite p-group, G is the semi-direct product of E with D;
G = E.D.

The group D acts on E by conjugation. As D is isomorphic to Gal(F1/F ), D acts
on the quotient E/Cp trivially. As D also acts on Cp trivially and n is prime to p, it
follows easily that D acts on E trivially. Hence we have G = E ×D. ¤

4. Projectivity of Galois groups.

4.1. Let k0 be a totally real finite algebraic number field. Let k1 and k∞ be the
fields as defined in Introduction and k+

1 and k+
∞ be the maximal totally real subfield of k1

and k∞ respectively. Let p be an odd prime and M̃+
p denote the maximal pro-p extension

of k+
∞ unramified outside p. By the maximality of M̃+

p , M̃+
p is a Galois extension of k+

1 .
The aim of this section is to show the following

Theorem 4.1. Let p be an odd prime. Then the Galois group Gal(M̃+
p /k+

1 ) is a
projective profinite group.

We shall first reduce the proof of Theorem 4.1 to showing that a certain Galois group
over k+

1 is a free pro-p group.
Let G = Gal(M̃+

p /k+
1 ) and, for each prime l, denote by G(l) the maximal pro-l

quotient of G. By the same arguement as in [1, 2.2], to prove Theorem 4.1, it suffices to
show that cdlG(l) ≤ 1 for all prime l. Here cdl denotes the l-cohomological dimension.

Assume that l 6= p. As G is an extension of Gal(k+
∞/k+

1 ) by a pro-p group, G(l) is
isomorphic to Zl, the additive group of l-adic integers. Hence we have cdlG(l) = 1.

Assume that l = p. Then we have G(p) = Gal(M (p)/k+
1 ), where M (p) denotes the

maximal pro-p extension of k+
1 contained in M̃+

p .
The following lemma is proved in the same way as [1, Lemma 2.2].
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Lemma 4.1. The field M (p) is the maximal pro-p extension of k+
1 unramified out-

side p.

By Lemma 4.1, the proof of Theorem 4.1 is reduced to showing the following

Theorem 4.2. For an odd prime number p, let M (p) be the maximal pro-p exten-
sion of k+

1 unramified outside p. Then the Galois group Gal(M (p)/k+
1 ) is a free pro-p

group.

4.2. For the proof of Theorem 4.2, let G(p) = Gal(M (p)/k+
1 ) and consider an

embedding problem for the Galois group G(p);

G(p)

ϕ

²²
1 // Cp // E // H // 1.

(P)

Here, the horizontal sequence is an exact sequence of finite p-groups, Cp being a cyclic
group of order p, and ϕ is a surjective homomorphism. Then, as explained in [1, 2.3], to
prove Theorem 4.2, it suffices to show that every embedding problem (P) has a solution
in the case that the exact sequence is non-split.

First we need the following

Proposition 4.1. For each prime l, k+
1 Ql contains the maximal unramified ex-

tension of Ql.

For the proof, cf. Uchida [10, Lemma 1]. (The field k+
1 contains the field Q(2) in [10].)

By Proposition 4.1, we obtain the following corollary (cf., e.g., Serre [8, II, Propo-
sition 9]).

Corollary. Let p be an odd prime. Then we have cdp Gal(k̄1/k+
1 ) ≤ 1.

Let ϕ̃ : Gal(k̄1/k+
1 ) → H be the composite of ϕ and the projection Gal(k̄1/k+

1 ) →
G(p) and consider the embedding problem (P̃) obtained from (P) by replacing G(p) and
ϕ with Gal(k̄1/k+

1 ) and ϕ̃, respectively. By the above corollary, the embedding problem
(P̃) has a solution ψ̃.

4.3. Now we are in the situation in Section 3. Let F and F̃ be the fields corre-
sponding to the kernel of ϕ̃ and that of ψ̃ respectively. Let F1 and F̃1 denote the fields
obtained by adjoining ζp to F and to F̃ respectively so that there exists an element µ of
F ∗1 \ (F ∗1 )p such that F̃1 = F1( p√µ).

Let ∆ denote the Galois group Gal(k1/k+
1 ) and define an element T of the group

algebra Z[∆] by

T = ρ + r,

where ρ ∈ ∆ is the complex conjugation and r = p− 1. Note that ζρ
p = ζr

p .
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Let a be an arbitrary element of k1 such that µaT 6∈ (k∗1)p and consider the extension
F1(

p√
µaT ) of k+

1 . This is a Galois extension (Proposition 3.1). Moreover, F1(
p√

µaT )
contains a Galois extension F̃ ′ of k+

1 such that

F ⊂ F̃ ′, F̃ ′ ∩ k1 = k+
1 , F̃ ′k1 = F1

( p√
µaT

)

(Proposition 3.2). Namely, F̃ ′ corresponds to another solution of the embedding problem
(P̃). If the extension F̃ ′/k+

1 is unramified outside p, then this gives a solution of the
embedding problem (P). In order that F̃ ′/k+

1 is unramified outside p, it is sufficient that
the extension F1(

p√
µaT )/F1 is unramified outside p, because F/k+

1 is unramified outside
p and p is odd. Therefore, the proof of Theorem 4.2 is reduced to showing the following

Proposition 4.2. There exists an element a ∈ k∗1 such that µaT 6∈ (k∗1)p and the
extension F1(

p√
µaT )/F1 is unramified outside p.

4.4. In the rest of this section, we shall give the proof of Proposition 4.2.
As F/k+

1 is a finite extension, there exist finite algebraic number fields k0 and F0

such that F0 ∩ k+
1 = k0 and F0k

+
1 = F . By taking k0 sufficiently large, we may assume

that the extension F0/k0 is unramified outside p and that µ ∈ F0(ζp).
First we have the following

Lemma 4.2. There exist an ideal m of k0(ζp) prime to p, an ideal a of F0(ζp), and
an ideal b of F0(ζp) which is a product of primes lying above p such that (µ) = mbap.

Proof. This is proved in the same way as [1, Lemma 2.3] by noting that
F0(ζp,

p√µ)/k0(ζp) is a central extension of F0(ζp)/k0(ζp) and that the extension
F0(ζp)/k0(ζp) is unramified outside p. ¤

Lemma 4.3. There exist an ideal n of k0(ζp), an ideal a1 of F0(ζp) and an ideal b

of F0(ζp) which is a product of primes lying above p such that (µ) = nT bap
1.

Proof. Let m, b and a be ideals as in Lemma 4.2. Then we have

(µ)ρ−r = mρ−rbρ−r(aρ−r)p.

By Lemma 3.1 (ii), (µ)ρ−r is a p-th power of an ideal of F0(ζp), and hence so is mρ−r,
because mρ−r and bρ−r are relatively prime. As mρ−r is prime to p and the extension
F0(ζp)/k0(ζp) is unramified outside p, mρ−r is a p-th power of an ideal of k0(ζp), i.e., we
have

mρ ≡ mr mod Ip,

where I denotes the ideal group of k0(ζp). From this, it follows that there exists an ideal
n of k0(ζp) such that
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m ≡ nT mod Ip.

This is proved completely in the same way as that of Lemma 3.2. Now the lemma follows
from this. ¤

4.5. Let n be the ideal of k0(ζp) as given in Lemma 4.3. By the density theorem,
there exists a prime ideal q of k0(ζp) whose absolute degree is one such that q and n

belong to the same ideal class of k0(ζp). We may also assume that q is unramified over
Q and is prime to 2. Thus we have q = n(a) with some element a of k0(ζp)∗.

Let us consider the element µaT of F0(ζp)∗. By Lemma 4.3, we have (µaT ) =
qρqrbap

1. As q is prime to p, qρ 6= q, and the extension F0(ζp)/k0(ζp) is unram-
ified outside p, it follows that µaT 6∈ (F0(ζp)∗)p. It also follows that the extension
F0(ζp,

p√
µaT )/F0(ζp) is unramified outside those primes of F0(ζp) lying above p, qρ and

q.
Let q = q ∩ Z. Let ηq = ζq + ζ−1

q and put F ′0 = F0(ηq), which is contained in k+
1 .

By extending F0 to F ′0, we have the following

Lemma 4.4. The extension F ′0(ζp,
p√

µaT )/F ′0(ζp) is of degree p and is unramified
outside p.

Proof. This is proved in the same way as [1, Lemma 2.4] by using Abhyanker’s
lemma. Since the verification of the extension degree is lacking in [1, Lemma 2.4], we
shall supplement it.

Assume, on the contrary, that this extension is trivial. Then, F0(ζp,
p√

µaT ) is
contained in F ′0(ζp). As k0(ηq, ζp)/k0(ζp) is abelian, it follows that Gal(F0(ζp,

p√
µaT )/

k0(ζp) is isomorphic to H × Cp, which contradicts with the assumption that E is a
non-split extension of H. ¤

By Lemma 4.4, it follows that the extension F1(
p√

µaT )/F1 is unramified outside p.
That this extension is of degree p is verified in the same way as the proof of Lemma 4.4.
Thus the proof of Proposition 4.2 is completed.

5. Proof of Theorem.

In this section we shall give the proof of Theorem.
The Galois group Gal(M+

p /k+
∞) is a pro-p Ap-module with countable open Ap-

submodules. Therefore, by Theorem 2.1, it is enough to verify that this Galois group
satisfies the conditions (Ip) and (IIp) in Theorem 2.1. The proof that (Ip) is satisfied
can be done, by using Theorem 4.1, completely in the same way as given in [1, 3.1], and
hence is omitted.

To show that the condition (IIp) in Theorem 2.1 is satisfied, it suffices to prove the
following

Proposition 5.1. Let p be an odd prime. Then, for each positive integers m and
n, there exists a finite unramified abelian extension F+ of k+

∞ which is a Galois extension
of k+

1 such that the Galois group Gal(F+/k+
∞) is isomorphic to En(p)⊕m as Ap-modules.
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Proof. The proof can be done along the same line of the proof of Proposition 3.1
in [1]. As g is isomorphic to Ẑ, there exists a unique subextension k+

n of k+
∞/k+

1 such
that [k+

n : k+
1 ] = n. Let K ′

0/k′0 be a finite Galois extension of finite algebraic number
fields such that k+

1 ∩K ′
0 = k′0, k+

1 K ′
0 = k+

n and that k+
1 is cyclotomic over k′0. Replacing

k′0 by a finite extension if necessary, we may assume that [k′0(ζp) : k′0] = 2. The extension
K ′

0/k′0 is cyclic of degree n.
Fix an even integer 2N with N > 1. By the theorem of primes in an arithmetic

progression, there exists a prime l such that l ≡ 1mod 2N and that l is unramified in k′0.
Then, as k′0(ζl)/k′0 is a cyclic extension of degree l−1, there exists a unique subextension
K of k′0(ζl)/k′0 such that [k′0(ζl) : K] = 2N . As 2N is even, K is contained in k′0(ζl + ζ−1

l ).
Let k+

0 = k′0(ζl + ζ−1
l ), which is a subfield of k+

1 , and K+
0 = K ′

0(ζl + ζ−1
l ). Thus we have

totally real cyclotomic extensions of K:

K ⊂ k+
0 ⊂ K+

0 ⊂ k+
∞, (2)

where k+
0 /K is cyclic of degree N > 1 and K+

0 /k+
0 is cyclic of degree n.

Let k0 = k+
0 (ζp), K0 = K+

0 (ζp), and p1, . . . , pg be all prime ideals of K0 lying above
p. For each i (1 ≤ i ≤ g), fix a positive integer si such that every element α of K0

satisfying α ≡ 1mod psi
i is locally a p-th power, i.e. α is a p-th power in the pi-adic

completion of K0. Let m be an integral ideal of K0 such that psi
i |m (1 ≤ i ≤ g) and that

m is invariant by the action of Gal(K0/k+
0 ).

By the density theorem, there exist principal prime ideals L1, . . . ,Lm, Li = (αi)
(1 ≤ i ≤ m), of K0 satisfying the following conditions;

(i) αi ≡ 1mod m.
(ii) Let Li ∩Q = (li). Then l1, . . . , lm are distinct primes.
(iii) Every Li is of absolute degree one and is unramified in K0/Q.

Let ρ be the generator of the Galois group Gal(K0/K+
0 ) and let Cn = Gal(K0/k0),

which is a cyclic group of order n. For each i (1 ≤ i ≤ m), let Fi be the field obtained
by adjoining to K0 p-th roots of (αρ−1

i )σ, where σ runs over all elements of Cn.
By the conditions (i), (ii) and (iii), the primes p1, . . . , pg split completely in Fi and

the extension Fi/K0 is unramified outside Lσ
i , Lσρ

i , σ ∈ Cn. By the conditions (ii) and
(iii), (αρ−1

i )σ (1 ≤ i ≤ m, σ ∈ Cn) are multiplicatively independent in K∗
0/(K∗

0 )p, so
that F1, . . . , Fm are linearly disjoint over K0.

One proves, by Galois theory, the following:

(a) Fi is a Kummer extension of K0 with exponent p.
(b) Fi is a Galois extension of k0 and the Galois group Gal(Fi/K0) is, as Gal(K0/k0)-

modules and hence as Ap-modules, isomorphic to En(p).
(c) Fi is a Galois extension of k+

0 and is an abelian extension of K+
0 .

(d) There exists a subextension F+
i of Fi/K+

0 such that F+
i ∩ K0 = K+

0 , F+
i K0 = Fi

and that F+
i /k+

0 is a Galois extension.

Let F be the composite of F1, . . . , Fm. Then we have that F ∩ k∞ = K0 and that
Fi(ζli) is unramified over K0(ζli). These can be proved in the same way of the proof of
Proposition 3.1 in [1]. (As for the former, this is where the tower of fields (2) is used.)
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Now, let F+ be the composite of F+
1 , . . . , F+

m . As F1, . . . , Fm are linearly disjoint
over K0, F+

1 , . . . , F+
m are linearly disjoint over K+

0 . Thus, by (b) and (d), the Galois group
Gal(F+/K+

0 ) is isomorphic to En(p)⊕m as Ap-modules and hence, as F ∩ k∞ = K0, so
is Gal(F+k+

∞/k+
∞).

It remains to show that F+k+
∞ is unramified over k+

∞. As Fi(ζli) is unramified
over K0(ζli), F+k∞ is unramified over k∞. Since the extension degree [F+k∞ : k∞] =
[F+k+

∞ : k+
∞] is a power of p and [k∞ : k+

∞] = 2, it follows that F+k+
∞ is unramified over

k+
∞. ¤
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