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Abstract. We give a simple proof of the symmetry of a minimal dif-
fusion X0 on a one-dimensional open interval I with respect to the attached
canonical measure m along with the identification of the Dirichlet form of
X0 on L2(I; m) in terms of the triplet (s, m, k) attached to X0. The L2-
generators of X0 and its reflecting extension Xr are then readily described.
We next use the associated reproducing kernels in connecting the L2-setting to
the traditional Cb-setting and thereby deduce characterizations of the domains
of Cb-generators of X0 and Xr by means of boundary conditions. We finally
identify the Cb-generators for all other possible symmetric diffusion extensions
of X0 and construct by that means all diffusion extensions of X0 in [IM2].

1. Introduction.

It is well known that the minimal diffusion X0 on a one-dimensional open interval
I = (r1, r2) can be described in terms of a triplet (s,m, k) of a canonical scale s, a
canonical measure m and a killing measure k, and furthermore all possible diffusion
extensions of X0 to the closed interval [r1, r2] can be characterized by means of general
boundary conditions imposed at both boundaries r1 and r2 ([IM2]). The description
and characterization were formulated in the framework of the space Cb of all bounded
(finely) continuous functions.

But it was shown only quite recently in [F2] that the minimal diffusion process
X0 with no killing inside (k = 0) is symmetric with respect to the attached canonical
measure m and further the Dirichlet form of X0 on L2(I;m) is identified in terms of m

and the attached canonical scale s. Itô’s construction of the symmetric resolvent density
of X0 in [I1] was utilized in the proof. Afterward the stated results have been extended
in [CF, Section 5.3] to a general minimal diffusion admitting killings inside by using a
method of resurrection and killing.

In Section 2.2 of the present paper, we give a more direct and simpler proof of the
above mentioned results in [CF] by showing the m-symmetry of part processes of X0 on
each relatively compact subintervals of I and calculating corresponding symmetric forms
just via integrations by parts. Based on them, we aim at characterizing all possible
symmetric diffusion extensions of X0 in terms of boundary conditions both in L2-setting
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and Cb-one.
As an immediate consequence of the identification of the Dirichlet form of X0 on

L2(I;m) with the form (E0,F0) introduced in Section 2.1, we can identify the L2-
generator of X0 in Section 2.3. Section 2.4 will deal with the reflecting extension Xr

of X0. Denote by I∗ the interval obtained from I by adding its regular boundaries and
extend m to I∗ by setting m(I∗ \ I) = 0. Xr is the m-symmetric diffusion on I∗ extend-
ing X0 whose Dirichlet form on L2(I∗;m) = L2(I;m) is (Er,Fr) introduced in Section
2.1, which is actually the active reflected Dirichlet space of (E0,F0) in the sense of [CF,
Chapter 6]. We shall give the identification of the L2-generator of Xr in two ways: sim-
ply using an integration by parts and alternatively using its general characterization in
terms of the zero flux condition formulated in [CF, Section 7.3].

We then make use of the associated reproducing kernels in connecting the L2-setting
to the traditional Cb-setting and thereby deduce in Section 3 and Section 4 characterza-
tions of the domains of Cb-generators of X0 and Xr, respectively, by means of bound-
ary conditions. As compared to their L2-counterparts, they involve an extra boundary
condition that the function in the domain of the generator should vanish at each exit
boundary. This extra condition is implicit but hidden in an integrability condition for
the descriptions of L2-generators.

In Section 5, we deal with symmetric diffusion extensions of X0 other than Xr. Xr

is known to be a unique m-symmetric diffusion extension of X0 from I to I∗ that admits
no sojourn nor killing at points of I∗ \ I ([CF, Section 7.7]). When both r1 and r2 are
regular, there are three one-point extensions of X0 admitting no sojourn nor killing on
the boundary; the diffusion reflected at r1 (resp. r2) and absorbed at r2 (resp. r1) and
the extension of X0 to the one-point-compactification of I. On the other hand, to admit
sojourn or killing at boundary points just amounts to extending m or k to the boundary
points by allowing it to have positive masses there.

It turns out that those extensions mentioned above exhaust all possible symmetric
diffusion extensions of X0 obtained by adding regular boundary points or their identifi-
cation to I. All of them are irreducible. We shall exhibit their generators of both kinds
in terms of boundary conditions along with their constructions using Dirichlet forms.

Notice that the class of extensions of X0 we deal with from Section 3 to Section 5
is different from the one in [IM2, Section 4.1, Section 4.7] where all possible diffusion
extensions from I to [r1, r2] were investigated. The latter includes the cases of non-
regular boundaries while our class collects only extensions of X0 to regular boundaries
or their identification. However the condition at a regular boundary we shall derive in
Theorem 5.5 coincides with the original one in [IM2]. We shall verify in Section 6 that
actually all the diffusion extensions of X0 considered in [IM2] are, except for trivial ones,
symmetrizable and furthermore of Feller transition functions on appropriate state spaces
containing entrance boundaries.

Extensions of X0 involving jumps from boundaries into I have been intensively
studied ([Fe1], [Fe2], [IM1], [I2]). They are not symmetrizable because they are non-
reversible in time. Extensions of X0 with symmetric jumps among boundaries were
considered in [Fe2], [F1].
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2. Minimal diffusion and its reflecting extension.

Let I = (r1, r2) ⊂ R be a one-dimensional open interval. A strictly increasing
continuous function s on I is called a canonical scale. A positive Radon measure m on I

with full topological support is called a canonical measure. We shall work with a triplet
(s,m, k) where s is a canonical scale, m is a canonical measure and k is a positive Radon
measure on I.

2.1. Two regular Dirichlet forms for a triplet (s,m, k).
Define the space (F (s), E(s)) by

F (s) = {u : u is absolutely continuous in s and E(s)(u, u) < ∞}, (2.1)

E(s)(u, v) =
∫

I

Dsu(x)Dsv(x) ds(x). (2.2)

From the elementary identity u(b)− u(a) =
∫ b

a
Dsu(x)ds(x), a, b ∈ I, we get

(u(b)− u(a))2 ≤ |s(b)− s(a)| E(s)(u, u), a, b ∈ I, u ∈ F (s). (2.3)

(2.3) implies that, if {un} ⊂ F (s) is E(s)-Cauchy and convergent at one point a ∈ I, then
it is convergent to a function of F (s) uniformly on each compact subinterval of I.

We call the boundary ri approachable if |s(ri)| < ∞, i = 1, 2. If ri is approachable,
then any u ∈ F (s) admits a finite limit u(ri) by (2.3). Let us introduce the space

F (s)
0 = {u ∈ F (s) : u(ri) = 0 whenever ri is approachable}. (2.4)

We further write (u, v)k =
∫

I
uvdk, (u, v) =

∫
I
uvdm, and let





F (s),k = F (s) ∩ L2(I; k), F (s),k
0 = F (s)

0 ∩ L2(I; k),

E(s),k(u, v) = E(s)(u, v) + (u, v)k, u, v ∈ F (s),k,

E(s),k
α (u, v) = E(s),k(u, v) + α(u, v), α > 0, u, v ∈ F (s),k ∩ L2(I;m).

(2.5)

We will be concerned with two forms (Er,Fr) and (E0,F0) defined respectively by

Fr = F (s),k ∩ L2(I;m), Er(u, v) = E(s),k(u, v), u, v ∈ Fr, (2.6)

F0 = F (s),k
0 ∩ L2(I;m), E0(u, v) = E(s),k(u, v), u, v ∈ F0. (2.7)

The assertions of the next lemma are proven in [CF, Section 2.2.3] in the case that
k = 0 and the same proof is valid in the present general case.

Lemma 2.1. ( i ) If {un} ⊂ F (s),k is E(s),k-Cauchy and convergent to a function
u m-a.e. as n →∞, then u ∈ F (s),k and limn→∞ E(s),k(un − u, un − u) = 0.
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( ii ) The form (Er,Fr) defined by (2.6) is a Dirichlet form on L2(I;m).
(iii) Consider the contractive real functions ϕ`(t) = t− (−1/`)∨ t∧ (1/`), t ∈ R, ` ∈ N.

For any u ∈ F (s),k, the Cesàro mean sequence {un} of a certain subsequence of
{ϕ`(u)} is E(s),k-convergent to u.

For a given triplet (s,m, k), we write

j = m + k. (2.8)

ri is called regular if ri is approachable and the measure j is finite in a neighborhood of
ri. If ri is approachable, then any u ∈ Fr = F (s),k ∩ L2(I;m) has a finite limit u(ri)
which must vanish whenever ri is non-regular. Therefore the space defined by (2.7) can
be rewritten as

F0 = {u ∈ Fr : u(ri) = 0, whenever ri is regular}. (2.9)

Let I∗ be the interval obtained from I by adding its boundary ri to I whenever ri is
regular. m is extended to I∗ by setting m(I∗ \ I) = 0 so that L2(I∗;m) = L2(I;m). For
u ∈ Fr, the inequality (2.3) is valid for any a, b ∈ I∗ and further, for any closed interval
K = [α, β] ⊂ I∗,

sup
x∈K

u(x)2 ≤ CK Er
1 (u, u), u ∈ Fr (2.10)

for some constant CK > 0. In fact, we get from (2.3)

sup
α≤y≤β

u(y)2 ≤ 2(s(β)− s(α))E(s)(u, u) + 2u(x)2, α ≤ x ≤ β.

Integrating the both hand sides by dj on [α, β], we obtain (2.10). It follows from (2.10)
that Fr is a subspace of C(I∗) the space of all continuous functions on I∗.

Cc(I) (resp. Cc(I∗)) will denote the space of continuous functions on I (resp. I∗)
with compact support.

√
E(s),k(u, u) will be designated by ‖u‖E(s),k occasionally. We

refer to [CF, Chapter 6] for the definition of an active reflected Dirichlet space and a
Silverstein extension of (E0,F0).

Theorem 2.2. ( i ) (Er,Fr) is a regular, local, and irreducible Dirichlet form on
L2(I∗;m). Each one point of I∗ has a positive capacity relative to (Er,Fr).
Let Fr

e be the extended Dirichlet space of (Er,Fr). Then

Fr
e = {u ∈ F (s),k : u(ri) = 0 whenever ri is approachable but non-regular}.

(2.11)

( ii ) (E0,F0) is a regular, local, and irreducible Dirichlet form on L2(I;m). Each one
point of I has a positive capacity relative to (E0,F0).
Let (F0

e , E0) be its extended Dirichlet space. Then
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F0
e = F (s),k

0 , E0 = E(s),k. (2.12)

(iii) (E0,F0) is the part of (Er,Fr) on I.
(iv) (Er,Fr) is the active reflected Dirichlet space of (E0,F0).
( v ) The Silverstein extension of (E0,F0) is unique if and only if no regular boundary

is present.

Proof. It suffices to prove (i). Indeed, under (i), (iii) is just a restatement of
(2.9). (ii) then follows either from a general theorem [CF, Theorems 3.3.9, 3.4.9] or from
a repetition of the proof of (i) for (E0,F0) in place of (Er,Fr). (iv) is shown in [CF,
Section 6.5, (3◦)] in the case that k = 0. (v) follows from (iv) and (2.9).

We proceed to a proof of (i). (Er,Fr) is a Dirichlet form on L2(I;m) by Lemma 2.1
(ii). Obviously it is local. Suppose a Borel set A ⊂ I∗ is invariant with respect to the
L2-semigroup associated with (Er,Fr). For any compact interval K ⊂ I∗, there exists
a function v ∈ Fr with v = 1 on K. Since u = v · 1A is an element of Fr ⊂ C(I∗)
taking values only 0 or 1 on K, {x ∈ K : u(x) = 1} is a closed and open subset of K,
and consequently either A ∩ K or Ac ∩ K is m-negligible. By letting K ↑ I∗, we get
the irreducibility of (Er,Fr). Each one point of I∗ has a positive capacity relative to
(Er,Fr) owing to (2.10).

Denote by F̂ the space appearing on the right hand side of (2.11). Then Fr ⊂ F̂
on account of the observation made right after (2.8) and accordingly, Fr

e ⊂ F̂ owing to
Lemma 2.1 (i) and the inequality (2.3) holding for a, b ∈ I∗.

To prove the converse inclusion, take any u ∈ F̂ . We may assume without loss of
generality that u is bounded, that is, |u| ≤ M for some constant M .

We consider a sequence of functions ψn ∈ C1
c (R+) such that

{
ψn(x) = 1 for 0 ≤ x < n; ψn(x) = 0 for x > 2n + 1;

|ψ′n(x)| ≤ 1
n , n ≤ x ≤ 2n + 1; 0 ≤ ψn(x) ≤ 1, x ∈ R+.

Put wn(x) = un(x)·ψn(|s(x)|) for x ∈ I, where un, n ≥ 1, are the functions constructed in
Lemma 2.1 (iii) for u. Then, wn ∈ F (s),k∩Cc(I∗) because un vanishes on a neighborhood
of ri whenever ri is approachable but non-regular, while so does ψn(|s(x)|) whenever ri

is non-approachable. Further, since u(x) − wn(x) = u(x)(1 − ψn(|s(x)|)) + (u(x) −
un(x))ψn(|s(x)|) and |u(x)− un(x)| ≤ |u(x)|,

‖u− wn‖2E(s),k ≤ 4
∫

I

(Dsu(x))2(1− ψn(|s(x)|)2ds(x)

+ 8
∫

I

u(x)2(ψ′n(|s(x)|)2ds(x) + 4
∫

I

(Dsu(x)−Dsun(x))2ds(x)

+ 2
∫

I

u(x)2(1− ψn(|s(x)|))2dk(x) + 2
∫

I

(u(x)− un(x))2dk(x)
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≤ 4
∫

|s(x)|≥n

(Dsu(x))2ds(x) + 8M2

∫

n≤|s(x)|<2n+1

(ψ′n(|s(x)|)2ds(x)

+ 2
∫

|s(x)|≥n

u(x)2dk(x) + 4‖u− un‖2E(s),k

≤ 4
∫

|s(x)|≥n

(Dsu(x))2ds(x) + 16M2 n + 1
n2

+
∫

|s(x)|≥n

u(x)2dk(x)

+ 4‖u− un‖2E(s),k −→ 0, n →∞.

This shows that {wn} ⊂ Fr∩Cc(I∗) is E(s),k-Cauchy. Since wn converges to u pointwise,
we get u ∈ Fr

e .
For any bounded u ∈ Fr, the same functions {wn, n ≥ 1} as above are in Fr∩Cc(I∗)

and Er
1 -convergent to u as n →∞. Obviously Fr ∩Cc(I∗) is uniformly dense in Cc(I∗).

Thus (Er,Fr) is regular. ¤

In what follows, we adopt Feller’s classification of the boundary for a given triplet
(s,m, k): for r1 < c < r2

λ1 =
∫ c

r1

s(dx)
∫ c

x

j(dy), µ1 =
∫ c

r1

j(dx)
∫ c

x

s(dy), r1 < c < r2.

The left boundary r1 of I is called

regular if λ1 < ∞, µ1 < ∞,

exit if λ1 < ∞, µ1 = ∞,

entrance if λ1 = ∞, µ1 < ∞,

natural if λ1 = ∞, µ1 = ∞.

An analogous classification of r2 is in force. Notice that these names of the boundaries
are slightly different from [IM2] but analogous to [Fe1], [I1].

It is easy to see that ri is regular in Feller’s sense if and only if it is regular in
the previous sense, namely, it is approachable and j is finite in a neighborhood of ri.
Moreover, if ri is exit, then it is approachable but non-regular, and in particular, u(ri) = 0
for any u ∈ Fr

e in view of (2.11).

2.2. m-symmetry and the Dirichlet form of a minimal diffusion X0.
A Markov process X0 = (X0

t , ζ0,P 0
x ) on I is called a minimal diffusion if

(d.1) X0 is a Hunt process on I,
(d.2) X0 is a diffusion process: X0

t is continuous in t ∈ (0, ζ0) almost surely,
(d.3) X0 is irreducible: P 0

x (σy < ∞) > 0 for any x, y ∈ I,
where σy = inf{t > 0 : X0

t = y}, inf ∅ = ∞.

Under (d.1) and (d.2), the condition (d.3) is equivalent to the requirement for each
point a ∈ I to be regular in the sense that, for α > 0, Ea[e−ασa+ ] = Ea[e−ασa− ] = 1
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where Ea[e−ασa± ] = limb→±a Ea[e−ασb ], ([IM2, Section 3.9]).
Denote by {R0

α;α > 0} the resolvent of a minimal diffusion X0 and by Cb(I) (resp.
Bb(I)) the space of all continuous (resp. Borel measurable) bounded functions on I.
Then R0

α(Bb(I)) ⊂ Cb(I) due to the above regularity of each point of I ([IM2, Section
3.6]) and R0

α is a one-to-one map from Cb(I) into itself. Thus the generator G0 of X0 is
well defined by

{D(G0) = R0
α(Cb(I)),

(G0u)(x) = αu(x)− f(x) for u = R0
αf, f ∈ Cb(I), x ∈ I,

(2.13)

G0 so defined is independent of α > 0 by the resolvent equation. Let us call G0 the
Cb-generator of X0. For X0, the fine continuity is equivalent to the ordinary continuity
so that Cb(I) is the space of all bounded finely continuous functions on I. With this
interpretation, the above definition of the Cb-generator is well formulated for a general
Borel right process.

By Section 4.3 and Section 4.4 of [IM2], there exist, for a given minimal diffusion
X0, a canonical scale s, a canonical measure m and a positive Radon measure k called a
killing measure on I such that

(G0u)(x) =
dDsu− udk

dm
(x) x ∈ I, for any u ∈ D(G0), (2.14)

in the sense that the Radon Nikodym derivative appearing on the right hand side has
a version belonging to Cb(I) which coincides with the left hand side. In particular, we
have for u = R0

αf , f ∈ Cb(I),

αu(x)− dDsu− udk

dm
(x) = f(x) x ∈ I. (2.15)

The triplet (s,m, k) is unique up to a multiplicative constant in the sense that, for
another such triplet (s̃, m̃, k̃), there exists a constant c > 0 such that ds̃ = cds, dm̃ =
c−1dm and dk̃ = c−1dk.

We call a triplet (s,m, k) satisfying (2.14) to be attached to the minimal diffusion
X0.

Although the generator G0 admits an explicit expression (2.14) on D(G0), it is not
easy even to figure out how its domain D(G0) ⊂ Cb(I) looks like explicitly. We first make
a detour by determining the L2-generator of X0.

Let J = (j1, j2) with r1 < j1 < j2 < r2 and {RJ
α, α > 0} be the resolvent kernel of

the part process XJ of X0 on J . The next key lemma is a counterpart of [I1, Theorem
5.9.2] and the proof is taken from [CF, Lemma 5.3.2] and [F2, Lemma 2.1].

Lemma 2.3. Let u = RJ
αf for f ∈ Cb(I). Then u ∈ Cc(I), and

−dDsu + udk + αudm = fdm on J, (2.16)
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for a triplet (s,m, k) attached to X0. Moreover

u(j1+) = u(j2−) = 0. (2.17)

Proof. Let ϕi(x) = E0
x[e−ατJ ;XτJ− = ji], where τJ denotes the first leaving time

from J . It suffices to show that

−dDsϕi + ϕidk + αϕidm = 0 on J, (2.18)

and

ϕ1(j1+) = 1, ϕ1(j2−) = 0, ϕ2(j1+) = 0, ϕ2(j2−) = 1. (2.19)

Indeed, (2.16) and (2.17) then follow from the identity

u = R0
αf −R0

αf(j1)ϕ1 −R0
αf(j2)ϕ2, on J.

To prove (2.18), observe that, for any g ∈ Cb(I) vanishing on J ,

R0
αg(x) = R0

αg(j1)ϕ1(x) + R0
αg(j2)ϕ2(x), x ∈ J.

If g1 ∈ Cb(I), g1 = 0 on (r1, j2) and g1 > 0 on (j2, r2), then R0
αg1 is strictly positive on

I by (d.2), (d.3) and moreover strictly increasing on J . A similar choice of g2 ∈ Cb(I)
gives R0

αg2 strictly decreasing, and R0
αg1(j1)R0

αg2(j2) − R0
αg2(j1)R0

αg1(j2) < 0, so that
ϕi(x) is a linear combination of R0

αg1(x) and R0
αg2(x) for x ∈ J . From (2.15) for gi in

place of f , we then get (2.18).
(2.19) can be shown as follows. Put ψ(x) = E0

x[e−ασj2 ], x ∈ I, and take f ∈ Cb(I)
vanishing on (r1, j2) and strictly positive on (j2, r2). Then R0

αf ∈ Cb(I) and R0
αf(x) =

ψ(x)R0
αf(j2), x < j2, so that R0

αf(j2) = ψ(j2−)R0
αf(j2). Since R0

αf(j2) > 0 as above,
we have ψ(j2−) = 1, which in turn implies that

P 0
j2−(σj2 < ε) = 1, for any ε > 0,

because ψ(x) ≤ P 0
x (σj2 < ε) + e−αε(1− P 0

x (σj2 < ε)), x ∈ I.
Now, for any ε > 0 and x ∈ J ,

ϕ2(x) ≥ E0
x[e−ασj2 ;σj2 < ε, σj1 ≥ ε]

≥ E0
x[e−ασj2 ;σj2 < ε]− E0

x[e−ασj2 ;σj1 < ε]

≥ e−αεP 0
x (σj2 < ε)− E0

x0
[e−ασj2 ;σj1 < ε], for j1 < x0 < x < j2.

By letting x ↑ j2 and then ε ↓ 0, we obtain the last identity of (2.19). We also have

ϕ1(x) ≤ 1− P 0
x (σj1 > σj2) ≤ 1− P 0

x (σj2 < ε) + P 0
x0

(σj1 < ε),
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which leads us to the second identity of (2.19) similarly. The first and third ones can be
proved analogously. ¤

Theorem 2.4. ( i ) Let X0 be a minimal diffusion on I and (s,m, k) be a triplet
attached to X0. X0 is then m-symmetric. The Dirichlet form of X0 on L2(I;m)
coincides with (E0,F0) defined by (2.7) in terms of the attached triplet (s,m, k).

( ii ) Conversely, for an arbitrarily given triplet (s,m, k), the space (E0,F0) defined by
(2.7) is a regular Dirichlet form on L2(I;m), and the associated Hunt process X0

on I is a minimal diffusion possessing (s,m, k) as a triplet attached to it.

Proof. (i) For J = (j1, j2) with r1 < j1 < j2 < r2, let u = RJ
αf , v = RJ

αg for
f, g ∈ Cc(I). We then get from (2.16)

−
∫

J

vdDsu +
∫

J

uvdk + α

∫

J

uvdm =
∫

J

vfdm.

By (2.17), v(j1+)Dsu(j1+)− v(j2−)Dsu(j2−) = 0 so that an integration by parts gives

∫

J

(Dsu)(Dsv)ds +
∫

J

uvdk + α

∫

J

uvdm =
∫

J

vfdm. (2.20)

Thus
∫

J
fRJ

αgdm =
∫

J
RJ

αfgdm, which implies the m symmetry
∫

I
fR0

αgdm =∫
I
R0

αfgdm of the resolvent of X0 by letting J ↑ I for non-negative f, g.
Now let (E ,F) be the Dirichlet form of X0 on L2(I;m). In view of [FOT, Therem

4.4.5], RJ
αf ∈ F for f ∈ Cc(I) and Eα(RJ

αf,RJ
αf) =

∫
I
RJ

αffdm for a relatively compact
open interval J ⊂ I, and the union of RJ

α(Cb(I)) over all such J is E1-dense in F . On
the other hand, (2.20) reads for f ∈ Cc(I)

RJ
αf ∈ F0, E(s),k

α (RJ
αf,RJ

αf) =
∫

I

RJ
αffdm,

and therefore we have F ⊂ F0 and E = E0
∣∣
F×F .

On the other hand, we obtain in the same way as (2.20)

E(s),k
α (RJ

αf, v) =
∫

I

vfdm, f ∈ Cc(I),

for any v ∈ F0∩Cc(I) and any relatively compact open interval J containing the support
of v. This means that F0 ∩ Cc(I) ⊂ F and hence F0 ⊂ F because of the regularity of
the form (E0,F0).

(ii) By virtue of Theorem 2.2, (E0,F0) is a regular, local and irreducible Dirichlet
form on L2(I;m) for which each one-point of I has a positive capacity. Therefore the
associated m-symmetric Hunt process X0 on I is a minimal diffusion on account of [CF,
Theorem 3.5.6, Theorem 4.3.4].

Let (s̃, m̃, k̃) be a triplet attached to X0. By (i), X0 is m̃-symmetric so that we may
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assume m̃ = m on account of the uniqueness of a symmetrizing measure for a strongly
irreducible Markov process due to Ying-Zhao [YZ]. By (i) again, the Dirichlet form
(Ẽ0, F̃0) of X0 on L2(I;m) is defined by (2.7) in terms of (s̃, k̃) in place of (s, k). Since
(Ẽ0, F̃0) = (E0,F0), we can conclude that s̃ = s, k̃ = k. ¤

2.3. L2-generators of X0 and its reflecting extension Xr.
Let X0 be a minimal diffusion on I and (s,m, k) the triplet attached to it. Denote

by A0 the infinitesimal generator of the strongly continuous contraction semigroup of X0

on L2(I;m):

u ∈ D(A0) and A0u = f ∈ L2(I;m)

if and only if

u ∈ F0, E0(u, v) = −(f, v), for any v ∈ F0 ∩ Cc(I),

on account of the regularity of (E0,F0). A0 is simply called the L2-generator of X0. We
immediately deduce from Theorem 2.4, (2.9) and the above characterization of A0 the
following. We write

u(ri) = lim
x→ri, x∈I

u(x).

Corollary 2.5. The L2-generator A0 of the minimal diffusion X0 on I can be
described in terms of the attached triplet (s,m, k) as follows: u ∈ D(A0) if and only if





u ∈ F (s),k ∩ L2(I;m),
dDsu− udk

dm
∈ L2(I;m), and

u(ri) = 0 whenever ri is regular.
(2.21)

In this case,

A0u =
dDsu− udk

dm
, u ∈ D(A0). (2.22)

Next let Xr = (Xr
t ,P r

x ) be the m-symmetric diffusion process on I∗ associated with
the regular, local and irreducible Dirichlet form (Er,Fr) on L2(I∗;m) defined by (2.6).
By Theorem 2.2 (iii), X0 is the part of Xr on I. In other words, Xr is an m-symmetric
extension of X0 to I∗. Based on the property (iv) of Theorem 2.2, Xr is called the
reflecting extension of X0.

Since each point of I∗ has a positive capacity with respect to (Er,Fr), Xr enjoys a
strong irreducibility property

P r
x (σy < ∞) > 0, for any x, y ∈ I∗, (2.23)
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which in turn implies that Er
a[e−ασa± ] = 1 for any a ∈ I, Er

r1
[e−ασr1+ ] = 1 whenever

r1 ∈ I∗, and Er
r2

[e−ασr2− ] = 1 whenever r2 ∈ I∗, for α > 0.
Consequently, if we define the space Cb(I∗) by

Cb(I∗) =
{

u ∈ Cb(I) : u(ri) = lim
x→ri, x∈I

u(x) whenever ri ∈ I∗
}

, (2.24)

then

Rr
α(Bb(I)) ⊂ Cb(I∗), (2.25)

where {Rr
α;α > 0} denotes the resolvent kernel of Xr.

Denote by Ar the infinitesimal generator of the strongly continuous contraction
semigroup of Xr on L2(I∗;m) = L2(I;m):

u ∈ D(Ar) and Aru = f ∈ L2(I;m)

if and only if

u ∈ Fr, Er(u, v) = −(f, v), for any v ∈ Fr ∩ Cc(I∗), (2.26)

on account of the regularity of (Er,Fr). Ar will be called the L2-generator of Xr.
We write

Dsu(ri) = lim
x→ri,x∈I

Dsu(x).

Theorem 2.6. The L2-generator Ar of the reflecting extenion Xr of X0 to I∗ can
be described in terms of the triplet (s,m, k) as follows:
u ∈ D(Ar) if and only if

u ∈ F (s),k ∩ L2(I;m),
dDsu− udk

dm
∈ L2(I;m) (2.27)

and

Dsu(ri) = 0 whenever ri is regular. (2.28)

In this case,

Aru =
dDsu− udk

dm
, u ∈ D(Ar). (2.29)

Proof. This is immediate from the characterization (2.26). Indeed, (2.27) and
(2.29) follow from (2.26) for v ∈ Fr ∩ Cc(I). If r1 is regular, we then obtain (2.28) with
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ri = r1 from (2.26) for v ∈ Fr ∩Cc([r1, r2)) using an integration by parts. The case that
r2 is regular can be treated analogously. The converse implication is also clear.

Here we give an alternative proof of this theorem by using general notations and a
criterion presented in [CF, Chapter 7]. For a regular boundary ri, let

uri
α (x) = Er

x[e−ατI ;XτI
= ri], x ∈ I.

Denote by D(L) the collection of functions satisfying condition (2.27) and define the
linear operator L as the generalized differential operator appearing there. For u ∈ D(L),
define its flux N (u)(ri) at a regular boundary ri by

N (u)(ri) = E(s),k(u, uri
α ) +

∫

I

Lu · uri
α dm.

By virtue of a general criterion [CF, (7.3.21)], we know that u ∈ D(Ar) if and only if

u ∈ D(L), N (u)(ri) = 0, whenever ri is regular. (2.30)

On the other hand, we can verify in exactly the same way as [CF, Section 7.6 (2◦)] that

{N (u)(r1) = −Dsu(r1) when r1 is regular

N (u)(r2) = Dsu(r2) when r2 is regular.
(2.31)

(2.30) and (2.31) lead us to the conclusions of Theorem 2.6. ¤

3. Cb-generator of X0.

For a given triplet (s,m, k) on I, consider a homogeneous equation

αu(x)− dDsu− udk

dm
(x) = 0, x ∈ I, α > 0. (3.1)

There exists a positive strictly increasing (resp. decreasing) solution u1 (resp. u2) of
(3.1). When ri is regular, there are many solutions ui; among them are the extremal
ones ui with ui(ri) = 0, Dsui(ri) 6= 0 and ui with Dsu(ri) = 0, ui(ri) > 0, both being
unique up to positive multiplicative constants. Otherwise ui is unique up to a positive
multiplicative constant (see [I1, Section 5.13]).

The following table on the behaviors of ui for the right boundary r2 is taken from
[IM2, p 130]. [I1, Section 5.13] has the same table in the case that k = 0. We remark
that the results and analytic arguments leading to them in [I1, Section 5.12, Section
5.13, Section 5.14] remain valid in general by replacing m there with j = m + k.
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regular exit entrance natural

u1(r2) ∈ (0,∞) ∈ (0,∞) = ∞ = ∞
Dsu1(r2) ∈ (0,∞) = ∞ ∈ (0,∞) = ∞
u2(r2) < ∞ = 0 ∈ (0,∞) = 0

−Dsu2(r2) < ∞ ∈ (0,∞) = 0 = 0

Let X0 be a minimal diffusion on I with an attached triplet (s,m, k). By Theorem
2.4, X0 is m-symmetric and its Dirichlet form on L2(I;m) is (E0,F0) given by (2.7). Due
to the inequality (2.10), the Hilbert space (F0, E0

α) admits a reproducing kernel g0
α(x, y),

x, y ∈ I: for each y ∈ I,

g0
α(·, y) ∈ F0, E0

α(g0
α(·, y), v) = v(y), for any v ∈ F0. (3.2)

If ri is either regular or exit, then ri is approachable and hence it follows from the
first property of (3.2) that

g0
α(ri, y) = 0, whenever ri is either regular or exit. (3.3)

Lemma 3.1. ( i ) g0
α(x, y) admits an expression

g0
α(x, y) =

{
W (u1, u2)−1 u1(x)u2(y) if x ≤ y, x, y ∈ I,

W (u1, u2)−1 u2(x)u1(y) if x ≥ y x, y ∈ I,
(3.4)

where W (u1, u2)(x) = Dsu1(x)u2(x) − Dsu2(x)u1(x) is the Wronskian of u1, u2

which is positive and independent of x ∈ I. Here ui should be chosen to be

ui = ui, whenever ri is regular, (3.5)

( ii ) g0
α(x, y) is a density function of the resolvent kernel R0

α of X0 with respect to m:

R0
αf(x) =

∫

I

g0
α(x, y)f(y)m(dy), x ∈ I, f ∈ Cb(I). (3.6)

Proof. (i) Let py
α(x) = E0

x[e−ασy ], x ∈ I. The function py
α is characterized as

py
α ∈ F0, py

α(y) = 1, E0
α(py

α, v) = 0, ∀v ∈ F0, v(y) = 0, (3.7)

which compared with (3.2) yields

py
α(x) = g0

α(x, y)/g0
α(y, y), x ∈ I, (3.8)

by noting that
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g0
α(y, y) = E0

α(g0
α(·, y), g0

α(·, y)) > 0. (3.9)

(3.7) further implies

py
α(x) =

{
u1(x)/u1(y) if x ≤ y, x, y ∈ I,

u2(x)/u2(y) if x ≥ y x, y ∈ I,
(3.10)

(3.8), (3.10) and the symmetry of g0
α(x, y) lead us to, for x < y,

u1(x)
u1(y)

g0
α(y, y) = g0

α(x, y) = g0
α(y, x) =

u2(y)
u2(x)

g0
α(x, x),

which means that C =: g0
α(x, x)/u1(x)u2(x) is independent of x ∈ I and g0

α(x, y) admits
an expression

g0
α(x, y) =

{
Cu1(x)u2(y) if x ≤ y, x, y ∈ I,

Cu2(x)u1(y) if x ≥ y x, y ∈ I.
(3.11)

In particular, (3.5) follows from (3.3).
In order to determine the above constant C, we substitute (3.11) into the equation

(3.9). The left hand side equals Cu1(y)u2(y). We compute the right hand side by
choosing y ∈ I to be a continuous point for m and k. Since u1, u2 are the solutions of
(3.1), we perform integrations by parts on each of subintervals (r1, y), (y, r2) to see that
the right hand side of (3.9) is equal to

C2u2(y)2(u1(y)Dsu1(y)− u1(r1+)Dsu1(r1+))

+ C2u1(y)2(u2(r2−)Dsu2(r2−)− u2(y)Dsu2(y)).

But two terms involving r1 and r2 in the above expression vanish on account of the
preceding table and (3.5). Thus we arrive at the desired identity CW (u1, u2) = 1.

(ii) We write G0
αf(x) =

∫
I
g0

α(x, y)f(y)m(dy), x ∈ I, f ∈ Cb(I). It suffices to prove
G0

αf = R0
αf for f ∈ Cc(I). Let u = G0

αf for f ∈ Cb(I). Denoting the Wronskian
W (u1, u2) by W , we have from (i)

Wu(x) = u2(x)
∫ x+0

r1

f(y)u1(y)dm(y) + u1(x)
∫ r2

x+0

f(y)u2(y)dm(y). (3.12)

By differentiating products of functions of bounded variation, we simply get

WDsu(x) = Dsu2(x)
∫ x+0

r1

f(y)u1(y)dm(y) + Dsu1(x)
∫ r2

x+0

f(y)u2(y)dm(y), (3.13)
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which means that the derivative can be taken under the integral sign:

Dsu(x) =
∫

I

dg0
α(x, y)
ds(x)

f(y)m(dy), x ∈ I.

By taking f ∈ Cc(I), we can now integrate the both hand sides of the equation

E0
α(g0

α(·, y), g0
α(·, y′)) = g0

α(y, y′)

in y and y′ with respect to f(y)m(dy) and f(y′)m(dy′), respectively, to obtain
E(s),k

α (u, u) =
∫

I
f(y)u(y)m(dy) < ∞, namely, u ∈ F0. Similarly we have E0

α(u, v) =
(f, v) for any v ∈ F0 proving G0

αf = R0
αf for f ∈ Cc(I). ¤

Notice that (3.3) and (3.4) imply that

ui(ri) = 0, whenever ri is exit, (3.14)

which is however contained in the preceding table already.
By (3.6), we see for f ∈ Cb(I) and x ∈ I that WR0

αf(x) equals the right hand side
of (3.12) for W = W (u1, u2). By taking the bound αR0

α1(x) ≤ 1 into account, we let
x ↑ r2 to obtain

R0
αf(r2) = W−1 u2(r2)

∫

I

fu1dm. (3.15)

An analogous identity holds for r1 and we conclude from (3.5) and (3.14) that, for
f ∈ Cb(I),

R0
αf(ri) = 0, if ri is either regular or exit. (3.16)

We can now give a complete characterization of the Cb-generator G0 of the minimal
diffusion X0 on I.

Theorem 3.2. u ∈ D(G0) if and only if





u ∈ Cb(I),
dDsu− udk

dm
∈ Cb(I), and

u(ri) = 0 if ri is either regular or exit.
(3.17)

In this case,

G0u =
dDsu− udk

dm
, u ∈ D(G0). (3.18)

Proof. To show the “only if” part, take any function u ∈ D(G0) so that u = R0
αf
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for some f ∈ Cb(I). By virtue of Lemma 3.1, u satisfies (3.12) and (3.13). Since
dDsui = ui(αdm+dk), i = 1, 2, we take the differentials of the both hand sides of (3.13)
to get

WdDsu(x) = Wu(x)(αdm(x) + dk(x))

+ Dsu2(x)f(x)u1(x)dm(x)−Dsu1(x)f(x)u2(x)dm(x)

= Wu(x)(αdm(x) + dk(x))−Wf(x)dm(x),

yielding the first property of (3.17) together with (3.18). The second property of (3.17)
is a consequence of (3.16).

To prove the “if” part, take any function u satisfying condition (3.17). We then let
f = αu − ((dDsu − udk)/dm), v = R0

αf and w = u − v. Since v ∈ D(G0) and hence
αv − ((dDsv − vdk)/dm) = f by (2.15), we see that w is a bounded solution of (3.1).
Since v(ri) vanishes whenever ri is regular or exit by the “only if” part, so does w.

We write w = C1u1 + C2u2 for some constants C1, C2. If both r1, r2 are either
regular or exit, we have w(r1) = w(r2) = 0, which implies C1 = C2 = 0 because
u1(r1)u2(r2)−u1(r2)u2(r1) < 0. If r1 is either regular or exit but r2 is either entrance or
natural, then u1(r2) = ∞ from the above table so that C1 = 0 and 0 = w(r1) = C2u2(r1),
yielding C2 = 0 because u2(r1) > 0. If both boundaries are either entrance or natural,
then we have C1 = C2 = 0 trivially. Thus u = v ∈ D(G0). ¤

The appearance of the seminal paper by W. Feller on general boundary conditions
for one-dimensional diffusions goes back to [Fe1], that treated the case where (dDsu −
udk)/dm is reduced to a simple differential operator u′′+ b(x)u′. In [Fe1], the condition
(3.17) was explicitly stated to characterize the range of the resolvent defined by (3.4),
(3.5) and (3.6). However Theorem 3.2 in this generality appears here for the first time.

4. Cb-generator of Xr.

Let Xr be the reflecting extension of X0 to I∗. m is extended to I∗ by setting
m(I∗ \ I) = 0. Xr is m-symmetric diffusion on I∗ whose Dirichlet form on L2(I∗;m) =
L2(I;m) is (Er,Fr) given by (2.6). Due to the inequality (2.10), the Hilbert space
(Fr, Er

α) admits a reproducing kernel gr
α(x, y), x, y ∈ I∗: for each y ∈ I∗,

gr
α(·, y) ∈ Fr, Er

α(gr
α(·, y), v) = v(y), for any v ∈ Fr. (4.1)

We first note that

Dsg
r
α(ri, y) = 0, for each y ∈ I, whenever ri is regular. (4.2)

We show this only when r1 is regular. Denote gr
α(x, y) by u(x). Since we get from (4.1),

Er(u, v) = 0 for any v ∈ Fr that vanishes on [y, r2), u is α-harmonic on (r1, y) in the
sense it satisfies (3.1) for any x ∈ (r1, y). Therefore, for any such v,
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0 = E(s),k
α (u, v) =

∫

I

DsuDsvds +
∫

I

vdDsu = v(r1)Dsu(r1).

Moreover gr
α(·, y) enjoys the property

gr
α(ri, y) = 0, for each y ∈ I, whenever ri is exit, (4.3)

because gr
α(·, y) ∈ Fr by (4.1) and any function in the space Fr vanishes at an exit

boundary as was stated at the end of Section 2.1.
We can prove the following lemma analogously to Lemma 3.1.

Lemma 4.1. ( i ) gr
α(x, y) admits an expression

gr
α(x, y) =

{
W (u1, u2)−1u1(x)u2(y) if x ≤ y, x, y ∈ I∗,

W (u1, u2)−1u2(x)u1(y) if x ≥ y x, y ∈ I∗.
(4.4)

Here ui should be chosen to be

ui = ui, whenever ri is regular. (4.5)

( ii ) gr
α(x, y) is a density function of the resolvent kernel Rr

α of Xr with respect to m:

Rr
αf(x) =

∫

I

gr
α(x, y)f(y)m(dy), x ∈ I∗, f ∈ Cb(I). (4.6)

(4.5) is a consequence of (4.2). It also follows from (4.3) that

ui(ri) = 0 whenever ri is exit, (4.7)

but this is already contained in the table of Section 3.
By (4.6), we see for f ∈ Cb(I) and x ∈ I that WRr

αf(x) and WDs(Rr
αf)(x) are

equal to the right hand sides of (3.12) and (3.13), respectively, with ui chosen in a way
of (4.5). By noting the table of Section 3 and the bound αRr

α1 ≤ 1, we let x ↑ r2 to get

W Rr
αf(r2) = u2(r2)

∫

I

fu1dm, W Ds(Rr
αf)(r2) = Dsu2(r2)

∫

I

fu1dm. (4.8)

Analogous identities hold for r1 and we conclude from (4.5) and (4.7) that

{
Ds(Rr

αf)(ri) = 0, whenever ri is regular,

Rr
αf(ri) = 0, whenever ri is exit.

(4.9)

We are in a position to identify Cb-generator Gr of the reflecting extension Xr of
X0 to I∗. Define the space Cb(I∗) by (2.24). In view of (2.25), the Cb-generator Gr of
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Xr is well defined by

{D(Gr) = Rr
α(Cb(I∗)),

(Gru)(x) = αu(x)− f(x), for u = Rr
αf, f ∈ Cb(I∗), x ∈ I∗,

analogously to (2.13).

Theorem 4.2. u ∈ D(Gr) if and only if

u ∈ Cb(I∗),
dDsu− udk

dm
∈ Cb(I∗), (4.10)

and

Dsu(ri) = 0 whenever ri is regular, (4.11)

u(ri) = 0 whenever ri is exit. (4.12)

In this case,

Gru(x) =
dDsu− udk

dm
(x), x ∈ I∗, u ∈ D(Gr). (4.13)

Proof. As for the “only if” part, (4.10) and (4.13) can be shown as in the proof
of Theorem 3.2 by making use of Lemma 4.1. (4.11) and (4.12) follow from (4.9).

To prove the “if” part, take any function u satisfying conditions (4.11) and (4.12).
We then let f = αu − ((dDsu − udk)/dm), v = Rr

αf and w = u − v. Since v ∈ D(Gr)
and αv− ((dDsv−vdk)/dm) = f by (4.13), we see that w is a bounded solution of (3.1).
Since v satisfies (4.11) and (4.12) by the “only if” part, so does w.

We write w = C1u1 + C2u2 for some constants C1, C2. Then Dsw = C1Dsu1 +
C2Dsu2. If both r1, r2 are regular, we have Dsw(r1) = Dsw(r2) = 0, which implies
C1 = C2 = 0 because Dsu1 > 0, Dsu2 < 0 and both Dsu1, Dsu2 are strictly increasing,
and so

Dsu1(r1)Dsu2(r2)−Dsu1(r2)Dsu2(r1) > 0.

If r1 is regular and r2 is exit, then 0 = w(r2) = C1u1(r2) by the table of Section 3 so that
C1 = 0 because u1(r2) > 0. Further 0 = Dsw(r1) = C2Dsu2(r1) yielding C2 = 0 because
u2 is a positive decreasing solution of (3.1) and so Dsu2(r1) < 0. If r1 is regular and r2 is
either entrance or natural, then u1(r2) = ∞ by the same table and C1 = 0 so that C2 = 0
as in the previous case. If both r1 and r2 are exit, we have 0 = C1u1(r2) = C2u2(r1)
yielding C1 = C2 = 0. We also get w = 0 in other cases trivially. Thus u = v ∈ D(Gr).

¤
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5. Generators of other symmetric diffusion extensions of X0.

Let X0 be a minimal diffusion on I with attached triplet (s,m, k). We shall de-
scribe two kinds of generators for all possible symmetric diffusion extensions of X0 other
than Xr. The next two subsections will deal with one-point extensions of X0 when
both boundaries r1 and r2 are regular. The associated Dirichlet forms on L2(I;m) are
Silverstein extensions of (E0,F0) in the sense of [CF, Section 6.6].

5.1. Diffusion reflected at r1 and absorbed at r2.
Assume that both r1 and r2 are regular so that I∗ = [r1, r2]. The diffusion Xr,0 on

[r1, r2) reflected at r1 and absorbed at r2 is by definition the part process of the reflecting
extension Xr on [r1, r2), namely, the process obtained from Xr by killing upon hitting
the point r2. Xr,0 is an m-symmetric extension of X0 and, in view of (2.6), the Dirichlet
form (Er,0,Fr,0) of Xr,0 on L2([r1, r2);m) = L2(I;m) is given by

{Fr,0 = {u ∈ F (s),k ∩ L2(I;m) : u(r2) = 0},
Er,0(u, v) = E(s),k(u, v), u, v ∈ Fr,0.

(5.1)

Denote by Ar,0, Gr,0 the L2-generator and Cb-generator of Xr,0, respectively, defined
analogously to Ar in Section 2.3 and to Gr in Section 4.

Theorem 5.1. ( i ) u ∈ D(Ar,0) if and only if

u ∈ F (s),k ∩ L2(I;m),
dDsu− udk

dm
∈ L2(I;m) (5.2)

and

Dsu(r1) = 0 and u(r2) = 0. (5.3)

In this case,

Ar,0u =
dDsu− udk

dm
, u ∈ D(Ar,0). (5.4)

( ii ) u ∈ D(Gr,0) if and only if

u ∈ Cb([r1, r2)),
dDsu− udk

dm
∈ Cb([r1, r2)), (5.5)

and

Dsu(r1) = 0 and u(r2) = 0. (5.6)

In this case,
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Gr,0u(x) =
dDsu− udk

dm
(x), x ∈ [r1, r2), u ∈ D(Gr,0). (5.7)

Proof. (i) This follows from (5.1) and the definition of Ar,0. The first condition of
(5.3) is obtained by integration by parts of the left hand side of the equation Er,0(u, v) =
−(f, v), v ∈ Fr,0.

(ii) Since m(I) < ∞, we have D(Gr,0) ⊂ D(Ar,0) and so the “only if” part of
(ii) follows from that part of (i). To show the “if” part, we assume as in the proof of
Theorem 4.2 that w = C1u1 + C2u2 satisfies (5.6). Then C1Dsu1(r1) + C2Dsu2(r1) = 0,
C1u1(r2)+C2u2(r2) = 0, which yields C1 = C2 = 0 because the coefficient matrix of this
equation has a positive determinant. ¤

The interchange of r1 and r2 in the above theorem yields the description of the both
kinds of generators of the m-symmetric diffusion extension of X0 absorbed at r1 and
reflected r2.

5.2. One-point extension to the one-point-compactification.
We assume that both boundaries r1 and r2 of I are regular and consider the active

reflected Dirichlet space (Er,Fr) defined by (2.6). Let C([r1, r2]) be the space of contin-
uous function on [r1, r2] with the topology of the uniform convergence. Because of the
inequality (2.10), we have the continuous embedding

Fr ⊂ C([r1, r2]). (5.8)

Denote by İ the one-point-compactification of I and extend m to İ by setting m(İ \
I) = 0. Define the subspace of (Er,Fr) by

Ḟ = {u ∈ Fr : u(r1) = u(r2)}, Ė = Er
∣∣
Ḟ×Ḟ . (5.9)

Since Ḟ is an subalgebra of C(İ) containing the constant function 1 and the space F0

that seperate the points of İ, Ḟ is uniformly dense in C(İ). Hence (Ė , Ḟ) is a regular,
local irreducible Dirichlet form on L2(İ;m) = L2(I;m).

Let Ẋ be the m-symmetric diffusion on İ associated with (Ė , Ḟ). Since the part
of the latter on I equals (E0,F0), the part of Ẋ on I equals X0, namely, Ẋ is an m-
symmetric extension of the minimal diffusion X0 to İ. We denote by Ȧ and Ġ the
L2-generator and Cb-generator of Ẋ, respectively. As m(I) < ∞, we have the inclusion

D(Ġ) = Ṙα(C(İ)) ⊂ Ṙα(L2(I : m)) = D(Ȧ), (5.10)

where Ṙα denotes the resolvent of Ẋ.

Theorem 5.2. ( i ) u ∈ D(Ȧ) if and only if

u ∈ F (s),k ∩ L2(I;m),
dDsu− udk

dm
∈ L2(I;m) (5.11)
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and

u(r1) = u(r2) and Dsu(r1) = Dsu(r2). (5.12)

In this case,

Ȧu =
dDsu− udk

dm
, u ∈ D(Ȧ). (5.13)

( ii ) u ∈ D(Ġ) if and only if

u ∈ C(İ),
dDsu− udk

dm
∈ C(İ), (5.14)

and

u(r1) = u(r2) and Dsu(r1) = Dsu(r2). (5.15)

In this case,

Ġu(x) =
dDsu− udk

dm
(x), x ∈ İ , u ∈ D(Ġ). (5.16)

Proof. (i) This follows from (5.9) and the definition of Ȧ. The second condition
of (5.12) is obtained by integration by parts of the left hand side of the equation Ė(u, v) =
−(f, v), v ∈ Ḟ .

(ii) Because of (5.10), the “only if” part of (ii) follows from that part of (i). To show
the “if” part, we assume as in the proof of Theorem 5.2 that w = C1u1 + C2u2 satisfies
(5.15). Then

{
C1(u1(r1)− u1(r2)) + C2(u2(r1)− u2(r2)) = 0,

C1(Dsu1(r1)−Dsu1(r2)) + C2(Dsu2(r1)−Dsu2(r2)) = 0,

which yields C1 = C2 = 0 because the coefficient matrix of this equation has a negative
determinant. ¤

When X0 admits no killing inside so that k = 0, the diffusion Ẋ on İ can be
constructed by piecing together the excursions of X0 starting at K = {r1, r2} and ending
at K which evolves as a Poisson point process according to Theorems 7.5.6 and 7.5.9
of [CF]. Generally, we first construct a process on İ corresponding to k = 0 in the
above way, then its canonical subprocess with respect to its positive continuous additive
functional with Revuz measure k is the desired process Ẋ on İ.
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5.3. Diffusions with sojourn and killing on boundaries.
We assume that the left boundary r1 of I is regular but the right boundary r2 is

non-regular. We exhibit two kinds of generators of a reflecting extension of X0 allowing
sojourn and killing at r1. Allowing sojourn and killing at r2 when it is regular and at the
boundary for the one-point extensions of Section 5.1 and Section 5.2 can be dealt with
in quite analogous manners and will be omitted.

Let m∗ and k∗ be extensions of m and k from I to I∗ = [r1, r2), respectively allowing
point masses at r1 so that

m∗(r1) (= m∗({r1})) ≥ 0, k∗(r1) (= k∗({r1})) ≥ 0. (5.17)

Define the Dirichlet form (E∗,F∗) on L2(I∗;m∗) by

{F∗ = F (s) ∩ L2(I∗; k∗) ∩ L2(I∗;m∗),

E∗(u, v) = E(s),k(u, v) + u(r1)v(r1)k∗(r1), u, v ∈ F∗.
(5.18)

(E∗,F∗) is then a regular, local irreducible Dirichlet form on L2(I∗;m∗) and it
admits an associated m∗-symmetric diffusion process X∗ = (X∗

t ,P ∗
x ) on I∗.

We denote by A∗ the L2-generator of X∗, which can be readily identified.

Theorem 5.3. u ∈ D(A∗) if and only if

u ∈ F (s) ∩ L2(I∗; k∗) ∩ L2(I∗;m∗),
dDsu− udk

dm
∈ L2(I;m) (5.19)

and

Dsu(r1)− u(r1)k∗(r1) = A∗u(r1)m∗(r1). (5.20)

In this case, for u ∈ D(A∗),



A∗u(x) =

dDsu− udk

dm
(x), x ∈ I,

A∗u(r1) = (Dsu(r1)− u(r1)k∗(r1))/m∗(r1), if m∗(r1) > 0.
(5.21)

Proof. u ∈ D(A∗) and A∗u = f ∈ L2(I∗;m∗) if and only if u ∈ F∗ and

E(s)(u, v) +
∫

I

uvdk + u(r1)v(r1)k∗(r1) = −
∫

I

fvdm + f(r1)v(r1)m∗(r1)

for any v ∈ F∗ ∩ Cc([r1, r2)). By taking v ∈ F0, we get (5.19) and the first identity
of (5.21). Then, by taking v ∈ F∗ with v(r1) 6= 0, we arrive at (5.20) and the second
identity of (5.21). The converse implication is also clear. ¤

Denote by {R∗α, α > 0} the resolvent operator (and resolvent kernel as well) of X∗,
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and put

Cb(I∗) = {u ∈ Cb(I) : u is right continuous at r1}.

Just as in the case of the reflecting extension Xr of X0, the Cb-generator G∗ of X∗ is
well defined by D(G∗) = R∗α(Cb(I∗)), and for u = R∗αf , f ∈ Cb(I∗),

(G∗u)(x) = αu(x)− f(x), for x ∈ I∗ = [r1, r2). (5.22)

Analogously to Section 4, we have the following. For α > 0, the Hilbert space
(F∗, E∗α) admits a reproducing kernel g∗α(x, y), x, y ∈ [r1, r2): for each y ∈ [r1, r2),

g∗α(·, y) ∈ F∗, E∗α(g∗α(·, y), v) = v(y), for any v ∈ F∗. (5.23)

Moreover, for each y ∈ I, g∗α(·, y) enjoys the properties

−Dsg
∗
α(r1, y) + g∗α(r1, y)(k∗(r1) + αm∗(r1)) = 0, (5.24)

g∗α(r2, y) = 0, for each y ∈ I, if r2 is exit. (5.25)

Lemma 5.4. ( i ) g∗α(x, y) admits an expression

g∗α(x, y) =

{
W (u1, u2)−1u1(x)u2(y) if x ≤ y, x, y ∈ I∗,

W (u1, u2)−1u2(x)u1(y) if x ≥ y x, y ∈ I∗.
(5.26)

Here u1 should be chosen to satisfy

−Dsu1(r1) + u1(r1)(k∗(r1) + αm∗(r1)) = 0. (5.27)

( ii ) For f ∈ Cb(I∗) and x ∈ I∗, R∗αf(x) admits an expression

R∗αf(x) = R∗α(1If)(x) + R∗α(1{r1}f)(x)

with

R∗α(1If)(x) =
∫

I

g∗α(x, y)f(y)m(dy). (5.28)

Furthermore the function

w(x) = R∗α(1{r1}f)(x) (= R∗α(x, {r1})f(r1)), x ∈ I∗,

satisfies (3.1) on I and

−Dsw(r1) + w(r1)(k∗(r1) + αm∗(r1)) = f(r1)m∗(r1). (5.29)
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R∗α(x, {r1}) vanishes identically if m∗(r1) = 0, while it is a strictly positive de-
creasing solution of (3.1) if m∗(r1) > 0.

Proof. (i) We first express g∗α(x, y) as (3.11) of Lemma 3.1 for some constant C.
(5.27) then follows from (5.24). We next substitute the expression (3.11) into g∗α(y, y) =
E∗α(g∗α(·, y), g∗α(·, y)) to obtain C = W (u1, u2)−1 by taking (5.27) into account.

(ii) (5.28) follows from (i) as in the proof of Lemma 3.1 (ii). The function w defined
above satisfies the equation

E∗α(w, v) = v(r1)f(r1)m(r1), for any v ∈ F∗.

From this, we draw the conclusion that w satisfies (3.1) on I, (5.29) at r1 as well as the
last statement of (ii). ¤

Here we make a remark that a positive strictly increasing solution u1 of (3.1) satis-
fying (5.27) can be taken as follows:

u1 =





u1 if k∗(r1) + m∗(r1) = 0,

u1 +
u1(r1)

Dsu1(r1)
(k∗(r1) + αm∗(r1)) u1 if k∗(r1) + m∗(r1) > 0.

(5.30)

We also remark that a function w satisfying (3.1) and (5.29) can be taken using a positive
decreasing solution u2 of (3.1) with u2(r1) = 1 as

w =
f(r1)m∗(r1)

−Dsu2(r1) + k∗(r1) + αm∗(r1)
u2, when m∗(r1) > 0. (5.31)

It follows from (5.25) and (5.26) that

u2(r2) = 0 if r2 is exit, (5.32)

which is already contained in the table of Section 3 however. It also follows from the
above lemma just as in Section 4 that for f ∈ C(I∗)

WR∗α(1If)(r1) = u1(r1)
∫

I

fu2dm, WDs(R∗α(1If))(r1) = Dsu1(r1)
∫

I

fu2dm. (5.33)

We also have

WR∗α(1If)(r2) = u2(r2)
∫

I

fu1dm. (5.34)

Combining (5.33) with (5.27), (5.29) and (5.22), we arrive at, for f ∈ Cb(I∗),

Ds(R∗αf)(r1)−R∗αf(r1)k∗(r1) = G∗(R∗αf)(r1)m∗(r1). (5.35)
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On the other hand, we get from (5.32) and (5.34) that R∗α(1If)(r2) = 0 if r2 is
exit. When m∗(r1) > 0, R∗α(x, {r1}) is a positive strictly decreasing solution of (3.1) so
that R∗α(r2, {r1}) = 0 by the table of Section 3 provided that r2 is exit. Hence, for any
f ∈ Cb(I∗),

R∗αf(r2) = 0, if r2 is exit. (5.36)

Theorem 5.5. u ∈ D(G∗) if and only if

u ∈ Cb(I∗),
dDsu− udk

dm
∈ Cb(I∗), (5.37)

and

{
Dsu(r1)− u(r1)k∗(r1) = G∗u(r1)m∗(r1),

u(r2) = 0, if r2 is exit,
(5.38)

where G∗u(r1) denotes the value of the function (dDsu− udk)/dm (∈ Cb([r1, r2))) at r1.
In this case, for u ∈ D(G∗),




G∗u(x) =

dDsu− udk

dm
(x), x ∈ I,

G∗u(r1) = (Dsu(r1)− u(r1)k∗(r1))/m∗(r1), if m∗(r1) > 0.
(5.39)

Proof. As for the “only if” part, (5.37) and the first identity of (5.39) can be
shown as in the proof of Theorem 3.2 by making use of Lemma 5.4. (5.38) and the second
identity of (5.39) follow from (5.35) and (5.36).

To prove the “if” part, take any function u satisfying conditions (5.37) and (5.38).
We then let f = αu − ((dDsu − udk)/dm), v = R∗αf and w = u − v. Since v ∈ D(G∗)
and αv− ((dDsv−vdk)/dm) = f by (5.39), we see that w is a bounded solution of (3.1).
Since v satisfies (5.38) by the “only if” part, so does w.

We write w = C1u1 + C2u2 for some constants C1, C2. If r2 is exit, then, by the
second condition of (5.38) and the table of Section 3, we have C1 = 0. From the first
condition of (5.38),

C2(Dsu2(r1)− u2(r1)k∗(r1)− G∗u2(r1)m∗(r1)) = 0.

Since G∗u2(r1) = limx↓r1(dDsu2 − u2dk)/dm(x) = αu2(r1) > 0 and Dsu2(r1) < 0, the
quantity inside the brace is negative and hence C2 = 0. If r2 is either entrance or natural,
then u1(r2) = ∞ by the table of Section 3 and consequently C1 = 0. We also get C2 = 0
as above. ¤
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6. On diffusion extensions by Itô-McKean.

So far we have considered a minimal diffusion X0 on I = (r1, r2) with attached
triplet (s,m, k) and its symmetric diffusion extensions X only to regular boundaries or
their identification using Dirichlet forms. The collection of all such symmetric diffusions
X will be denoted by ExtDF(X0). By convention, ExtDF(X0) includes X0 but excludes
Ẋ of Section 5.2 a one-pont extension of X0 to İ. Our general boundary condition at
a regular boundary obtained in Theorem 5.5 recovers the corresponding one in [IM2,
Section 4.4, Section 4.7], where possible diffusion extensions X of X0 to [r1, r2] were
investigated. The class of all such X considered in [IM2] will be denoted by ExtIM(X0).

ExtIM(X0) contains an extension X with a trivial boundary condition Gu(ri) +
ku(ri) = 0, 0 ≤ k < ∞, at a non-entrance boundary ri, which means that X starting at
ri remains there until its lifetime. We modify such X by killing it at time σri whenever
it is finite and discarding ri from the state space. The resulting modified family is
designated as Ext′IM(X0). Notice that, when I has an entrance boundary, it persists to
belong to the state space of any X ∈ Ext′IM(X0) without being removed.

On the other hand, when I has entrance boundaries, they can be added to the
state space of any X ∈ ExtDF(X0) to produce a symmetric extension X̃ of X but
possessing the same Dirichlet form as X. For simplicity, we explain this procedure only
for X = X0 ∈ ExtDF(X0). When r1 is entrance, there exists a diffusion X̃0 = (X̃0

t , P̃ 0
x )

on the extended state space [r1, r2) such that

X̃0
∣∣
I

= X0 and P̃ 0
r1

(X̃0
t ∈ I for any t ∈ (0, ζ̃0)) = 1. (6.1)

In particular, the part process of X̃0 on I equals X0 and the one-point set {r1} is polar
for X̃0 so that X̃0 can be viewed as an m-symmetric diffusion extension of X0 from I

to [r1, r2) but possessing the same associated Dirichlet form (E0,F0) on L2(I;m) as X0.
In fact, since r1 is entrance, it is easy to get from the table in the beginning of Section
3 the properties of X0 that

lim
ε↓0

E0
r1+[e−σr1+ε ] = 1, lim

ε↓0
P 0

r1+ε(σr1+ < ∞) = 0.

Using these properties, the above mentioned extension X̃0 of X0 can be constructed as
in [IM2, Problem 3.6.3] by defining (X̃0

t , P̃ 0
r1

) to be a kind of limit of (X0
t ,P 0

r1+1/n) as
n →∞ using the direct product

∏∞
n=1 P 0

r1+1/n.

The Cb-generator of X̃0 can be readily identified as follows. Due to a 0-1 law,
property (6.1) implies Ẽ0

r1
[e−σr1+ ] = 1 (cf. [IM2, 3.3, 3a)]). Therefore the resolvent

{R̃0
α;α > 0} of X̃0 satisfies R̃0

α(Bb(I)) ⊂ Cb([r1, r2)). We introduce the Cb-generator G̃0

of X̃0 by

{D(G̃0) = R̃0
α(Cb([r1, r2)),

(G̃0u)(x) = αu(x)− f(x), for u = R̃0
αf, f ∈ Cb([r1, r2)), x ∈ [r1, r2).
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Then we see just as in the proof of Theorem 3.2 that u ∈ D(G̃0) if and only if u satisfies
the condition (3.17) with Cb([r1, r2)) in place of Cb(I).

If both r1 and r2 are entrance, we can replace the above X̃0 by its further m-
symmetric extension to [r1, r2] so that the resulting diffusion X̃0 has the same Dirichlet
form (E0,F0) as X0 and its Cb-generator is characterized as Theorem 3.2 but with
Cb([r1, r2]) in place of Cb(I).

We denote by ẼxtDF(X0) the collection of all X ∈ ExtDF(X0) but being modified
to be X̃ as above by adding entrance boundaries whenever they are present. We can
then readily verify that

Ext′IM(X0) = ẼxtDF(X0). (6.2)

Thus every element X of Ext′IM(X0) is symmetric with respect to m or its extension
m∗ to regular boundaries. Furthermore we can verify that the transition function Pt of
X ∈ Ext′IM(X0) determines a Feller semigroup on the space C∞(Î). Here Î denotes the
interval obtained from I by adding the boundaries ri to it only in the following two cases:

(I) ri is regular and X is not absorbed at ri,
(II) ri is entrance.

C∞(Î) denotes the space of all continuous functions on Î vanishing at infinity of Î.
Indeed, combining general expressions (3.6), (5.28), (5.31) of the resolvent Rα of X

with [I1, Theorem 5.14.1] and the table of Section 3, we see that Rα makes invariant the
space of bounded continuous functions on I vanishing at a natural boundary. Therefore,
on account of the observations we have made on the Cb-generator of X, we can conclude
that Rα(C∞(Î)) ⊂ C∞(Î). Moreover limα→∞ αRαf(x) = f(x), x ∈ Î, f ∈ C∞(Î), by
the path continuity of X. Hence {Rα;α > 0} becomes a strongly continuous contraction
resolvent on C∞(Î) and consequently {Pt; t > 0} is a strongly continuous contraction
semigroup on C∞(Î) with infinitesimal generator Ĝ = αI −R−1

α , D(Ĝ) = Rα(C∞(Î)).

Proposition 6.1. The transition function {Pt; t > 0} of X ∈ Ext′IM(X0) deter-
mines a strongly continuous contraction semigroup on C∞(Î).

Let Ĝ be its infinitesimal generator. u ∈ D(Ĝ) if and only if

u ∈ C∞(Î),
dDsu− udk

dm
∈ C∞(Î), (6.3)

and

Dsu(ri)− u(ri)k∗(ri) = Ĝu(ri)m∗(ri), if ri is regular and ri ∈ Î , (6.4)

where Ĝu(ri) denotes the value of the function (dDsu − udk)/dm (∈ C∞(Î)) at ri, and
m∗(ri), k∗(ri) are non-negative parameters.

In this case, it holds for u ∈ D(Ĝ) that
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


Ĝu(x) =

dDsu− udk

dm
(x), x ∈ I,

Ĝu(ri) = (Dsu(ri)− u(ri)k∗(ri))/m∗(ri), if m∗(ri) > 0.

(6.5)

Proof. The first assertion has been shown above. We have already characterized
the Cb-generator of X ∈ Ext′IM(X0) which leads us to the characterizaion (6.3), (6.4) of
D(Ĝ) and the expression (6.5) of Ĝ because of the inclusion C∞(Î) ⊂ Cb(Î). They are
quite analogous to those in Theorem 5.5. The boundary condition (6.4) involves only
the regular boundaries belonging to Î, while (6.3) contains implicitly the condition that
u(ri) = 0 if either ri is exit or regular but not in Î. ¤

Conversely, given a linear operator Ĝ on C∞(Î) satisfying (6.3), (6.4) and (6.5), we
can solve the equation (α−Ĝ)u = f in the space C∞(Î) using the functions g∗α(x, y) and
w(x) defined by (5.26) and (5.31), respectively. But it is not easy to verify that D(Ĝ) is
dense in C∞(Î) unless the associated Dirichlet form is utilized.

The Dirichlet form method gives us a direct and quickest way to construct the
diffusion X ∈ Ext′IM(X0). The constructed diffusion X has a Feller transition function
by the above proposition.
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