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Multiplicity of a space over another space

By Kouki Taniyama

(Received Jan. 9, 2011)

Abstract. We define a concept which we call multiplicity. First, multi-
plicity of a morphism is defined. Then the multiplicity of an object over an-
other object is defined to be the minimum of the multiplicities of all morphisms
from one to another. Based on this multiplicity, we define a pseudo distance on
the class of objects. We define and study several multiplicities in the category
of topological spaces and continuous maps, the category of groups and homo-
morphisms, the category of finitely generated R-modules and R-linear maps
over a principal ideal domain R, and the neighbourhood category of oriented
knots in the 3-sphere.

1. Introduction.

Let C be a category with objects X, Y, . . . . We denote the set of morphisms
from X to Y by Hom(X, Y ). By f : X → Y we mean f ∈ Hom(X, Y ). The
composition of f : X → Y and g : Y → Z is denoted by g ◦ f : X → Z. The
identity morphism on X is denoted by idX : X → X. Note that by the definition
of category the following (1), (2) and (3) hold.

(1) For any f : X → Y , g : Y → Z and h : Z → W , h ◦ (g ◦ f) = (h ◦ g) ◦ f .
(2) For any f : X → Y , f ◦ idX = f and for any g : Y → X, idX ◦ g = g.
(3) Hom(X, Y ) and Hom(Z,W ) are disjoint unless X = Z and Y = W .

Let R be the set of all real numbers and N the set of all natural numbers.
For a real number a we denote the set of all real numbers greater than or equal
to a by R≥a. Similarly we denote the set of all real numbers greater than a by
R>a. Let ∞ be an element that is not in R. We extend the order, addition and
multiplication of R to R ∪ {∞} in the usual way. Namely, for any real number r

it holds r ≤ ∞, ∞ ≤∞, r +∞ = ∞+ r = ∞+∞ = ∞ and for any positive real
number r it holds r · ∞ = ∞ · r = ∞ ·∞ = ∞.

Suppose that for each morphism f : X → Y , an element m(f) of R≥1 ∪ {∞}
is assigned such that the following (1) and (2) hold.
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(1) m(idX) = 1 for any object X.
(2) For any f : X → Y and g : Y → Z, m(g ◦ f) ≤ m(f)m(g).

Then we say that m is a multiplicity on the category C . Let m(X : Y ) be the
infimum of m(f) where f varies over all elements of Hom(X, Y ). If there are no
morphisms from X to Y then we define m(X : Y ) = ∞. We call m(X : Y ) the
multiplicity of X over Y .

Proposition 1.1.

(1) For any objects X and Y , m(X : Y ) ≥ 1.
(2) For any object X, m(X : X) = 1.
(3) For any objects X, Y and Z,

m(X : Z) ≤ m(X : Y )m(Y : Z).

Proof.

(1) By definition we have m(X : Y ) ≥ 1.
(2) We have m(X : X) = m(idX) = 1.
(3) For any ε > 0 there exists f : X → Y with

m(f)−m(X : Y ) < min
{

ε

3m(Y : Z)
,

√
3ε

3

}

and g : Y → Z with

m(g)−m(Y : Z) < min
{

ε

3m(X : Y )
,

√
3ε

3

}
.

Then we have

m(f)m(g)−m(X : Y )m(Y : Z)

= m(f)m(g)−m(f)m(Y : Z) + m(f)m(Y : Z)−m(X : Y )m(Y : Z)

= m(f)(m(g)−m(Y : Z)) + (m(f)−m(X : Y ))m(Y : Z)

<

(
m(X : Y ) +

√
3ε

3

)
(m(g)−m(Y : Z)) +

ε

3m(Y : Z)
m(Y : Z)

< m(X : Y )
ε

3m(X : Y )
+
√

3ε

3

√
3ε

3
+

ε

3m(Y : Z)
m(Y : Z)

= ε.
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Since m(X : Z) ≤ m(g ◦ f) ≤ m(f)m(g) we have m(X : Z)−m(X : Y )m(Y :
Z) < ε. Since ε is any positive number we have the conclusion. ¤

Remark 1.2. All examples of m in this paper take their values in a proper
subset N ∪{∞} of R≥1∪{∞} or a proper subset {en | n ∈ {0}∪N} of R≥1∪{∞}
where e is the base of natural logarithm. Then m(X : Y ) is simply defined as the
minimum, not as the infimum, and the proof of Proposition 1.1 (3) becomes much
simpler. However we define the range of m as above for potential future use.

Let dm(X, Y ) be an element of R≥0 ∪ {∞} defined by the following.

dm(X, Y ) = loge(m(X : Y )m(Y : X)).

Here we define loge(∞) = ∞ as usual. We call dm(X, Y ) the multiplicity distance
of X and Y .

We say that X has finite multiplicity property over Y with respect to m if
m(X : Y ) 6= ∞, namely if there is a morphism f : X → Y with m(f) < ∞. We
say that m has finite multiplicity property if any object X has finite multiplicity
over any object Y .

Proposition 1.3. Let m be a multiplicity on a category C that has finite
multiplicity property. Then dm is a pseudo distance on the class of objects of C .
Namely the following (D1′), (D2) and (D3) hold for any objects X, Y and Z of
C .

(D1′) dm(X, Y ) ≥ 0, dm(X, X) = 0,
(D2) dm(X, Y ) = dm(Y, X),
(D3) dm(X, Z) ≤ dm(X, Y ) + dm(Y, Z).

Proof.

(D1′) By Proposition 1.1 (1) we have m(X : Y )m(Y : X) ≥ 1. Therefore
dm(X, Y ) = loge(m(X : Y )m(Y : X)) ≥ 0. By Proposition 1.1 (2) we
have m(X : X)m(X : X) = 1. Therefore dm(X, X) = loge(m(X : X)m(X :
X)) = 0.

(D2) By definition we have dm(X, Y ) = dm(Y, X).
(D3) By Proposition 1.1 (3) we have m(X : Z)m(Z : X) ≤ m(X : Y )m(Y :

Z)m(Z : Y )m(Y : X) = m(X : Y )m(Y : X)m(Y : Z)m(Z : Y ). Therefore
dm(X, Z) = loge(m(X : Z)m(Z : X)) ≤ loge(m(X : Y )m(Y : X)m(Y :
Z)m(Z : Y )) = loge(m(X : Y )m(Y : X)) + loge(m(Y : Z)m(Z : Y )) =
dm(X, Y ) + dm(Y, Z). ¤
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The following is a typical example of multiplicity. Let Cset be the category of
non-empty sets and maps. Then a morphism f : X → Y is a map from a set X

to a set Y . We denote the cardinality of a set A by |A|. For any infinite set A,
the cardinality of A is denoted by the same symbol |A| = ∞. Let mmap(f) be an
element of N ∪ {∞} defined by

mmap(f) = sup{|f−1(y)| | y ∈ Y }.

We call mmap map-multiplicity.

Proposition 1.4. A map-multiplicity mmap is a multiplicity. Namely the
following (1) and (2) hold.

(1) mmap(idX) = 1 for any set X of Cset.
(2) For any maps f : X → Y and g : Y → Z, mmap(g ◦ f) ≤ mmap(f)mmap(g).

Proof. The proof of (1) is trivial. We will show (2). If mmap(f) = ∞ or
mmap(g) = ∞ then the inequality holds. Suppose mmap(f) < ∞ and mmap(g) <

∞. Let z be any element of Z. Since |g−1(z)| ≤ mmap(g) and |f−1(y)| ≤ mmap(f)
for any y ∈ Y we have |(g ◦ f)−1(z)| = | ∪y∈g−1(z) f−1(y)| ≤ mmap(f)mmap(g).
Thus we have mmap(g ◦ f) ≤ mmap(f)mmap(g). ¤

The following proposition shows that map-multiplicity is, in a sense, general-
ization of division. For a real number a we denote the least integer no less than a

by dae.

Proposition 1.5. Let X and Y be finite sets. Then the following holds.

mmap(X : Y ) =
⌈|X|/|Y |⌉.

Proof. For any map f : X → Y we have mmap(f) ≥ d|X|/|Y |e by the
pigeonhole principle, and clearly, there is a map g : X → Y with mmap(g) =
d|X|/|Y |e. Therefore we have the result. ¤

Let C1 and C2 be categories and m2 a multiplicity on C2. Let F be a functor
from C1 to C2. For each morphism f of C1 we define m1(f) by m1(f) = m2(F (f)).
We call m1 the pull-back multiplicity of m2 with respect to a functor F .

Proposition 1.6. The pull-back multiplicity m1 is a multiplicity. Namely
the following (1) and (2) hold.

(1) m1(idX) = 1 for any object X of C1.
(2) For any morphisms f : X → Y and g : Y → Z of C1, m1(g◦f) ≤ m1(f)m1(g).
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Proof.

(1) By definition we have m1(idX) = m2(F (idX)). Since F is a functor we have
F (idX) = idF (X). Therefore m2(F (idX)) = m2(idF (X)) = 1.

(2) By definition we have m1(g ◦ f) = m2(F (g ◦ f)). Since F is a functor we
have F (g ◦ f) = F (g) ◦ F (f). Therefore m2(F (g ◦ f)) = m2(F (g) ◦ F (f)) ≤
m2(F (f))m2(F (g)) = m1(f)m1(g). ¤

Suppose that a category has a functor to the category of non-empty sets and
maps, then the pull-back multiplicity of the map-multiplicity is also called the
map-multiplicity so long as no confusion occurs. Many categories, such as the
category of topological spaces and continuous maps and the category of groups
and homomorphisms, have a forgetful functor to the category of non-empty sets
and maps. Thus the map-multiplicity is defined on such categories. We will study
them in Section 2 and Section 3.

Let X and Y be objects. Suppose that there exists an injective morphism
from X to Y , and there exists an injective morphism from Y to X. Then we
consider the problem whether or not X and Y are isomorphic. We consider this
problem in several categories in the following sections. An analogous problem for
surjective morphism is also considered in Section 3 and Section 4.

Remark 1.7. In [4] a natural number b(f) is defined for an embedding
f : G → S3 of a finite graph G into the 3-sphere S3 as a generalization of the
braid index of knots and links. Then b(f) is estimated below by mmap(g) for any
continuous map g : G → S1 from G to the unit circle S1. Therefore the author de-
fined map-multiplicity of continuous maps and then generalized it to multiplicities
in various categories. There are some preliminary announcements of this work.
See [9], [10] and [11]. In [2] S. Bogatyi, J. Fricke and E. Kudryavtseva inde-
pendently defined the same number as our map-multiplicity of a continuous map,
and studied it in somewhat different interest. In [3] M. Gromov independently
defined the cardinality of a topological space over another topological space which
is essentially the same as our map-multiplicity of a topological space over another
topological space, and studied it in various aspects. In [5] R. Karasev also showed
some results on multiplicity of continuous maps between manifolds.

2. Multiplicity of topological spaces.

Let X and Y be topological spaces and f : X → Y a continuous map from
X to Y . Then the map-multiplicity of f is defined by mmap(f) = sup{|f−1(y)| |
y ∈ Y } and the map-multiplicity mmap(X : Y ) of X over Y is defined to be the
infimum of mmap(f) where f varies over all continuous maps from X to Y .

We say that topological spaces X and Y are weakly homeomorphic if there
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exists a continuous injection from X to Y and there exists a continuous injection
from Y to X. We say that a set of topological spaces T is classed if any two
weakly homeomorphic topological spaces in T are homeomorphic. We say that a
topological space X is self-closed if every continuous injection from X to X is a
homeomorphism.

Proposition 2.1. A set of self-closed topological spaces is classed.

Proof. Let X and Y be self-closed topological spaces. Suppose that X and
Y are weakly homeomorphic. Then there are continuous injections f : X → Y

and g : Y → X. Then g ◦ f : X → X is a continuous injection. Since X is self-
closed g ◦ f is a homeomorphism. Similarly f ◦ g : Y → Y is a homeomorphism.
Therefore both f and g are bijections. Since f−1 : Y → X is a composition of
two continuous maps g : Y → X and (g ◦ f)−1 : X → X, f−1 is also continuous.
Therefore f is a homeomorphism. ¤

Theorem 2.2. Let X be a classed set of topological spaces. Let CX be a
category whose objects are the elements of X and morphisms are the continuous
maps between the elements of X . Let mmap be the map-multiplicity on CX and
dmmap the map-multiplicity distance. Let X and Y be elements of X . Then X

and Y are homeomorphic if and only if dmmap(X, Y ) = 0. Thus, if mmap has finite
multiplicity property on X , then the pseudo distance dmmap defines a distance on
the set of homeomorphism classes of X .

Proof. Suppose that X and Y are homeomorphic. Then there is a home-
omorphism f : X → Y . Since mmap(f) = mmap(f−1) = 1 we have mmap(X : Y )
= mmap(Y : X) = 1. Therefore dmmap(X, Y ) = 0. Suppose dmmap(X, Y ) = 0.
Then there are continuous injections f : X → Y and g : Y → X. Therefore X and
Y are weakly homeomorphic. Since X is classed, X and Y are homeomorphic. ¤

In the following we consider simplicial complexes. All simplicial complexes in
this paper are locally finite. Note that a simplicial complex is formally a set of
simplexes. However we do not distinguish a simplicial complex and the union of
its simplices so long as no confusion occurs.

Lemma 2.3. Let G be a finite one-dimensional simplicial complex. Let X be
a subspace of G that is homeomorphic to a finite one-dimensional complex. Then
the following (1), (2) and (3) hold.

(1) For any 1-simplex e of G, e ∩ X is a disjoint union of finitely many points
and closed intervals.

(2) There is a subdivision G′ of G such that X is a sub-complex of G′.
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(3) The first Betti number β1(X) of X is less than or equal to the first Betti
number β1(G) of G.

Proof.

(1) Since X is compact and G is Hausdorff, X is closed in G. Also e is closed in
G. Thus e ∩ X is a closed subset of a compact set G, hence compact. Each
connected component of e ∩X is a compact connected subset of e. Therefore
it is a point or a closed interval. Suppose that the number of connected
components of e∩X is not finite. Since X is compact the number of connected
components of X is finite. Therefore there are connected components A1, A2

and A3 of e ∩ X that are contained in a connected component B of X. We
may suppose without loss of generality that A1, A2 and A3 are arranged in
this order in e. Then there are points x and y of e \X such that x is between
A1 and A2 and y is between A2 and A3. But then A2 is separated from A1

and A3 in X and they cannot be contained in the same connected component
of X. This is a contradiction. Therefore the number of connected components
of e ∩X is finite. Thus e ∩X is a disjoint union of finitely many points and
closed intervals.

(2) By (1) we immediately have the result.
(3) By (2), X is a sub-complex of a finite one-dimensional simplicial complex G′.

Then the inequality β1(X) ≤ β1(G′) is a well-known fact in combinatorial
topology. Since β1(G′) = β1(G) we have the result. ¤

Proposition 2.4.

(1) A compact Hausdorff space X is self-closed if and only if no proper subspace
of X is homeomorphic to X.

(2) A closed manifold is self-closed.
(3) Let G be a finite one-dimensional simplicial complex. Suppose that no 0-

simplex is a face of exactly one 1-simplex. Then G is self-closed.

Proof.

(1) Suppose that a proper subset Y of X is homeomorphic to X. Let f : X → Y be
a homeomorphism and i : Y → X the inclusion map. Then the composition
i ◦ f : X → X is a continuous injection. Since i ◦ f is not surjective it is
not a homeomorphism. Therefore X is not self-closed. Suppose that X is
not self-closed. Then there is a continuous injection f : X → X that is not a
homeomorphism. Since the source X is compact and the target X is Hausdorff,
f is a closed map. Therefore X and f(X) are homeomorphic. Since f is not
a homeomorphism, f(X) is a proper subspace of X.

(2) Let M be a closed n-dimensional manifold. Since M is compact Hausdorff it
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is sufficient to show that no proper subspace of M is homeomorphic to M .
Let M1, . . . , Mk be the connected components of M . Let N be a subspace of
M that is homeomorphic to M . Set Ni = N ∩Mi. Since Ni is compact and
Mi is Hausdorff, Ni is a closed subset of Mi. We will show that Ni is an open
subset of Mi by using the invariance of domain theorem. Let y be a point in
Ni. We will show that there is an open set O of Mi with y ∈ O ⊂ Ni. Let U

be an open neighbourhood of y in Mi that is homeomorphic to an open set A

of Rn. Let V be an open neighbourhood of y in Ni that is homeomorphic to
an open set B of Rn. Let f : A → U and g : B → V be homeomorphisms.
Since U ∩ V is an open subset of V , g−1(U ∩ V ) is an open set of Rn. By the
invariance of domain theorem we see that f−1(U ∩ V ) is an open set of Rn.
Therefore f−1(U ∩V ) is an open set of A. Since f is a homeomorphism U ∩V

is an open set of U . Therefore U ∩ V is an open set of Mi. Thus O = U ∩ V

is the desired set. Since Mi is connected we have Ni = ∅ or Ni = Mi. Since
N has the same number of connected components as M we have Ni = Mi for
every i. Therefore N = M .

(3) Since G is compact Hausdorff, it is sufficient to show that no proper subspace
of G is homeomorphic to G. Let H be a subspace of G homeomorphic to G.
For each 1-simplex e of G, e∩H is a disjoint union of finitely many points and
closed intervals by Lemma 2.3. If there is a 1-simplex e of G with e ∩H 6= e,
then by the assumption of G we have β1(H) < β1(G) or β0(G \ int(e)) =
β0(G) + 1 where β0(X) is the number of connected component of X. Then it
is easy to see that H cannot be homeomorphic to G. Thus e∩H = e for each
1-simplex e of G. Since β0(H) = β0(G), each 0-simplex of G is contained in
H. Thus we have H = G as desired. ¤

Let G be a one-dimensional simplicial complex. Let x be a point of G. The
degree of x in G, denoted by deg(x) = deg(x,G), is defined as follows. If x is a
0-simplex of G, then deg(x) is defined to be the number of 1-simplexes of G that
contain x. If x is an interior point of a 1-simplex of G, then deg(x) = 2. Note
that deg(x,G′) = deg(x,G) for any subdivision G′ of G. Let br(G) be the set of
all points x of G with deg(x) = deg(x,G) ≥ 3.

Lemma 2.5. Let f : X → Y be a homeomorphism from a one-dimensional
simplicial complex X to another one-dimensional simplicial complex Y . Let x be
a point of X. Then deg(x,X) = deg(f(x), Y ). Therefore f(br(X)) = br(Y ).

Proof. Suppose that deg(x,X) < deg(f(x), Y ). Let M be a sufficiently
small closed connected neighbourhood of f(x) in Y . Then the number of connected
components of M \ {f(x)} is deg(f(x), Y ). Let N be a sufficiently small closed
connected neighbourhood of x in X such that f(N) ⊂ M . Then the number of
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connected components of N \{x} is deg(x,X). Since f is a homeomorphism f(N)
is also a neighbourhood of f(x) in Y . Each connected component of N \ {x} is
mapped into a connected component of M \ {f(x)} under f . Therefore there is
a component of M \ {f(x)} that is disjoint from f(N). Then f(N) cannot be a
neighbourhood of f(x) in Y . This is a contradiction. Thus we have deg(x,X) ≥
deg(f(x), Y ). Similarly, by considering f−1 we have deg(x,X) ≤ deg(f(x), Y ). ¤

Proposition 2.6. Let S be a set of finite one-dimensional simplicial com-
plexes. Suppose that each element of S has no isolated points and no connected
components each of which is homeomorphic to a closed interval. Then S is classed.

Proof. Let G1 and G2 be elements of S . Suppose that there are contin-
uous injections f1 : G1 → G2 and f2 : G2 → G1. Let Hi be the maximal sub-
complex of Gi such that each 0-simplex of Hi is a face of at least two 1-simplexes of
Hi for i = 1, 2. Namely Hi is the union of all subspaces of Gi each of which is home-
omorphic to a circle. If β1(Gi) = 0, then Hi is an empty set. Then β1(Hi) = β1(Gi)
for i = 1, 2. We may suppose without loss of generality that deg(x,Gi) 6= 2 for each
0-simplex x contained in Gi \Hi. Since G1 and G2 are compact Hausdorff, f1 and
f2 are embeddings and Gi and fi(Gi) are homeomorphic for i = 1, 2. By a stan-
dard argument of combinatorial topology we have β1(f1(G1)) = β1(f1(G1) ∩H2).
Suppose that H2 is not contained in f1(G1). Then f1(G1) ∩H2 is a proper sub-
space of H2. Then we have β1(f1(G1)∩H2) < β1(H2) by a standard argument of
combinatorial topology. Thus β1(G1) = β1(f1(G1)) = β1(f1(G1) ∩ H2) is less
than β1(H2) = β1(G2). On the other hand β1(G2) = β1(f2(G2)) ≤ β1(G1)
by Lemma 2.3. This is a contradiction. Therefore H2 is contained in f1(G1).
Since f1(G1) is a sub-complex of a subdivision of G2, br(f1(G1)) is a subset of
br(G2). Since br(f1(G1)) = f1(br(G1)) we have |br(G1)| ≤ |br(G2)|. Similarly
we have |br(G2)| ≤ |br(G1)|. Therefore br(f1(G1)) = br(G2). Similarly we have
br(f2(G2)) = br(G1). Let e be a 1-simplex of G2 that is not contained in H2. Let
x and y be the 0-simplexes of G2 contained in e. Suppose that both deg(x,G2) and
deg(y, G2) are greater than 2. We will show that e is contained in f1(G1). Sup-
pose that e is not contained in f1(G1). By the condition br(f1(G1)) = br(G2)
there is an interior point z of e that is not contained in f1(G1). Note that
β0(G2 \ {z}) = β0(G2) + 1. Each connected component of G2 \ {z} contains
at least one point in br(G2). Therefore β0(f1(G1)) ≥ β0(G2 \ {z}). Thus we
have β0(G1) = β0(f1(G1)) is greater than β0(G2). Since each connected compo-
nent of G1 contains at least one point in br(G1) and br(f2(G2)) = br(G1), we
have β0(G2) = β0(f2(G2)) ≥ β0(G1). This is a contradiction. Thus we have
e ⊂ f1(G1). Let e be a 1-simplex of G2 such that one of the 0-simplexes of G2

contained in e, say x, has degree 1 in G2. Note that by the assumption on G2 the
other 0-simplex of G2 contained in e, say y, has degree greater than 2. Therefore
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y ∈ br(G2). Therefore e ∩ f1(G1) is a neighbourhood of y in e. By Lemma 2.3
and by the assumption on G1, e ∩ f1(G1) is homeomorphic to a closed interval.
Therefore f1(G1) and G2 are homeomorphic. ¤

Proposition 2.7. Let n be a non-negative integer. Let X and Y be n-
dimensional finite simplicial complexes. Then X has finite multiplicity property
over Y with respect to map-multiplicity.

Proof. It is sufficient to show that there is a continuous map from f : X →
Y such that f−1(y) is a finite set for every y ∈ Y . Let v1, . . . , vk be the 0-simplexes
of X. Let s be an n-simplex of Y . Let x1, . . . , xk be points in s that are in general
position. Namely any l points of them with l ≤ n + 1 are not contained in any
l − 2-dimensional affine subspace. Let f : X → Y be a map such that f(vi) = xi

for each i and the restriction map of f to each simplex of X is an affine map. Then
f has the desired property. ¤

The following is an example of map-multiplicity of a topological space over
another topological space. See [3] and [5] for other examples.

Proposition 2.8. Let n be a natural number and K2n+1 the 1-skeleton of
a 2n-simplex. Let S1 be the unit circle. Then the following holds.

mmap(K2n+1 : S1) =
n(n + 1)

2
.

Proof. Let f : K2n+1 → S1 be the map constructed as follows. The
image of the 0-simplexes of K2n+1 under f forms the set of the vertices of a
regular (2n + 1)-gon inscribing to S1. For each 1-simplex e of K2n+1, f maps e

homeomorphically onto an arc in S1 that is shorter than another arc in S1 with
the same end points. Then it is easy to check that mmap(f) = (n(n + 1))/2. Thus
we have mmap(K2n+1 : S1) ≤ (n(n + 1))/2. We will show mmap(g) ≥ (n(n + 1))/2
for any continuous map g : K2n+1 → S1. If g maps a 1-simplex to a point, then
mmap(g) = ∞. Thus we may suppose that g maps no 1-simplex to a point. We
will deform g step by step without increasing mmap(g) as follows. Let e be a
1-simplex of K2n+1 and u and v the 0-simplexes contained in e. First suppose
g(u) 6= g(v). Since g(e) is a connected subset of S1, g(e) contains an arc, say
α, of S1 joining g(u) and g(v). Then we modify g on e, still denoted by g, such
that g maps e homeomorphically onto α. Next suppose that g(u) = g(v). Since
g does not map e to a point, there is an interior point, say x, of e such that
g(u) 6= g(x). Let e1 be the line segment in e with end points u and x, and
e2 the line segment in e with end points x and v. Since g(ei) is a connected
subset of S1, g(ei) contains an arc, say βi, of S1 joining g(u) = g(v) and g(x)
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for i = 1, 2. Then we modify g on e such that g maps ei homeomorphically onto
βi for i = 1, 2. We perform this modification for each 1-simplex of K2n+1. Thus
there is a subdivision, say K ′

2n+1 of K2n+1 such that g maps each 1-simplex of
K ′

2n+1 homeomorphically onto an arc in S1. Then by a slight modification near
the 0-simplexes of K ′

2n+1 we can modify g without increasing mmap(g) such that
no two 0-simplexes of K ′

2n+1 are mapped to the same point under g. Then we can
deform g such that g maps each 1-simplex of K2n+1 homeomorphically onto an
arc in S1. Thus g maps the 0-simplexes of K2n+1 to 2n + 1 points in S1 and each
1-simplex of K2n+1 homeomorphically onto an arc in S1. Let V be the set of 0-
simplexes of K2n+1. Let e be a 1-simplex of K2n+1. Let d(e, g) = |g(e)∩g(V )|−1.
Let v be a 0-simplex of K2n+1. Then the sum of d(e, g) over all 1-simplexes e

of K2n+1 containing v is greater than or equal to 2(1 + 2 + · · · + n). Therefore
the sum S of d(e, g) over all 1-simplexes e of K2n+1 is greater than or equal
to (2(1 + 2 + · · ·+ n)(2n + 1))/2 = (n(n + 1)(2n + 1))/2. Let y1, . . . , y2n+1 be
points in S1 \ g(V ) such that each connected component of S1 \ g(V ) contains
exactly one of y1, . . . , y2n+1. Then d(e, g) = |g(e) ∩ {y1, . . . , y2n+1}|. Note that
|g−1(yi)| is equal to the number of 1-simplexes e of K2n+1 with g(e) 3 yi. Therefore
the sum |g−1(y1)| + · · · + |g−1(y2n+1)| is equal to S. Then by the pigeonhole
principle there is a point yi such that |g−1(yi)| ≥ (n(n + 1)(2n + 1))/2(2n + 1) =
(n(n + 1))/2. Thus we have mmap(g) ≥ (n(n + 1))/2. ¤

3. Multiplicity of groups.

Let G and H be groups and f : G → H a homomorphism from G to H. Then
the map-multiplicity of f is defined by mmap(f) = sup{|f−1(y)| | y ∈ H}. Note
that mmap(f) = |Ker(f)| where |Ker(f)| is the order of the kernel Ker(f) of f .
Therefore we denote mmap(f) by mKer(f) and call it kernel-multiplicity of f in
this section. Then the kernel-multiplicity mKer(G : H) of G over H is defined to
be the infimum of mKer(f) where f varies over all homomorphisms from G to H.

We say that groups G and H are weakly isomorphic if there exists an injective
homomorphism from G to H and there exists an injective homomorphism from
H to G. We say that a set of groups G is classed if any two weakly isomorphic
groups in G are isomorphic. A group G is said to be co-Hopfian if every injective
homomorphism from G to G is an isomorphism.

Proposition 3.1. A set of co-Hopfian groups is classed.

Proof. Suppose that G and H are mutually weakly isomorphic co-Hopfian
groups. Let f : G → H and g : H → G be injective homomorphisms. Then
g ◦ f : G → G is an injective homomorphism. Since G is co-Hopfian, g ◦ f is an
isomorphism. Hence g is surjective and therefore g is an isomorphism from H to
G. ¤
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Theorem 3.2. Let G be a classed set of groups. Let CG be a category
whose objects are the elements of G and morphisms are the homomorphisms be-
tween the elements of G . Let mKer be the kernel-multiplicity on CG and dmKer the
kernel-multiplicity distance. Let G and H be elements of G . Then G and H are
isomorphic if and only if dmKer(G,H) = 0. Thus, if mKer has finite multiplicity
property on G , then the pseudo distance dmKer defines a distance on the set of
isomorphism classes of G .

The proof of Theorem 3.2 is entirely analogous to that of Theorem 2.2 and we
omit it. Note that a finite group is co-Hopfian, and kernel-multiplicity has finite
multiplicity property on the set of all finite groups. Thus dmKer defines a distance
on the set of isomorphism classes of all finite groups.

We now define another multiplicity for group homomorphisms. Let G and H

be groups and f : G → H a homomorphism from G to H. Then the cokernel of f

is the quotient set Coker(f) = H/f(G). Then we call mCoker(f) = |Coker(f)| the
cokernel-multiplicity of f .

Proposition 3.3. A cokernel-multiplicity mCoker is a multiplicity. Namely
the following (1) and (2) hold.

(1) mCoker(idG) = 1 for any group G.
(2) For any group homomorphisms f : G → H and g : H → K, mCoker(g ◦ f) ≤

mCoker(f)mCoker(g).

Proof.

(1) Since Coker(idG) = G/G is a trivial group, mCoker(idG) = |G/G| = 1.
(2) Since Coker(g◦f) = K/g◦f(G) = K/g(f(G)), mCoker(g◦f) = |Coker(g◦f)| =

|K/g(f(G))| = |K/g(H)| · |g(H)/g(f(G))|. Since |K/g(H)| = mCoker(g)
it is sufficient to show |g(H)/g(f(G))| ≤ mCoker(f) = |H/f(G)|. There
is a surjection from H/f(G) to g(H)/g(f(G)) induced by g. Therefore
|g(H)/g(f(G))| ≤ |H/f(G)|. ¤

The following arguments show an analogy of cokernel-multiplicity to kernel-
multiplicity. The proofs are entirely analogous and we omit them. We say that
groups G and H are co-weakly isomorphic if there exists a surjective homomor-
phism from G to H and there exists a surjective homomorphism from H to G. We
say that a set of groups G is co-classed if any two co-weakly isomorphic groups in G
are isomorphic. A group G is said to be Hopfian if every surjective homomorphism
from G to G is an isomorphism.

Proposition 3.4. A set of Hopfian groups is co-classed.
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Theorem 3.5. Let G be a co-classed set of groups. Let CG be a category
whose objects are the elements of G and morphisms are the homomorphisms be-
tween the elements of G . Let mCoker be the cokernel-multiplicity on CG and dmCoker

the cokernel-multiplicity distance. Let G and H be elements of G . Then G and
H are isomorphic if and only if dmCoker(G,H) = 0. Thus, if mCoker has finite
multiplicity property on G , then the pseudo distance dmCoker defines a distance on
the set of isomorphism classes of G .

The following example shows a difference between kernel-multiplicity and
cokernel-multiplicity. Let F (n) be a free group of rank n. Then there exists
an injective homomorphism from F (2) to F (3), and a surjective homomorphism
from F (3) to F (2). Moreover it is well-known that there exist an injective homo-
morphism from F (3) to F (2). Suppose that f : F (2) → F (3) is a homomorphism.
Let FA(n) be a free abelian group of rank n and αn : F (n) → FA(n) the abelian-
ization homomorphism. Then there is a homomorphism f̂ : FA(2) → FA(3)
such that α3 ◦ f = f̂ ◦ α2. Then |F (3)/f(F (2))| ≥ |α3(F (3))/α3(f(F (2)))| =
|α3(F (3))/(f̂(α2(F (2)))| = |FA(3)/f̂(FA(2))| = ∞. Therefore mCoker(f) =
|F (3)/f(F (2))| = ∞. After all we have mKer(F (2) : F (3)) = mKer(F (3) : F (2)) =
1, mCoker(F (2) : F (3)) = ∞ and mCoker(F (3) : F (2)) = 1. Therefore we have
dmKer(F (2), F (3)) = 0 and dmCoker(F (2), F (3)) = ∞.

However we have the following proposition.

Proposition 3.6. Let G and H be finite groups. Then dmKer(G,H) =
dmCoker(G,H).

Proof. Since dmKer(G,H) = loge(mKer(G : H)mKer(H : G)) and
dmCoker(G,H) = loge(mCoker(G : H)mCoker(H : G)) it is sufficient to show
mKer(G : H)mKer(H : G) = mCoker(G : H)mCoker(H : G). Let f : G → H be a
homomorphism. Since G/Ker(f) is isomorphic to f(G) we have |G|/|Ker(f)| =
|f(G)|. On the other hand |Coker(f)| = |H|/|f(G)|. Thus we have

|Ker(f)| = |G|
|H| |Coker(f)|.

Therefore |Ker(f)| = mKer(G : H) if and only if |Coker(f)| = mCoker(G : H).
Similarly, for a homomorphism g : G → H we have

|Ker(g)| = |H|
|G| |Coker(g)|

and |Ker(g)| = mKer(H : G) if and only if |Coker(g)| = mCoker(H : G). Thus
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taking such f and g we have

mKer(G : H)mKer(H : G)

= |Ker(f)| · |Ker(g)| = |G|
|H| |Coker(f)| |H||G| |Coker(g)|

= |Coker(f)| · |Coker(g)| = mCoker(G : H)mCoker(H : G).

This completes the proof. ¤

4. Multiplicity of finitely generated modules over a principal ideal
domain.

Throughout this section R is a principal ideal domain. Some of the results in
this section hold for any unitary ring R. See Remark 4.14. However we restrict our
attention to a principal ideal domain for the simplicity. Let M be an R-module
finitely generated over R. We denote the minimal number of generators of M over
R by r(M). For M = {0} we define r(M) = 0. Note that when R is a field, M is a
finite dimensional vector space over R whose dimension dim(M) = r(M). Let N be
an R-module finitely generated over R and f : M → N an R-linear map from M to
N . By Ker(f) we denote the kernel of f and by Coker(f) = N/f(M) we denote the
cokernel of f . We define the kernel-rank-multiplicity of f by mr(Ker)(f) = er(Ker(f))

and the cokernel-rank-multiplicity of f by mr(Coker)(f) = er(Coker(f)).

Proposition 4.1.

(1) A kernel-rank-multiplicity mr(Ker) is a multiplicity.
(2) A cokernel-rank-multiplicity mr(Coker) is a multiplicity.

For the proof of Proposition 4.1 we prepare the following proposition.

Proposition 4.2. Let M , N and L be R-modules finitely generated over R.
Let f : M → N and g : N → L be R-linear maps. Then the following (1) and (2)
hold.

(1) r(Ker(g ◦ f)) ≤ r(Ker(f)) + r(Ker(g)).
(2) r(Coker(g ◦ f)) ≤ r(Coker(f)) + r(Coker(g)).

For the proof of Proposition 4.2, we need the following lemmas. Since they are
standard facts in module theory, we omit the proofs. See for example [1, Chapter
3] for the proofs.

Lemma 4.3. Let M and N be R-modules. Suppose that M is finitely gener-
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ated over R and there exist a surjective R-linear map from M to N . Then N is
finitely generated over R and r(N) ≤ r(M).

Lemma 4.4. Let M be an R-module finitely generated over R and N an
R-submodule of M . Then N is finitely generated over R and r(N) ≤ r(M).

Lemma 4.5. Let M and N be R-modules and f : M → N a surjective R-
linear map. Suppose that the R-modules Ker(f) and N are finitely generated over
R. Then M is finitely generated over R and r(M) ≤ r(Ker(f)) + r(N).

Proof of Proposition 4.2.

(1) Since Ker(g◦f) = f−1(Ker(g)) = f−1(Ker(g)∩f(M)), f |Ker(g◦f) : Ker(g◦f) →
Ker(g) ∩ f(M) is a surjective R-linear map whose kernel Ker(f |Ker(g◦f)) is
equal to Ker(f). By Lemma 4.4 r(Ker(g) ∩ f(M)) ≤ r(Ker(g)). By Lemma
4.5 r(Ker(g ◦ f)) ≤ r(Ker(f |Ker(g◦f))) + r(Ker(g) ∩ f(M)). Thus we have
r(Ker(g ◦ f)) ≤ r(Ker(f)) + r(Ker(g) ∩ f(M)) ≤ r(Ker(f)) + r(Ker(g)).

(2) Note that Coker(g ◦ f) = L/g(f(M)) and L ⊃ g(N) ⊃ g(f(M)). By the third
isomorphism theorem

(
L/g(f(M))

)
/
(
g(N)/g(f(M))

) ∼= L/g(N).

Then by Lemma 4.5 r(Coker(g ◦ f)) = r(L/g(f(M))) ≤ r(g(N)/g(f(M))) +
r(L/g(N)) = r(g(N)/g(f(M))) + r(Coker(g)). There exists a surjective R-
linear map from Coker(f) = N/f(M) to g(N)/g(f(M)) induced by g. There-
fore we have r(g(N)/g(f(M))) ≤ r(Coker(f)) by Lemma 4.3. Thus we have
the desired inequality. ¤

Proof of Proposition 4.1. Let M , N and L be R-modules finitely gen-
erated over R and let f : M → N and g : N → L be R-linear maps.

(1) Since r(Ker(idM )) = r({0}) = 0, we have mr(Ker)(idM ) = e0 = 1. By Propo-
sition 4.2 (1) we have r(Ker(g ◦ f)) ≤ r(Ker(f)) + r(Ker(g)). Therefore we
have

mr(Ker)(g ◦ f) = er(Ker(g◦f)) ≤ er(Ker(f))er(Ker(g)) = mr(Ker)(f)mr(Ker)(g).

(2) Since r(Coker(idM )) = r({0}) = 0, we have mr(Coker)(idM ) = e0 = 1. By
Proposition 4.2 (2) we have r(Coker(g ◦ f)) ≤ r(Coker(f)) + r(Coker(g)).
Therefore we have
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mr(Coker)(g ◦ f) = er(Coker(g◦f)) ≤ er(Coker(f))er(Coker(g))

= mr(Coker)(f)mr(Coker)(g).

This completes the proof. ¤

By Lemma 4.4 and Lemma 4.3 we have both mr(Ker) and mr(Coker) have finite
multiplicity property in the category of R-modules finitely generated over R and
R-linear maps. Thus we have two pseudo distances dmr(Ker) and dmr(Coker) . The
following example shows a difference between them. Let R = Z be the ring of
integers and nZ the ideal of Z generated by an integer n. Then both Z and Z/2Z

are Z-modules finitely generated over Z. It is easy to see mr(Ker)(Z : Z/2Z) = e,
mr(Ker)(Z/2Z : Z) = e, mr(Coker)(Z : Z/2Z) = 1 and mr(Coker)(Z/2Z : Z) = e.
Therefore we have dmr(Ker)(Z,Z/2Z) = 2 and dmr(Coker)(Z,Z/2Z) = 1.

In contrast to the example above, we have the following result for free R-
modules finitely generated over R. Let n be a non-negative integer. By Rn =
R⊕ · · · ⊕R︸ ︷︷ ︸

n

, we denote a free R-module of rank r(Rn) = n. Here R0 = {0}

denotes a zero-module.

Proposition 4.6. Let n and m be non-negative integers. Then

dmr(Ker)(R
n, Rm) = dmr(Coker)(R

n, Rm) = |m− n|.

Proof. We may suppose without loss of generality that m ≤ n. Then it
is easy to see mr(Ker)(Rm : Rn) = 1, mr(Ker)(Rn : Rm) ≤ en−m, mr(Coker)(Rm :
Rn) ≤ en−m and mr(Coker)(Rn : Rm) = 1. Let f : Rn → Rm be an R-linear
map. Then by Lemma 4.5 we have r(Rn) ≤ r(Ker(f)) + r(f(Rn)). Therefore
r(Ker(f)) ≥ r(Rn) − r(f(Rn)). Since r(f(Rn)) ≤ r(Rm) by Lemma 4.4 we have
r(Ker(f)) ≥ r(Rn)−r(Rm) = n−m. Therefore mr(Ker)(Rn : Rm) ≥ en−m. Hence
mr(Ker)(Rn : Rm) = en−m. Let g : Rm → Rn be an R-linear map. Then by Lemma
4.3 r(g(Rm)) ≤ r(Rm) = m. By Lemma 4.5 we have n = r(Rn) ≤ r(g(Rm)) +
r(Rn/g(Rm)). Therefore r(Rn/g(Rm)) ≥ n−m. Therefore mr(Coker)(Rm : Rn) ≥
en−m. Hence mr(Coker)(Rm : Rn) = en−m. Then by a calculation we have the
result. ¤

The following is an immediate corollary of Proposition 4.6.

Corollary 4.7. Let R be a field and V and W finite dimensional vector
spaces over R. Then

dmr(Ker)(V, W ) = dmr(Coker)(V, W ) = |dim(V )− dim(W )|.
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Theorem 4.8. Let R be a principal ideal domain. Let OR be a set of R-
modules finitely generated over R. Let CR be a category whose objects are the
elements of OR and whose morphisms are R-linear maps between the elements of
OR.

(1) Let mr(Ker) be the kernel-rank-multiplicity on CR and dmr(Ker) the kernel-rank-
multiplicity distance. Let M and N be elements of OR. Then M and N

are isomorphic if and only if dmr(Ker)(M, N) = 0. Thus the pseudo distance
dmr(Ker) defines a distance on the set of isomorphism classes of OR.

(2) Let mr(Coker) be the cokernel-rank-multiplicity on CR and dmr(Coker) the
cokernel-rank-multiplicity distance. Let M and N be elements of OR. Then
M and N are isomorphic if and only if dmr(Coker)(M, N) = 0. Thus the pseudo
distance dmr(Coker) defines a distance on the set of isomorphism classes of OR.

The essential part of Theorem 4.8 is the following proposition.

Proposition 4.9. Let M and N be R-modules finitely generated over R.

(1) Suppose that there exist injective R-linear maps f : M → N and g : N → M .
Then M and N are isomorphic.

(2) Suppose that there exist surjective R-linear maps f : M → N and g : N → M .
Then both f and g are injective, and M and N are isomorphic.

For the proof of Proposition 4.9, we prepare some lemmas. For an R-module
M , we denote the torsion submodule of M by tor(M).

Lemma 4.10. Let M and N be R-modules and f : M → N an R-linear
map. Then f(tor(M)) ⊂ tor(N).

Proof. Suppose x ∈ tor(M). Then there is a non-zero element r ∈ R such
that rx = 0. Then rf(x) = f(rx) = f(0) = 0. Therefore f(x) ∈ tor(N). ¤

Thus for f : M → N , an induced R-linear map f̂ : M/tor(M) → N/tor(N)
is defined by f̂([x]) = [f(x)] where x ∈ M and [x] ∈ M/tor(M) denotes the set of
elements y ∈ M with x− y ∈ tor(M).

Lemma 4.11. Let M and N be R-modules and f : M → N an injective
R-linear map. Let f̂ : M/tor(M) → N/tor(N) be an induced R-linear map. Then
f̂ is injective.

Proof. Suppose f̂([x]) = f̂([y]). Then [f(x)] = [f(y)] and therefore f(x)−
f(y) = f(x− y) ∈ tor(N). Let r ∈ R such that rf(x− y) = 0. Since rf(x− y) =
f(r(x − y)) and f is injective we have r(x − y) = 0. Thus x − y ∈ tor(M) and
[x] = [y]. ¤
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For an element r of R, we denote the ideal generated by r by (r). Then the
quotient R/(r) is a torsion R-module unless r = 0. The following Lemma 4.12
and Proposition 4.13 are known facts. However we give a direct elementary proof
of Lemma 4.12 for convenience.

Lemma 4.12. Let p be a prime element of R and k a natural number. Then
an R-module R/(pk) is Artinian.

Proof. It is sufficient to show that a proper R-submodule M of R/(pk) is
isomorphic to R/(pj) for some non-negative integer j < k. Let ϕ : R → R/(pk)
be a canonical projection. Then ϕ−1(M) is an R-submodule, hence an ideal of
R. Let a be an element of R such that ϕ−1(M) = (a). Since (a) ⊃ (pk) we have
(a) = (pl) for some non-negative integer l ≤ k. If l = 0 then ϕ−1(M) = (1R) = R

where 1R is the multiplicative identity of R and then M = ϕ(R) = R/(pk) is not
a proper R-submodule. Thus we have l ≥ 1. Let ψ : R → R be an R-linear map
defined by ψ(x) = plx. Then ψ induces an R-linear map ψ̂ : R/(pk−l) → R/(pk).
By the fact that R is a unique factorization domain it follows that ψ is injective.
By the definition of ψ̂ we have ψ̂(R/(pk−l)) = M . Therefore M is isomorphic to
R/(pk−l). ¤

It is well-known that a direct sum of finitely many Artinian R-modules is
Artinian. By the structure theorem, a torsion R-module finitely generated over R

is a direct sum of finitely many cyclic R-modules of the form R/(pk). Therefore
we have the following proposition.

Proposition 4.13. A torsion R-module finitely generated over R is Ar-
tinian.

Proof of Proposition 4.9.

(1) By Lemma 4.11 the free R-modules M/tor(M) and N/tor(N) have the same
rank. Therefore they are isomorphic. By Lemma 4.10 we have injective R-
linear maps f ′ : tor(M) → tor(N) and g′ : tor(N) → tor(M). Then g′ ◦ f ′ :
tor(M) → tor(M) is an injective R-linear map. Since tor(M) is Artinian, it
is co-Hopfian. Therefore g′ ◦ f ′ is surjective. Thus g′ is a surjection, hence an
isomorphism. Then by the structure theorem of R-modules finitely generated
over R, M and N are isomorphic.

(2) Note that g ◦ f : M → M is a surjective R-linear map. It is well-known that
M is Noetherian, hence Hopfian. Therefore g ◦ f is injective. Therefore f is
an injection, hence an isomorphism. Similarly, g is also an isomorphism. ¤
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Proof of Theorem 4.8.

(1) The ‘only if’ part is clear. Suppose dmr(Ker)(M, N) = 0. Then there are
injective R-linear maps f : M → N and g : N → M . Then by Proposition 4.9
(1) M and N are isomorphic.

(2) The ‘only if’ part is clear. Suppose dmr(Coker)(M, N) = 0. Then there are
surjective R-linear maps f : M → N and g : N → M . Then by Proposition
4.9 (2) M and N are isomorphic. ¤

Remark 4.14. The main reason that we have restricted our attention to
the case R is a principal ideal domain is the fact that Lemma 4.4 does not hold in
general when R is not a principal ideal domain. Let R = Z[X] be a polynomial
ring over the integer ring Z. Let M = R and N = (2, X) where (2, X) denotes
the ideal of R generated by 2 and X. Then r(M) = 1. Since N is an ideal of an
R-module M , N is an R-submodule of M . Since N is not a principal ideal we
have r(N) = 2. Actually Proposition 4.2 (1) does not hold in general when R is
not a principal ideal domain. Let L = {0} be the zero module. Let f : N → M be
the inclusion map and g : M → L the zero map. Then r(Ker(g ◦ f)) = r(N) = 2,
r(Ker(f)) = r({0}) = 0 and r(Ker(g)) = r(M) = 1. Moreover Proposition 4.9 (1)
does not hold in general when R is not a principal ideal domain. Let f : M → N

be an R-linear map defined by f(x) = 2x and g : N → M the inclusion R-linear
map. Then they are injective. Since r(M) 6= r(N) they are not isomorphic.

We note however Lemma 4.3 and Lemma 4.5 hold for any unitary ring R.
Therefore Proposition 4.2 (2) and Proposition 4.1 (2) also hold for any unitary
ring R.

We also note that Proposition 4.9 (2) is true when M or N is a Hopfian
R-module.

5. Multiplicity of knots.

In this section we define a category of oriented knot types in 3-space and
define a multiplicity on it. Then we study its multiplicity distance. Throughout
this section we work in the piecewise linear category. First we define a category
which we call a neighbourhood category of oriented knots.

For a manifold X with boundary, we denote the interior of X by int(X) and
the boundary of X by ∂(X) respectively. By D2 we denote the unit disk in the
2-dimensional Euclidean space R2 and by S1 = ∂(D2) we denote the unit circle
in R2. A core of a solid torus V is a circle c ⊂ int(V ) such that the pair (V, c)
is homeomorphic to the pair (D2 × S1, (0, 0) × S1). Two oriented cores c1 and
c2 of V are equivalent if they are ambient isotopic in V as oriented circles. A
core-orientation of V is an equivalence class of oriented cores in V . A solid torus
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V is core-oriented if a core-orientation of V is specified. Let V be a core-oriented
solid torus embedded in S3 and k an oriented circle contained in int(V ). Then
the pair (V, k) is called a nesting. Two nestings (V, k) and (V ′, k′) are equivalent
if there exist an orientation preserving homeomorphism ϕ : S3 → S3 such that
ϕ(V ) = V ′ respecting core-orientations and ϕ(k) = k′ respecting orientations.
The equivalence class containing (V, k) is denoted by [(V, k)]. Let K be the set
of all oriented knot types in the 3-sphere S3. Let K1 and K2 be elements of K .
Namely K1 and K2 are oriented knot types in S3. A morphism f from K1 to K2

is an equivalence class [(V, k)] of nestings such that the knot type of an oriented
core of V is K2 and the knot type of k is K1. Then we denote f : K1 → K2 and
f = [(V, k)].

Let K3 be an element of K and g = [(W, l)] a morphism from K2 to K3.
Let N ⊂ int(W ) be a regular neighbourhood of l. Then N is a solid torus and
l is a core of N . We give a core-orientation of N by the orientation of l. Let
f : S3 → S3 be an orientation preserving homeomorphism such that f(V ) = N

respecting core-orientations. Then f(k) is an oriented knot contained in W whose
knot type is K1. Thus [(W,f(k))] is a morphism from K1 to K3. We define the
composition of f and g by g ◦ f = [(W,f(k))].

We will check the well-definedness of composition as follows. Suppose that
an orientation preserving homeomorphism ϕ : S3 → S3 maps (V, k) to (V ′, k′)
and an orientation preserving homeomorphism ψ : S3 → S3 maps (W, l) to
(W ′, l′). Let N ′ ⊂ int(W ′) be a regular neighbourhood of l′ and let f ′ : S3 → S3

be an orientation preserving homeomorphism such that f(V ′) = N ′ respect-
ing core-orientations. It is sufficient to show [(W,f(k))] = [(W ′, f ′(k′))]. Since
[(W,f(k))] = [(W ′, ψ ◦ f(k))] by ψ, it is sufficient to show that ψ ◦ f(k) is ambient
isotopic to f ′(k′) in W ′. Note that both ψ(N) and N ′ are solid tori in int(W ′)
with the same oriented core l′. Therefore there is an isotopy ht : W ′ → W ′

with 0 ≤ t ≤ 1 and h0 = idW ′ point-wisely fixed on ∂(W ′) ∪ l′ such that
h1(ψ(N)) = N ′. Let γ : S3 → S3 be an extension of h1 : W ′ → W ′ such
that γ(x) = x for any x ∈ S3 \ W ′. Then ψ ◦ f(k) is ambient isotopic to
h1(ψ ◦ f(k)) = γ(ψ ◦ f(k)) = γ ◦ ψ ◦ f(k). Thus it is sufficient to show that
γ ◦ ψ ◦ f(k) is ambient isotopic to f ′(k′) in W ′. We now have the following se-
quence of orientation preserving self-homeomorphisms of S3.

(N ′, f ′(k′))
f ′←− (V ′, k′)

ϕ←− (V, k)

f−→ (N, f(k))
ψ−→ (ψ(N), ψ ◦ f(k))

γ−→ (N ′, γ ◦ ψ ◦ f(k))

Let η : N ′ → N ′ be the restriction of γ ◦ ψ ◦ f ◦ ϕ−1 ◦ (f ′)−1 to N ′. Then η is
an orientation preserving homeomorphism also preserving the core-orientation of
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Figure 1.

N ′. Since η is a restriction of a self-homeomorphism of S3, η maps a preferred
longitude of N ′ to a preferred longitude of N ′. Therefore η is isotopic to idN ′ , see
for example [8]. Therefore f ′(k′) is ambient isotopic to η(f ′(k′)) = γ ◦ ψ ◦ f(k) in
N ′, hence in W ′ as desired.

An example of the composition of two morphisms is illustrated in Figure 1.
Let K be an element of K . Let k ⊂ S3 be an oriented knot whose knot

type is K and N a regular neighbourhood of k in S3. We define idK : K → K

by idK = [(N, k)]. It is clear that idK actually satisfies the axiom of identity
morphism of category. By the definition other axioms of category clearly hold.
Thus we have a category whose objects are the elements of K . We call this
category a neighbourhood category of oriented knots and denote it by CK .

Remark 5.1. In [6] Ryo Nikkuni has pointed out the following. Suppose
that f = [(V, k)] is a morphism from K1 to K2. Let N ⊂ int(V ) be a regular
neighbourhood of k. Let E2 = S3 \ int(V ) and E1 = S3 \ int(N). Then Ei is an
exterior manifold of a knot representing Ki for i = 1, 2 and we have an inclusion
E2 ⊂ E1. Then the inclusion induces a homomorphism from π1(E2) to π1(E1)
where π1(X) denotes the fundamental group of X.

For any elements K1 and K2 of K , there is a morphism c : K1 → K2 with
c = [(N, k)] where N is a core-oriented solid torus in S3 whose knot type is K2

and k is an oriented knot contained in a 3-ball in N whose knot type is K1. We
call c the null morphism from K1 to K2. By definition it is clear that both c ◦ f

and g ◦ c are again null morphisms for any f and g. For the existence of non-null
morphisms, we have the following proposition. For an oriented knot k in S3, −k

denotes an oriented knot obtained from k by reversing its orientation. For an
element K of K represented by an oriented knot k in S3, −K denotes an element
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of K represented by −k. A morphism f = [(V, k)] from K1 to K2 is called an
inversion if k is a core of V and the core-orientation of V is represented by −k.
Thus if f : K1 → K2 is an inversion then K2 = −K1.

Proposition 5.2. Let K1 and K2 be elements of K . Suppose that there
exists a non-null morphism f : K1 → K2. Then at least one of the following holds.

(1) K1 = K2 and f = idK1 .
(2) K1 = −K2 and f is an inversion.
(3) K2 is the trivial knot type.
(4) K1 is a satellite knot type with companion knot type K2.

Proof. Suppose f = [(V, k)]. Suppose that K2 is non-trivial. Then V is a
knotted solid torus in S3. Since k is not contained in any 3-ball in V , k is essential
in V . Then either k is a core of V , then we have (1) or (2), or k is a satellite knot
with companion solid torus V , then we have (4). ¤

Let ϕ : X → Y be a continuous map from a circle X to a 1-dimensional
manifold Y without boundary. A point x ∈ X is a regular point of ϕ if there is a
neighbourhood U of x in X such that ϕ|U is injective. A point x ∈ X is a critical
point of ϕ if it is not a regular point. By cr(ϕ) we denote the set of all critical
points of ϕ. We say that ϕ is simple if X = I1 ∪ · · · ∪ In for some n ∈ N and
closed intervals I1, . . . , In such that ϕ|Ii

is injective for each i ∈ {1, . . . , n}. We
say that ϕ is generic if it is simple and ϕ|cr(ϕ) is injective.

We now define a multiplicity on the neighbourhood category of oriented knots
as follows. Let K1 and K2 be elements of K and f = [(V, k)] a morphism from K1

to K2. Let h : V → S1×D2 be a homeomorphism and π : S1×D2 → S1 a natural
projection. We say that h is generic with respect to k if π◦h|k : k → S1 is generic.
Let m(h, k) = max{|(π ◦ h|k)−1(y)| | y ∈ S1}. Note that if y ∈ π ◦ h(cr(π ◦ h|k))
then |(π ◦ h|k)−1(y)| < m(h, k). Then we define the multiplicity of f , denoted
by mK (f), to be the minimum of m(h, k) where h : V → S1 × D2 varies over
all homeomorphisms that are generic with respect to k. By definition mK (f) is
well-defined. We call mK (f) the knot-multiplicity of f .

Proposition 5.3. The knot-multiplicity mK is a multiplicity on the neigh-
bourhood category of oriented knots.

Proof. It is clear that mK (idK) = 1 for any element K of K . Let f :
K1 → K2 and g : K2 → K3 be morphisms where f = [(V, k)] and g = [(W, l)].
Let h : V → S1 ×D2 be a homeomorphism that is generic with respect to k with
m(h, k) = mK (f) and s : W → S1 ×D2 a homeomorphism that is generic with
respect to l with m(s, l) = mK (g). Let N ⊂ int(W ) be a regular neighbourhood of
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l and f : S3 → S3 an orientation preserving homeomorphism such that f(V ) = N

respecting core-orientations. Then the composition g ◦ f : K1 → K3 is given by
g ◦f = [(W,f(k))]. By a modification of s on N we may assume that f(cr(π ◦h|k))
is a subset of cr(π ◦ s|f(k)) and away from a small neighbourhood, say U , of
cr(π ◦s|l), and all other critical points cr(π ◦s|f(k))\f(cr(π ◦h|k)) are contained in
U . See Figure 2 which illustrates a part of W containing a critical point, say z, of
π ◦ s|l. Let yz be a point in S1 as indicated in Figure 2. Then |(π ◦ s|f(k))−1(yz)|
is locally maximal in a small neighbourhood of yz in S1. Therefore we only need
to consider |(π ◦s|f(k))−1(yz)| for each critical point z of π ◦s|l. Therefore we have
m(s, f(k)) ≤ m(h, k)m(s, l). Thus mK (g ◦ f) ≤ m(s, f(k)) ≤ mK (f)mK (g) as
desired. ¤

Figure 2.

Proposition 5.4. Let K1 and K2 be elements of K .

(1) mK (K1 : K2) = 1 if and only if K1 = K2 or K1 = −K2.
(2) mK (K1 : K2) = 2 if and only if K1 is trivial and K2 is non-trivial, or K1 is

non-trivial and K1 is a (2, p)-cable knot of K2 or −K2 for some odd number
p. (When K2 is trivial, K1 is a non-trivial (2, p)-torus knot.)

Proof.

(1) Suppose mK (K1 : K2) = 1. Then there exists a morphism f = [(V, k)] from
K1 to K2 with mK (f) = 1. Then k is a core of V and hence we have K1 = K2

or K1 = −K2. The converse is similar.
(2) Suppose mK (K1 : K2) = 2. Then there exists a morphism f = [(V, k)] from

K1 to K2 with mK (f) = 2. Then the number of critical points of k with
respect to the projection from V to S1 is 0 or 2. In the first case k is a (2, p)-
cabling of the core of V . Therefore K1 is a (2, p)-cable knot of K2 or −K2 for



846 K. Taniyama

some odd number p. If K2 is non-trivial, then K1 is also non-trivial. If K2 is
trivial, mK (K1 : K2) 6= 1 implies K1 is non-trivial. In the second case k is a
trivial knot. Then mK (K1 : K2) 6= 1 implies K2 is non-trivial. The converse
is clear. ¤

Theorem 5.5. Let CK be a neighbourhood category of oriented knots. Let
mK be the knot-multiplicity on CK and dmK the knot-multiplicity distance. Let
K1 and K2 be elements of K . Then dmK (K1,K2) = 0 if and only if K1 = K2

or K1 = −K2. Thus the pseudo distance dmK defines a distance on the set of
unoriented knot types in S3.

Proof. Note that dmK (K1,K2) = 0 if and only if mK (K1 : K2) =
mK (K2 : K1) = 1. Then by Proposition 5.4 (1) we have the conclusion. ¤

We now discuss several relations between knot-multiplicity and some ge-
ometric knot invariants as follows. In [7] Ozawa defined a trunk of a knot
as follows. Let k be an oriented knot in S3 \ {(0, 0, 0, 1), (0, 0, 0,−1)}. Let
ϕ : S3 \ {(0, 0, 0, 1), (0, 0, 0,−1)} → S2 × R be a fixed homeomorphism and
π : S2 × R → R a natural projection. We say that k is in general position if
π ◦ ϕ|k : k → R is generic. Then the trunk of k, denoted by trunk(k), is defined
by trunk(k) = max{|(π ◦ ϕ|k)−1(y)| |y ∈ R}. The trunk of an oriented knot type
K, denoted by trunk(K), is defined to be the minimum of trunk(k) where k varies
over all oriented knots in S3 in general position whose oriented knot type is K.

Proposition 5.6. Let K1 and K2 be elements of K . Then

trunk(K1)
trunk(K2)

≤ mK (K1 : K2) ≤ trunk(K1).

If K2 is non-trivial, K2 6= K1, K2 6= −K1 and not a companion of K1, then
mK (K1 : K2) = trunk(K1).

Proof. Let k2 be an oriented knot in S3 representing K2 with trunk(k2) =
trunk(K2). Let N be a regular neighbourhood of k2 and f = [(N, k1)] a mor-
phism from K1 to K2 with mK (f) = mK (K1 : K2). Then by deforming k1 if
necessary, we have trunk(k1) ≤ trunk(k2)mK (f). Thus we have trunk(K1) ≤
trunk(K2)mK (K1 : K2). Therefore the first inequality holds. Let c = [(V, k)]
be a null morphism from K1 to K2. Clearly mK (c) ≤ trunk(K1). Therefore the
second inequality holds. Conversely, since k is contained in a 3-ball in V , k lifts
to the universal covering space Ṽ of V . Then the projection from V to S1 lifts to
the projection from Ṽ to R. Therefore we have trunk(K1) ≤ mK (c). Then the
final statement follows by Proposition 5.2. ¤
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As we have observed, there are not so many morphisms when the target knot
is non-trivial. Therefore, for an element K of K , we define m(K) = mK (K : T )
where T is the trivial knot type, and call it the multiplicity index of K. Since
trunk(T ) = 2, we have the following corollary of Proposition 5.6.

Corollary 5.7. Let K be an element of K . Then m(K) ≥ trunk(K)/2.

If K 6= T then mK (T : K) = trunk(T ) = 2. Therefore

dmK (K, T ) ≥ loge

trunk(K)
2

· 2 = loge trunk(K).

In [7] it is shown that for any natural number n, there exist an oriented knot type
K with trunk(K) ≥ n. Therefore we have the following proposition.

Proposition 5.8. The pseudo metric space (K , dmK ) is unbounded.

Let braid(K) be the braid index of K and bridge(K) the bridge index of K.

Proposition 5.9. Let K be an element of K .

(1) m(K) ≤ braid(K).
(2) m(K) ≤ 2 · bridge(K)− 1.

Proof.

(1) Suppose braid(K) = n. Then K has a representative k contained in an un-
knotted solid torus V ⊂ S3 such that k intersects each meridian disk of V

at exactly n points. Then f = [(V, k)] is a morphism from K to T with
mK (f) = n.

(2) Let B1 and B2 be 3-balls such that S3 = B1∪B2 and B1∩B2 = ∂(B1) = ∂(B2).
Suppose bridge(K) = n. Then there is a representative k of K such that
both (B1, B1 ∩ k) and (B2, B2 ∩ k) are trivial n-string tangles. Choose a
point x ∈ ∂(B1) ∩ k. Let γ be a circle on ∂(B1) \ k separating x from other
2n− 1 points of ∂(B1)∩ k. Let N be a regular neighbourhood of γ in S3 with
N∩k = ∅ intersecting ∂(B1) in an annulus. Let V = S3\int(N). Then V is an
unknotted solid torus containing k. Note that V ∩ ∂(B1) is a disjoint union of
two meridian disks of V , one is intersecting k at x, and the other is intersecting
k at 2n − 1 points. Then there is a homeomorphism h : V → S1 ×D2 such
that π ◦ h : V → S1 maps each of these meridian disks to a point and each
of k ∩ B1 and k ∩ B2 have exactly n − 1 critical points of π ◦ f |k. Therefore
f = [(V, k)] is a morphism from K to T with mK (f) ≤ 2n− 1. ¤

We now consider knot types K with m(K) ≤ n for n = 1, 2, 3, 4 as follows.
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Note that the condition m(K) ≤ n is equivalent to the condition dmK (K,T ) ≤
loge 2n.

Proposition 5.10. Let K be an element of K .

(1) m(K) = 1 if and only if K is trivial.
(2) m(K) = 2 if and only if K is a (2, p)-torus knot for some odd number p 6= ±1.
(3) m(K) = 3 if and only if braid(K) = 3 or K is a connected sum of some

2-bridge knots.
(4) If K is a Montesinos knot, then m(K) ≤ 4.

Proof.

(1) It follows by Proposition 5.4 (1).
(2) It follows by Proposition 5.4 (2).
(3) Let f = [(V, k)] be a morphism from K to T with mK (f) = 3. Let h : V →

S1×D2 be a homeomorphism with m(h, k) = mK (f) = 3. Suppose that there
are no critical points of π ◦ h|k. Then we have braid(K) ≤ 3. By Proposition
5.9 (1) braid(K) ≤ 2 implies m(K) ≤ 2. Therefore braid(K) = 3. Suppose
that there are some critical points of π ◦ h|k. Then the local maximum and
local minimum must appear alternatively along S1. Then we have a connected
sum of some 2-bridge knots. The converse is similar.

(4) For a Montesinos knot K it is easy to see m(K) ≤ 4. See for example Figure
3. ¤

Figure 3.

Acknowledgments. The author is most grateful to Professors Kazuaki
Kobayashi, Shin’ichi Suzuki and Ryuichi Ito. The author is also grateful to Pro-
fessors Kazuhiro Kawamura, Kazufumi Eto, Ken-ichiroh Kawasaki, Youngsik Huh,
Makoto Ozawa and Ryo Nikkuni for their helpful comments.



Multiplicity of a space over another space 849

References

[ 1 ] W. Adkins and S. Weintraub, Algebra, An Approach via Module Theory, Grad. Texts in

Math., 136, Springer-Verlag, 1992.

[ 2 ] S. Bogatyi, J. Fricke and E. Kudryavtseva, On multiplicity of mappings between surfaces,

Geom. Topol. Monogr., 14 (2008), 49–62.

[ 3 ] M. Gromov, Singularities, expanders and topology of maps, Part 2: From combinatorics

to topology via algebraic isoperimetry, Geom. Funct. Anal., 20 (2010), 416–526.

[ 4 ] K. Kanno and K. Taniyama, Braid presentation of spatial graphs, Tokyo J. Math., 33

(2010), 509–522.

[ 5 ] R. N. Karasev, Multiplicity of continuous maps between manifolds, preprint, arXiv:

1002.0660

[ 6 ] R. Nikkuni, Private communication, 2010.

[ 7 ] M. Ozawa, Waist and trunk of knots, Geom. Dedicata, 149 (2010), 85–94.

[ 8 ] D. Rolfsen, Knots and Links, Mathematics Lecture Series, 7, Publish or Perish, Inc.,

Berkeley, 1976.

[ 9 ] K. Taniyama, Multiplicity of a space over another space, Proceedings of Intelligence of

Low Dimensional Topology, 2007, pp. 157–161.

[10] K. Taniyama, Multiplicity of a space over another space, (in Japanese), Gakujutsu

Kenkyu, School of Education, Waseda University, Series of Mathematics, 56 (2008), 1–4.

[11] K. Taniyama, Multiplicity distance of knots, In: Intelligence of Low-dimensional Topology,
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