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Abstract. This paper presents a definition of C∗-equivariant degener-
ation families of compact complex curves over C. Those families are called
C∗-pencils of curves. We give the canonical method to construct them and
prove some results on relations between them and normal surface singularities
with C∗-action. We also define C∗-equivariant degeneration families of com-
pact complex curves over P1. From this, it is possible to introduce a notion
of dual C∗-pencils of curves naturally. Associating it, we prove a duality for
cyclic covers of normal surface singularities with C∗-action.

1. Introduction.

In [Ko], K. Kodaira gave a definition of the local one-parameter degeneration
families of compact complex curves (we call them pencils of curves in this paper).

Definition 1.1. Let S be a non-singular complex surface and let ∆ (⊂ C)
be a small open disc around the origin. If Φ: S −→ ∆ is a proper surjective
holomorphic map whose generic fiber St : = Φ−1(t) (t 6= 0) is a smooth curve (but
not necessarily connected), then it is called a quasi-pencil of curves. Furthermore,
if St is a smooth connected curve of genus g, it is called a pencil of curves of genus
g. For the irreducible decomposition supp(S0) =

⋃r
i=1 Ei, m := gcd{CoeffEi(S0) |

i = 1, . . . , r} is called the multiplicity of Φ. If m > 1 (resp. m = 1), then Φ is a
multiple (resp. non-multiple) pencil of curves.

In the case of g = 1, Kodaira [Ko] classified singular fibers and the homologi-
cal monodromies and constructed pencils of curves with such numerical data. The
corresponding work in the case of g = 2 was done by Y. Namikawa and K. Ueno
([NU]) according to the argument of [Ko]. Now, from local and global points of
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view in algebraic geometry and topology, there are many results related to pencils
of curves (see [AI], [AK] and [MM]).

On the other hand, normal surface singularity theory has been developed for
a long time by many mathematicians. Regarding the relation between surface sin-
gularities and pencils of curves, several works have been researched. In [Ku], V.
Kulikov observed that all of Arnold’s unimodal and bimodal singularities ([Ar])
relate elliptic pencils in [Ko]. Furthermore, M. Reid [Re] classified hypersurface
minimally elliptic singularities and pointed out that they relate elliptic pencils in
[Ko]. After their works, U. Karras ([Kar]) introduced the notion of Kodaira
singularities in terms of pencils of curves and applied to research deformation
theory of elliptic singularities (also see [EW], [Stev], [To3], [To5] and [To6]).
If Φ: S −→ ∆ is a pencil of curves, then any connected one-dimensional ana-
lytic proper subset E in supp(So) has a negative definite intersection matrix from
Zariski’s lemma ([BPV, p. 90]). Therefore, E is contracted to a normal surface
singularity by Grauert’s result ([G, p. 367]). Conversely, the author proved the
following.

Theorem 1.2 ([To6, Theorem 2.4]). Let (X, o) be a normal surface singu-
larity and h ∈ mX,o (the maximal ideal of OX,o). Let π : (X̃, E) −→ (X, o) be a
good resolution such that red((h ◦ π)X̃) is a simple normal crossing divisor on X̃.
Then there exists a quasi-pencil of curves Φ: S −→ ∆ with (X̃, E) ⊂ (S, supp(So))
such that Φ|X̃ = h ◦ π and all connected components of supp(So)\E are minimal
P1-chains started from E. Furthermore, if h is not a perfect power element of
OX,o (see Notations and Terminologies), then Φ: S −→ ∆ above is a pencil of
curves.

Based on the above, the author defined the holomorphic invariants of (X, o)
and (X, o, h) as follows:

pe(X, o) = min{the genus of a pencil of curves including a resolution of (X, o)},
and pe(X, o, h) = min{the genus of a pencil of curves with Φ|X̃ = h ◦ π},

where h ∈ mX,o is not a perfect power element. We have pe(X, o) =
min{pe(X, o, h) | h ∈ mX,o is not a perfect power element} ([To6, Theorem 2.13]).
These invariants are called the pencil genus of (X, o) (resp. a pair of (X, o) and
h). We use them in this paper.

Normal singularities with C∗-action have been studying from several points
of view for a long time. The affine rings of these singularities are finitely gen-
erated graded rings [OW1]. Consequently, these singularities make very special
class among singularities on complex spaces. However, this class contains many
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important singularities in complex geometry. For example, it contains all quo-
tient singularities and all normal isolated singularities obtained by blowing-down
of the zero sections of negative line bundles on complex manifolds. Furthermore,
the links (i.e., the intersection set of a small sphere around a singular point and
the singular set) of these singularities provide many important examples of man-
ifolds in geometry since the famous work by E. Brieskorn on exotic spheres, and
many mathematicians have been studying them actively (see [BG], [Sav]). In
2-dimensional case, normal surface singularities with good C∗-action have been
investigated in depth and widely since P. Orlik and P. Wagreich’s work ([OW1],
[OW2] and [OW3]).

In this paper, we define pencils of curves with C∗-action and study some
relations between them and normal surface singularities with good C∗-action.

Definition 1.3.

( i ) Let Φ : S −→ C be a quasi-pencil, where we consider C as ∆ with infinite
radius. If there exists an effective holomorphic C∗-action on S satisfying
Φ(t · p) = tdΦ(p) for any t ∈ C∗ and p ∈ S and for some d ∈ N, then we call
Φ : S −→ C a C∗-quasi-pencil of curves of degree d. Furthermore, if Φ is a
pencil of curves of genus g and degree d and multiplicity m, then (d, g, m)
is called the type of Φ.

( ii ) Suppose that red(S0) (the reduced divisor of S0) is simple normal crossing.
If there is no (−1)-curve (i.e., P1 whose self-intersection number is −1)
in supp(S0) which contains a one-dimensional C∗-orbit, then Φ is called a
minimal good C∗-pencil of curves.

(iii) Let Φi : Si −→ C be a C∗-pencil of curves of genus g (i = 1, 2). A
holomorphic isomorphism from Φ1 to Φ2 is defined to be a pair of C∗-
equivariant biholomorphic maps ϕ1 : S1 −→ S2 and ϕ2 : C −→ C such that
ϕ2 ◦ Φ1 = Φ2 ◦ ϕ1.

Example 1.4. Let us consider a non-singular surface S = {([z0 : z1 : z2], ζ) ∈
P2 × C | zd

0 + zd
1 + ζzd

2 = 0}. Let Φ : S −→ C be the restriction of the projection
map P2 × C −→ C. Then Φ gives a pencil of curves. Consider a C∗-action on S

defined by t · ([z0 : z1 : z2], ζ) = ([tz0 : tz1 : z2], tdζ). Therefore, Φ(t · p) = tdΦ(p)
for t ∈ C∗ and p ∈ S. Consequently, Φ : S −→ C is a C∗-pencil of curves of
type ((d− 1)(d− 2)/2, d, 1); also every fiber Sζ with ζ 6= 0 is isomorphic to the
Fermat curve of degree d. Moreover, let σ : S′ −→ S be the blowing-up at a point
([0 : 0 : 1], 0). Then Φ′ := Φ ◦ σ : S′ −→ C is also a C∗-pencil of curves of same
type as Φ. The weighted dual graph (=w.d.graph) of S′0 is given by
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where all components are P1; also E2
0 = −1, E2

i = −d, E0Ei = 1 (i = 1, . . . , d),
EiEj = 0 (1 ≤ i < j ≤ d) and CoeffE0 Φ′ = d means that the vanishing order of
Φ′ on E0 is d, and so on.

In the general dimensional case, degenerate families with C∗-action for po-
larized algebraic schemes were defined in [Do]. In 2-dimensional case, Orlik and
Wagreich [OW3] studied C∗-equivariant completions of C∗-equivariant resolution
spaces of normal surface singularities with good C∗-action. Analogously, we de-
fine complete C∗-pencils of curves. They play important roles for consideration
of the relation between C∗-pencils of curves and cyclic covers of normal surface
singularities with good C∗-action in Section 5.

Definition 1.5.

( i ) Let Ŝ be a compact complex surface with an effective holomorphic C∗-
action and Φ̂ : Ŝ −→ P1 be a surjective holomorphic map. Let S :=
Ŝ\ supp(Φ̂−1(∞)) and S∗ := Ŝ\ supp(Φ̂−1(0)), where ∞ = [1 : 0] and
0 = [0 : 1]. If Φ := Φ̂|S : S −→ C and Φ∗ := (1/Φ̂)|S∗ : S∗ −→ C are
C∗-quasi-pencils of curves, then we call Φ̂ : Ŝ −→ P1 a complete C∗-quasi-
pencils of curves. If Φ is a C∗-pencil of curves of type (d, g, m), then Φ̂ is
called a C∗-pencil of curves of type (d, g, m).

( ii ) If Φ and Φ∗ are minimal good C∗-pencil of curves, then Φ̂ is called a minimal
good complete C∗-pencil of curves.

(iii) Let Φ̂ : Ŝ −→ P1 be a complete C∗-quasi-pencil of curves. We also represent
Φ (resp. Φ∗) as Φ̂L (resp. Φ̂R) and call Φ̂L (resp. Φ̂R) the left (resp. right)
part of Φ̂. Furthermore, let put Ŝ0 = supp(Φ̂−1(0)) and Ŝ∞ =
supp(Φ̂−1(∞)); hence Ŝ0 = ŜL,0 and Ŝ∞ = ŜL,∞.

(iv) Let Φ̂i : Ŝi −→ P1 be a complete C∗-quasi-pencil of curves (i = 1, 2). A
holomorphically isomorphism from Φ̂1 to Φ̂2 is defined to be a pair of C∗-
equivariant biholomorphic maps ϕ̂1 : Ŝ1 −→ Ŝ2 and ϕ2 : P1 −→ P1 such
that ϕ2 ◦ Φ1 = Φ2 ◦ ϕ1.

( v ) Two C∗-pencils of curves Φ and Φ∗ are said to be mutually dual. Namely,
Φ∗ (resp. Φ) is the dual of Φ (resp. Φ∗).

We remark on Definition 1.5 (i). In Theorem 2.4 (i) and Corollary 2.11, we
give a way to construct all complete C∗-pencils of curves up to C∗-equivariantly
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biholomorphic equivalences, which is called the canonical construction. From the
way, we can easily see that the types for Φ and Φ∗ coincide.

From the definition above, we can see that the homological monodromy trans-
formation associated to Φ̂L and Φ̂R are inverse to each other. Next we describe
some fundamental facts for pencils of curves.

Remark 1.6. Let Φ: S −→ ∆ be a pencil of curves.

( i ) For any non-zero constant c, the product cΦ also gives a pencil of curves
that is isomorphic to Φ.

( ii ) If Φm (m ≥ 2) is the power of the function Φ, then Φm : S −→ ∆ is a
quasi-pencil of curves but not a pencil of curves, because the generic fiber
of Φm has m connected components. Conversely, if Φ: S −→ ∆ is a quasi-
pencil of curves but not a pencil of curves, then there is a pencil of curves
Ψ: S −→ ∆ such that Φ = Ψ` for ` ≥ 2.

(iii) If Φ is a C∗-pencil of curves, then similar statements as (ii) are also true.
Namely, for m ≥ 2, Φm is a C∗-quasi-pencil of curves but not a C∗-pencil
of curves as in (ii). If Φ: S −→ C is a C∗-quasi-pencil of curves but not
a C∗-pencil of curves, then there is a C∗-pencil of curves Ψ: S −→ C such
that Φ = Ψ` for ` ≥ 2.

Proof. Since (i) and the first statement of (ii) are obvious, we prove the
second statement of (ii). Let ` be the number of connected components of the gen-
eral fiber of Φ. From the Stein factorization of Φ, we have the following diagram:

S ∆ ,

∆̃
Ψ1 η1

Φ
-

Q
QQs ´

´́3

where η1 is a finite map and Ψ1 is a connected map. Then Ψ1 is a pencil of
curves and t = η1(ζ) = u(ζ)ζ`, where u(0) 6= 0. Let u1(ζ) be a holomorphic
function with u`

1 = u on a small open disc ∆̃ε. Consider a coordinate change
ζ1 := ϕ(ζ) := u1(ζ)ζ on ∆̃ε. Let Ψ := ϕ ◦ Ψ1 and η := η1 ◦ ϕ−1. Then, from
t = η(ζ1) = ζ1

`, we have Φ = η1 ◦Ψ1 = η1 ◦ϕ−1 ◦ϕ ◦Ψ1 = η ◦Ψ = Ψ` on an open
set Ψ−1(∆̄ε). Hence, Φ = Ψ` on S.

Since the first statement of (iii) is obvious, we prove the second statement.
Similarly as (ii), we take the Stein factorization Φ = η ◦Ψ, where Ψ: S −→ C is a
pencil of curves and η is a finite map. Let ∆ be a small disc around the origin of
C and let consider a quasi-pencil of curves Φ∆ : S∆ = Φ−1(∆) −→ ∆. From (ii),
there exists a pencil of curves Ψ∆ satisfying Φ∆ = Ψ`

∆ on an open set Ψ−1(∆).
Therefore, we have Φ = Ψ` on S. Since Ψ`(tP ) = Φ(tP ) = tdΦ(P ) = tdΨ`(P )
for any t ∈ C∗ and P ∈ S, we have Ψ(tP ) = ωtd/`Ψ(P ), where ω` = 1. Since
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Ψ(P ) = ωΨ(P ) for S\ supp(S0), we have ω = 1. Hence Ψ is a C∗-pencil of curves.
¤

Remark 1.7. Let Φ: S −→ ∆ be a quasi-pencil of curves.

( i ) If f is a non-constant holomorphic function on S, then a holomorphic func-
tion g on ∆ exists such that f = g ◦ Φ. In fact, there is a well-defined
function g on ∆ by g(t) = f(St) for any t ∈ ∆. Considering a holomorphic
local section s of Φ, g is holomorphic from g = f ◦ s.

( ii ) If Φ: S −→ C is a C∗-quasi-pencil of curves of degree d and f is a C∗-
equivariant holomorphic function on S of degree ` (i.e., f(tp) = tdf(p) for
any t ∈ C∗ and p ∈ S), then d|` and f coincides to cΦ`/d for a constant c.
In fact, g of (i) with f = g ◦Φ is written as ct`/d because g is homogeneous.
Therefore, any C∗-equivariant holomorphic function f on S is given as a
power of the fibering map c1Φ for c1 with c = cd

1; namely f = (c1Φ)`/d.
(iii) Let Φ : S −→ C be a C∗-quasi-pencil of curves. Let ζ1 and ζ2 be different

non-zero elements of C. Let ω be a fixed element of C∗ satisfying ωd = ζ2/ζ1.
Then we have a biholomorphic map from Sζ1 to Sζ2 by P 7→ ωP . Therefore,
all general fibers are mutually biholomorphic.

Next we review some facts related to normal surface singularities with C∗-
action. Let (X, o) be an n-dimensional normal isolated singularity with C∗-action.
From [OW1], there is an embedding (X, o) ⊂ (CN+1, o) such that the C∗-action
on (X, o) is induced from a diagonal action t · (z0, . . . , zN ) = (tq0z0, . . . , t

qN zN )
on CN+1, where qi > 0 for any i. If gcd(q0, . . . , qN ) = 1, then the action is
called a good C∗-action. In this paper, we usually consider singularities with good
C∗-action; abbreviate “good” in the following. If a polynomial f(z0, . . . , zN ) is
expressed as a linear combination of monomials zi0

0 . . . ziN

N satisfying
∑N

j=0 qjij =
d, then f is called a quasi-homogeneous polynomial of type (q0, . . . , qN ; d) or of
type (q0, . . . , qN ) and of degree d. The affine ring RX of X is generated by quasi-
homogeneous polynomials of type (q0, . . . , qN ) ([OW1]). It becomes a graded
ring.

From now on, it is assumed usually that X is 2-dimensional. We often use
star-shaped w.d.graphs given as follows:

−b1,1 −b1,`1
· · ·

−b

−bs,1 −bs,`s
· · ·

· · ·
· · · · · ·

· · ·
· · ·

E0

E1,1 E1,`1

Es,1 Es,`s
· · ·

.

· · ·
[g]

(1.1)
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The component E0 is a compact smooth algebraic curve of genus g and E2
0 = −b.

It is called the central curve. Each P1-chain
⋃`i

j=1 Ei,j is contracted to a cyclic
quotient singularity of type Cdi,ei

, where

di

ei
= [[bi,1, . . . , bi,`i

]] := bi,1 − 1
. . .

− 1
bi,`i

.

If b−∑s
i=1 ei/di > 0, then it is well-known that the configuration of (1.1) represents

the exceptional set of a resolution space of a surface singularity ([P]). Furthermore,
if b =

∑s
i=1 ei/di, then we prove that there exists a C∗-pencil of curves Φ: S −→ C

such that the configuration of (1.1) represents the support of S0 (Theorem 2.4).
Let (X, o) be a normal surface singularity with C∗-action.

Theorem 1.8 ([OW1], [P] and [To4]). There exists a C∗-equivariant res-
olution π : (X̃, E) −→ (X, o) uniquely which satisfies the following :

( i ) The w.d.graph of E is a star-shaped graph of (1.1) and b−∑s
j=1 ej/dj > 0.

( ii ) The C∗-action on X̃ acts trivially on the central curve E0; each irreducible
component of E except for E0 contains a one-dimensional orbit.

(iii) Each P1-chain
⋃`i

j=1 Ei,j does not contain a (−1)-curve.

In this paper, a resolution satisfying the three conditions above is called a
minimal C∗-good resolution. For cases aside from cyclic quotient singularities,
the minimal C∗-good resolution is the minimal good resolution. However, for
cyclic quotient singularities, this is not always true. For such singularities, there
are countably many natural C∗-actions for each one. For example, let (X, o) be
(C2, o) with C∗-action t · (x, y) = (t2x, t3y) for t ∈ C∗. The minimal C∗-good
resolution of (C2, o) with C∗-action above is given as

−3 −1

E1 E0 E2

, means −2where
(1.2)

and E0 is the central curve. However, it is not the minimal good resolution. Please
refer to [To4] for further details.

The structure of a normal surface singularity is determined by the analytic
structures of the central curve E0 and the normal bundle of E0 in the minimal good
resolution and intersection points of E0 and P1-chains. This fact was described
explicitly by A. Fujiki [Fu1] and H. Pinkham [P]. Assuming that the w.d.graph
of E is given as (1.1), then let H be the restriction of the conormal bundle N∗

E0/X̃
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onto E0 and Pi := E0∩Ei,1 for any i. For affine graded ring RX of (X, o), Pinkham
[P] proved an isomorphism of graded rings as

RX
∼=

∞⊕

k=0

H0
(
Eo,OEo

(D(k))
)
tk, (1.3)

where D(k) = kH−∑s
j=1dejk/djePj and dae is the round up of a ∈ R. In [De], M.

Demazure generalized this formula in higher dimensional case, and K-i. Watanabe
applied it to finitely generated graded ring theory ([Wke]). We call a Q-coefficient
divisor D = H − ∑s

j=1(ej/dj)Pj the Pinkham-Demazure divisor of (X, o). Also
the representation of RX of (1.3) is called the Pinkham-Demazure construction.

In Section 2, we present a canonical method to construct (resp. complete)
C∗-pencils of curves (Section 2) and call such objects (resp. complete) C∗-pencils
of curves by the canonical construction. We prove that any complete C∗-pencil of
curves is C∗-equivariantly and holomorphically isomorphic to one by the canonical
construction. Furthermore, considering complete C∗-pencils of curves, we intro-
duce the notion of dual C∗-pencils of curves.

In Section 3, some results on cyclic quotient singularities and its cyclic cover-
ings are proven as the preparation of Section 4 and Section 5. Our main result is
Theorem 3.4, which is proven according to the argument by Fujiki ([Fu2]).

In Section 4, some results on C∗-pencils of curves are shown. We prove a
C∗-equivariant version of Theorem 1.2. (Theorem 4.1). In [Fu1] and [P], they
prove that any normal surface singularity with C∗-action is obtained as a finite
group quotient of a holomorphic line bundle on a compact smooth complex curve.
As its analogy, we prove Theorem 4.6.

In Section 5, we prove a relation between complete C∗-pencils of curves and
cyclic coverings of normal surface singularities with C∗-action (Theorem 5.4). Let
(X, o) be a normal surface singularity with C∗-action and h a homogeneous element
of RX of degree d. Let (Yi, o) be the normalization of the cyclic covering over
(X, o) defined by wmi

i = h (i = 1, 2). Suppose that m1 + m2 ≡ 0 (d) and Y1, Y2

are irreducible. Then we can see some duality phenomenon between (Y1, o) and
(Y2, o) (Theorem 5.4, Remark 5.7). In [Ko], Kodaira already recognized “a dual” of
elliptic pencils from the point of view of homological monodromy theory. Recently,
for general pencils of curves, Lu and Tan [LT] studied the notion of dual pencils
from the point of view of n-th root fibrations. In Section 5, we explain their
definition for dual pencils. As an application of Theorem 5.4, we prove that the
dual as C∗-pencils of curves coincides with the notion of dual as cyclic coverings
in [LT] up to the C∗-equivariant birational map.

Notations and Terminologies. Let R be a ring and h a non-zero element
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of R. Then h is called a perfect power element if there is an element g ∈ R satisfying
h = gk for some positive integer k ≥ 2.

In this paper, we use weighted dual graphs to represent the configurations of
singular fibers of pencils of curves and the exceptional sets of resolutions of surface
singularities. Please refer [To6] for them.

Let A =
⋃r

j=1 Aj ⊂ M be the irreducible decomposition of a complex curve
A in a complex surface M . Let D =

∑r
i=1 diAi be a divisor on M . In this paper,

we put supp(D) =
⋃r

j=1 Aj (the support of D), red(D) =
∑r

j=1 Aj (the reduced
divisor of D) and CoeffAj

D = dj . Furthermore, if A is a reduced divisor with
supp(A) ⊂ supp(D), then we put supp(D)\A := supp(red(D)−A). Suppose that
A2

j ≤ 0 for any j and that A =
∑r

j=1 Aj is a simple normal crossing divisor on M .
Let F =

⋃r
i=1 Fi (⊂ A). If

⋃r−1
i=2 Fi does not intersect other components except

for F1 and Fr and the w.d.graph of F is given by

−b1 −b2 −br

F1 F2 Fr

· · ·
· · ·

,

then F is called a P1-chain of type (b1, . . . , br) or type 〈d, e〉, where d/e =
[[b1, . . . , br]] and gcd(d, e) = 1. If bi ≥ 2 for any i, then F is called a minimal
P1-chain.

For non-negative integers a1, . . . , as with a1 + · · ·+ as > 0 and 0 < r < s, we
define an integer as

[a1, . . . , ar | ar+1, . . . , as] =
gcd(a1, . . . , ar)

gcd(a1, . . . , ar, lcm(ar+1, . . . , as))
. (1.4)

In this paper, we often use it in the case of (r, s) = (1, 2) or (2, 1). It is readily
apparent that [a1 | a2, a3] = [a1 | a3, a2] and [a1, a2 | a3] = [a2, a1 | a3]. For
integers a1, a2, a3, the following figure is convenient to represent integers above.

α1 := [a1|a2, a3],

γ1 := [a2, a3|a1], and so on.

γ := gcd(a1, a2, a3),a1α1

α2 α3

γ2γ3

γ1

γ
a2 a3

The following can be checked readily:

( i ) α1, α2 and α3 are relatively prime.
( ii ) γ1, γ2 and γ3 are relatively prime.
(iii) αi and γi are relatively prime for i = 1, 2, 3.
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2. Canonical construction of complete C∗-pencils of curves.

In this section, we present a method to construct complete C∗-pencils of
curves from P1-bundles on smooth compact complex curves (Theorem 2.4). In
addition, we obtain C∗-pencils of curves as subsets of complete C∗-pencils of curves
constructed by the method. Such method is called the canonical construction for
(complete) C∗-pencils of curves. Moreover, we prove that every (complete) C∗-
pencil of curves is isomorphic to one by the canonical construction (Theorem 2.10
and Corollary 2.11).

Lemma 2.1.

( i ) Let [[b1, . . . , b`]] = n/q and let q′, q′′ be numbers satisfying qq′ ≡ 1 (n)
(0 < q′ < n) and q′′n = qq′ − 1. Then, for any real number a, we have

[[b1, . . . , b`−1, b` + a]] =
n + q′a
q + q′′a

.

( ii ) Let n, q1 and q2 be positive integers such that n and qi are relatively prime
and 0 < qi < n for i = 1, 2. If we put n/q1 = [[b1,1, . . . , b1,`1 ]] and n/q2 =
[[b2,1, . . . , b2,`2 ]], then

[[b1,1, . . . , b1,`1 , 1, b2,`2 , . . . , b2,1]] = 0 if and only if q1 + q2 = n. (2.1)

Proof. Since (i) was proven in [To4], we prove (ii). From (i),

[[b1,1, . . . , b1,`1 , 1, b2,`2 , . . . , b2,1]] =
[[

b1,1, . . . , b1,`1−1, b1,`1 −
n

n− q′2

]]

=
n + q′1(−n/(n− q′2))
q1 + q′′1 (−n/(n− q′2))

=
n(n− (q′1 + q′2))
nq1 − q1q′2 − nq′′1

,

where q′i and q′′i are defined for qi and n as in (i) (i = 1, 2). From this, if q1+q2 = n,
then q′1 + q′2 = n and so the value above is zero. Conversely, if the left hand side
of (2.1) is zero, then we have q′1 + q′2 = n. Consequently, q1 + q2 = n. ¤

Let n and q be relatively prime integers with 1 ≤ q < n. Let put
n/q = [[b1,1, . . . , b1,`1 ]] and n/(n − q) = [[b2,1, . . . , b2,`2 ]]. Let ∆ be a small open
disc around the origin in C. From (2.1), there exists uniquely a successive C∗-
blowing-up σn,q : Vn,q −→ ∆ × P1 started from (0, 0) such that the w.d.graph of
σn,q

−1({0} × P1) is given as
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−b1,1 −b1,`1

E1,1 E1,`1

· · ·
· · ·

−b2,1

E2,`2
E2,1

· · ·
· · ·

−1

E1

−b2,`2 ,
(2.2)

where E2,1 = (σn,q)
−1
∗ ({0} × P1) (= strict transform of {0} × P1 through σn,q).

Let E(0) =
⋃`1

k=1 E1,k and E(∞) =
⋃`2

k=1 E2,k. Also, let τ : Vn,q −→ V̄n,q be the
contraction of E(0) and E(∞). Therefore, the complex surface V̄n,q has two cyclic
quotient singularities P0 := τ(E(0)) and P∞ := τ(E(∞)) such that (V̄n,q, P0) ∼=
Cn,q and (V̄n,q, P∞) ∼= Cn,n−q. Furthermore, let Un,q := Vn,q\E(∞) and let Ūn,q

be the complex surface obtained by the contraction of E(0) in Un,q. Thus, Ūn,q

has only one cyclic quotient singularity of type Cn,q.
Let put g =

( en 0
0 eq

n

)
for en := exp(2π

√−1/n) and consider the natural action
of Gn,q := 〈g〉 on ∆ × C. Then the action is extended naturally onto ∆ × P1.
Hence we have the following:

∆× C � � //

p

²²

∆× P1

p̄

²²
(∆× C)/Gn,q

� � // (∆× P1)/Gn,q.

The complex surface (∆×C)/Gn,q has a cyclic quotient singularity of type Cn,q at
p̄(0, 0) and (∆ × P1)/Gn,q has another cyclic quotient singularity of type Cn,n−q

at p̄(0,∞). Let σ : Yn,q −→ (∆ × P1)/Gn,q be the minimal resolution of p̄(0, 0)
and p̄(0,∞); also let Xn,q −→ (∆× C)/Gn,q be the minimal resolution of p̄(0, 0).
Hence, Xn,q ⊂ Yn,q. The following was already described explicitly in [Fu1], but
it is written in Japanese. Then we give the proof in a slightly different way.

Lemma 2.2. The complex surface (∆ × P1)/Gn,q (resp. (∆ × C)/Gn,q) is
C∗-equivariantly biholomorphic to V̄n,q (resp. Ūn,q). Therefore, Yn,q (resp. Xn,q)
is C∗-equivariantly biholomorphic to Vn,q (resp. Un,q).

Proof. Let z be the coordinate of ∆. Because zn is Gn,q-invariant, we have
a holomorphic function h induced from it on (∆ × P1)/Gn,q. Let A be a divisor
on (∆ × P1)/Gn,q defined by h. Let F0 be the strict transform of A by σ; then
vF0(h ◦ σ) = n. Therefore, the divisor by h ◦ σ on Yn,q is given as

−b1,1 −b1,r1

F1,1 F1,r1

· · ·
· · ·

−b2,1

F2,r2 F2,1

· · ·
· · ·

−1

F0

−b2,r2

1 nq n− q 1· · · · · ·

.

Let ϕ : Yn,q −→ Z be the contraction of
⋃r1

j=1 F1,j ∪ F0 ∪
⋃r2

j=2 F2,j . Then, Z
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is a non-singular surface and ϕ(F2,1) is a non-singular projective line in Z whose
intersection number equal to zero from Lemma 2.1. Because the projection map
p1 : ∆×P1 −→ ∆ is Gn,q-equivariant, we can get a proper surjective holomorphic
map p̄ : Z −→ ∆ such that any fiber of p̄ is P1. This is isomorphic to the trivial P1-
bundle on ∆. Consequently, from the construction of Vn,q, Yn,q is C∗-equivariantly
biholomorphic to Vn,q. ¤

Let ϕ : L −→ E0 be a holomorphic P1-bundle on a compact smooth complex
curve E0. For any P0 ∈ E0, a small open neighborhood UP0 of P0 is chosen such
that UP0

∼= ∆ (= a small open disc around the origin in C) and ϕ−1(UP0) ∼=
UP0 × P1. Corresponding to σn,q : Vn,q −→ UP0 × P1, there is a successive C∗-
blowing-up σn,q(P0) : wP0(n, q)L −→ L satisfying the following diagram:

LwP0(n, q)L

Vn,q UP0 × P1 ' ϕ−1(UP0).

σn,q(P0)

σn,q

∪∪
-

-

Definition 2.3. Let Φ̂ : Ŝ −→ P1 be a complete C∗-pencil of curves and
m0 := gcd{CoeffEi

S0 | Ei is an irreducible component of supp(S0)}. If m0 > 1,
then we call Φ̂ is a multiple complete C∗-pencil of curves of multiplicity m0. This
is equivalent to the condition that Φ̂L : Ŝ|L −→ C is a multiple pencil of curves of
multiplicity m0.

Theorem 2.4. Let E0 be a compact smooth complex curve of genus g0 and N

a non-positive holomorphic line bundle on E0. Assume that dN ∼ −∑s
j=1 djPj

(linearly equivalent) for positive integers d, d1, . . . , ds with 0 < dj < d (s ≥ 0)
and mutually distinct s points P1, . . . , Ps ∈ E0. Let m0 := gcd(d, d1, . . . , ds) and
g := 1 + (1/2){d(2g0 − 2 + s)−∑s

j=1 gcd(d, dj)}.
( i ) There exists a minimal good complete C∗-quasi-pencil of curves Φ̂ : Ŝ −→ P1

of degree d satisfying the following properties:
(i-1) the w.d.graphs of the singular fibers S0 and S∞ are star-shaped ;
(i-2) the central curves of S0 and S∞ are holomorphically isomorphic to

E0;
(i-3) if E0 is considered as the central curve of S0, then NE0/Ŝ |E0 ' N as

holomorphic line bundles on E0.
( ii ) Let Φ̂ be a complete C∗-quasi-pencil of curves constructed in (i).

(ii-1) If m0 = 1, then Φ̂ is a non-multiple complete C∗-pencil of curves of
type (d, g, 1).

(ii-2) Supposing that m0 > 1, then Φ̂ is a multiple complete C∗-pencil of
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curves of type (g, d, m0) if and only if (d/m0)N +
∑s

j=1(dj/m0)Pj is
a torsion bundle of order m0.

Proof. (i) Let −b be the degree of N (b ≥ 0). Then bd =
∑s

j=1 dj . When
s = 1, we have db = b1 > 0. This contradicts the hypothesis 0 < d1 < d; hence
we have s = 0 or s ≥ 2. Let H be a holomorphic line bundle N + [P1 + · · ·+ Ps]
on E0 and ϕ : H −→ E0 the projection map. Furthermore, let ϕ̄ : H̄ −→ E0 be a
P1-bundle on E0 associated to H. We choose an open coordinate covering

⋃
α Uα

of E0 such that ϕ̄−1(Uα) ∼= Uα × P1 (so ϕ−1(Uα) ∼= Uα × C). Let ζα be a fiber
coordinate function on ϕ−1(Uα). We choose a meromorphic function hα on Uα

such that (hα) =
∑s

j=1(d− dj)Pj on Uα. Because {hα} is a meromorphic section
of dH satisfying ζd

α/hα = ζd
β/hβ on ϕ−1(Uα) ∩ ϕ−1(Uβ), there is a meromorphic

function Φ′ on H such that Φ′|ϕ−1(Uα) = ζd
α/hα for any α. The natural C∗-action

on H is given by t · (ζα, P ) = (tζα, P ) on ϕ−1(Uα). Hence we have Φ′(t · (ζα, P )) =
(tζα)d/hα(P ) = tdΦ′(P ). Then Φ′ is extended to a meromorphic function on H̄.
Let Φ̄ := [Φ̄0 : Φ̄1] : H̄ −→ P1 be a holomorphic map which is given by Φ′, where Φ̄0

and Φ̄1 are holomorphic functions with Φ̄0hα = ζd
αΦ̄1. Then Φ̄ is a C∗-equivariant

holomorphic map with respect to a C∗-action defined by t · [ξ0 : ξ1] = [tdξ0 : ξ1] on
P1 for any t ∈ C∗.

When s = 0, let assume that Ŝ := S̄ and Φ̂ := Φ̄. In this case, H is a torsion
or the trivial line bundle on E0 from the definition. Next, let consider the case
of s ≥ 2; hence we have bd =

∑s
j=1 dj > 0. Let d/dj = [[b1,j,1, . . . , b1,j,uj

]] and
d/(d− dj) = [[b2,j,1, . . . , b2,j,vj ]]. If we put E2,j,1 = ϕ−1(Pj) (so Pj = E0 ∩E2,j,1),
then vE2,j,1(Φ̄) (= the vanishing order of Φ̄ on E2,j,1) is equal to −dj and vE0(Φ̄) =
d. For a small open neighborhood Uj of Pj , we consider a successive C∗-equivariant
blowing-up σj := σd,dj

(Pj) : wPj
(d, dj)(ϕ̄−1(Uj)) −→ ϕ̄−1(Uj) as in (2.2). Let

Ŝ := wPs(d, ds) · · ·wP1(d, d1)H̄ and σ := σs ◦ · · · ◦ σ1 : Ŝ −→ H̄. We consider the
following holomorphic map

Φ̂ = Φ̄ ◦ σ : Ŝ −→ P1.

Then the figure of the divisor for Φ̂ on Ŝ is represented as

where E2,j,1 (resp. E∞) is the strict transform of ϕ−1(Pj) (resp. the infinity
section of H̄); also di,j,k > 0 for i = 1, 2 and d1,j,1 = d − dj and d2,j,1 = dj .
Since σj is a C∗-equivariant map, the C∗-action on H̄ is lifted onto Ŝ and Φ̂ is
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a C∗-equivariant map. In the construction of Ŝ, we took only one blowing-up at
Pj for each j. Therefore, the restriction of the normal bundle NE0/Ŝ onto E0 is
linearly equivalent to N .

Now let S := Ŝ\ supp(Φ̂−1(0)) = Ŝ\(E∞ ∪ (
⋃s

j=1

⋃vj

k=1 E2,j,k)) and consider
a holomorphic map Φ := Φ̂|S : S −→ C. We prove that Φ is a C∗-quasi-pencil
of curves. Because E∞ ∪ (

⋃s
j=1

⋃vj

k=1 E2,j,k) is a C∗-invariant set, S is also a C∗-
invariant set and Φ is a C∗-equivariant holomorphic map. Because supp(Φ−1(0)) =
E0 ∪ (

⋃s
j=1

⋃uj

k=1 E1,j,k) and this is a compact complex curve in S, the restriction
map Φ : Φ−1(∆ε) −→ ∆ε is a proper map for sufficiently small ε with 0 < ε ¿ 1
(see [Stei] and [Fi, p. 56]). Since red(Φ−1(0)) is a simple normal crossing divisor,
Φ−1(t) is non-singular for any t ∈ ∆ε − {0}. Because, if we write Φ(x, y) = xayb

locally, then any point P satisfying ∂Φ/∂x(P ) = ∂Φ/∂y(P ) = 0 is included in
{xy = 0} (⊂ supp(Φ−1(0))). Then Φ−1(t) is a compact smooth complex curve for
any t ∈ ∆ε − {0}. Then Φ : Φ−1(∆ε) −→ ∆ε is a quasi-pencil of curves.

It is easy to confirm that Φ(tP ) = tdΦ(P ) for any t ∈ C∗. Consequently, we
need only to show that Φ : S −→ C is a quasi-pencil of curves. Namely, for any
ζ ∈ C∗, we must prove that Φ−1(ζ) is a smooth compact complex curve. For any
ζ ∈ C and any t ∈ C∗, we have

tΦ−1(ζ) = Φ−1(tdζ). (2.3)

In fact, for any tP ∈ tΦ−1(ζ), we have Φ(tP ) = tdΦ(P ) = tdζ. Therefore, tP ∈
Φ−1(tdζ) and so tΦ−1(ζ) ⊂ Φ−1(tdζ). Conversely, for any P ∈ Φ−1(tdζ), we have
Φ(P ) = tdζ and so ζ = (1/td)Φ(P ) = Φ((1/t)P ). Then (1/t)P ∈ Φ−1(ζ) and
so P ∈ tΦ−1(ζ). Therefore, we have (2.3). For any ζ ∈ C, we take t0 ∈ C∗
such that td0ζ ∈ ∆ε. From (2.3), t0Φ−1(ζ) = Φ−1(td0ζ) is a smooth compact
complex curve. Because t0 : Φ−1(ζ) −→ t0Φ−1(ζ) gives a biholomorphic map,
Φ−1(ζ) is also smooth and compact. Then Φ is a C∗-quasi-pencil of curves. Let
S∗ := Ŝ\ supp(Φ̂−1(∞)) = Ŝ\(E0 ∪ (

⋃s
j=1

⋃uj

k=1 E1,j,k)). Similarly, we can show
that Φ∗ := 1/(Φ̂)|S∗ : S∗ −→ C is a C∗-quasi-pencil of curves; hence Φ̂ : Ŝ −→ P1

is a complete C∗-quasi-pencil of curves.
(ii) Considering the restriction map Φε : Φ−1(∆ε) −→ ∆ε constructed in (i),

first we prove (ii-1). Consider the Stein factorization of Φε as

Φ−1(∆ε)
Φε //

Φ′ε ##GGGGGGGGG
∆ ,

∆̄

η

=={{{{{{{{

where η is a finite map and Φ′ε is a proper map whose fiber is connected. Then η is
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given by t = η(v) = vnη1(v) (n ≥ 1), where v is a coordinate on ∆̄ and η1(0) 6= 0.
Therefore, we have S0 = nS̄0 for an effective divisor S̄0 determined by v◦Φ′ε. Then
n | d and n | di for any i. Consequently, (d/n)N ∼ −∑s

j=1(dj/n)Pj and n | m0.
Therefore, we have n = 1 from m0 = 1. Then, any fiber of Φε is connected. Hence
Φ̂ gives a C∗-pencil of curves because all general fiber of Φ̂ are isomorphic from
Remark 1.7 (iii). Therefore, Φ̂ is a non-multiple complete C∗-pencil of curves from
m0 = 1.

Next we consider the genus of Φ̂. Assume that the following figure is associated
to Φ̂:

(2.4)
where we have the following:

(i)
[[

b1,j,1, . . . , b1,j,uj , 1, b2,j,vj , . . . , b2,j,1

]]
= 0,

(ii) b + b̄ = s and d1,j,1 + d2,j,1 = d.
(2.5)

By the adjunction formula (see [BPV, p. 68]), g = 1 + (1/2){d(b + 2g0 − 2) +∑s
j=1

∑uj

k=1 d1,j,k(b1,j,k−2)}. For any j, we obtain a simultaneous linear equation
d1,j,k−1− b1,j,kd1,j,k + d1,j,k+1 = 0 for (k = 1, . . . , uj), where d1,j,0 = d, d1,j,1 = dj

and d1,j,uj+1 = 0. Adding up them, we obtain an equation d +
∑uj−1

k=1 d1,j,k −∑uj

k=1 b1,j,kd1,j,k +
∑uj

k=2 d1,j,k = 0 for any j. Then
∑s

j=1

∑uj

k=1 d1,j,k(b1,j,k − 2) =
sd−∑s

j=1 d1,j,uj −
∑s

j=1 d1,j,1. Because d1,j,uj = gcd(d, d1,j,1) and
∑s

j=1 d1,j,1 =
db, we obtain the formula of g.

(ii-2) Let put F =: (d/m0)N +
∑s

j=1(dj/m0)Pj . First, consider the “only
if” part. Let k0 = min{k | 1 ≤ k ≤ m0, kF ∼ 0}. Assume that k0 < m0. Since
m0F ∼ 0 and k0F ∼ 0, there exists a positive integer k1 (k1 < m0) such that
k1 | m0 and k1F ∼ 0. Using (i), there exists a quasi-complete C∗-pencil of curves
Φ̂0 : Ŝ −→ P1 associated to k1F . From Remark 1.7 (ii), we have Φ̂ = cΦ̂m0/k1

0
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for a constant c. Therefore, Φ̂ is not a pencil of curves. This is a contradiction.
Consequently, k0 = m0, and F is a torsion line bundle of order m0.

Second, consider the “if” part. If Φ̂ is not a multiple pencil of curves, then
it is not a pencil of curves. Namely, it is not a connected map. Using Stein
factorization as in (ii-1), we can show that S0 = nS̄0 for a quasi-pencil of curves
Φ̄ : S̄ −→ C, where n (> 1) is the number of connected components of the general
fiber. Since S̄0E0 ∼ 0, we have n | m0 and (d/n)N ∼ −∑s

j=1(dj/n)Pj . Therefore,
(m0/n)F ∼ 0 and this contradicts the hypothesis that the order of F is m0. ¤

Let Φ̂ : Ŝ −→ P1 be a complete C∗-pencil of curves constructed in 2.4 (i). It
is denoted by Φ̂(E0, N,

∑s
j=1 djPj) or Φ̂(A), where A := (E0, N,

∑s
j=1 djPj). The

degree of Φ̂ is given as −(
∑s

j=1 dj)/ deg(N).

Remark 2.5. (i) In the construction of complete C∗-pencils of curves of
order d, the generic fiber of Φ̂L is also the generic fiber of Φ̂R. Therefore, Φ̂L

is the inverse of the homological monodromy transformation associated to Φ̂R

because Φ̂L = 1/Φ̂R on the generic fiber. Moreover, the order of the monodromy
group is equal to d. Generally, the monodromy group of any pencil of curves
whose singular fiber is star-shaped is a finite group, and the order is equal to the
coefficient of the central curves of the singular fiber S0 (see Section 4 in [MM]).

(ii) In Kodaira’s list of elliptic pencils in [Ko], we consider pencils of curves
except for type Im and I∗m (m ≥ 1). Then they have star-shaped singular fibers.
It is easy to see that they are realized as C∗-pencils of curves. For example, III
and III∗ in [Ko] are embedded into a complete C∗-pencil of curves as follows:

P1.
Φ̂

Φ
C C

Φ∗

3 2 1

3 2 1

2

4

−1

0

−1

0

−1

0

−4

−1

−4

−1

−2

−1

−4

Therefore, they are dual mutually in our sense. Using Theorem 4.6, we can see
that the generic fiber of Φ̂ is the elliptic curve with complex multiplicative group
of order 4.

(iii) Let Y be a compact complex algebraic surface. Let Ψ : Y −→ P1 be
a pencil of curves. Let s be the number of its singular fibers. It is known that
s ≥ 2. Furthermore, if s = 2, then the geometric genus pg(Y ) and the irregularity
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q(Y ) are equal to zero. Please refer [N] for more detail. Any non-trivial complete
C∗-pencil of curves gives a pencil of curves with s = 2.

Definition 2.6. Let Φ̂(0) : Ŝ(0) −→ P1 be a complete C∗-pencil of curves
obtained by the construction of Theorem 2.4 (i). Let τ : Ŝ −→ Ŝ(0) be a sequel
of blowing-ups at C∗-fixed points. Then Φ̂ := Φ̂(0) ◦ τ : Ŝ −→ P1 is also a
complete C∗-pencil of curves. We call such one a complete C∗-pencil of curves by
the canonical construction. It is figured as follows:

(2.6)

In this paper, we call the figure above the configuration associated to Φ̂.
Let put FL = E0 ∪ (

⋃t
j=1

⋃kj

k=1 F1,j,k), FR = E∞ ∪ (
⋃t

j=1

⋃`j

k=1 F2,j,k) and
FM =

⋃t
j=1 Fj . Therefore, C∗ acts trivially on E0 and E∞. All intersection

points of irreducible components in FL ∪ FR ∪ FM are fixed points of the C∗-
action. Furthermore, each component of FL ∪ FR ∪ FM except for E0 and E∞
is constructed by a one-dimensional orbit and two fixed points. As in (2.5), we
obtain the following:

(i)
[[

b1,j,1, . . . , b1,j,kj , µj , b2,j,`j , . . . , b2,j,1

]]
= 0,

(ii) a1,j,1 + a2,j,1 ≡ 0 (d),
(2.7)

but it is not always true that b1 + b̄1 = t. If FL and FR does not contain a (−1)-
curve, then Φ̂ is called a minimal good complete C∗-pencil of curves. For a given
complete C∗-pencil of curves, we can obtain a minimal good complete C∗-pencil of
curves after suitable contractions of (−1)-curves. The latter is called the minimal
good model of the former.

Example 2.7. Let us consider a complete C∗-pencil of curves Φ̂ : Ŝ −→ P1

whose configuration associated to Φ̂ is given as follows:
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2
−3

−2

[g]

−7

−3

6

−1
0

6

−3

[g]

−2

−4−2

−4

−1

−6

−6−66 0

01 1 1 −1 −3 −4 −5

3 0 −3

−1

−1

−1

E0 E∞.

By a suitable contraction of (−1)-curves in Ŝ, we obtain the minimal good model
Φ̂(0) : Ŝ(0) −→ P1 and an associated P1-bundle H̄ on E0 as follows:

In the following, using the slice theorem due to H. Holmann ([H2]), we prove
that every C∗-pencil of curves is C∗-holomorphically isomorphic to one obtained
by the canonical construction. We prepare some definitions and a lemma in the
following.

Definition 2.8 ([H2]). Let G be a topological transformation group acting
on a topological space X.

( i ) For any point x ∈ X, suppose that there exists a neighborhood Ux such
that G × Ūx −→ Ūx ((h, p) 7→ hp) is proper on the closure Ūx. Then the
action of G on X is said to be locally proper.

( ii ) The action of G on X is said to be proper if G ×X −→ X ×X ((h, p) 7→
(hp, p)) is proper.

(iii) If the isotropy group Gx := {h ∈ G | hx = x} is a finite group of G for any
x ∈ X, then the action is said to be isotropy finite.

In the above definition, if the action of G is proper, then we can easily check
that it is locally proper.

Lemma 2.9. Let Φ : S −→ C be a C∗-pencil of curves of degree d. The
C∗-action on S′ := S\ supp(S0) is proper and isotropy finite. Also, any isotropy
group is a cyclic group whose order is a divisor of d.
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Proof. Let ϕ : C∗ × S′ −→ S′ × S′ be a holomorphic map defined by
(t, x) 7→ (tx, x). Let K be a compact subset in S′ × S′. Then there are suitable
positive constants mi and Mi (i = 1, 2) such that we have m1 ≤ |Φ(x)| ≤ M1

and m2 ≤ |Φ(y)| ≤ M2 for any (x, y) ∈ K. Let pi be the projection map to
the i-th factor from C∗ × S′ for i = 1, 2. For any (t, x) ∈ ϕ−1(K), we have
(tx, x) ∈ K. Then we have m1 ≤ |t|d|Φ(x)| ≤ M1 and m2 ≤ |Φ(x)| ≤ M2. Then
we have m1/M2 ≤ |t|d ≤ M1/m2 for any t ∈ p−1

1 (K). Hence p1(ϕ−1(K)) = {t ∈
C∗|(tx, x) ∈ K for an element x ∈ S′} is a bounded and closed set in C∗; then it is
a compact set. On the other hand, p2(ϕ−1(K)) = q2(K) can be checked readily,
where q2 is the projection map to the second factor from S′×S′. Thus p2(ϕ−1(K))
is compact and so p1(ϕ−1(K))× p2(ϕ−1(K)) is compact in S′×S′. Since ϕ−1(K)
is a closed subset in p1(ϕ−1(K))× p2(ϕ−1(K)), ϕ−1(K) is compact. Then ϕ is a
proper map.

Any finite subgroup of C∗ is a cyclic group. For any p ∈ S′, let Gp be
the isotropy group. For any t ∈ Gp, we have Φ(p) = Φ(tp) = tdΦ(p) 6= 0.
Consequently, td = 1 and Gp is a cyclic group whose order is a divisor of d. ¤

Theorem 2.10. Let Φ : S −→ C be a C∗-pencil of curves. Then it is
C∗-holomorphically isomorphic to a C∗-pencil of curves obtained by the canonical
construction.

Proof. Let g be the genus of Φ. If g = 0 and relatively minimal (i.e.,
no fiber contains (−1)-curve), then Φ is a trivial pencil of curves. Therefore, we
can assume that g ≥ 1. Let E0 be an irreducible component of E := supp(S0)
such that there are infinitely many orbits whose closures in S intersect to it;
hence C∗ acts trivially on E0. Let σ : S −→ S̄ be the contraction map of all
connected components of E−E0. Then S̄ is a normal surface. Since any connected
component of E −E0 is C∗-invariant, the C∗-action is preserved onto S̄. Because
S′ := S\ supp(S0) is identified with S̄′ := S̄\σ(E0), the C∗-action on S̄′ is proper
from Lemma 2.9.

Let x0 be any point in S̄′. From Holmann’s slice theorem ([H2, Satz 4, 8]),
we have a C∗-saturated neighborhood Ux0 in S̄′ (i.e., h ·Ux0 = Ux0 for any h ∈ C∗)
and a Gx0-invariant smooth complex curve Dx0 in Ux0 such that there is a C∗-
equivariant biholomorphic map ψx0 : Ux0 −→ (C∗ × Dx0)/τ(Gx0) with respect
to the canonical C∗-action on the right hand side (i.e., t(ζ, x) = (tζ, x) for any
t ∈ C∗), where τ : Gx0 −→ Aut(C∗ ×Dx0) is defined by τ(h)(ζ, x) = (hζ, h−1 · x)
for any h ∈ Gx0 . Here, hζ means the usual product in C∗ and h−1 · x means
the C∗-action. For any x ∈ S̄′, let Ox be the C∗-orbit of x; also Ōx be the
closure of Ox in S̄. If we set Vx0 :=

⋃
x∈Ux0

Ōx, then it is an open set in S̄

satisfying Vx0 ∩ S̄′ = Ux0 . If we set F := Vx0 ∩ Ē0, then C∗ acts trivially on
F . For any point y ∈ F , let x be a point of S̄′ with y ∈ Ōx. Let ψ̃x0(y) :=
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limt→0 t · ψx0(x) ∈ ({0} × Dx0)/τ(Gx0). This is independent of the choice of
x. In fact, if x1, x2 ∈ S′ with y ∈ Ox1 = Ox2 , then there exists t0 ∈ C∗ with
x1 = t0x2. Since ψx0 is C∗-equivariant, ψx0(x1) = ψx0(t0x2) = t0 ·ψx0(x2). Hence
limt→0 t · ψx0(x1) = limt→0 tt0 · ψx0(x2) = limt→0 t · ψx0(x2). Consequently, ψx0

is extended to a C∗-equivariant homeomorphism ψ̃x0 : Vx0 ' (C × Dx0)/τ(Gx0).
Therefore, from the Riemann’s removable singularity theorem ([KK, p. 308]), ψ̃x0

become a C∗-equivariant biholomorphic map. On the other hand, τ(Gx0) is finite
subgroup of C∗; then it is a finite cyclic group. Therefore, Vx0 has at most a
cyclic quotient singularity. Since σ is a resolution map of those cyclic quotient
singularities, any connected component of E\E0 is a P1-chain and the w.d.graph
of E is star-shaped. Hence, σ−1(Vx0) is C∗-equivariantly biholomorphic to Vn,q by
Lemma 2.2. Consequently, we complete the proof. ¤

Corollary 2.11. Let Φ̂ : Ŝ −→ P1 be a complete C∗-pencil of curves. Then
it is C∗-equivariantly biholomorphic to one obtained by the canonical construction.

Proof. Assume that Φ̂ : Ŝ −→ P1 is minimal good and so the w.d.graph
is given by (2.4). From 2.10, there exists a minimal good complete C∗-pencil of
curves Ψ̂ : Ŝ′ −→ P1 by the canonical construction such that Φ̂L : ŜL −→ C
and Ψ̂L : Ŝ′L −→ C are holomorphically isomorphic. Since Φ̂ and Ψ̂ are minimal
good, the w.d.graphs of ŜR,0 and Ŝ′R,0 coincide. Let ϕ = (ϕ1, ϕ2) be a holomor-
phic isomorphism from Φ̂L to Ψ̂L; namely it satisfies the following commutative
diagram:

ŜL

ϕ1 //

Φ̂L

²²

Ŝ′L

Ψ̂L

²²
C

ϕ2 // C.

Let E∞ (resp. F∞) be the central curve in supp(Φ̂−1(∞)) (resp. supp(Ψ̂−1(∞)).
Let σ1 : Ŝ −→ S̄ (resp. σ2 : Ŝ′ −→ S̄′) be the contraction map of
supp(Φ̂−1(∞))\E∞ (resp. supp(Ψ̂−1(∞))\F∞). Therefore, ϕ1 gives a C∗-
equivariant biholomorphic map ϕ̄1 : S̄\σ1(E∞) to S̄′\σ2(F∞). Obviously, ϕ̄1

is extended to a homeomorphism from S̄ to S̄′. Then it becomes a biholomor-
phic map between normal complex spaces S̄ and S̄′ by the Riemann’s removable
singularity theorem; also it is C∗-equivariant. Hence we have a C∗-equivariant
biholomorphic map ϕ̂1 from Ŝ to Ŝ′. Defining as ϕ̂2(∞) = ∞, ϕ2 is extended to
a C∗-equivariant biholomorphic map ϕ̂2 of P1. Therefore, ϕ̂ := (ϕ̂1, ϕ̂2) gives a
C∗-equivariantly holomorphic isomorphism between Φ̂ and Ψ̂. ¤

Consequently, from Theorems 2.4 and 2.10, we have proved the following,
which is an analogous result to that of Fujiki [Fu1] and Pinkham [P] for sur-
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face singularities with C∗-action. Especially, (iii) is an analogous formula of
Pinkham-Demazure construction for normal surface singularities with C∗-action.

Corollary 2.12. Let Φ : S −→ C be a C∗-pencil of curves of degree d.

( i ) After a suitable C∗-birational transformation, the w.d.graph of the singular
fiber S0 is a star-shaped graph as

−b1,1 −b1,`1
· · ·

−b

[g] −bs,1 −bs,`s
· · ·

· · · · · ·E0

E1,1 E1,`1

Es,1 Es,`s
· · ·

.

· · ·
d

d1,1 d1,`1· · ·

ds,1 ds,`s· · ·

· · ·
(2.8)

( ii ) The analytic type of a C∗-pencil of curves is determined by the following
data:
(ii-1) The analytic types of the central curve E0.
(ii-2) The analytic types of the normal bundle of E0 in S.
(ii-3) The intersection points Pj = E0 ∩ Ej,1 (j = 1, . . . , s).

(iii) For the fibering map Φ, there is a following natural identification:

H0(E0,OE0(D
(d)))td ∼= CΦ,

where D(d) = d(N∗
E0/S |E0)−

∑s
j=1dejd/djePj = d(N∗

E0/S |E0)−
∑s

j=1 dj,1Pj

and Φ is a holomorphic function on S, which is constructed in Theorem 2.4
(i) from an element of H0(E0,OE0(D

(d))) and the fiber coordinate ζ.

Example 2.13. Let Φ : S −→ C be an elliptic pencil whose singular fiber
is given as follows:

3
2 1

.

2 1

2 1

Then D(k) = 2kP0 −
∑3

j=1d2k/3ePj and deg(D(k)) ≤ 0 for any k. Moreover,
deg(D(k)) = 0 if and only if k ≡ 0 (mod 3). Therefore, H0(E0,OE0(D

(3`))) ∼= CΦ`

and H0(E0,OE0(D
(k))) = 0 if k 6≡ 0 (mod 3).
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3. Cyclic covers of cyclic quotient singularities.

In this section, we prove some results on cyclic coverings of cyclic quotient
singularities as the preparation of Sections 4 and 5. Let consider the natural C∗-
action t · (x, y) = (x, t`y) on Dε × C, where Dε = {z ∈ C | |z| < ε} ⊂ C for
0 < ε ≤ ∞ and ` is a positive integer. Let G be a finite cyclic group generated by( en 0

0 eq
n

)
and consider the natural G-action on Dε × C and the following quotient

complex space

X := (Dε × C)/G, (3.1)

and let p : Dε × C −→ X be the quotient map. Then the natural C∗-action
on Dε × C induces a C∗-action on X and (X, o) is a cyclic quotient singularity
Cn,q, where o = p(0) for the origin 0 of Dε × C. Let us consider a resolution
π : (X̃, E) −→ (X, o) whose w.d.graph of E is given as

−b1 −b2 −br· · ·
E1 E2 Er· · ·

,

where bi ≥ 1 for any i. We call such resolution a Hirzebruch-Jung resolution of
type 〈b1, . . . , br〉 of Cn,q. If it is the minimal resolution (i.e., bi ≥ 2 for any i), then
n/q = [[b1, . . . , br]] and n/q′ = [[br, . . . , b1]] as qq′ ≡ 1 (n) (0 < q′ < n) (see [Ri]).
The C∗-action on X induces a C∗-action on X̃ such that any point in p(Dε×{0})
is a fixed point and E =

⋃r
i=1 Ei is invariant under the C∗-action. Let E0 and

Er+1 be the strict transforms of non-compact curves p(Dε × {0}) and p({0} ×C)
by π respectively. Thus, for 1 ≤ i ≤ r, Ei is the sum of a one dimensional C∗-orbit
and two fixed points given by Ei∩Ei−1 and Ei∩Ei+1. In this paper, the C∗-action
defined on X and X̃ as above are called standard C∗-action.

Definition 3.1. Let (X, o) be a cyclic quotient singularity of type Cn,q.
Let h be an element of mX,o such that the divisor (h ◦ π)X̃ is given by

−b1 −b2 −br· · · .* *

a0 ar+1a1 a2 · · · ar

Let us call it a Hirzebruch-Jung divisor on a Hirzebruch-Jung resolution X̃ and
represent it as follows:

〈〈a0 | a1, . . . , ar | ar+1〉〉 (r ≥ 0). (3.2)

In particular, if (X, o) is a non-singular point C1,0, then the divisor is represented
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by 〈〈a0 | |a1〉〉. If ar+1 = 0, then we simplify 〈〈a0 | a1, . . . , ar | 0〉〉 to 〈〈a0 |
a1, . . . , ar〉〉; also it is called a right complete Hirzebruch-Jung divisor. If ar+1 > 0,
then 〈〈a0 | a1, . . . , ar | ar+1〉〉 is included in 〈〈a0 | a1, . . . , at〉〉 (i.e., r + 1 ≤ t). The
latter is called the right completion of the former.

From ai − ai+1bi+1 + ai+2 = 0 (i = 0, 1, . . . , r − 1), we obtain

a1 =
a0q + ar+1

n
and ar =

ar+1q
′ + a0

n
. (3.3)

Using (3.3) successively, we can easily compute that a1, . . . , ar from n, q, a0 and
ar+1.

Definition 3.2. Let π : (X̃, E) −→ (X, o) be a Hirzebruch-Jung resolution
of Cn,q.

( i ) If D = 〈〈a0 | a1, . . . , ar | ar+1〉〉 is a Hirzebruch-Jung divisor on the minimal
resolution, then D is said to be minimal or a minimal Hirzebruch-Jung
divisor (i.e., ai−1 + ai+1 ≥ 2ai for i = 1, . . . , r).

( ii ) Let D be a Hirzebruch-Jung divisor on X̃. Let π̄ : (X̄, Ē) −→ (X, o) be
the minimal resolution and σ : (X̃, E) −→ (X̄, Ē) the holomorphic map
with π = π̄ ◦ σ. Then a minimal Hirzebruch-Jung divisor σ∗(D) is called
the minimalization of D.

Let X be a quotient space (Dε × C)/G of (3.1). Hence (X, o) is a cyclic
quotient singularity of type Cn,q which has the standard C∗-action. Let h be an
element of mX,o whose divisor (h ◦ π)X̃ is represented as 〈〈a0 | a1, . . . , ar | ar+1〉〉,
where π : (X̃, E) −→ (X, o) is a Hirzebruch-Jung resolution. Let Y be a connected
component of the normalization of the m-fold cyclic covering of X defined by
zm = h. Since the normalization of the singularity defined by zm = uaivai+1 in
Dε×C2 is a disjoint union of cyclic quotient singularities, the exceptional set of the
minimal resolution of the normalization is a disjoint union of P1-chains. Therefore,
the exceptional set of the minimal resolution of Y is also a P1-chain, and Y is
holomorphically isomorphic to a neighborhood of a cyclic quotient singularity. In
the following, we prove Theorem 3.4, which gives the type of Y as a cyclic quotient
singularity from n, q, a0, ar+1 and m.

Definition 3.3. Under the condition above, let λ0, λ1 be integers defined
by

λ0 = gcd(a0, . . . , ar+1,m), λ1 = gcd(a0, ar+1,m) and n1 =
nλ0

λ1
.
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Moreover, let ξ, ζ be integers defined by

mξ ≡ gcd(m,a0) (a0), 0 < ξ ≤ a0

gcd(m,a0)
and ζ =

mξ − gcd(m,a0)
a0

.

From (3.3), we can easily check the following:

λ0 = gcd
(

m,a0,
a0q + ar+1

n

)
. (3.4)

Theorem 3.4. Under the situation above, Y is a disjoint union of λo con-
nected components and each connected component has one cyclic quotient singu-
larity of type Cm1n1,δ0 , where m1 := [m | a0, ar+1] with respect to the notation of
(1.4) and δ0 ≡ (mqξ + ar+1ζ)/ gcd(m,ar+1) (m1n1) (0 < δ0 < m1n1).

Furthermore, any connected component Yi of Y has the standard the C∗-action
for 1 ≤ i ≤ λo.

Proof. From the definition, we can easily see that the number of connected
components of Y is equal to λ0. Therefore, let us determine the type of Yi. Put
a := a0 and b := ar+1; also put α1 := [a | m, b], β1 := [b | m,a], d0 := [a, b | m],
d1 := [m, b | a] and d2 := [m,a | b]. We may assume that h = x̄bȳa, where x̄, ȳ

are elements of mX,o induced from coordinate functions x, y on C2. If we put Z̄ =
{(z, x, y) ∈ Dε × C2 | zm = xbya}, then G acts on Z̄ by g(z, x, y) = (z, enx, eq

ny).
Let ϕ1 : Z −→ Z̄ be the normalization of Z̄. The action of G on Z̄ is lifted onto
Z by the universality of the normalization ([Or, p. 44]). Let Y := Z/G and let
π1 : Ỹ −→ Y be the minimal resolution. Then we have the following diagram:

(3.5)

where p(z, x, y) = (x, y) and ψk (k = 1, 2) is the quotient map by G. Let
Z̄ =

⋃λ1−1
j=0 Z̄j be the irreducible decomposition, where Z̄j = {(z, x, y) ∈ Dε̄×C2 |

zm/λ1 = ej
λ1

xb/λ1ya/λ1} for eλ1 = exp(2π
√−1/λ1) and ε̄ with ε̄m1d1 = ε. There-

fore, Z is a disjoint union of cyclic quotient singularities of same type; also any
connected component Zj of Z is the normalization of Z̄j . Let µ be a positive
integer satisfying α1µ + β1 ≡ 0 (m1) (0 < µ < m1). From Lemma 2.5 in [To3],
Zj is a cyclic quotient singularity of type Cm1,µ and all Zj are isomorphic to each
other.

Hereafter, we prove that any connected component Yj of Y is isomorphic to
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Cm1n1,µ. It is sufficient to check the case of j = 0. We have the following diagram
(see [To2, Lemma 2.5]):

Dε̄ × C

Z0Cm1,µ

∩
Z

Z̄0

∩
Z̄,

/g1ψ3

ϕ

ϕ1∼=
?

HHHHHHj- (3.6)

where ϕ(u, v) := (uβ1d0vα1d0 , um1d2 , vm1d1) and g1 is an action on Dε̄ ×C defined
by g1(u, v) = (em1u, eµ

m1
v). Since ϕ(g1(u, v)) = ϕ(u, v) for any (u, v), it induces

the normalization map ϕ1 by Lemma 2.5 in [To3]. Let g0(z, x, y) := (z, en1x, eq
n1

y)
for any (z, x, y) ∈ C3 and G0 := 〈g0〉. Then G0 acts on Z̄0 and G/G0 gives an
effective permutation among {Z̄0, . . . , Z̄λ1−1}. Since |G/G0| = λ1/λ0, the number
of connected components of Y = Z/G is equal to λ0.

Because the action of G0 is lifted onto Z0 through ϕ1, Z0/G0 is a cyclic
quotient singularity of order m1n1 and it is isomorphic to Yi. Let consider an action
g2 =

( em1n1 0

0 eδ
m1n1

)
on Dε̄ × C for a positive integer δ satisfying 〈gn1

2 〉 = 〈g1〉 and

〈gm1
2 〉 = 〈g̃0〉, where g̃0 is the lifting of the action of g0 through ϕ. We determine

δ by m, b, q, ξ and ζ. Since ϕ(g2
γ(u, v)) = g0ϕ(u, v) for any (u, v) ∈ Dε̄ ×C and a

suitable γ ∈ N, we have the following:

(
ed0γ(α1δ+β1)
m1n1

uβ1d0vα1d0 , ed2γ
n1

um1d2 , ed1γδ
n1

vm1d1
)

=
(
uβ1d0vα1d0 , en1u

m1d2 , eq
n1

vm1d1
)
.

Therefore,

d2γ ≡ 1 (n1) and d1γδ ≡ q (n1). (3.7)

Since ϕ(g2(u, v)) = gγ1
0 ϕ(u, v) for a suitable γ1 ∈ N, we obtain e

d0(α1δ+β1)
m1n1 = 1.

Hence

d0(α1δ + β1) ≡ 0 (m1n1). (3.8)

Since gcd(d0,m1) = 1, we have α1δ + β1 ≡ 0 (m1). Thus, δ ≡ µ (m1) from the
definition of µ, and 〈gn1

2 〉 = 〈g1〉.
Since d1δ ≡ d1d2δγ ≡ d2q (n1) from (3.7), we have m1d1δ ≡ m1d2q (m1n1).

From the definition of ξ and ζ, we have m1d1ξ−α1d0ζ = 1. Since α1d0δζ+β1d0ζ ≡
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0 (m1n1) from (3.8), we have α1d0δζ ≡ −β1d0ζ (m1n1). Therefore,

δ = δ(m1d1ξ − α1d0ζ) ≡ m1d2qξ + β1d0ζ ≡ mqξ + bζ

gcd(m, b)
≡ δ0 (m1n1).

Consequently, any connected component of Y is isomorphic to (Dε̄×C)/〈g2〉 whose
any connected component is holomorphically isomorphic to the cyclic quotient
singularity of type Cm1n1,δ0 .

Consider the standard C∗-action on X, which is induced from the C∗-
action t · (x, y) = (x, tm1d1y) on Dε × C. The C∗-action is lifted onto Z̄j as
t · (z, x, y) = (tα1d0z, x, tm1d1y). Therefore, the m/λ1-fold cyclic covering map p is
C∗-equivariant. The C∗-action on Z̄j is also lifted onto Dε̄×C as t ·(u, v) = (u, tv).
Then ϕ is C∗-equivariant, and also the C∗-action and the g2-action are commuta-
tive on (Dε̄×C). Since Yi is the quotient space (Dε̄×C)/〈g2〉, it has the standard
C∗-action. ¤

When we compute cyclic coverings of surface singularities, Theorem 3.4 is
convenient. In [KN], using Theorem 3.4, Konno-Nagashima computed maximal
ideal cycles for hypersurface singularities of Brieskorn type and compared with the
fundamental cycles. They proved a necessary and sufficient condition that those
two cycles coincide.

Example 3.5. Let (X, o) be a cyclic quotient singularity C30,7. Let h be an
element of mX,o such that the divisor (h◦π)X̃ on the minimal resolution π : X̃ −→
X is given by 〈〈30 | 9, 15, 21, 27 | 60〉〉. Consider the normalization (Y, o) of the
45-fold cyclic cover of (X, o) defined by z45 = h. Since m = 45, a = 30 and b = 60,
we have λ1 = 15, λ0 = 3 and n1=6 and m1 = 3; therefore ξ = ζ = 1 and δ0 = 7.
Hence, (Y, o) is a disjoint union of three cyclic quotient singularities of type C18,7.
If σ : Ỹi −→ (Yi, o) is the minimal resolution of a connected component of (Y, o),
then (z ◦ σ)Ỹi

is given by 〈〈2 | 1, 1, 2, 3 | 4〉〉.

Corollary 3.6. In the situation of Definitions 3.1–3.3 and Theorem 3.4,
we assume that ar+1 = 0 (i.e., (h◦π)X̃ = 〈〈a0 | a1, . . . , ar〉〉). Let ā0 := [a0 | m,a1],
ā1 := [a1 | m,a0] and m̄ := [m | a0, a1]. If ā0 > 1 and δ0 is a positive integer
defined by m̄δ0 ≡ ā1 (ā0) (0 < δ0 < ā0), then the normalization (Y, o) is the disjoint
union of gcd(m,a0, a1) cyclic quotient singularities of type Cā0,δ0 . Furthermore,
if ā0 = 1, then the normalization (Y, o) is the disjoint union of gcd(m,a0, a1)
non-singular points.

Proof. We have m1 = 1. From n = a0/gcd(a0, a1), q = a1/gcd(a0, a1) and
Definition 3.3, we obtain λ0 = gcd(m,a0, a1) and λ1 = gcd(m,a0). Then
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n1 =
nλ0

λ1
=

n · gcd(m,a0, a1)
gcd(m,a0)

=
a0 · gcd(m,a0, a1)

gcd(a0,m) gcd(a0, a1)
= [a0 | m,a1] = ā0.

Because it is easy to show the case of ā0 = 1, we assume ā0 > 1. Since m̄, ā0 and
ā1 are relatively prime, δ0 is determined uniquely. Therefore, the normalization
(Y, o) is the disjoint union of λ0 cyclic quotient singularities of type Cā0,δ0 , where
mξ ≡ gcd(m,a0) (a0) (0 < ξ < a0/λ1) and δ0 ≡ qξ (ā0) (0 < δ0 < ā0) from the
definition of ξ and δ0 and Theorem 3.4. If we put ε := gcd(m,a1)/λ0, then we have
m̄εξ ≡ 1 (ā0) and m̄εξā1 ≡ ā1 (ā0). Since δ0 ≡ qξ (ā0) and q = [a1 | a0] = ā1ε, we
have m̄δ0 ≡ ā1 (ā0). ¤

In the following, we prepare some terminologies and facts to prove Theorem
5.4.

Definition 3.7. Let D1, D2 be two right complete Hirzebruch-Jung divisors
〈〈ai,0 | ai,1, . . . , ai,r〉〉 for i = 1, 2.

( i ) Assume that D1 and D2 are minimal. If a1,1 + a2,1 = a1,0 = a2,0, then it is
said that D1 and D2 are located on the opposite side, which means that the
left divisor in the following figure is contracted to the right one as follows:

( ii ) Assume that D1 or D2 is not minimal. If their minimalizations are located
on the opposite side, then it is said that D1 and D2 are located on the
opposite side. This condition is equivalent to be a1,0 = a2,0 and a1,1+a2,1 ≡
0 (a1,0).

(iii) Consider two Hirzebruch-Jung divisors D1, D2. Let D̄i be the minimaliza-
tion of a right completion of Di. Here D1 and D2 are said to be located on
the opposite side if D̄1 and D̄2 are so.

Example 3.8. Let D1 = 〈〈14 | 18, 22, 4 | 2〉〉 and D2 = 〈〈14 | 24, 10, 6 | 2〉〉.
Then the minimalizations of their right completions are given by 〈〈14 | 4, 2〉〉 and
〈〈14 | 10, 6, 2〉〉. Hence D1 and D2 are located on the opposite side.

Definition 3.9. Let (X, o) be a cyclic quotient singularity of type Cn,q and
π : (X̃, E) −→ (X, o) a Hirzebruch-Jung resolution and h ∈ mX,o. Let D = 〈〈a0 |
a1, . . . , ar | ar+1〉〉 (r ≥ 0) be a Hirzebruch-Jung divisor defined by (h ◦ π)X̃ . Let
(Y, o) be a cyclic quotient singularity, which is given as the normalization of the
m-fold cyclic cover defined by zn = h over (X, o). Let π : (Ỹ , F ) −→ (Y, o) be a
Hirzebruch-Jung resolution. A Hirzebruch-Jung divisor (z◦σ)Ỹ is called an m-fold
cyclic lifting of D, which is written by D(m).
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For example, let (X, o) be a cyclic quotient singularity of type C7,4 and h

an element of mX,o corresponding to x9y10 ∈ C[x, y]. Thus the Hirzebruch-Jung
divisor D defined by h on the minimal resolution of (X, o) is given by 〈〈10 | 7, 4 | 9〉〉.
From Theorem 3.4, the 21-fold cyclic cover defined by z21 = h over (X, o) coincides
with one cyclic quotient singularity of type C49,34. From 49/34 = [[2, 2, 5, 4]],
D(21) is represented as 〈〈10 | a1, a2, a3, a4 | 3〉〉. Using (3.3) successively, we have
a1 = 7, a2 = 4 and a3 = a4 = 1; then D(21) = 〈〈10 | 7, 4, 1, 1 | 3〉〉.

Proposition 3.10. Under the situation of Definition 3.9, let m1, m2 be
positive integers satisfying m1 + m2 ≡ 0 (a0). Then two cyclic liftings D(m1),
D(m2) are located on the opposite side.

Proof. Let D̂ = 〈〈a0 | a1, . . . , as〉〉 be the right completion of D. Using
Corollary 3.6, we can compute the mi-fold cyclic lifting of D̂ (i = 1, 2). From
m1 + m2 ≡ 0 (a0), we have [a0 | m1, a1] = [a0 | m2, a1] with respect to the
notation of (1.4). Let ā0 := [a0 | m1, a1] = [a0 | m2, a1], m̄i := [mi | a0, a1],
αi := [a1 | mi, a0] and γi := [mi, a1 | a0] for i = 1, 2. Therefore, α1γ1 = α2γ2 can
be checked readily. From Corollary 3.6, we can check that the normalization of the
mi-fold cyclic cover associated to D̂ is constructed by cyclic quotient singularities of
type Cā0,δi

, where m̄iδi ≡ αi (ā0) and 0 < δi < ā0. Thus we need only to show that
δ1 +δ2 = ā0. Dividing m1 +m2 ≡ 0 (a0) by gcd(mi, a0), we have m̄1γ1 +m̄2γ2 ≡ 0
(ā0). From gcd(ā0, α1) = 1, there exists an integer β with α1β ≡ 1 (ā0); hence
γ1 ≡ α2γ2β (ā0) from α1γ1 = α2γ2. Therefore, (m̄1α2β + m̄2)γ2 ≡ 0 (ā0); hence
m̄1α2β + m̄2 ≡ 0 (ā0) from gcd(ā0, γ2) = 1. Consequently, m̄1α1α2β + m̄2α1 ≡ 0
(ā0) and also m̄1α2 + m̄2α1 ≡ 0 (ā0) from α1β ≡ 1 (ā0). By the definition of δi,
we have m̄1m̄2δ1 + m̄1m̄2δ2 ≡ m̄2α1 + m̄1α2 ≡ 0 (ā0). Hence, δ1 + δ2 ≡ 0 (ā0)
from gcd(ā0, m̄i) = 1 for i = 1, 2. Since 0 < δi < ā0, we have δ1 + δ2 = ā0. ¤

Example 3.11. Let D be a Hirzebruch-Jung divisor 〈〈16 | 7, 5, 3 | 4〉〉 on
the minimal resolution of C12,5. Since 16 | 22 + 26, we consider D(22) and D(26).
From Corollary 3.6, 22-fold (resp. 26-fold) cyclic cover of C12,5 with the branch
divisor D is C66,41 (resp. C78,29). Hence, D(22) = 〈〈8 | b1, . . . , b6 | 2〉〉 on the
minimal resolution of C66,41; hence D(22) = 〈〈8 | 5, 2, 1, 1, 1, 1 | 2〉〉 from (3.3).
Similarly we have D(26) = 〈〈8 | 3, 1, 1, 1, 1, 1 | 2〉〉. Therefore, their minimalizations
are given by 〈〈8 | 5, 2, 1〉〉 and 〈〈8 | 3, 1〉〉 respectively. Hence D(22) and D(26) are
located on the opposite side.
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4. Some results on C∗-pencils of curves and normal surface singu-
larities with C∗-action.

In this section, we prove a C∗-equivariant version of Theorem 1.2 (Theorem
4.1), and also prove that any C∗-pencil of curves is constructed as a resolution of
a cyclic quotient of the trivial bundle on a curve (Theorem 4.6).

Theorem 4.1. Let (X, o) be a normal surface singularity with good C∗-
action. Let h be a homogeneous element of degree d in the affine graded ring
RX of (X, o). Let π : (X̃, E) −→ (X, o) be a C∗-equivariant resolution such that
red(h◦π)X̃ is a simple normal crossing divisor. Then there exists a C∗-quasi-pencil
of curves Φ : S −→ C which induces the following commutative diagram:

(X̃, E) � � ι //

π

²²

(S, supp(S0))

Φ

²²
(X, o) h // C,

where ι is a C∗-equivariant embedding with ι(X̃) ⊂ S and ι(E) ⊂ supp(S0). Fur-
thermore, if h is not a perfect power element of RX , then Φ is a C∗-pencil of
curves of degree d and genus pe(X, o, h).

Proof. From Theorem 1.8, there exists a C∗-equivariant resolution π :
(X̃, E) −→ (X, o) such that the w.d.graph associated to E is star-shaped. Since
h defines a C∗-invariant divisor, the configuration of (h ◦ π)X̃ is given as follows:

(4.1)

where 0 < n ≤ s, 0 ≤ βj , 2 ≤ bj,k and dj,k = vEj,k
(h◦π) for any j, k; also “∗” means

a non-exceptional irreducible component. In fact, if a non-exceptional irreducible
component ∗ intersects Ej0,k0 with 0 < k0 < βj0 , then intersection points of Ej0,k0

and supp(h ◦ π)X̃\Ej0,k0 are fixed points of the C∗-action on X̃; also the number
of those fixed points is greater than or equal to three. Then C∗ acts trivially on
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Ej0,k0 , because any automorphism on P1 which fixes three points is the identity.
This is a contradiction because each Ej,k contains a one-dimensional orbit from (ii)
of Theorem 1.8. Therefore we obtain the configuration above and vE0(h◦π)X̃ = d

(see [P]). Since Ej,βj+1\(Ej,βj+1 ∩ Ej,βj ) is a one-dimensional C∗-orbit, C∗ acts
freely on the orbit. It follows that Ej,βj+1 (= ∗) is a non-singular curve that is
isomorphic to C.

Now, let N be the holomorphic line bundle NE0/X̃ |E0 on E0 and Pj = E0∩Ej,1

for j = 1, . . . , s. Then we have 0 ∼ (h ◦ π)X̃E0 = dN +
∑s

j=1 dj,1Pj . Let
Φ̂(0) : Ŝ(0) −→ P1 be a minimal good complete C∗-quasi-pencil of curves con-
structed in Theorem 2.4 (i.e., Φ̂(E0, N,

∑s
j=1 dj,1Pj,1)). If we put dj,βj

/dj,βj+1 =
[[bj,βj+1, . . . , bj,tj ]] for j = 1, . . . , n, then

[[
bj,1, . . . , bj,βj

, bj,βj+1, . . . , bj,tj

]]
= d/d̄j,1,

where bj,βj+1 ≥ 1, d̄j,1 ≡ dj,1 (d) and 0 < d̄j,1 < d. Consider a sequence of
successive C∗-blowing-ups

Ŝ(0) τ1←− Ŝ(1) τ2←− · · · τn←− Ŝ := Ŝ(n),

where Ŝ(j−1)
τj←− Ŝ(j) is a successive C∗-blowing-up which products a P1-chain

of type (bj,1, . . . , bj,tj
) from the minimal P1-chain of type 〈d, d̄j,1〉 intersecting E0

at Pj for j = 1, . . . , n. If we put Ψ̂ = Φ̂(0) ◦ τ1 · · · ◦ τn, then Ψ̂ : Ŝ −→ P1 is a
complete C∗-quasi-pencil of curves, which is not necessarily to be minimal good.
Furthermore, Ψ̂L : S := ŜL −→ C is a C∗-quasi-pencil of curves whose singular
fiber S0 has the following configuration:

−b1,1
−b1,t1· · ·

−b

[g]

F0

−bs,1 −bs,ts· · ·

· · ·· · ·
d

d1,1 · · · d1,t1

ds,1 · · · ds,ts

· · ·

Fs,1 · · · Fs,ts ,

F1,1 · · · F1,t1

where tj = βj for j = n + 1, . . . , s. Let K :=
⋃n

j=1

⋃tj

k=βj+2 Fj,k, X̃1 := S\K
and F :=

⋃s
j=1

⋃βj

k=1 Fj,k. Then S0|F coincides to (h ◦ π)X̃ numerically. From the
construction of Φ̂, there exists a biholomorphic map ϕ : F0

∼−→ E0 which satisfies
ϕ∗(NE0/X̃ |E0) ∼= NF0/X̃1

|F0 and ϕ(Qj) = Pj , where Qj := Fj,1 ∩F0 (j = 1, . . . , s).
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Thereby, from the result by Fujiki-Pinkham ([Fu1], [P]), there is a C∗-equivariant
biholomorphic map ψ : (X̃1, F ) −→ (X̃, E) with ψ|F0 = ϕ and exists the following
diagram:

(X̃, E)(X̃1, F )

(S, supp(S0)) (X, o)

C.

∩

ψ

h

π

Ψ̂L

-

?

©©©©¼

HHHHj

Let ι0 be the embedding map (X̃1, F ) ↪→ (S, supp(S0)). It follows that h ◦ π

and Ψ̂L ◦ ι0 ◦ ψ−1 correspond to non-zero elements of one-dimensional subspace
H0(E0,OE0(dN∗ −∑s

i=1 di,1Pi))td, where N∗ is the dual line bundle of N . From
Corollary 2.12 (iii), there exists a non-zero constant c with h◦π = (cΨ̂L)◦ ι0 ◦ψ−1.
Consequently, if we put Φ̂ = cΨ̂ and ι = ι0 ◦ ψ−1, then we have h ◦ π = Φ̂L ◦ ι.

Assume that h is not a perfect power element of RX . If Φ is not a C∗-pencil of
curves, then there exists a C∗-pencil of curves Ψ satisfying Φ = Ψ` for an integer
` ≥ 2 from Remark 1.6 (ii). Then, from the above, there is a holomorphic function
g with Ψ ◦ ι = g ◦ π. Hence g` = h and this is a contradiction. ¤

Example 4.2. Let (X, o) be a hypersurface singularity defined by a quasi-
homogeneous polynomial z6 + x(y4 + x10) of type (6, 15, 11; 66). The minimal
resolution π : (X̃, E) −→ (X, o) is given as a C∗-equivariant resolution such that
the divisor (x ◦ π)X̃ is given as follows:

6

* −1

[1]

−3
−4 −4

−3

2

2,

622

where ∗ means a non-exceptional curve defined by x ◦ π. Thus, the Pinkham-
Demazure divisor is given by D := Q − (1/3)P1 − (1/3)P2 − (4/15)P3, where
P1, P2 and P3 are intersection points of the central curve and three P1-chains.
Since there are no elements of degree 3 and deg(x) = 6, we have 3Q 6∼ P1 +P2 +P3

and 6Q ∼ 2P1 + 2P2 + 2P3. We can construct a C∗-pencil of curves satisfying the
property of Theorem 4.1 as follows:
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where Φ and Φ∗ are minimal good C∗-pencils of curves. Since 3Q−P1−P2−P3 is
a torsion bundle of order 2, they are multiple pencils from 2.4 (ii). Furthermore,
we remark that the genus of Φ is equal to 7 (= pe(X, o, x)).

From now on, we consider cyclic coverings for normal surface singularities with
C∗-action and C∗-pencils of curves. Let (X, o) be a normal surface singularity (not
necessarily with C∗-action) and h an element of mX,o. Let π : (X̃, E) −→ (X, o) be
a resolution such that red(h◦π)X̃ is a simple normal crossing divisor. Let V̄m be the
cyclic cover of (X, o) defined by wm = h (i.e., V̄m = {(p, w) ∈ X×C | wm = h(p)}).
Then, V̄m is normal if and only if h is an reduced element ([TW, Theorem 3.2]).
Let (Vm, o) be an irreducible component of the normalization of V̄m. Then a
resolution (Ṽm, E(m)) −→ (Vm, o) is constructed as follows (see (4.1) in [To6]):

(Vm, o)

ψm

²²

V ′
m

φ1oo

ψ′m
²²

V ′′
m

φ2oo (Ṽm, E(m))
φ3oo

ψ̃muukkkkkkkkkkkkkkkk

(X, o) (X̃, E),
πoo

(4.2)

where V ′
m is the fiber product Vm×X X̃ and φ2 is the normalization map and φ3 is

a resolution map of V ′′
m; hence φ1 ◦φ2 ◦φ3 : (Ṽm, E(m)) −→ (Vm, o) is a resolution.

Contracting (−1)-curves successively from (Ṽm, E(m)), we have the minimal good
resolution (Vm, o).

Let g ∈ mX,o and put (g ◦ π)X̃ =
∑r

i=1 vEi
(g ◦ π)Ei +

∑s
j=1 vCj

(g ◦ π)Cj .
Let A be the set of singular points of (

⋃r
i=1 Ei) ∪ (

⋃s
j=1 Cj) (i.e., it is the set

of all intersection points of all irreducible components of
⋃r

i=1 Ei and
⋃s

j=1 Cj).
Then ψ̃m is a finite map on (ψ̃m)−1(Ac), where Ac := X̃\A. Let Ẽi (resp. C̃j)
be the closure of (ψ̃m)−1(Ei ∩ Ac) (resp. (ψ̃m)−1(Cj ∩ Ac)) in Ṽm. They are not
necessarily irreducible curves. With respect to the vanishing orders of z and g ◦ π

on Ẽi and C̃j , we have the following.

Lemma 4.3 ([To3, Lemma 3.1]). Let F be an irreducible component Ei or
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Cj of supp((g ◦π)X̃) and F̃ the strict transform of F by ψ̃m. If we put φ = φ1 ◦φ2

◦φ3, then vF̃ (z ◦ φ) = vF (h ◦ π)/ gcd(m, vF (h ◦ π)) and vF̃ (g ◦ π ◦ ψ̃m) = mvF (g ◦
π)/ gcd(m, vF (h ◦ π)).

The following seems to be already known among experts. However, we prove
it because the author has not seen it.

Lemma 4.4. In the situation of (4.2), assume that (X, o) is a normal surface
singularity with C∗-action and h is a homogeneous element of RX ; also assume
that π is a C∗-equivariant resolution such that red(h ◦ π)X̃ is a simple normal
crossing divisor. Then Vm has a good C∗-action and φ1◦φ2◦φ3 is a C∗-equivariant
resolution of Vm.

Proof. Let define a C∗-action on V̄m by t · (p, w) = (tm̄p, td̄w), where d is
the degree of h and m̄ = [m | d], d̄ = [d | m]. This C∗-action is lifted onto Vm

by the universality of the normalization ([Or, p. 44]). Then, a natural C∗-action
can be defined on the fiber product V ′

m = Vm ×X X̃ such that φ1 and ψ′m are
C∗-equivariant maps. As in above, this action is lifted onto the normalization
V ′′

m such that φ2 is a C∗-equivariant map. Also the action on V ′′
m is lifted onto

Ṽm. Any one-dimensional C∗-orbit on X̃ is lifted onto a one-dimensional C∗-
orbit on Ṽm through ψ̃m. Therefore, it is easy to see that Ṽm has a C∗-action
which acts freely on Ṽm\E(m). Thus, C∗ acts on Vm − {o} freely. It follows
that Vm has a good C∗-action from Proposition 3 (iii) in ([Or, p. 47]). Also,
φ = φ1 ◦ φ2 ◦ φ3 : (Ṽm, E(m)) −→ (Vm, o) is a C∗-equivariant resolution map. ¤

Let consider the n-th root fibration for C∗-pencils of curves (see [BPV, p. 92–
93]).

Lemma 4.5. Let Φ: S −→ C be a C∗-pencil of curves of degree d. Then the
n-th root fibration Φ(n) is a C∗-pencil of curves of degree d̄, where d̄ := [d | n].

Proof. We have the following diagram:

S

Φ

²²

S′
ϕ1oo

Φ′

²²

S′′
ϕ2oo S(n),

ϕ3oo

Φ(n)

vvmmmmmmmmmmmmmmm

C C
ηoo

(4.3)

where ξ := η(ζ) = ζn and S′ := S ×C C = {(p, ζ) | Φ(p) = ζn}; also S′′ is the
normalization of S′ and S(n) is the minimal C∗-good resolution of S′′. Consider a
C∗-action on S′ by t · (p, ζ) := (tn̄ · p, td̄ζ) for t ∈ C∗, where n̄ := [n|d]. Then we
can easily see that Φ(ϕ1(t ·(p, ζ))) = Φ(ϕ1(tn̄ ·p, td̄ζ)) = Φ(tn̄ ·p) = tn̄dΦ(p) = tn̄dξ
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and η ◦ Φ′(t · (p, ζ)) = η(Φ′(tn̄p, td̄ζ)) = η(td̄ζ) = tn̄dξ. Hence the C∗-action on S′

is considered as a lifting of the C∗-action on S. As in Lemma 4.4, the C∗-action
on S′ is lifted onto S(n). Since n̄d = d̄n, the degree of Φ(n) is d̄. ¤

In [Fu1] and [P], Fujiki and Pinkham proved that every normal surface sin-
gularity with C∗-action is obtained as the quotient of a cone singularity (i.e., the
blowing-down of the zero section of a negative line bundle on a curve) by a fi-
nite subgroup (not necessarily to be cyclic) of the automorphism group of the line
bundle. From now on, we prove an analogous result for C∗-pencils of curves.

Let Φ : S −→ C be a C∗-pencil of curves such that supp(S0) is irreducible
(i.e., supp(S0) = E0 is the central curve). From the construction in Theorem 2.4,
S is the total space of a holomorphic line bundle over E0. We call such Φ a simple
C∗-pencil of curves. Moreover, if Φ̂ : Ŝ −→ P1 is a complete and Φ̂L and Φ̂R are
simple, then Φ̂ is said to be simple. From Theorem 2.4 (ii-2), it is true that if a
simple C∗-pencil of curves is given, it is considered as a holomorphic torsion line
bundle and vice versa.

Theorem 4.6. Let Φ̂ : Ŝ −→ P1 be a complete C∗-pencil of curves of type
(d, g, m) and d1 := min{` ∈ N | d| lcm(`,m)} and d0 := d/d1. Let Φ̃ : S̃ −→ K be
Φ̂ above or Φ̂L, where K is P1 or C. Let E0 be the central curve of supp(Φ̃−1(0))
and let Eg be the general fiber St of Φ̃. Then there is a finite cyclic subgroup G of
Aut(Eg) (= the holomorphic automorphism group of Eg) C∗-equivariantly acting
on Eg ×K such that there exists the following diagram:

Eg ×K K

Eg

L̃ S̃

E1

L̃/G1

E0,

/G0

/G0

ψ̃

Ψ̃

Ψ̃0

ψ̃0

p1

p2

/G1

/G1

Φ̃

σ
Q

Q
QQs

Q
Q

QQs?

?

?

Q
Q

QQs

Q
Q

QQs

-

´
´

´́3
6

´
´

´́+

Q
Q

QQk

where G0 := {h | a fixed point free element of G} and it has |G0| = d0; also
G1 := G/G0, E1 := Eg/G0, L̃ := (Eg ×K)/G0 and σ is a resolution of all cyclic
quotient singularities on L̃/G1 (= (Eg ×K)/G). If d0 > 1, then ψ̃ : L̃ −→ E1 is a
torsion K-bundle of order d0.

Proof. First, let us consider the case of Φ̃ := Φ̂L : S̃ := ŜL −→ K = C.
Assume that the w.d.graph of S̃0 = Φ̃−1(0) is given by (2.8). It can be assumed
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that Φ̃ is minimal good (i.e., any Ei,j is not a (−1)-curve for any i, j). Let σ :
S̃ −→ S̄ be the contraction map of P1-chains

⋃`i

j=1 Ei,j for i = 1, . . . , s. Then S̄

is a normal complex surface which has cyclic quotient singularities; each type of
them is given by Cd̄i,d̄i,1

(i = 1, . . . , s), where d̄i := [d | di,1] and d̄i,1 = [di,1 | d].
Let Φ̄ be a holomorphic function on S̄ induced from Φ̃. Let S̄(d1) be the d1-fold
cyclic covering of S̄ defined by zd1 = Φ̄. For computing S̄(d1), we consider the
d1-th root fibration Φ̃(d1) : S̃(d1) −→ C of Φ̃. Let Fi be the d1-fold cyclic lifting of
a Hirzebruch-Jung divisor

∑`i

j=1 di,jEi,j for any i. From d | lcm(d1,m), we have
[d | d1,m] = 1. Since m|di,1, we can easily check that [d | d1, di,1] = 1 for any i.
In S̃(d1), supp(Fi) is contracted to a non-singular point from Corollary 3.6. Let
σ̃ : S̃(d1) −→ S̄(d1) be the contraction map of

⋃s
i=1 supp(Fi). Then we obtain a

simple C∗-pencil of curves Ψ̃ : L̃ := S̄(d1) −→ C. From Theorem 2.4 (ii-2), L̃ is
the total space of a line bundle on E1, where E1 is the d1-fold cyclic covering of
E0 by the covering map π(d1) : S̃(d1) −→ S̃. Then we have the following diagram:

S̃(d1)L̃ = S̄(d1)E1

E0

⊂

⊂ L̃/G1 = S̄ S̃.

σ̃

σ

π(d1)/G1

¾

¾
????

From Remark 1.7 (iii), the analytic type of general fiber of any C∗-pencil of curves
is constant. Moreover, from the construction of π(d1), the general fibers of S̃(d1)

and S̃ are biholomorphic. For any t ∈ C∗, (π(d1))−1(S̃t) is a disjoint union of d1

connected components and each connected component is isomorphic to the general
fiber Eg (= S̃t) of Φ̃. Therefore, the general fiber of Ψ̃ : L̃ −→ C is also isomorphic
to Eg. Then it becomes a simple C∗-pencil of curves whose singular fiber is d0E1

and the generic fiber is Eg. If d0 = 1, then E1 = Eg and L̃ is the trivial line
bundle on Eg. If d0 > 1, L̃ is a torsion line bundle of order d0 on E1. The d0-th
root fibration of Ψ̃ is the trivial C∗-pencil of curves on Eg and L̃ = (Eg × C)/G0.
From the construction above, we have E1 = Eg/G0 and E0 = E1/G1; hence we
complete our proof for the case of Φ̃ = Φ̂L.

Second, let us consider the case of Φ̃ = Φ̂ : Ŝ −→ P1. Suppose d0 > 0. From
the case above, the d1-th root fibrations of Φ̂L and Φ̂R are torsion line bundle of
order d0 which are mutually dual. Consequently, we complete the proof. ¤

Example 4.7. Let Φ: S −→ C be a multiple C∗-pencil of curves of type
(6, 7, 2) in Example 4.2. Then we have the following diagrams:
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where ϕ is the contraction map of three (−1)-curves. Let Q̄ = ϕ−1(Q) and P̄i =
ϕ−1(Pi) for the points Q,P1, P2, P3 defined in Example 4.2. Then L is a torsion
line bundle represented by 3Q̄−∑3

i=1 P̄i on the central curve of genus 4.

Remark 4.8. Log-canonical surface singularities have been studied from
various points of view since Kawamata’s classification [Kaw] (see [I], [Oku1],
[To1], [Ts] and [Wki]). Let (X, o) be a log-canonical surface singularity with C∗-
action such that the central curve is P1 and the index is m (see [Mat]). It is known
that (X, o) is obtained as a cyclic quotient of a simple elliptic singularity, which is
the blowing-down of the zero-section of a negative line bundle on an elliptic curve
with complex multiplicative group of order m. We explain a relation between
such singularities and C∗-pencils of elliptic curves. Since those pencil of curves
are non-multiple, the degree is equal to the coefficient of the singular fiber on the
central curve. Using the canonical construction, any pencil of elliptic curves with
w.d.graph is realized as a C∗-pencil of curves. For the minimal C∗-good resolution
π : (X̃, E) −→ (X, o), there exists a C∗-pencil of curves Φ : S̃ −→ C of degree m

and a C∗-equivariantly holomorphic embedding (X̃, E) ⊂ (S, supp(S0)). Then we
obtain a homogeneous element h ∈ RX with Φ|X̃ = h ◦π. Let (Y, o) be the m-fold
cyclic covering defined by zm = h. Then we can easily see that (Y, o) is a simple
elliptic singularity resolved by an elliptic curve with complex multiplicative group
of order m.

For example, let [`; 1/2, 2/3, 1/6] be the type of the w.d.graph of (X, o) (` ≥ 2).
The minimal good resolution (X̃, E) is included into a C∗-pencil of elliptic curves
Φ of degree 6 as follows:
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The 6-fold cyclic covering (Ỹ , F ) of (X̃, E) defined by z6 = h ◦ π is included into
S(6). Since Φ(6) is a C∗-blowing-up from the trivial bundle, F is isomorphic to
the general fiber S

(6)
t of Φ(6). Since S

(6)
t is an elliptic curve with complex multiple

group of order 6 from Theorem 4.6, (Y, o) is a simple elliptic singularity, which is
obtained as the blowing-down of the zero-section of a holomorphic line bundle of
degree −6` + 2 on the general fiber S

(6)
t .

Definition 4.9. Let E0 be a smooth compact complex curve of genus g.
Let P1, . . . , Ps be points of E0 and Hi := {Pi} × C for i = 1, . . . , s. Let σi,1 :
Li,1 −→ E0 × C be the blowing-up at a C∗-fixed point (Pi, 0). Hence it is a C∗-
equivariant map. Let σi,2 : Li,2 −→ Li,1 be the blowing-up at a point Pi,1 :=
σ−1

i,1 (Pi) ∩ (σi,1)−1
∗ (Hi). Next, let σi,3 : Li,3 −→ Li,2 be the blowing-up at a point

Pi,2 := σ−1
i,2 (Pi,1) ∩ (σi,1 ◦ σi,2)−1

∗ (Hi). Continuing this process ri times (ri ≥ 1),
we have the following sequence of C∗-equivariant maps

Li,ri

σi,ri−−−→ Li,ri−1

σi,ri−1−−−−→ · · · σi,2−−→ Li,1
σi,1−−→ E0 × C.

Let σi := σi,1 ◦ · · · ◦ σi,ri : Li,ri −→ E0 × C. Taking these processes s times for
E0 × C, we obtain

L̃ = L̃s
σs−→ Ls−1

σs−1−−−→ . . .
σ2−→ L̃1

σ1−→ E0 × C.

Let σ := σ1◦· · ·◦σs. Therefore, the w.d.graph of σ−1(E0×{0}) is given as follows:

E1,1 E1,r1−1· · · E1,r1

· · · −1

· · · · · · · · ·
· · · · · · · · ·

Es,1 Es,rs−1· · · Es,rs

· · · −1

−s

[g]

E0

.

(4.4)

Let put X̃ := L̃\⋃s
i=1(σi)−1

∗ Hi and E := E0 ∪ (
⋃s

i=1

⋃ri−1
j=1 Ej,j) and let

π : (X̃, E) −→ (X, o) be the contraction map. Then (X, o) is a normal surface
singularity with C∗-action. In this paper, we call such singularities quasi-cone
singularities.

Every quasi-cone singularity (X, o) is a Kodaira singularity such that the
maximal ideal cycle on the minimal resolution is reduced. The minimal cycle in
the sense of Definition 1.2 in [To2] coincides to the central curve. In the situ-
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ation of Definition 4.9, since the normal bundle of E0 in X̃ is given by [
∑s

i=1 Pi],
the Pinkham-Demazure construction of RX is written as

⊕∞
k=0 H0(E,OE0(

∑s
i=1

[k/ri]Pi))tk, where [a] means the Gaussian symbol.
Let (X, o) be a normal surface singularity with C∗-action and h a homogeneous

element of RX . Let π : (X̃, E) −→ (X, o) be a C∗-equivariant good resolution such
that the configuration of (h ◦ π)X̃ is given by (4.1). Let Y` be the normalization
of the cyclic covering defined by w` = h. Let `0 := gcd{`, d, di,j | i = 1, . . . , s; j =
1, . . . , βi + 1}, where di,βi+1 := 0 for i = n + 1, . . . , s. Then Y` is decomposed into
`0 connected components and all connected components are isomorphic to each
other. Let (Y`, o) be a connected component of Y`.

Theorem 4.10. Under the notation above, let m = lcm(d, d1,β1+1, . . . ,

dn,βn+1). Then (Ym, o) is a quasi-cone singularity. Therefore, every normal sur-
face singularity with C∗-action is realized as the quotient of a quasi-cone singularity
by a finite cyclic group G, where G is a subgroup of the holomorphic automorphism
group of the central curve for the quasi-cone singularity.

Proof. Consider a resolution space (Ỹm, F ) of (Ym, o) which is constructed
as in (4.2). Assume that the w.d.graph is given by (4.1). We need only prove that
the m-fold cyclic covering associated to the Hirzebruch-Jung divisor on the i-th
P1-chain of (4.1) becomes a Hirzebruch-Jung divisor of type 〈〈1 | 1, . . . , 1 | 1〉〉 (i.e.,
P1-chain of Ak-type) for 1 ≤ i ≤ n. To apply Theorem 3.4, we put a0 := d and
ar+1 := di,βi+1. Furthermore, assume that n̄/q = [[bi,1, . . . , bi,βi

]] for relatively
prime integers n̄, q with 1 < q < n̄. For a0, ar+1 and m, let define the following
positive integers:

d0 := gcd(m,a0, ar+1), d1 := [m,ar+1 | a0],

d2 := [m,a0 | ar+1] and m1 := [m | a0, ar+1].

Since a0 | m and ar+1 | m, we have [a0 | m,ar+1] = [ar+1 | m,a0] = [a0, ar+1 |
m] = 1. Then we have m = m1d0d1d2, a0 = d0d2 and ar+1 = d0d1. Let λ0, λ1, ξ

and ζ be positive integers defined as in Definition 3.3. Then we have λ1 = d0,
n̄1 = n̄λ0/λ1, ξ = 1, and

ζ =
m1d0d1d2 − d0d2

d0d2
= m1d1 − 1.

Hence, if δ0 is the integer defined in Theorem 3.4, then δ0 ≡ (m1d0d1d2q +
d0d1(m1d1 − 1))/d0d1 ≡ m1d2q + m1d1 − 1 (m1n̄1). If we prove
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m1d2q + m1d1 − 1 ≡ m1n̄1 − 1 (m1n̄1), (4.5)

then the m-fold cyclic covering is a P1-chain of Ak-type. Hence we complete the
proof in this case. Obviously, (4.5) is equivalent to d2q + d1 ≡ 0 (n̄1). Multiplying
d0, we have d0d2q + d0d1 ≡ 0 (n̄1d0). Since a0 = d0d2 and ar+1 = d0d1 and
n̄1d0 = λ0n̄, (4.5) is equivalent to a0q + ar+1 ≡ 0 (λ0n̄). This is obviously correct
from (3.3) since a1 (= di,1) is divided by λ0.

Next, consider the case of n+1 ≤ i ≤ s. As in above, we can easily check that
every cyclic covering is contracted to a non-singular point. The divisor of w on the
minimal C∗-good resolution of (Ym, o) is reduced. Then we can easily see that the
normal bundle of the central curve is linearly equivalent to Q1 + · · ·+ Qn, where
Q1, . . . , Qn are intersection points of the central curve and the above n P1-chains
of type 〈〈1 | 1, . . . , 1 | 1〉〉. Then the resolution is contracted to the total space of
the trivial line bundle. It completes the proof. ¤

Example 4.11. (i) Let (X, o) be a hypersurface singularity defined by x2 +
y3 + z7 = 0. The divisor defined by z on the minimal good resolution is given by
the left one in the following figure. Also the divisor defined by w on the minimal
resolution of x2 + y3 + w42 = 0 (= a cyclic covering of (X, o) defined w7 = z) is
given by the right one.

1 1

*−1−3 −7

6

3

2

−1

[1]

.(z): (w):

1 1 1 1 1 1 1

*

1

(ii) Let (X, o) be a non-normal hypersurface singularity defined by y5(x2 +
y3) + z4 = 0. As in (i), the divisor defined by z and the w.d.graph associated
to the minimal resolution of y5(x2 + y3) + w80 = 0 (= a cyclic covering of (X, o)
defined w20 = z) are given as follows:

On the pencil genus pe(X, o, h) (see Section 1), we can see that pe(X, o, z) = 1 for
(i) and pe(X, o, z) = 4 for (ii).
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5. A duality for cyclic covers of normal surface singularities with
C∗-action.

In this section, we study some duality relations for cyclic covers of normal
surface singularities with C∗-action. The main result is Theorem 5.4. In addition,
for hypersurface case, we can observe some dualities for two invariants (Remark
5.7). Furthermore, as an application of 5.4, some dualities are proven for n-th root
fibrations of C∗-pencils of curves (Theorem 5.8).

Here we prepare a few facts for Hirzebruch-Jung divisors on Hirzebruch-Jung
resolution spaces of cyclic quotient singularities. Let (X, o) be a cyclic quotient
singularity of type Cn,q and consider a Hirzebruch-Jung resolution (X̃, E) of type
〈e1, . . . , er〉, where ei ≥ 1 for any i. Consider a Hirzebruch-Jung divisor D=〈〈a0 |
a1, . . . , ar | ar+1〉〉 on the Hirzebruch-Jung resolution as follows:

* −e1 −er *· · ·
E0 E1 · · · Er Er+1.

a0 a1 · · · ar ar+1

The resolution is not necessarily to be minimal. Let Ei be an irreducible com-
ponent of supp(D) with CoeffEi D = ai for i = 0, 1, . . . , r + 1. Hence E0 and
Er+1 are not compact curve. If [[e1, . . . , er]] = 0, then n = 1 (i.e., (X, o) is a
non-singular point). When 0 < q < n and (X̃, E) above is the minimal resolution,
it is well-known that n/q′ = [[er, . . . , e1]] if qq′ ≡ 1 (n) and 0 < q′ < n (see [Ri]).
Since it is possible to check the following easily, we omit the proof.

Lemma 5.1. In the situation above, suppose [[e1, . . . , er]] 6= 0. Let q̃, q̃′

be positive integers such that n/q̃ = [[e1, . . . , er]] and n/q̃′ = [[er, . . . , e1]] and
gcd(n, q̃) = gcd(n, q̃′) = 1. Then we have the following.

( i ) q̃q̃′ ≡ 1 (n).
( ii ) q̃ ≡ q (n) and q̃′ ≡ q′ (n); also a1 = (a0q̃+ar+1)/n and ar = (ar+1q̃

′+a0)/n.
(iii) If σ is a contraction map of (−1)-curves from the Hirzebruch-Jung resolution

above to the minimal resolution, then we have the following :

[
q̃

n

]
= the number of blowing-ups at Po = Eo ∩ E1 in σ,

[
q̃′

n

]
= the number of blowing-ups at Pr = Er ∩ Er+1 in σ.

For example, we consider two Hirzebruch-Jung resolutions of C14,5 whose
w.d.graphs are given as
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−5* *−6 −3 −5* *−3 .−1 −1

From [[2, 1, 5, 6, 3, 1, 2]] = 14/19 and [[2, 1, 3, 6, 5, 1, 2]] = 14/31, we have q̃ = 19
and q̃′ = 31.

Lemma 5.2. Let Φ̂ : Ŝ −→ P1 be a complete C∗-pencil of curves whose
w.d.graph of the total fiber is given by (2.6). Under the natural identification of
E0 and E∞, we have the following :

N∗
Eo/Ŝ

|Eo
+ N∗

E∞/Ŝ
|E∞ ∼

t∑

j=1

a1,j,1 + a2,j,1

d
Pj (linearly equivalent),

where Pj = E0 ∩ F1,j,1 = E∞ ∩ F2,j,1 for any j.

Proof. From Corollary 2.11, it can be assumed that Φ̂ is a complete C∗-
pencil of curves obtained by the canonical construction. Let Φ̃ : S̃ −→ P1 be the
minimal good C∗-pencil of curves obtained from Φ̂. We have the following:

NEo/S̃ |Eo
= NEo/Ŝ |Eo

+
t∑

j=1

[
a1,j,1

d

]
Pj and

NE∞/Ŝ |E∞ = NE∞/S̃ |E∞ −
t∑

j=1

[
a2,j,1

d

]
Pj .

Assume that the configuration associated to Φ̃ is given by (2.4). Let σ : S̃ −→ L̄

be the contraction of (
⋃s

j=1

⋃uj

k=1 E1,j,k) ∪ (
⋃s

j=1 Ej) ∪ (
⋃s

j=1

⋃vj

k=2 E2,j,k) in S̃.
We have a holomorphic P1-bundle L̄ on E0 and a holomorphic map Φ̄ : L̄ −→ P1

whose divisor is given as follows:

d

+b̄

0

0

−d

−b̄

−d2,1,1

[g0] [g0]

E0 E∞.−d2,s,1

E2,s,1

E2,1,1

Therefore, NEo/S̃ |Eo = NE0/L̄|E0 −
∑s

j=1 Pj and NE∞/S̃ |E∞ = NE∞/L̄|E∞ . Set
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di,j,1 = ai,j,1 − [ai,j,1/d]d for i = 1, 2; j = 1, . . . , t. Since d | a1,j,1 for d | a2,j,1 for
j = s + 1, . . . , t and d1,j,1 + d2,j,1 = d and NEo/L̄|Eo

+ NE∞/L̄|E∞ ∼ 0, we have

N∗
Eo/Ŝ

|Eo + N∗
E∞/Ŝ

|E∞ ∼
t∑

j=1

([
a1,j,1

d

]
+

[
a2,j,1

d

])
Pj +

s∑

j=1

Pj

=
s∑

j=1

([
a1,j,1

d

]
+

[
a2,j,1

d

]
+ 1

)
Pj +

t∑

j=s+1

([
a1,j,1

d

]
+

[
a2,j,1

d

])
Pj

=
s∑

j=1

(
a1,j,1 − d1,j,1 + a2,j,1 − d2,j,1

d
+ 1

)
Pj +

t∑

j=s+1

a1,j,1 + a2,j,1

d
Pj

=
t∑

j=1

a1,j,1 + a2,j,1

d
Pj . ¤

Lemma 5.3. Let (X, o) be a normal surface singularity and consider the
situation of (4.2). Let Eα be an irreducible component of E with vEα(h ◦ π) = d

and E(m)α an irreducible component of E(m) with ψ̃m(E(m)α) = Eα.

( i ) If gcd(m, d) = 1, then ψ̃m gives a biholomorphic mapping from E(m)α to
Eα.

( ii ) If m1,m2 are positive integers with m1 ≡ ±m2 (d), then E(m1)α is biholo-
morphic to E(m2)α.

Proof. Since (i) is obvious, we prove (ii). Since gcd(m1, d) = gcd(m2, d),
we put m0 = gcd(mi, d) and m̄i = [mi | d] for i = 1, 2. Then the following diagram
exists:

Vm1 Vm2
Vm0

X,

ϕ1 ϕ2

ψm1 ψm2

ψm0

XXXz »»»9

?

@
@

@@R

¡
¡

¡¡ª

where, for j = 0, 1, 2, ψmj
is a cyclic covering map defined by w

mj

j = h as in (4.2);
ϕi is a cyclic covering map defined by wm̄i

j = w0 for i = 1, 2. Thus ψmi = ψm0 ◦ϕi

and we have the following diagram:
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Ṽm1 Ṽm2
Ṽm0

X̃.

ϕ̃1 ϕ̃2

ψ̃m1 ψ̃m2

ψ̃m0

XXXz »»»9

?

@
@

@@R

¡
¡

¡¡ª

Let E(m0)α be an irreducible component of E(m0) with ψ̃m0(E(m0)α) = Eα;
therefore vE(m0)α

(wi) = d/m0. Since gcd(d/m0, m̄i) = 1, ϕ̃i|E(mi)α
: E(mi)α −→

E(m0)α is a bijective holomorphic map from (i). Consequently, ϕ̃−1
1 ◦ ϕ̃2 gives a

biholomorphic map from E(m2)α and E(m1)α. ¤

Now let (X, o) be a normal surface singularity with C∗-action, and let h be
a homogeneous element of degree d in RX . Let (Yi, o) be the normalization of a
cyclic cover defined by wmi

i = h over (X, o) (i = 1, 2). Let πi : (Ỹi, E(i)) −→ (Yi, o)
be the minimal C∗-good resolution. The following is the main result of this section.

Theorem 5.4. Under the situation above, suppose that m1 + m2 ≡ 0 (d)
and Yi is connected for i = 1, 2. Then there exists a complete C∗-pencil of curves
Φ̂ : Ŝ −→ P1 satisfying the following C∗-equivariant commutative diagram:

(Ỹi, E(i)) � � ιi //

πi

²²

(Si, supp(Si,o))

Φi

²²
(Yi, o)

wi // C

(i = 1, 2), (5.1)

where S1 := ŜL, S2 := ŜR, Φ1 := Φ̂L and Φ2 := Φ̂R.

Proof. Assume that (X, o) ⊂ (CN , o) and the C∗-action on (X, o) is in-
duced from t · (z1, . . . , zN ) = (tc1z1, . . . , t

cN zN ) on CN , where gcd(c1, . . . , cN ) = 1
and c` > 0 for ` = 1, . . . , N . Let π : (X̃, E) −→ (X, o) be a C∗-equivariant
good resolution such that red(h ◦ π)X̃ is simple normal crossing. Since h is ho-
mogeneous, we assume that the figure of (h ◦ π)X̃ is given by (4.1). Therefore,
we have c` = vE0(z` ◦ π) for any `. From the condition d | m1 + m2, we have
gcd(d,m1) = gcd(d,m2) and [m1, d | m2] = [m2, d | m2] = 1. Furthermore, let
m0 := gcd(d,mi), d̄ := d/m0 and m̄i := mi/m0 (i = 1, 2) (i.e., m̄1 = [m1 | m2, d]
and m̄2 = [m2 | m1, d]). For i = 0, 1, 2, let π0 : (Ỹ0, E(0)) −→ (Y0, o) be the
minimal C∗-good resolution of the normalization Y0 of the m0-fold cyclic cover
over X̃ defined by wm0

0 = h. Then there exists a generically finite mi-fold cyclic
covering map ψ̃i : Ỹi −→ X̃ (i = 0, 1, 2). Also, there exists an m̄i-fold cyclic cov-
ering map ϕi : Yi −→ Y0 induced from wm̄i

i = w0 for i = 1, 2. Thus we have the
following diagram:
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Y1

Y2

Y0

X

ψ1
ψ2

ϕ1 ϕ2

ψ0

ϕ̃2

ϕ̃1

ψ̃0
ψ̃2

ψ̃1

π1

π2

π0

π

Ỹ1

Ỹ2

Ỹ0

X̃,

where ϕ̃i is a generically finite m̄i-fold cyclic covering map corresponding to ϕi

(i = 1, 2). Let σ and r (σ ≥ r) be the numbers of Hirzebruch-Jung divisors
and incomplete Hirzebruch-Jung divisors respectively that they are supported on
supp(h◦π ◦ ψ̃0)Ỹ0

\E0,0, where E0,0 is the central curve in E(0). Since vE0,0(h◦π ◦
ψ̃0)Ỹ0

= d̄ and gcd(d̄, m̄i) = 1 for i = 1, 2, the numbers of Hirzebruch-Jung divisors
and incomplete Hirzebruch-Jung divisors included in supp(h◦π◦ψ̃i)Ỹi

\Ei,0 coincide
with σ and r respectively. The central curve E0,0 is an m0-fold cyclic covering of
the central curve E0 of E. Furthermore, from Lemma 5.3 (ii), E1,0 and E2,0 are
biholomorphic to E0,0 by ϕ̃1 and ϕ̃2 respectively. Let g0 be the genus of Ei,0

(i = 0, 1, 2). Thus, for i = 1, 2, we can give the configuration of (wi ◦ πi)Ỹi
as

follows:

(5.2)

where E(i) = Ei,0 ∪
⋃σ

j=1

⋃δi,j

k=1 Ei,j,k and bi,j,k ≥ 2 for any i, j, k.
From Theorem 4.1, there exists a complete C∗-pencil of curves Φ̂ : Ŝ −→ P1

which satisfies the following C∗-equivariant commutative diagram:

(Ỹ1, E(1)) � � ι1 //

π1

²²

(ŜL, supp(ŜL,o))

Φ̂L

²²
(Y1, o)

w1 // C.
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For i = 1, 2 and a fixed j with 1 ≤ j ≤ r, consider a P1-chain
⋃δi,j+1

k=1 Ei,j,k started
from the central curve Ei,0 of E(i). For each i, the P1-chain is mapped onto a
P1-chain on E by ψ̃i. We put it

⋃βj0+1

k=1 Ej0,k if j0 ≤ n and
⋃βj0

k=1 Ej0,k if j0 > n,
where n is the number of cyclic branches for incomplete Hirzebruch-Jung divisors
in (4.1). On the P1-chain, if we put D :=

∑βj0+1

k=1 dj0,kEj0,k (dj0,βj0+1 := 0 if

j0 > n), then
∑δi,j+1

k=1 di,j,kEi,j,k coincides with D(mi) on Ei for i = 1, 2. From
the assumption m1 + m2 ≡ 0 (d) and Proposition 3.10, D(m1) and D(m2) are
located on the opposite side. By taking a suitable successive C∗-blowing-up on
Ŝ, we can assume that the divisor (w2 ◦ π2)Ỹ2

is contained into the singular fiber
ŜR,0 numerically. Namely, the w.d.graph of E(2) is contained in the w.d.graph
of supp(ŜR,0) such that the coefficient of each component of (w2 ◦ π2)Ỹ2

coincides
with the coefficient of the corresponding component for ŜR,0.

Let us draw the configuration associated to Φ̂ as follows:

(5.3)

where ι1(E1,0) = F0 and ι1(E1,j,k) = F1,j,k for any j = 1, . . . , σ and k = 1, . . . , δ1,j ;
also bi,j,k ≥ 1 for any i, j, k and uj = δ1,j and vj = δ2,j for j ≥ r + 1. Since∑uj

k=1 d1,j,kF1,j,k and
∑vj

k=1 d2,j,kF2,j,k are complete minimal Hirzebruch-Jung di-
visors located on the opposite side for j = r + 1, . . . , σ, we have b0,j = 1 in (5.3)
for such j. Let ϕ̃ be the restriction of ϕ̃−1

1 ◦ ϕ̃2 onto E2,0. From Lemma 5.3 (ii), ϕ̃

gives a biholomorphic mapping from E2,0 to E1,0 such that ϕ̃(P2,j) = P1,j , where
Pi,j := Ei,0∩Ei,j,1 for i = 1, 2 and j = 1, . . . , σ. Furthermore, there are biholomor-
phic mappings ι1 : E1,0

∼−→ F0 and ϕ : F0
∼−→ F∞ such that ι1(P1,j) = F0 ∩ F1,j,1

and ϕ(F0 ∩ F1,j,1) = F∞ ∩ F2,j,1. Through biholomorphic mappings ϕ̃, ι1 and ϕ,
four points P2,j , P1,j , F0 ∩F1,j,1 and F∞ ∩F2,j,1 correspond to each other for any
j. Therefore, in the following, we identify these four points and represent them by
Pj for each j, and identify those four curves (i.e., E1,0, E2,0, F0 and F∞) through
the biholomorphic mappings above. If there exists an isomorphism as between two
normal bundles as follows:
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NE2,0/Ỹ2
|E2,0 ' NF∞/Ŝ |F∞ , (5.4)

then there exists a holomorphic embedding ι2 of Ỹ2 into ŜR with Φ̂R ◦ ι2 = w2 ◦π2

from the result due to Fujiki [Fu1] and Pinkham [P]. This completes our proof
for the theorem.

From now on, we prove (5.4). It is done by representing two normal bundles
above with two divisors that are linearly equivalent to them respectively. If we
put ĉi,` := vEi,0(z` ◦ π ◦ ψ̃i) for i = 1, 2 and ` = 1, . . . , N , then

ĉi,` = m̄ic` (5.5)

from Lemma 4.3. If we assume ψ̃i(Ei,j,δi,j+1) = Eĵ,βĵ+1 and put ĉi,j,` :=

vEi,j,δi,j+1(z` ◦ π ◦ ψ̃i) and cĵ,` := vEĵ,β
ĵ
+1

(z` ◦ π), then we have

ĉi,j,` =
micĵ,`

gcd(mi, dĵ,βĵ+1)
(5.6)

from Lemma 4.3 (j = 1, . . . , r). If δi,j > 1, then
⋃δi,j

k=1 Ei,j,k is contracted to a
cyclic quotient singularity of type Cni,j ,qi,j

, where ni,j and qi,j are relatively prime
positive integers with 1 ≤ qi,j < ni,j . When δi,j > 1, we have

vEi,j,1(z` ◦ π ◦ ψ̃i) =
ĉi,`qi,j + ĉi,j,`

ni,j
(5.7)

from Lemma 5.1 (ii). From the assumption m1 + m2 ≡ 0 (d), let K be an integer
defined by Kd̄ = m̄1 + m̄2. Let δ1 be an integer defined by m̄1δ1 ≡ 1 (d̄) and
0 < δ1 < d̄. If we put δ2 := −δ1, then m̄iδi ≡ 1 (d̄) for i = 1, 2. Let εi be an
integer defined by m̄iδi+ d̄εi = 1 for i = 1, 2. Then, we have ε2 = Kδ1+ε1 because
of d̄(ε2 − ε1) = m̄1δ1 − m̄2δ2 = δ1(m̄1 + m̄2) = Kd̄δ1. From gcd(c1, . . . , cN ) = 1,
there exists (γ1, . . . , γN ) ∈ ZN with

∑N
`=1 c`γ` = δ1. It is easy to check that

(−1)i+1
∑N

`=1 ĉi,`γ` + d̄εi = 1 from (5.5) for i = 1, 2. Consider a meromorphic
function on X̃ given as f := (zγ1

1 · · · zγN

N )◦π. It follows that vE0(f) =
∑N

`=1 c`γ` =
δ1 and vEi,0(f ◦ ψ̃i) = m̄iδ1 from Lemma 4.3. If we put f̃i := (wi ◦ πi)εi · (f ◦
ψ̃i)(−1)i+1

, then vEi,0(f̃i) = d̄εi + (−1)i+1m̄iδ1 = m̄iδi + d̄εi = 1 (i = 1, 2). Let
ξi,j := vEi,j,1(f̃i). From vEi,j,1(wi ◦ πi) = di,j,1 and (5.7), we have
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ξi,j = di,j,1εi + (−1)i+1
N∑

`=1

vEi,j,1(z` ◦ π ◦ ψ̃i)γ`

= (−1)i+1
N∑

`=1

ĉi,`qi,j + ĉi,j,`

ni,j
γ` + di,j,1εi. (5.8)

Since D1 and D2 are located on the opposite side, we have d̄ | d1,j,1 + d2,j,1 from
Definition 3.7 (ii). The following equality is proven for any j:

ξ1,j + ξ2,j =
d1,j,1 + d2,j,1

d̄
. (5.9)

We complete the proof of (5.4) before to prove (5.9). There exists the following
equivalences:

0 ∼ −(f̃i)Ỹi
Ei,0 = N∗

Ei,0/Ỹi
|Ei,0 −

σ∑

j=1

ξi,jPj (i = 1, 2).

Under the identification E1,0 ' F0 ' F∞ by ι1 and ϕ, we have the following:

N∗
E1,0/Ỹ1

|E1,0 + N∗
E2,0/Ỹ2

|E2,0 ∼
σ∑

j=1

(ξ1,j + ξ2,j)Pj

∼
σ∑

j=1

d1,j,1 + d2,j,1

d̄
Pj ∼ N∗

F0/Ŝ
|F0 + N∗

F∞/Ŝ
|F∞

from (5.9) and Lemma 5.2. Since N∗
E1,0/Ỹ1

|E1,0 ∼ N∗
F0/Ŝ

|F0 , we have (5.4).

In the following, for a fixed j, we prove (5.9). Consider a P1-chain⋃δi,j+1
k=1 Ei,j,k on E(i) which corresponds to a P1-chain

⋃βĵ+1

k=1 Eĵ,k on E by ψ̃i,

where
⋃βĵ

k=1 Eĵ,k is contracted to a cyclic quotient singularity of type Cnĵ ,qĵ
. Since

gcd(m1, d) = gcd(m2, d), we can define the following integers:

d̂ := dĵ,βĵ+1, µi := [mi | d, d̂], d̂i := [d̂ | mi, d], ρi := [mi, d̂ | d] (i = 1, 2),

λ1 := gcd(mi, d, d̂), ρ3 := [d, d̂ | mi],

ρ4 := [mi, d | d̂] and λ0 := gcd
(

mi, d, d̂,
dqĵ + d̂

nĵ

)
.
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From (5.8), we have

ξ1,j + ξ2,j =
N∑

`=1

(
ĉ1,`q1,j + ĉ1,j,`

n1,j
− ĉ2,`q2,j + ĉ2,j,`

n2,j

)
γ` + d1,j,1ε1 + d2,j,1ε2. (5.10)

From (3.4) and Theorem 3.4, we have ni,j = µiλ0nĵ/λ1. Also, ĉi,j,` = µiρ4cĵ,`

from (5.6). Therefore, ĉi,j,`/ni,j = µiρ4cĵ,`λ1/µinĵλ0 = ρ4cĵ,`λ1/nĵλ0 and so
ĉ1,j,`/n1,j − ĉ2,j,`/n2,j = 0 for any j and `. From (5.5) and m̄i = µiρi, we have
ĉi,`/ni,j = m̄ic`/ni,j = ρic`λ1/nĵλ0. We put ∆ := ((ρ1q1,j − ρ2q2,j)λ1)/nĵλ0.
From (5.10),

ξ1,j + ξ2,j =
N∑

`=1

(
ĉ1,`q1,j

n1,j
− ĉ2,`q2,j

n2,j

)
γ` + d1,j,1ε1 + d2,j,1ε2

= ∆
N∑

`=1

c`γ` + d1,j,1ε1 + d2,j,1ε2 = ∆δ1 + d1,j,1ε1 + d2,j,1ε2.

We put Bj := (d1,j,1 + d2,j,1)/d̄. From ε2 = Kδ1 + ε1 and m̄δ1 + d̄ε1 = 1, we have

d1,j,1ε1 + d2,j,1ε2 = d1,j,1ε1 + d2,j,1(Kδ1 + ε1) = (d1,j,1 + d2,j,1)ε1 + Kδ1d2,j,1

= d̄ε1Bj + Kδ1d2,j,1 = (1− m̄1δ1)Bj + Kδ1d2,j,1.

Therefore, (5.9) is equivalent to the following equality:

∆ = m̄1Bj −Kd2,j,1. (5.11)

Hereafter, we prove (5.11). Put di,j := di,j,δi,j+1 for i = 1, 2 and j = 1, . . . , r.
Since di,j,1 = (d̄qi,j + di,j)/ni,j = ((d̄qi,j + di,j)λ1)/µiλ0nĵ from Lemma 5.1 (ii)
and m̄i = µiρi, we have

d̄(m̄1Bj −Kd2,j,1) = m̄1(d1,j,1 + d2,j,1)− (m̄1 + m̄2)d2,j,1 = m̄1d1,j,1 − m̄2d2,j,1

= ρ1
(d̄q1,j + d1,j)λ1

nĵλ0
− ρ2

(d̄q2,j + d2,j)λ1

nĵλ0

=
d̄(ρ1q1,j − ρ2q2,j)λ1

nĵλ0
+

(ρ1d1,j − ρ2d2,j)λ1

nĵλ0
.
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From the definition, we have that ψ̃i(Ei,j,δi,j+1) = Eĵ,kĵ+1, d̂ = dĵ,βĵ+1 =
CoeffEĵ,k

ĵ
+1

(h ◦ π)X̃ and di,j = di,j,δi,j+1 = CoeffEi,j,δi,j+1(wi ◦ πi)Ỹi
. Hence,

we have di,j = [d̂ | mi] = ρ3d̂i from Lemma 4.3. Therefore,

ρ1d1,j − ρ2d2,j = ρ1ρ3d̂1 − ρ2ρ3d̂2 = ρ3(ρ1d̂1 − ρ2d̂2) = 0

from ρ1d̂1 = ρ2d̂2 = [d̂ | d, d̂]. Therefore, m̄1Bj − Kd2,j,1 = (λ1/nĵλ0)(ρ1q1,j −
ρ2q2,j) = ∆ and it completes the proof of (5.11). ¤

Example 5.5. Let (X, o) be a non-singular point (C2, o) with C∗-action
defined by t · (x, y) = (t3x, t2y) for t ∈ C∗. Let π : (X̃, E) −→ (C2, 0) be the
minimal C∗-good resolution for the C∗-action.

(i) Let h = x2 +y3. It is a weighted homogeneous polynomial of type (3, 2; 6).
Then the divisor (h ◦ π)X̃ on the minimal C∗-good resolution (see (1.2)) of (X, o)
is given as follows:

−3−1

*

3 6 2

1

.

Let m1 = 5 and m2 = 7 and so d = 6 | m1 + m2 = 12. Consider two normal
surface singularities (Y1, o) = {w5

1 = x2 + y3} (rational double point of type E8)
and (Y2, o) = {w7

2 = x2 + y3} (uni-modal singularity of type E12 in [Ar]). Thus
we can easily check that there exists a complete C∗-pencil of curves Φ̂ : Ŝ −→ P1

as follows:

where πi is a resolution of (Yi, o) for i = 1, 2.
(ii) Let h = x2y3(x4 + y6) and so it is a weighted homogeneous polynomial of

type (3, 2; 24). The w.d.graph of (h ◦ π)X̃ is given as follows:
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−1

*
1

*

* *

1

24 9 3132

E0E1,1E1,2 E4,1 E4,2

E2,1 E3,1

.−3

Let m1 = 27 and m2 = 45 and so d = 24 | m1 + m2 = 72. Let (Yi, o) be the
normalization of a non-normal hypersurface singularity {zmi = x2y3(x2+y3)} (i =
1, 2). Using Theorem 3.4, we can easily compute the minimal C∗-good resolution
πi : (Ỹi, o) −→ (Yi, o) and the divisor (wi ◦ πi)Ỹi

. In the case of i = 1, consider a
Hirzebruch-Jung divisor D of type 〈〈24 | 13 | 2〉〉 on E0 ∪E1,1 ∪E1,2. Let compute
the 27-fold cyclic lifting D(27) (see Definition 3.9). In the notation of Theorem 3.4,
we have λ1 = λ2 = λ0 = 3 and so n1 = 3; also ζ = ξ = 1 and m̂1 := [27|24, 3] = 9.
Since λ0 = 3, D(27) has three connected components. Also, each of them coincides
with a Hirzebruch-Jung divisor on a resolution of C27,10 from m̂1n1 = 27 and
δ1 = 10. Computing other cyclic coverings similarly, we can obtain (w1 ◦ π1)Ỹ1

and (w2 ◦ π2)Ỹ2
. Thus there exists a complete C∗-pencil of curves Φ̂ : Ŝ −→ P1 as

follows:

Example 5.6. Let (X, o) be a normal surface singularity defined by an ideal
I = 〈x2 + y3 + z5, y(x2 + y3) + w32〉 (= 〈x2 + y3 + z5, yz5 + w32〉); hence this is
a weighted homogeneous complete intersection singularity of weight (60, 40, 24, 5).
Let h be a homogeneous polynomial x(x2 +z5) of degree 180. The configuration of
(h◦π)Ỹ for a minimal C∗-good resolution π : (X̃, E) −→ (X, o) is given as follows:
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−4 −1

*
1

*

*

1
E2,1 E5,1

−3 −7

[2]

*
1

*
1

E1,1E1,2E1,3E1,4 E6,1 E6,2

E0

113467196 63 9180

.

Let m1 = 75 and m2 = 105 and so d = m1 + m2 = 180. Let (Yi, o) be the
mi-fold cyclic covering of (X, o) defined by wmi

i = h. Compute the minimal C∗-
good resolutions π : (Ỹi, E(i)) −→ (Yi, o) and the divisor (wi ◦ πi)Ỹi

. Consider a
Hirzebruch-Jung divisor D of type 〈〈180 | 113, 46, 71 | 96〉〉 on E0∪ (

⋃4
j=1 E`). It is

associated to a cyclic quotient singularity of type C12,7. From Definition 3.3, we
have λ0 = 1, λ1 = 3 and n1 = 4. From Theorem 3.4, we have ξ = 5, ζ = 2, m̂1 = 5
and δ0 = 19. Since m̂1n1 = 20, the 75-fold cyclic lifting D(75) is a Hirzebruch-
Jung divisor on the minimal resolution of C20,19. Computing other cases similarly,
we can obtain (wi ◦ πi)Ỹi

(i = 1, 2). Hence there exists a complete C∗-pencil of
curves Φ̂ : Ŝ −→ P1 as follows:

In this example, the number of Hirzebruch-Jung divisors started from F0 is
equal to 8, but −(F 2

0 + F 2
∞) = 9. It is obvious that [[2, 2, . . . , 2, 1]] = 0 and

[[1, 2, . . . , 2, 4, 2, 1, 3, 3, 2, 2, 2, 2]] = 0 for the Hirzebruch-Jung divisor of the first
branch. In general, if there are such Hirzebruch-Jung divisors, then the sum of the
numbers of Hirzebruch-Jung divisors started from F0 and F∞ does not coincide
with −(F 2

0 + F 2
∞).
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Remark 5.7. In the situation of Theorem 5.4, the resolutions of (Y1, o) and
(Y2, o) are embedded naturally into (ŜL, supp(ŜL,0)) and (ŜR, supp(ŜR,0)) for a
complete C∗-pencil of curves Φ̂ : Ŝ −→ P1. We consider the case of (X, o) =
(C2, o). We can observe some dualities between invariants of (Y1, o) and (Y2, o).

(i) Let µ0 be the Milnor number of ({h = 0}, 0) (cf. [Mi]), where h ∈ C[x, y]
is a weighted homogeneous polynomial of type [q1, q2; d]. From Milnor and Orlik’s
formula ([MO]), we have µ0 = (d/q1 − 1)(d/q2 − 1) and µ(Yi, o) = µ0(mi − 1) for
i = 1, 2. Therefore, we can see the following:

(i-1) If m1 + m2 ≡ 0 (d), then µ(Y1, o) + µ(Y2, o) + 2µ0 ≡ 0 (d).

(i-2) If m1 ≡ m2 (d), then µ(Y1, o) ≡ µ(Y2, o) (d).

(ii) In [GW], Goto and Watanabe defined an invariant a(R) for every finitely
generated normal graded ring R and call it a-invariant of R. They showed that
if R is a weighted homogeneous hypersurface singularity of type (q1, . . . , qn; d),
then a(R) = d − ∑n

i=1 qi. In the case of n = 2, −a(R) coincides with the min-
imal exponent in the sense of Saito [Sai]. Here we consider a-invariants of two
weighted homogeneous hypersurface singularities (Yi, o) = {zmi = h(x, y)} for
i = 1, 2, where h is a weighted homogeneous polynomial of type (q1, q2; d). Let
m̄i := mi/gcd(d,mi) (i = 1, 2) and d0 := d/gcd(d,mi). Since zmi = h(x, y) is a
weighted homogeneous polynomial of type (m̄iq1, m̄iq2, d0; m̄id), we can easily see
the following:

(ii-1) If m1 + m2 ≡ 0 (d), then a(Y1, o) + a(Y2, o) ≡ 0 (d0).

(ii-2) If m1 ≡ m2 (d), then a(Y1, o) ≡ a(Y2, o) (d0).

For example, let (Y1, o) = {z42 = xy(x3 + y5)} and (Y2, o) = {z4 = xy(x3 +
y5)}. Their defining polynomials are weighted homogeneous polynomials of types
(210, 126, 23; 966) and (20, 12, 23; 92). Hence we have µ0 = 24, µ1 = 984 and
µ2 = 72 and µ1 + µ2 + 2µ0 = 1104 ≡ 0 (23). Furthermore, we have d0 = 23,
a(Y1, o) = 607 and a(Y2, o) = 37. Then we have a(X1, o)+a(X2, o) = 644 ≡ 0 (23).

Hereafter, we consider n-th root fibrations (see p. 92–93 in [BPV]) of C∗-
pencils of curves. Similarly as Lemma 5.4, we can easily see that n-th root fibra-
tions of C∗-pencils of curves are C∗-pencils of curves.

In the classification of elliptic degenerations in [Ko], Kodaira implicitly de-
scribed the notion of “dual” of pencil of curves from the point of view of homolog-
ical monodromy theory. We can see it from the notation in [Ko]. The homological
monodromy transformations of pencils of curves of type K and K∗ are mutually
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dual for K = I, II, III and IV in [Ko]. We can easily check that K∗ in [Ko] is
birational to the n-th root fibrations of K for a suitable n. Recently, for a pencil of
curves Φ : S −→ ∆, J. Lu and S. L. Tan [LT] called the (N − 1)-th root fibration
Φ(N−1) the “dual” of Φ, where N := lcm{CoeffEi So | any irreducible component
Ei of supp(S0)}. The reason they call it “dual” is that the homological monodromy
transformation of Φ(N−1) is the inverse of one of Φ.

For C∗-pencils of curves, we could introduce the notion of “dual” holomor-
phically. In the following, as an application of Theorem 5.4, we prove that our
“dual” as C∗-pencils of curves coincides with “dual” as n-th root fibrations up to
birational equivalences (see Theorem 5.8 (iii)).

Theorem 5.8. Let Φ : S −→ C be a C∗-pencil of curves of degree d. Let
Φ(m) be the m-th root fibration of Φ.

( i ) If m1 ≡ m2 (d), then the minimal good C∗-models of Φ(m1) and Φ(m2) are
isomorphic.

( ii ) If m1+m2 ≡ 0 (d), then the minimal good C∗-models of Φ(m1) and (Φ(m2))∗

are isomorphic. Namely, there exists a complete C∗-pencil of curves Φ̂ such
that Φ̂L = Φ(m1) and Φ̂R = Φ(m2).

(iii) The minimal good C∗-models of Φ(d−1) and (Φ)∗ are C∗-equivariantly and
holomorphically isomorphic.

Proof. Because (i) and (iii) are induced from (ii), we prove (ii). From
m1 + m2 ≡ 0 (d), we have gcd(m1, d) = gcd(m2, d). We can assume that Φ is a
minimal good C∗-pencil of curves and the configuration of S0 is given by (2.4).
Let P0 be a point of E0\{P1, . . . , Ps} and O(P0) the C∗-orbit whose closure Ō(P0)
in S contains P0. Let σ : S̃ −→ S be the blowing-up at P0. Let C1 := σ−1

∗ (Ō(P0)),
X̃ := S̃\C1, C0 := σ−1(P0)\C1 and E := σ−1

∗ (S0), where σ−1
∗ (S0) is the strict

transform of S0 by σ, and so on. Then, by the result of Grauert in [G], there is a
C∗-equivariant contraction π : (X̃, E) −→ (X, o), where (X, o) is a normal surface
singularity with C∗-action. There exists a homogeneous element h of RX such
that h ◦ π = Φ ◦ σ|X̃ . Then h is not a perfect power element. In fact, if h = g` for
g ∈ RX (` ≥ 2), then (g ◦ π)` = Φ ◦ σ|X̃ . Since Φ ◦ σ is a holomorphic function
on S̃, there exists a holomorphic function g̃ on S̃ by the Riemann’s removable
singularity theorem such that g̃ = g ◦ π on X̃. Hence, g̃` = Φ ◦ σ on S̃. This is a
contradiction.

For i = 1, 2, let (Yi, o) be the normalization of the mi-fold cyclic covering
of (X, o) defined by wmi

i = h. Then they are irreducible since h is not a perfect
power element. Let πi : (Ỹi, E(i)) −→ (Yi, o) be the minimal C∗-good resolution.
From Theorem 5.4, there exists a complete C∗-pencil of curves Ψ̂ : Ŵ −→ P1 which
satisfies a similar diagram as (5.1). Namely, ιi : (Ỹi, E(i)) ↪→ (Wi, supp(Wi,0)) and
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wi ◦π = Ψi ◦ ιi|Ỹi
(i = 1, 2), where W1 := ŴL, W2 := ŴR, Ψ1 = Ψ̂L and Ψ2 = Ψ̂R.

The divisor (wi ◦πi)Ỹi
is situated on the mi-th root fibration (S̃(mi), supp(S̃(mi)

o ))
of Φ as follows:

where d0 = gcd(d,mi), d̄ = d/d0 and d0 Hirzebruch-Jung divisors of type 〈〈d̄ |
d̄ . . . d̄〉〉 on Ỹi corresponds to the Hirzebruch-Jung divisor dE0 + dC0 determined
by h ◦ π on X̃.

On the other hand, it is obvious that the w.d.graphs of Wi,0 and S̃
(mi)
0 co-

incide. Since (Ỹi, E(i)) ⊂ (Wi, supp(Wi,0)) and (Ỹi, E(i)) ⊂ (S̃(mi), supp(S̃(mi)
0 )),

the conditions (ii-1)–(ii-3) of Corollary 2.12 for Ψ̃i and Φ̃(mi) coincide. Thus,
Ψ̃i and Φ̃(mi) are isomorphic for i = 1, 2. Then Φ̃(m1) : S̃(m1) −→ C and
Φ̃(m2) : S̃(m2) −→ C are mutually dual. Let E(i)0 (resp. Fi) be the central
curve of E(i) (resp. S̃

(mi)
0 ). Then ιi gives a biholomorphic map E(i)0 ∼= Fi for

i = 1, 2. Let Q1, . . . , Qd0 be the intersection points of E(i)0 and d0 P1-chains. Also,
assume that their points represent intersection points of Fi and do P1-chains in
S̃

(mi)
0 . Hence they correspond to P0 by the covering map from Yi to X. The differ-

ence between normal bundles NFi/S̃(mi) and NFi/S(mi) is linearly equivalent to the
line bundle associated to Q1+· · ·+Qd0 for i = 1, 2. Therefore, Φ(m1) : S(m1) −→ C
and Φ(m2) : S(m2) −→ C are mutually dual. ¤

Example 5.9. If h is a weighted homogeneous polynomial x2 +y5, then the
pencil genus pe(C2, 0, h) = µ(h)/2 = 2 because of µ(h) = 4 and Corollary 2.12 (iii)
in [To6]. From Theorem 4.1, we can construct a C∗-pencil of curves Φ : S −→ C
of type (10, 2, 1) whose singular fiber is given as follows:

2

1

.

4 5

−1−3

−10

10

Let m1 and m2 be positive integers satisfying m1 ≡ 4 (10) and m2 ≡ 6 (10). Then
Φ(4) and Φ(6) are mutually dual as follows:
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−1

−5 −1

−1

−1

5

1 0

C C.

Φ(4) 1/Φ(6) = 1/(Φ(4))∗

−5

−3 −3

3 2 0

−1 −2 −3 −4

−5

−2−1

Acknowledgements. The author would like to thank the referee and the
editor for their careful reading and several useful comments. The author sincerely
thanks Professors Tadashi Ashikaga, Akira Fujiki, Shihoko Ishii, Mizuho Ishizaka,
Kazuhiro Konno, Noboru Nakayama, Masataka Tomari and Kei-ichi Watanabe for
their useful advice, stimulating conversations and encouragement beginning this
work. Especially, the kind support of Prof. Fujiki in proving Theorem 2.10 is
deeply appreciated. Moreover, the author thanks all members of the Singularity
Seminar organized by Prof. K-i. Watanabe at Nihon University for their kind
support.

References

[Ar] V. I. Arnold, Local normal forms of functions, Invent. Math., 35 (1976), 87–109.

[AI] T. Ashikaga and M. Ishizaka, Classification of degenerations of curves of genus three

via Matsumoto-Montesinos’ theorem, Tohoku Math. J. (2), 54 (2002), 195–226.

[AK] T. Ashikaga and K. Konno, Global and Local Properties of Pencils of Algebraic Curves,

In: Algebraic Geometry 2000, Adv. Stud. Pure Math., 36, Math. Sec. Japan, Tokyo,

2002, Azumino, pp. 1–49.

[BG] C. P. Boyer and K. Galicki, Sasakian Geometry, Oxford Math. Monogr., Oxford Uni-

versity Press, Oxford, 2008.

[BPV] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math.

Grenzgeb. (3), 4, Springer-Verlag, Berlin, 1984.

[De] M. Demazure, Anneaux gradués normaux, In: Introduction à la Théorie des Singu-
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[H1] H. Holmann, Quotientenräume komplexer Mannigfaltigkeiten nach komplexen Lieschen

Automorphismengruppen, Math. Ann., 139 (1960), 383–402.
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