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Abstract. It is shown that all uniquely homogeneous spaces are con-
nected. We characterize the uniquely homogeneous spaces that are semitopo-
logical or quasitopological groups. We identify two properties of homogeneous
spaces called skew-2-flexibility and 2-flexibility that are useful in studying
unique homogeneity. We also construct a large family of uniquely homoge-
neous spaces with only trivial continuous maps.

1. Introduction.

All spaces under discussion are Tychonoff. By a homeomorphism of X we
will always mean a homeomorphism of X onto itself. For a function f : X → Y

such that f : X → f(X) is a homeomorphism and f(X) 6= Y , we use the term
embedding.

A space X is called uniquely homogeneous provided that for all x, y ∈ X

there is a unique homeomorphism of X that takes x onto y. This concept is
due to Burgess [9] who asked in 1955 whether there exists a non-trivial uniquely
homogeneous metrizable continuum. Ungar [33] showed in 1975 that there are
no such finite-dimensional metrizable continua and a few years later, Barit and
Renaud [6] showed that the assumption on finite-dimensionality is superfluous. A
somewhat different argument was given by Keesling and Wilson [19]. A nontrivial
uniquely homogeneous Baire space of countable weight was constructed by van Mill
[23]. This example is a topological group. There are also uniquely homogeneous
spaces that do not admit the structure of a topological group, [24]. It is unknown
whether there is a non-trivial Polish uniquely homogeneous space.

Topological homogeneity is not well understood outside the class of separable
metrizable spaces. In fact, almost all known homogeneous compacta are home-
omorphic to a product of dyadic compacta and first countable compacta. See
Milovich [28] for the only known ZFC example of a homogeneous compactum
that is not of that form. In the light of the above results on unique homogeneity,
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the authors thought about the question of whether there exists a nonmetrizable
uniquely homogeneous compactum. Such a space, if it exists, would definitely be
completely different from all the known examples of homogeneous compacta. This
turned out to be a formidable problem and we unfortunately leave it unanswered.

Our results imply that a non-trivial uniquely homogeneous space is connected,
does not admit the structure of a topological group if it is compact, and is not
linearly orderable.

Along the way, we identify two properties of homogeneous spaces called skew-
2-flexibility and 2-flexibility that are useful in studying unique homogeneity. We
prove that every locally compact homogeneous metrizable space is both skew-2-
flexible and 2-flexible, and give an example of a homogeneous Polish space that is
skew-2-flexible but not 2-flexible. We also show that there are nontrivial products
among the uniquely homogeneous spaces.

This paper is organized as follows. We first formulate and prove some results
on topological homogeneity. Then we apply these results in our study of uniquely
homogeneous spaces. Some pertinent open problems are stated throughout the
paper.

2. Preliminaries.

For a space X we let H (X) denote its group of homeomorphisms endowed
with the compact-open topology. If X is compact, then H (X) is easily seen to
be a topological group and the natural action

H (X)×X : (g, x) 7→ g(x)

is continuous. It is not difficult to show that the weight of H (X) for compact
spaces X does not exceed the weight of X. If X has countable weight and compact,
then H (X) is a Polish group.

It is a classical result of Arens [2] that H (X) endowed with the compact-open
topology is a topological group if X is an arbitrary locally compact and locally
connected space. Even if X is locally compact and of countable weight, then the
continuity of the inverse may fail. Dijkstra [11] generalized the Arens result for
spaces X that have the property that every x ∈ X has a neighborhood that is a
continuum. Observe that such spaces are locally compact.

For locally compact spaces there is of course a ‘good’ topology for H (X) that
works as nicely as the compact-open topology. Just think of X as situated in its
Alexandrov 1-point compactification αX = X ∪ {∞}, and think of H (X) as the
subgroup of H (αX) consisting of all the homeomorphisms that fix ∞. Hence if
X is locally compact and of countable weight, then H (X) with this topology is a
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Polish group acting continuously on X.
A topological group G is called ω-narrow if for every open neighborhood U

of the neutral element e of G there is a countable set F in G such that FU = G.
This class of groups is also called ℵ0-bounded in the literature. It was proved by
Guran that a topological group G is ω-narrow if and only if it is topologically
isomorphic to a subgroup of a product of groups of countable weight. For a proof,
see Uspenskĭı [35].

A semitopological group (respectively, paratopological group) is a group en-
dowed with a topology for which the product is separately (respectively, jointly)
continuous. See [5] for conditions guaranteeing that a semitopological group (re-
spectively, paratopological group) is a topological group.

A quasitopological group is a semitopological group such that the inverse op-
eration is continuous.

Let G be a semitopological group acting on a space X by a separately con-
tinuous action. That is, the maps γx = g 7→ gx : G → X for x in X and
x 7→ gx : X → X for g in G are all continuous. We say that the action is micro-
transitive provided that for all open neighborhoods U of the neutral element e of
G we have that for every x ∈ X, Ux is open in X.

3. Homogeneity.

Let X be a uniquely homogeneous space. Fix an element e ∈ X, and let fx for
every x ∈ X be the unique homeomorphism of X sending e onto x. The function
i : H (X) → X defined by i(g) = g(e) is clearly one-to-one and surjective. Hence
if we can prove that it is a homeomorphism say for compact X, then we know that
X is a topological group and then it may be possible to use the existing knowledge
of topological groups to draw nontrivial conclusions. That this approach is not as
naive as it seems to be at first glance, becomes clear if we consider the methods
of Ungar [33] and Barit and Renaud [6]. For a uniquely homogeneous space X of
countable weight that is either compact or locally compact and locally connected,
they prove that i : H (X) → X is indeed a homeomorphism, and from that it can
be shown that X contains at most 2 points. Continuity of i is clear from the fact
that H (X) acts continuously on X, and the fact that i is open is a consequence
of the celebrated Effros Theorem from [14] (see also [1] and [26]). This result says
that a transitive and continuous action of a Polish group G on a second category
space X of countable weight has the property that all the evaluation functions
γx : G → X defined by γx(g) = gx are open surjections. In the terminology of
Section 2, a transitive action of a Polish group G on a second category space of
countable weight is micro-transitive (in fact, this is even true if G is analytic, see
[26]). So in order to apply the Effros Theorem, all one needs is the existence of
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a transitive action by a Polish group. By the remarks in Section 2 it follows that
the results of Ungar, Barid and Renaud are true for all locally compact spaces of
countable weight, the assumption on local connectivity is superfluous. Hence the
conclusion is that every locally compact uniquely homogeneous space of countable
weight has at most 2 points.

Very little is known about full homeomorphism groups that are compact, or
locally compact. The only significant result known to us is due to Keesling [18].
He showed that if X is a metric space and H (X) is locally compact, then it is
zero-dimensional. Keesling’s proof is based on an elegant result of Beck [7] and it
is not clear whether it can be generalized. This brings us to our first question.

Question 3.1. Does there exist an infinite homogeneous compact space X

such that H (X) is (locally) compact?

The following result is a partial answer to this question.

Theorem 3.2. There is no compact, homogeneous and infinite space X such
that H (X) is both compact and zero-dimensional.

Proof. We first claim that X is zero-dimensional. To prove this, fix a point
e in X and consider the stabilizer He, that is, the subgroup of H (X) consisting
of all f in H (X) such that f(e) = e. Clearly, He is a closed subgroup of H (X),
and the coset space F (X) = H(X)/He can be mapped onto X by a one-to-one
continuous function. Hence F (X) is homeomorphic to X. But F (X) is zero-
dimensional, since the natural quotient map H (X) → F (X) is perfect and open.

Observe that H (X) is ω-narrow. Hence by a result of Uspenskĭı [34], [37]
(see also [5, Section 10.3]), F (X) and hence X is a Dugundji compactum. Suppose
first that the weight of X is countable. Then X is by what we just proved a zero-
dimensional homogeneous infinite compact space, hence X is homeomorphic to
the Cantor set C. But it is well-known that H (C) is homeomorphic to the space
of irrational numbers and hence is not compact. Suppose next that the weight of
X is uncountable. Since X is homogeneous with respect to pseudo-character, X

is homeomorphic to the Cantor space Dτ for some uncountable cardinal number
τ by S̆c̆epin’s Theorem from [30] (see also [10, Section 8.1]). But H (Dτ ) clearly
contains a closed subgroup topologically isomorphic to H (Dω). Hence we again
conclude that H (X) is not compact. ¤

We now come to two new concepts in homogeneity that turned out to be very
useful in our study of unique homogeneity, see Section 5 for details. Here we study
these concepts for their own sakes.

A space X is 2-flexible if, for all a, b ∈ X and open neighborhood O(b) of
b, there is an open neighborhood O(a) of a such that, for any z ∈ O(a), there
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is a homeomorphism h of X satisfying the following conditions: h(a) = z and
h(b) ∈ O(b).

A space X will be called skew-2-flexible if, for any a, b in X and any open
neighborhood O(b) of b, there is an open neighborhood O(a) of a such that, for ev-
ery z ∈ O(a), there is a homeomorphism g of X satisfying the following conditions:
g(a) = z and b ∈ g(O(b)).

It is clear that every homogeneous zero-dimensional space is both 2-flexible
and skew-2-flexible.

Proposition 3.3. If X is a space on which some semitopological group G

acts micro-transitively, then X is 2-flexible. If G is a quasitopological group, then
X is skew-2-flexible as well.

Proof. Let a, b ∈ X be given, and let O(b) be an arbitrary open neighbor-
hood of b. Let U be an open neighborhood of the neutral element e of G such that
U ⊆ γ−1

b (O(b)). If G is a quasitopological group, then we may additionally assume
that U is symmetric. Now put O(a) = γa(U). We claim that O(a) witnesses that
X is 2-flexible, and skew-2-flexible in case U is symmetric. To this end, pick an
arbitrary z ∈ O(a). There is an element h ∈ U such that ha = z. Since hb ∈ O(b)
and h−1b ∈ O(b) in case U is symmetric, we are done. ¤

Corollary 3.4.

(1) Every locally compact homogeneous separable metric space is both 2-flexible
and skew-2-flexible.

(2) Every semitopological group is homogeneous and 2-flexible,
(3) Every quasitopological group is homogeneous and both 2-flexible and skew-2-

flexible,
(4) Every coset space of a topological group is homogeneous and both 2-flexible and

skew-2-flexible.

Proof. For (1), it suffices to observe that X admits a transitive and con-
tinuous action by a Polish group, and that this action is micro-transitive by the
Effros Theorem [14].

For (2), we let the semitopological group G act on itself in the standard way.
Then this action is separately continuous and micro-transitive. Hence we are done
by the previous result. And (3) has an identical proof.

For (4), let G be a topological group with closed subgroup H. We let G act
on G/H in the natural way by

G×G/H → G/H : (g, xH) 7→ gxH.
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A moments reflection shows that this action is transitive and micro-transitive.
Hence in all cases we are done by Proposition 3.3. ¤

Example 3.5. There is a homogeneous Polish space which is skew-2-flexible
but not 2-flexible.

Proof. Consider the product X = 4×R, where 4 is the standard Cantor
set. In van Mill [27] it was shown that there is a dense subspace Y of X having
among other things the following properties:

(1) Y is a homogeneous Gδ-subset of X,
(2) the component Cy of every y = (a, b) ∈ Y , has the form {a} × (uy, vy), where

−∞ ≤ uy < b < vy ≤ +∞,
(3) the set A = {y = (a, b) : Cy = {a} ×R} is dense in Y ,
(4) for every n ≥ 1, the set Bn = {y = (a, b) : vy − uy ≤ 1/n} is dense in Y .

We first claim that Y is not 2-flexible. To this end, pick an arbitrary point y0 =
(a, b0) ∈ A, and let y1 = (a, b1), where b1 = b0 + 2. Let O(y1) be the strip
4× (b1 − 1, b1 + 1). Let O(y0) be an arbitrary neighborhood of y0. By (4), there
is a point z = (a′, b′) ∈ Y such that Cz ⊆ O(y0) \ (4× [b1 − 1, b1 + 1]). Let f be
a homeomorphism of Y such that f(y0) = z. Then f(Cy0) = Cz, hence

f({a} ×R) ∩ (4× (b1 − 1, b1 + 1)
)

= ∅.

We conclude that O(y0) is not as required in the definition of 2-flexibility for the
points y0 and y1.

We next will prove that Y is skew-2-flexible. To this end, pick arbitrary points
y0 = (a0, b0) and y1 = (a1, b1) in Y . Suppose first that a0 6= a1. Let O(y1) be an
arbitrary open neighborhood of y1. Pick a clopen subset C of 4 such that a0 ∈ C

but a1 6∈ C. By [27, Section 3] it follows that O(y0) = (C×R)∩Y is a homogeneous
clopen subset of Y . Hence for every z ∈ O(y0) there is a homeomorphism f of Y

such that f(y0) = z and f(y1) = y1. So we may assume without loss of generality
that for some a ∈ 4, y0 = (a, b0) and y1 = (a, b1). First assume that b0 < b1. Let
O(y1) be an arbitrary open neighborhood of y1. We assume that O(y1) is a strip of
the form (4× (v1, w1))∩Y which misses the strip O(y0) = (4× (v0, w0))∩Y . We
claim that O(y0) is as required. Assume first that z ∈ O(y0) has the form z = (a, t).
Then by [27, Section 3] there is a homeomorphism f of Y such that f(y0) = z and
f(y1) = y1. Assume next that z has the form (b, t), where a 6= b. Pick three disjoint
nonempty clopen subsets E, F and G of 4 such that E ∪ F ∪G = 4, a ∈ F and
b ∈ G. Pick a point e ∈ E such that (ue, ve) ⊆ (v1, w1). By [27, Section 3] there
are homeomorphisms α : (E×R)∩Y → (F×R)∩Y , β : (F×R)∩Y → (G×R)∩Y

and γ : (G×R)∩ Y → (E ×R)∩ Y such that α({e}× (ue, ve)) = {a}× (uy0 , vy0)
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and β(y0) = z. It is clear that the homeomorphism f = α ∪ β ∪ γ : Y → Y is as
required. ¤

It is a natural question whether there is a homogeneous space which is 2-
flexible but not skew-2-flexible. Such a space indeed exists, even a uniquely ho-
mogeneous one, for details see Arhangel′skii and van Mill [4].

Question 3.6. Is there a homogeneous Polish space which is 2-flexible but
not skew-2-flexible?

Question 3.7. Is there a homogeneous compact space which is 2-flexible but
not skew-2-flexible?

For later use, we formulate and prove the following result.

Proposition 3.8. If X is a 2-flexible space, then the next condition is
satisfied :

(sc) For any e, y ∈ X, any homeomorphism f ∈ H (X), and any open neighbour-
hood V of f(y), there is an open neighbourhood U of f(e) such that, for every
z ∈ U , there exists an element g ∈ H (X) satisfying the following conditions:
g(e) = z and g(y) ∈ V .

Proof. We put a = f(e), b = f(y), O(b) = V and, using the 2-flexibility
of X, we find an open neighborhood O(a) of a and a homeomorphism h such that
h(f(e)) = f(z) and h(b) ∈ V . Then, obviously, U = O(a) and g = h ◦ f is what
we need. ¤

Theorem 3.9. If X is a homogeneous space such that the group H (X)
contains an Abelian subgroup acting transitively on X, then X is 2-flexible.

Proof. Let G be an Abelian subgroup of H (X) acting transitively on X.
Take arbitrary a, b ∈ X, and let g ∈ G be such that g(a) = b. For an arbitrary
open neighborhood O(b) of b, put O(a) = g−1(O(b)). For z ∈ O(a), let ξ ∈ G be
such that ξ(a) = z. Then

ξ(b) = ξ(g(a)) = g(ξ(a)) ∈ g(O(a)) = O(b),

as required. ¤

A space X will be called Abelian if the elements of H (X) commute pair-
wise. We will conclude from Theorem 3.9 in Theorem 5.4 that if X is uniquely
homogeneous and H (X) is Abelian, then X is a semitopological group.
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Question 3.10. Which homogeneous spaces (compacta) are 2-flexible (skew-
2-flexible)?

Question 3.11. Is every homogeneous Eberlein (Corson) compactum 2-
flexible (skew-2-flexible)?

Question 3.12. Is every homogeneous Dugundji compactum 2-flexible
(skew-2-flexible)?

Question 3.13. Given a space X, is it possible to find a space Y such that
X × Y is homogeneous and 2-flexible?

This is true if X is infinite and zero-dimensional. For let X be any zero-
dimensional infinite space. By Uspenskĭı [36], the subspace Y = {f ∈ XX : (∀x ∈
X)(|f−1(x)| = |X|)} is homogeneous and satisfies X × Y ≈ X. But clearly Y is
zero-dimensional, being a subspace of the zero-dimensional space XX . Hence Y is
2-flexible, being homogeneous.

Question 3.14. Given a space X, is it possible to find a space Y such that
X × Y is homogeneous and skew-2-flexible?

Again, this is true if X is infinite and zero-dimensional (see the argument
above).

In conclusion of this section, we provide a simple condition in terms of metrics
which guarantees that a space with such a metric is 2-flexible and skew-2-flexible.

Suppose that X is a space the topology of which is generated by a metric
ρ such that for every a ∈ X and every positive number ε there is δ > 0 such
that, whenever z ∈ X and ρ(a, z) < δ, one can find a homeomorphism h of X

onto itself satisfying the following conditions: h(a) = z and ρ(x, h(x)) < ε, for
every x ∈ X. Then we will say that X is ρ-flexible. It is easy to verify that every
ρ-flexible space is 2-flexible and skew-2-flexible. If a space X can be metrized by a
metric ρ such that X is ρ-flexible, then we call X flexible. Observe that not every
homogeneous Polish space is flexible. But every homogeneous metrizable compact
space is flexible, as was shown by Ungar [33].

4. Unique homogeneity: part one.

In this section we shift our attention to unique homogeneity. We make some
general remarks that will be useful in the sections to come.

If X is uniquely homogeneous, for all x, y ∈ X we let fx
y denote the unique

homeomorphism of X that sends x to y.
The following result is well-known, it is included for completeness sake.
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Proposition 4.1.

(1) A homogeneous space X is uniquely homogeneous if and only if the identity
function on X is the unique homeomorphism of X with a fixed-point.

(2) If X is uniquely homogeneous, and e ∈ X, then the binary operation X×X →
X defined by x·y = fe

x(y) is a group operation on X having the property that
all left translations of X are homeomorphisms of X. That is, X is a left
topological group.

Proof. All statements have routine proofs. For the fact that left transla-
tions are homeomorphisms, simply observe that for a ∈ X the translation x 7→ ax

is nothing but the homeomorphism fe
a . ¤

We call the group structure in Proposition 4.1 (2) the standard group structure
on X. Every element x in X gives us a group structure on X. But all these group
structures are topologically isomorphic, it does not matter which neutral element
we fix.

Now it is natural to investigate when a uniquely homogeneous space is a
(semi)topological group. As we stated in Section 3, this is true for uniquely ho-
mogeneous locally compact spaces of countable weight by the result of Barid and
Renaud [6]. It is not true that every uniquely homogeneous space is a topological
group (van Mill [24]).

Let X be a uniquely homogeneous space that admits the structure of a left
topological group. Since the translation x 7→ ax is a homeomorphism sending
the neutral element e of X onto a, this must be the homeomorphism fe

a . The
conclusion is that the left topological group structure on X is the standard group
structure. Hence the standard group structure on X is unique.

Now assume that the standard group structure on X is semitopological. We
already know that X has no homeomorphisms other than translations. This im-
plies that all inner isomorphisms of X, i.e., topological isomorphisms of the form
x 7→ a−1xa for some a ∈ X, are trivial (since such a homeomorphism fixes the
neutral element). This means that X is Abelian. It does not need to be Boolean,
that is, every element has order at most 2, see Arhangel′skii and van Mill [4]. Call
a space X Boolean is all of its homeomorphisms are involutions. These remarks
motivate the following questions.

Question 4.2.

(1) Is there a uniquely homogeneous space which is not Abelian?
(2) Does every uniquely homogeneous space admit the structure of a semitopolog-

ical group?
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In Theorem 3.2 we showed that for a compact homogeneous and infinite space
X, H (X) cannot both be compact and zero-dimensional. For uniquely homoge-
neous compacta we do better.

Theorem 4.3. Let X be an infinite uniquely homogeneous compact space.
Then

(1) H (X) is not compact,
(2) if X moreover has countable tightness, then H (X) is not ω-narrow.

Proof. For (1), assume that H (X) is compact. Fix an element e ∈ X,
and consider the function γe : H (X) → X. It is one-to-one and surjective by
unique homogeneity, hence a homeomorphism by compactness. As a consequence,
X is a compact topological group. By a result of Walter Rudin [29], every infinite
compact group admits a homeomorphism that does not respect Haar measure.
Such a homeomorphism is not a translation and hence demonstrates that X is not
uniquely homogeneous.

For (2), observe that from the proof of Theorem 3.2 it follows that X is a
Dugundji compactum. Since it has countable tightness, it is metrizable. But then
X is not uniquely homogeneous by the result of Barit and Renaud [6]. ¤

Question 4.4. If G is a locally compact topological group, does G admit a
homeomorphism that does not respect Haar measure?

By a result of van Douwen [13], there is a compact zero-dimensional homoge-
neous space X which has a Borel measure µ such that for arbitrary clopen subsets
E and F of X we have that E and F are homeomorphic if and only if µ(E) = µ(F ).
Moreover, up to a multiplicative constant, µ is the only Borel measure on X which
is invariant under all homeomorphisms of X. Hence the result of Walter Rudin
[29] is not true for homogeneous compacta.

It would be interesting to know the answers to the following questions.

Question 4.5.

(1) Is every uniquely homogeneous Dugundji compactum trivial?
(2) Is every uniquely homogeneous Eberlein compactum trivial?
(3) Can the product of two non-trivial compacta be uniquely homogeneous?

Observe that a homogeneous Eberlein compactum is first countable. We will
show in Section 6 below that the product of two infinite spaces can be uniquely
homogeneous.

Question 4.6. Is there a nontrivial Polish uniquely homogeneous space?
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5. Unique homogeneity: part two.

We continue our study of uniquely homogeneous spaces by proving that they
are connected and by characterizing when they have the structure of a semitopo-
logical group. Moreover, we prove that no nontrivial uniquely homogeneous space
is a subspace of an ordered space.

Theorem 5.1. Every uniquely homogeneous space X containing more than
two points is connected.

Proof. Let G be the family of all open and closed subsets of X, and for
x ∈ X let Qx be the quasicomponent of x in X, that is, Qx =

⋂{U ∈ G : x ∈ U}.
Assume that X is not connected. Then we can fix a, b ∈ X such that b /∈ Qa.
Clearly, Qa and Qb are disjoint, and there is an open and closed set U in X such
that a ∈ U and b /∈ U . Put V = X \ U . Then b ∈ V . Fix a homeomorphism h

of X onto itself such that h(a) = b, and let W = U ∩ h−1(V ). Obviously, W and
h(W ) are disjoint open and closed sets. We also have Qa ⊆ W , Qb ⊆ h(W ), and
h(Qa) = Qb. In particular, Qa and Qb are homeomorphic.

Case 1: W = Qa. Then Qa is open. Therefore, it follows that all quasicompo-
nents are open. Since X is homogeneous, all quasicomponents are homogeneous.
Taking into account that Qa and Qb are open and closed, disjoint, and of the same
cardinality, we conclude that Qa and Qb are singletons. Hence, all quasicompo-
nents are singletons. Therefore, X is discrete. Since X contains more than two
points, it is not uniquely homogeneous, a contradiction.

Case 2: W 6= Qa. Then we can fix c ∈ W \ Qa. Clearly h(c) 6= c, since W

and h(W ) are disjoint. There exists an open and closed set W1 such that a ∈ W1

and c is not in W1. Define a map g of X onto itself as follows: g(x) = h(x) for
all x ∈ W1, g(x) = h−1(x), for all x ∈ h(W1), and g(x) = x for x outside of
W1 ∪ h(W1). Then g is a homeomorphism, g(a) = b = h(a) but g 6= h, since
g(c) = c 6= h(c). Thus, X is not uniquely homogeneous. ¤

A space X will be called d-uniquely homogeneous if, for all non-empty open
subsets U and V of X there exist x ∈ U and y ∈ V such that X is uniquely
homogeneous at the pair (x, y), that is, there is exactly one homeomorphism h of
X onto itself taking x onto y.

Observe that the argument in the proof of Theorem 5.1 actually proves the
following more general statement: Every d-uniquely homogeneous space X con-
taining more than two points is connected.

Suppose that Y is a subspace of a space X. Let us say that Y is uniquely
homogeneous in X if, for any y, z ∈ Y , there is exactly one homeomorphism h of
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X onto itself such that h(y) = z and h(Y ) = Y .
The following result can be proved by practically the same method as in the

proof of Theorem 5.1.

Theorem 5.2. Suppose that X is a space containing more than two points,
and Y is a dense subspace of X such that Y is uniquely homogeneous in X. Then
X is connected.

Proposition 5.3. Suppose that Y is an infinite uniquely homogeneous first-
countable space, and let βY be the Čech-Stone compactification of Y . Then:

(1) Y is uniquely homogeneous in βY ;
(2) βY is d-uniquely homogeneous; and
(3) βY is not homogeneous.

Proof. Indeed, all of the above follows from the fact that βY is first-
countable precisely at the points of Y , combined with the fact that first-
countability at a point is preserved by homeomorphisms of a space onto itself. ¤

Theorem 5.4. Let X be a uniquely homogeneous space. Then the following
statements are equivalent :

(1) X is 2-flexible,
(2) the standard group structure on X is semitopological,
(3) X is homeomorphic to a semitopological group,
(4) X is Abelian,
(5) the standard group structure on X is semitopological and Abelian,
(6) X is homeomorphic to an Abelian semitopological group.

Proof. The implication (2) ⇒ (3) is trivial, and (3) ⇒ (2) follows from
the fact that a semitopological group structure on X, if it exists, must be unique,
see Section 4. Since (3) ⇒ (1) was proved in Corollary 3.4, to see that (1), (2)
and (3) are equivalent statements, all we need to prove is (1) ⇒ (2). To this
end, fix a neutral element e ∈ X. We will show that the multiplication in X is
right-continuous as well.

To this end, fix x, y ∈ X, and let V be an arbitrary open neighborhood of xy in
X. Let Tx denote the left translation y 7→ xy of X. By Proposition 3.8, Tx satisfies
condition (sc). So let U be an open neighborhood of x such as guaranteed by this
condition for the points e and y. Thus, for every z ∈ U , there exists g ∈ H (X)
satisfying the following conditions: g(e) = z and g(y) ∈ V . However, for the left
translation Tz we also have Tz(e) = z. Since X is uniquely homogeneous, it follows
that g = Tz. Hence, Tz(y) = g(y) ∈ V , that is, zy ∈ V . Since V is an arbitrary
open neighbourhood of xy, U is an open neighbourhood of x, and z is an arbitrary
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element of U , this means that the multiplication in X is right-continuous. the
claim is established. Hence, X is a semitopological group.

Observe that (4) ⇒ (1) is a consequence of Theorem 3.9. We already know
from the remarks in Section 4 that if the standard group structure on a uniquely
homogeneous space is semitopological, then it is Abelian. This implies that X is
Abelian since all homeomorphisms of X are left translations. So (2) ⇒ (4) as well
as the rest of the implications are trivial. ¤

This result allows us to draw some interesting conclusions.

Corollary 5.5.

(1) If a uniquely homogeneous contains a dense Čech-complete subspace and X is
2-flexible, then X is a Čech-complete topological group.

(2) A uniquely homogeneous 2-flexible compact space is trivial.
(3) A uniquely homogeneous compact coset-space of a topological group is trivial.

Proof. For (1), observe that X admits a structure of a semitopological
group by Theorem 5.4. But every semitopological group containing a dense Čech-
complete subspace is a Čech-complete topological group by Arhangel′skii and
Choban [3, Section 5].

For (2), we apply (1) to conclude that the space under consideration is a com-
pact topological group. But no nontrivial compact topological group is uniquely
homogeneous by Theorem 4.3.

For (3), first observe that coset-space of a topological group is 2-flexible by
Corollary 3.4 (3). Hence we are in a position to apply (2). ¤

Observe that Theorem 5.4 is a partial answer to some of the open problems in
Question 4.2. We now approach these problems from a different angle, and again
find partial answers.

Suppose that X is a uniquely homogeneous space. Fix a point e in X. Then
the standard inverse operation i on (X, e) is defined as follows. For an arbitrary
x ∈ X, we put i(x) = (fe

x)−1(e).
We claim that i ◦ i is the identity mapping on X.
Indeed, take any x ∈ X, and put y = i(x). Then y = (fe

x)−1(e). Therefore,
fe

y = (fe
x)−1, since X is uniquely homogeneous. Hence, i(y) = (fe

y )−1(e) = fe
x(e) =

x, that is, (i ◦ i)(x) = x, for every x ∈ X, as claimed.
Since i is a mapping of X to X, it follows that i is one-to-one and onto, that

is, i is a bijection of X.

Theorem 5.6. Let X be a uniquely homogeneous space. Then following
statements are equivalent.
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(1) X is skew-2-flexible,
(2) X is 2-flexible and skew-2-flexible,
(3) the standard group structure on X is quasitopological,
(4) X is homeomorphic to a quasitopological group,
(5) X is Boolean,
(6) the standard group structure on X is quasitopological and Boolean,
(7) X is homeomorphic to a Boolean quasitopological group.

Proof. To begin with, we will prove (1) ⇒ (6). To this end, consider the
standard inverse operation i on (X, e).

We claim that i is continuous. Take any a ∈ X, and put b = i(a) = (fe
a)−1(e).

Let O(b) be an arbitrary open neighborhood of b. Since (fe
a)−1 is continuous, there

is an open neighborhood O(e) of e such that (fe
a)−1(O(e)) ⊆ O(b). Since X is skew-

2-flexible, there is an open neighborhood O(a) of a such that, for every z ∈ O(a),
there is a homeomorphism g of X satisfying the following conditions: g(a) = z and
e ∈ g(O(e)). Consider i(z) = (fe

z )−1(e). We have: g(fe
a(e)) = z = fe

z (e). Since
X is uniquely homogeneous, it follows that fe

z = g ◦ fe
a . Hence, (fe

z )−1(e) = (g ◦
fe

a)−1(e) = (fe
a)−1(g−1(e)) ∈ (fe

a)−1(O(e)) ⊆ O(b). Thus, i(z) = (fe
z )−1(e) ∈ O(b)

for every z ∈ O(a), that is, the mapping i is continuous.
Recall that i ◦ i is the identity mapping on X, that is, i−1 = i. It follows that

i−1 is continuous. Therefore, i is a homeomorphism of X.
Since clearly i(e) = e, we get by unique homogeneity that i is the identity

function on X. In other words, fe
x = fx

e for every x ∈ X. Hence, xx = fe
x(x)

= fx
e (x) = e for every x ∈ X, that is, the standard group structure on X is

Boolean, and hence, Abelian. But this means that every left translation is a right
translation, i.e., X is a semitopological group. But even more is true since inversion
is continuous: X is a Boolean quasitopological group.

The other implications follow from Corollary 3.4 and Theorem 5.4. ¤

Remark 5.7. It is surprising that in the presence of unique homogeneity,
skew-2-flexibility implies 2-flexibility, as was shown in Theorem 5.6. The converse
is not true, as was shown in Arhangel′skii and van Mill [4]. In Example 3.5 we
presented an example of a Polish space that is homogeneous, skew-2-flexible but
not 2-flexible. Hence the assumption on unique homogeneity in Theorem 5.6 is
essential.

A source of homogeneous compact spaces that are not metrizable are various
classes of compact ordered spaces. In his thesis, Maurice [22] constructed a family
of ω1 infinite homogeneous nonmetrizable compact ordered spaces. This bound
was improved by van Douwen [13] to 2c. A compact homogeneous ordered space is
easily seen to be zero-dimensional, hence none of these examples is uniquely homo-
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geneous by Theorem 5.1. But there are also many noncompact connected ordered
spaces that are homogeneous. Connected ordered spaces that have an order revers-
ing homeomorphism are not uniquely homogeneous since such a homeomorphism
must have a fixed-point. But there are many homogeneous connected ordered
spaces that are not reversible. The first (real) example of an order homogeneous
non-reversible ordered continuum was constructed by Shelah [31]. See Hart and
van Mill [17] for another construction. Such a space with its minimum and maxi-
mum removed is homogeneous and a good candidate for a uniquely homogeneous
linearly ordered space. One can also identify the minimum and the maximum of
an order-homogeneous ordered continuum, thus obtaining a homogeneous gener-
alized 1-sphere. We will show that this approach leads nowhere, by establishing
the following result.

Theorem 5.8. If X is an infinite subspace of an ordered space, then X is
not uniquely homogeneous.

Proof. Suppose that X is an infinite uniquely homogeneous subspace of
an ordered space. Then X is connected by Theorem 5.1. So X is itself linearly
orderable. Let < be a linear order on X generating its topology. It is clear
that X does neither has a first not a last element. For such points would violate
homogeneity.

Claim 1. If f and g are homeomorphisms of X such that f(e) < g(e) for
some e in X, then f(x) < g(x), for every x in X.

Indeed, the sets M = {x ∈ X : f(x) < g(x)} and L = {x ∈ X : g(x) < f(x)}
are open, since g and f are continuous. Clearly, M and L are disjoint, and e ∈ M .
Since X is uniquely homogeneous, it follows from f(e) < g(e) that f(x) 6= g(x)
for every x ∈ X. Therefore, X = M ∪ L. Since X is connected and M 6= ∅, we
get that L = ∅. Hence, X = M = {x ∈ X : f(x) < g(x)}, as required.

Claim 2. If g is a homeomorphism of X such e < g(e) for some e in X,
then x < g(x), for every x in X.

Just apply Claim 1 with the identity function on X in the role of f .

Claim 3. Every homeomorphism of X is strictly increasing.

Let f be an arbitrary homeomorphism of X which is not the identity function
on X. First assume that there is an e ∈ X such that e < f(e). Then x < f(x)
for every x ∈ X by Claim 2. Assume that there exist x < y in X such that
f(y) < f(x). Observe that since f is a homeomorphism, by connectivity we
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consequently get that f([x,→)) = (←, f(x)]. Since X does not have a last element,
we may pick z > f(x). But then on the one hand f(z) > z and on the other hand
f(z) < f(x) < z, which is a contradiction. So we conclude that f is indeed strictly
increasing. Assume next that there is an e ∈ X such that f(e) < e. Then for
e′ = f(e) we have e′ < f−1(e′). Hence f−1 is strictly increasing by what we just
proved and so f is strictly increasing as well.

Now fix e ∈ X, and consider the standard inverse operation i on (X, e) defined
by i(x) = (fe

x)−1(e) for every x ∈ X. Clearly, i(e) = e.

Claim 4. The mapping i is a bijection of X reversing the order.

Pick a ∈ X such that e ≤ a, and consider fe
a . Then e ≤ fe

a(e) and hence
x ≤ fe

a(x), for every x ∈ X by Claim 2. Hence i(a) ≤ e. It follows similarly that
i(b) ≥ e for every b ≤ e.

Now take arbitrary a, b ∈ X such that a < b. If a ≤ e < b then i(b) < i(a) by
what we just proved. Assume first that e < a < b.

Case 1: i(b) = i(a).
Then fe

a(i(b)) = fe
a(i(a)) = e = fe

b (i(b)). So we conclude that fe
a = fe

b by
unique homogeneity. But his is impossible since a = fe

a(e), b = fe
b (e), and a 6= b.

Case 2: i(a) < i(b).
Then fe

b (i(a)) < fe
b (i(b)) = e since fe

b is strictly increasing (Claim 3). But
a = fe

a(e) < fe
b (e) = b, hence fe

a(x) < fe
b (x) for every x ∈ X (Claim 1), from

which it follows that e = fe
a(i(a)) < fe

b (i(a)), which is a contradiction.
So we conclude that i(b) < i(a). If a < b < e then it follows by an identical

reasoning that i(b) < i(a). This proves Claim 4.
So we conclude that i is a homeomorphism of X. Since i(e) = e, and X is

uniquely homogeneous, i must be the identity. But this is a contradiction since i

reverses the order and X is infinite. ¤

6. Many uniquely homogeneous spaces.

In Question 4.5 (3) we asked whether a product of nondegenerate compact
spaces can be uniquely homogeneous. The aim of this section is among other
things to show that compactness is essential in this problem.

In [12], van Douwen proved the following result:

Proposition 6.1. Let Π denote the product of an indexed family {Xγ : γ ∈
Γ} of spaces. The following are equivalent :

(1) if γ, δ ∈ Γ are distinct, then every continuous map Xγ → Xδ is constant ; and
(2) every continuous map f : Π → Π has the form Πγfγ , with each fγ a continuous
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map Xγ → Xγ .

Corollary 6.2. Let Π denote the product of an indexed family {Xγ : γ ∈ Γ}
of uniquely homogeneous spaces such that

(1) if γ, δ ∈ Γ are distinct, then every continuous map Xγ → Xδ is constant ; and
(2) for γ ∈ Γ, every embedding Xγ → Xγ is surjective.

Then Π is uniquely homogeneous.

Proof. Let f : Π → Π be a homeomorphism with a fixed-point. By Propo-
sition 6.1, we may write f as Πγfγ , where fγ : Xγ → Xγ is continuous for every
γ. Clearly, fγ is an embedding for every γ since f is a homeomorphism. By our
assumptions, this means that for every γ, fγ is a homeomorphism of Xγ with
a fixed-point and hence is the identity function on Xγ by unique homogeneity.
Hence f is the identity function on Π. ¤

So our aim is now to construct a large family of uniquely homogeneous spaces
that satisfy these conditions. In Theorem 6.3 below we construct a family of 2c

such spaces. So there is a uniquely homogeneous space that is a product of 2c

nontrivial spaces.
As usual λ denotes Lebesgue measure on R. Let M denote the collection

of Lebesgue measurable subsets of I and let N be the ideal of null-sets. The
quotient algebra M /N will be denoted by G . If A ∈ M , then [A] denotes the
N -equivalence class of A. Metrize G by d([A], [B]) = λ(A4B). As is well-known,
G with the topology induced by d is Polish, [16, Exercise 40.1]. It is easy to
see that d is convex, [16, Exercise 40.8], hence G is connected. In fact, G is
homeomorphic to the separable Hilbert space `2, as was shown by Bessaga and
PeÃlczyński, [8, VI 7.2]. If we define an operation + on G by [A] + [B] = [A4B],
then G with this operation is a Boolean group.

Hence there is a topological group G having the following properties:

( i ) G is nontrivial and Polish,
( ii ) G is Boolean,
(iii) G is connected and locally connected.

The example of a uniquely homogeneous space constructed in van Mill [23]
is a subgroup of G. The examples that we construct here will all be subgroups of
G as well.

Theorem 6.3. There is a family A of 2c Boolean groups having the follow-
ing properties:

(1) every A ∈ A is nontrivial, has countable weight and is connected and locally
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connected,
(2) if A,B ∈ A are distinct, then every continuous function f : A → B is con-

stant,
(3) for every A ∈ A , every continuous function f : A → A is either constant or a

translation.

That there is a single group having the property that all continuous self maps
are either constant or a translation, was claimed without giving a proof at the end
of van Mill [25]. The proof here combines ideas in de Groot [15] and van Mill
[23], [25].

6.1. Proof of Theorem 6.3.
A subset X of G is a bi-Bernstein set in G, abbreviated BB-set, if X as well

as G \X intersects every Cantor set in G.
If A ⊆ G, then 〈〈A〉〉 denotes the subgroup generated by A. We say that a

subset A of G is independent if for all subsets B of A we have that

〈〈B〉〉 ∩ 〈〈A \B〉〉 = {0}.

If A ⊆ G and f : A → G is a function, then a subset B of A is said to be f-
independent provided that the following conditions are satisfied:

(1) f¹B is injective,
(2) B ∩ f(B) = ∅,
(3) B ∪ f(B) is independent.

The construction depends on the following result.

Lemma 6.4. Let A be a Polish subspace of G, and let f : A → G be con-
tinuous. If A contains an uncountable f-independent set, then A contains an
f-independent Cantor set.

Proof. Identical to the proof of van Mill [25, Proposition 3.4]. ¤

Corollary 6.5. Every uncountable Gδ-subset A of G contains an indepen-
dent Cantor set.

Proof. Let B be a maximal independent subset of A. If B is countable,
then A ⊆ 〈〈B〉〉 which is countable. This contradicts A being uncountable. Now
apply Lemma 6.4. ¤

Let K denote the collection of all homeomorphisms h : K1 → K2 between
disjoint Cantor sets in G such that K1 ∪ K2 is independent. Clearly, |K | = c.
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Indeed, that |K | ≤ c is clear. That |K | ≥ c follows by observing on the one hand
that G contains an algebraically independent Cantor set by Corollary 6.7, and on
the other hand by the fact that every Cantor set can be spit into a family of c

pairwise disjoint Cantor subsets.
List K as {gα : 1 ≤ α < c, α odd}. Let V0 = W0 = ∅. By transfinite induction

on α < c, we will construct subsets Vα and Wα in G having the following properties:

(1) |Vα| ≤ |α|·ω, |Wα| ≤ |α|·ω,
(2) if β < α, then Vβ ⊆ Vα and Wβ ⊆ Wα,
(3) Vα is independent, and 〈〈Vα〉〉 ∩ 〈〈Wα〉〉 = {0},
(4) if α is odd, then there exists x ∈ dom(gα)∩ (Vα \

⋃
β<α Vβ) such that gα(x) ∈

Wα \ {0},
(5) if α is even and α > 0, then Vα \

⋃
β<α Vβ 6= ∅.

Suppose that for some α < c we constructed the sets Vβ and Wβ for all β < α.
Put V ′ =

⋃
β<α Vβ and W ′ =

⋃
β<α Wβ , respectively. Observe that by (1) we

have |V | ≤ |α|·ω and |W | ≤ |α|·ω. Moreover, by (2) and (3), V ′ =
⋃

β<α Vβ is
independent and V ∩W = {0}, where V = 〈〈V ′〉〉 and W = 〈〈W ′〉〉. If α is even,
pick any x ∈ G \ (V + W ), and put Vα = V ′ ∪ {x} and Wα = W , respectively. So
assume that α is odd, and let

H =
{
x ∈ dom(gα) : 〈〈{x} ∪ V 〉〉 ∩ 〈〈{gα(x)} ∪W 〉〉 6= {0}}.

We will show that |H| < c. Since |V + W | < c we have |g−1
α (V + W )| < c. Pick

any point x ∈ S = dom(gα) \ ((V + W ) ∪ g−1
α (V + W )). Then (x + V ) ∩W = ∅

and (gα(x) + W ) ∩ V = ∅. Since V ∩W = {0}, for x ∈ H ∩ S there consequently
exist vx ∈ V and wx ∈ W such that

x + vx = gα(x) + wx.

If |H ∩ S| = c, then there are distinct x, y ∈ H ∩ S and v ∈ V and w ∈ W such
that

x + v = gα(x) + w, y + v = gα(y) + w.

Hence x + y + gα(x) + gα(y) = 0. But this contradicts the fact that dom(gα) ∪
range(gα) is independent. Hence |H ∩ S| < c and so |H| < c. Now pick any
x ∈ dom(gα) \ (H ∪ V ) such that gα(x) 6= 0, and define Vα = V ′ ∪ {x} and
Wα = W ′ ∪ {gα(x)}, respectively. Then these choices clearly satisfy our inductive
hypotheses.

Let E and O denote the sets of even and odd ordinals less than c, respectively.
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Let {Zκ : κ < 2c} be a family of subsets of E \ {0} such that

(5) |Zκ| = c for all κ < 2c,
(6) for distinct κ, µ < 2c, |Zκ \ Zµ| = c.

The existence of this family follows from [20, Lemma 3 on p. 424]. For every α ∈ E,
pick an element xα ∈ Vα \

⋃
β<α Vβ . Similarly, for every α ∈ O, pick an arbitrary

element xα ∈ Vα \
⋃

β<α Vβ such that xα ∈ dom(gα) and gα(xα) ∈ Wα \ {0}.
Observe that this is guaranteed by (4). Now for κ < 2c, put

Gκ = 〈〈{xα : α ∈ Zκ} ∪ {xα : α ∈ O}〉〉.

Lemma 6.6. For every κ < 2c, Gκ is a BB-set in G.

Proof. Let K be an arbitrary Cantor set in G. By Corollary 6.7 we may
assume that K is independent. Write K as K0 ∪K1, where both K0 and K1 are
Cantor sets and K0∩K1 = ∅. Now let g : K0 → K1 be any homeomorphism. Then
g ∈ K and hence there exists α ∈ O such that g = gα. Then

xα ∈ Gκ ∩ dom(gα) = Gκ ∩K0,

as required. ¤

Corollary 6.7. For every κ < 2c, Gκ is a connected and locally connected
dense subgroup of G.

Proof. This follows from van Mill [23, 3.4]. ¤

Lemma 6.8. If κ, µ < 2c and κ 6= µ, then Gκ \Gµ 6= ∅.

Proof. First observe that the set {xα : 1 ≤ α < c} is independent. Since
κ 6= µ, we may pick by (6) an index γ ∈ Zκ \ Zµ. But then

xγ 6∈ {xα : α ∈ Zµ} ∪ {xα : α ∈ O},

i.e., xγ ∈ Gκ 6∈ Gµ by independence. ¤

W now come to the crucial properties of our family of subgroups of G.

Proposition 6.9. Let κ, µ < 2c. If f : Gκ → Gµ is continuous, then f is
constant if κ 6= µ, and either constant or a translation if κ = µ.

Proof. Let f : Gκ → Gµ be an arbitrary continuous function. By Lavren-
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tieff’s Theorem from [21], there exists a Gδ-subset S of G such that f can be
extended to a continuous function f̄ : S → G.

Suppose first that S contains an uncountable f̄ -independent set. Then S

contains by Lemma 6.4 an f̄ -independent Cantor set, say K. Hence g = f̄¹K
belongs to K . Hence there exists α ∈ O such that g = gα. Then

xα ∈ Gκ ∩ dom(gα) = Gκ ∩K.

Since f̄ extends f , we have f(xα) = f̄(xα) = g(xα) = gα(xα) ∈ Gκ. But by
construction, gα(xα) ∈ Wα \{0}. But this implies by (3) that gα(xα) 6∈ Gµ, which
is a contradiction.

So every f̄ -independent set is countable. Let Q be a maximal f̄ -independent
subset of S. So for an arbitrary x ∈ Gκ \ Q we have that Q ∪ {x} is not f̄ -
independent.

Put P0 = 〈〈Q ∪ f̄(Q)〉〉, and Pn+1 = 〈〈Pn ∪ f̄(Pn ∩ S)〉〉 for n ≥ 1. We claim
that f̄(x) ∈ 〈〈{x} ∪P 〉〉 = ({x}+ P )∪P for every x ∈ S, where P =

⋃
n<ω Pn. To

get rid of some trivial cases first, observe that if f̄(x) ∈ P , then there is nothing
to prove. If x ∈ P , then x ∈ Pn ∩S for some n, hence f̄(x) ∈ Pn+1 ⊆ P , and so in
this case there is also nothing to prove. So assume that x is an arbitrary element
from S \P such that f̄(x) 6∈ P . Then x 6∈ Q, hence Q∪ {x} is not f̄ -independent.
There are several cases to be considered.

Clearly f̄¹(Q ∪ {x}) is injective since f̄(x) 6∈ P ⊇ f̄(Q).
Suppose that (Q∪{x})∩ f̄(Q∪{x}) 6= ∅. Since Q∩ f̄(Q) = ∅, there are three

cases to consider. If x = f̄(x), then we have nothing to check. The other cases are
that x ∈ f̄(Q) ⊆ P or f̄(x) ∈ Q ⊆ P , but this violates our choice of x.

So we are left with the case that f̄¹(Q ∪ {x}) is injective, (Q ∪ {x}) ∩ f̄(Q ∪
{x}) = ∅, but (Q ∪ {x}) ∪ f̄(Q ∪ {x}) is not independent. Hence {x, f̄(x)} ∪ (Q ∪
f̄(Q)) is not independent. Since {x, f̄(x)} ∩ P = ∅, this implies that for some
y ∈ Q∪ f̄(Q) ⊆ P we have that x + f̄(x) + y = 0. This completes the proof of our
claim.

For every p ∈ P we put Sp = {x ∈ S : f(x) = p} and Tp = {x ∈ S : f(x) =
x + p}. The countable collection of closed sets

B = {Sp : p ∈ P} ∪ {Tp : p ∈ P}

covers S. Fix two distinct elements p and q in P for a moment. Then clearly,
Sp ∩ Sq = ∅, Sp ∩

⋃
p′∈P Tp′ ⊆ P , Tp ∩ Tq = ∅, and Tp ∩

⋃
p′∈P Sp ⊆ P . Now,

G \ S is a countable union of closed sets in G which all have to be countable. For
otherwise, one of them would contain a Cantor set which would intersect Gκ and
hence S by Lemma 6.6. So we conclude that for the countable set P ′ = (G\S)∪P
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we have that

B′ = {Sp \ P ′ : p ∈ P} ∪ {Tp \ P ′ : p ∈ P}

is pairwise disjoint. But G is homeomorphic to `2, hence G minus any countable set
is path-connected (this can also be verified directly). Hence the Sierpiński Theorem
from [32] stating that no continuum can be partitioned in at most countably many
pairwise disjoint nonempty closed sets, gives us that there is a unique element of
B′ that is nonempty.

Suppose that for p ∈ P we have that Sp\P ′ is the unique nonempty element in
B′. Observe that Gκ \Sp is countable. Define the continuous function g : Gκ → G

by g(x) = p + f(x). Then the range of g is countable and hence a single point
since Gκ is connected (Corollary 6.7). Since 0 is in the range of g since Gκ is
uncountable, we conclude that G is the constant function with value 0, i.e., f is
the constant function with value p.

Suppose next that for p ∈ P we have that Tp \ P ′ is the unique nonempty
element in B′. Observe as above that Gκ \Tp is countable. Define the continuous
function h : Gκ → G by g(x) = x + f(x). The range of this function is countable,
so it is constant by connectivity of Gκ. Since Tp \ P ′ is nonempty, the function
g is therefore the constant function with value p. But this implies that f is the
translation x 7→ x + p. So if κ = µ then we are done. If κ 6= µ, pick an arbitrary
x ∈ Gκ \ Gµ (Lemma 6.8). Then f(0) = p and f(x) = x + p both belong to Gµ,
hence p + x + p = x belongs to Gµ, a contradiction. ¤
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[34] V. V. Uspenskĭı, Compact quotient-spaces of topological groups, and Haydon spectra

(Russian), Mat. Zametki, 42 (1987), 594–602.
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