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Boundary parametrization of self-affine tiles
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Abstract. A standard way to parametrize the boundary of a connected
fractal tile T is proposed. The parametrization is Hölder continuous from
R/Z to ∂T and fixed points of ∂T have algebraic preimages. A class of planar
tiles is studied in detail as sample cases and a relation with the recurrent set
method by Dekking is discussed. When the tile T is a topological disk, this
parametrization is a bi-Hölder homeomorphism.

1. Introduction.

A tiling consists of a compact set T ⊂ Rd and translation vectors J such
that T + J covers Rd without overlaps of positive measure. Here T is equal to
the closure of its interior. We also assume that T is self-affine, that is, there exists
an expanding d × d matrix A (each eigenvalue is greater than one in modulus)
such that AT is divided into some translates of T :

AT = T + D =
⋃

a∈D

(T + a), (1.1)

where D ⊂ J . This is called ‘inflation-subdivision’ principle. Self-affine tiles give
a higher dimensional analogue of substitution dynamical systems, a model of self-
similar structures that appears in many branches of mathematics. A self-affine tile
T and its boundary ∂T often show fractal shapes, and their topological study is
much more difficult than for a substitution dynamical system where the associated
tiles are intervals.

In this paper, we are interested in a detailed description of the boundary
of T , especially in giving a parametrization of ∂T . It was shown by Tang [48]
that the boundary of a connected self-affine tile is a locally connected continuum.
Therefore, by the theorem of Hahn-Mazurkewicz [52], it is the continuous image of
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the unit interval. The goal of this paper is to construct an explicit parametrization
of ∂T which we think to be standard in topological, geometrical and measure
theoretical aspects. Moreover, it will be applicable to further study of T and ∂T .
Our parametrization is almost bijective and the set of non-injective points are
recognized by a Büchi automaton. As a result, this gives a direct way to show
that T is a topological disk when we treat planar tiles, and the parametrization
is a homeomorphism in this case. We shall give such an application in the last
section. Indeed, we will give a new short proof for the characterization of disk-like
tiles among the class of tiles associated to quadratic number systems (see also [4]).
Our construction also allows to obtain fractal tiles by the recurrent set method
introduced by Dekking in [8], [9]. This method consists in constructing tiles from a
suitable substitution on a free group whose generators represent the boundary of a
polygon. For a given tile it is a hard task to find out the appropriate substitution.
From the construction of our parametrization, we will see that as a basic polygon,
the hexagon works better than the square that is used in the literature. For the
class of tiles mentioned above, we will introduce a tiling by hexagons and obtain
the right substitution without effort. We are expecting this parametrization to
give a precise description of the topology of non disk-like tiles. We already found
a description of the Heighway dragon but we leave this discussion for a forthcoming
paper.

We shall now briefly review several historical approaches to describe the fractal
boundary of T . They are algebraic, geometric and analytic.

An algebraic method is proposed by Indlekofer-Katai-Racsko [22] and Katai
[24]. The basic idea is as follows. By definition, ∂T is the union of T ∩ (T + s)
with s ∈ J . As T is compact, there are only finitely many candidates s such that
T∩(T+s) 6= ∅. Using (1.1), we draw a finite directed graph whose vertices are these
s, and which describes how the inflation-subdivision process acts on T ∩ (T + s).
The graph given by this procedure is called ‘neighbor graph’. This graph usually
becomes larger than necessary to describe the boundary but it is used in Section
4 to describe the set of non-trivial identifications in our parametrization.

A brilliant topological idea is introduced by Dekking [8], [9]. He implicitly
introduced hierarchical substitution structures on homological complexes associ-
ated to planar tiles. One substitution structure naturally arises from (1.1) by
approximation ABn+1 = Bn +D together with a rectangular fundamental domain
B1. The other is a consistent substitution σ acting on aba−1b−1 representing ∂B1,
which is a homomorphism on the free group on two letters a, b. Under a certain
condition on cancellation, this framework gives an efficient way to approximate the
boundary of T . In an unpublished paper, Song identified the class of tiles associ-
ated to Dekking homomorphisms on 2-letters with short range cancellation ([46]).
It follows that the boundary of many planar fractal tiles can not be described. An



Boundary parametrization of self-affine tiles 527

elaborate effort to associate a Dekking homomorphism on three letters a, b, c to
planar tiles associated to canonical number systems (CNS tiles for short) is found
in [23]. However it turned out that cancellation occurrences in the free group are
still mysterious and difficult to handle. For a further development, Sano-Arnoux-
Ito [5] constructed a nice complex structure for Pisot substitutions. The problem
of cancellation remains as long as the recurrent set method is concerned.

An analytic tool called ‘contact matrix’ is developed by Gröchenig and Haas
[16] to compute the fractal dimension of ∂T . Their essential idea is to recursively
construct box union approximations of tiles and count the number of surrounding
boxes. Vince [50] and Duvall-Keesling-Vince [12] gave a more geometric under-
standing of the method. We will interpret this idea in our paper (see the proof of
Proposition 2.1) to fit into our framework. It gives a so called ‘contact automa-
ton’, whose underlying graph is a subgraph of the neighbor graph, but still gives
the whole set of points in ∂T . This contact automaton usually has much smaller
number of states (vertices) than the neighbor graph.

In this paper, we shall combine the later two ideas to parametrize the bound-
ary ∂T for a connected digit tile T in the sense of Lagarias-Wang [31]. We shall
prove that if the contact automaton is strongly connected and has an oriented ex-
tension with cyclic matching condition which is essentially due to Hata [19], then
there is a standard parametrization by using a Dumont-Thomas number system
(Theorem 1). The parametrization is a concrete surjective continuous mapping
from R/Z to ∂T . It is Hölder continuous by the natural metrics and the fixed
points of the GIFS associated to the contact automaton have natural algebraic
addresses. Hata’s matching condition is easily confirmed for a given ordered ex-
tension of the contact automaton. Therefore by way of brute force, we get an
algorithm to check whether there exists such a good extension of the contact au-
tomaton. For connected planar tiles, we conjecture that this matching condition is
always fulfilled by some suitable choice of orientation. In higher dimensions, it is
not clear whether such an orientation can be found to obtain space filling curves.

By a recent development by Lau-He [20] to tweak Hausdorff measure by
pseudo norm, one can treat self-affine tile almost as easily as self-similar ones.
The result of Luo-Yang [34] under the same line allows us to show that the GIFS
of ∂T satisfies an open set condition. As a result by our parametrization, the
segment [0, t] is mapped to an arc (not necessarily simple) in ∂T of Hausdorff
measure t with respect to the pseudo norm (Theorem 2).

Finally we apply the above theory to the CNS tiles (Theorem 4). Under some
minor restriction, the strong connectedness of the contact automaton is verified and
we can show that the matching condition holds. In this case, the result is naturally
understood under Dekking’s framework but by taking a hexagonal fundamental
domain and using substitution on three letters a, b, c acting on abca−1b−1c−1 which
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represents the boundary of this hexagon (see Proposition 6.2). We could confirm
that the cancellation occurs only in a short range, even if the tile is not a topological
disk. Showing that the parametrization is bijective, one can reprove directly a
result of Akiyama-Thuswaldner [4], characterizing the disk-like tiles among the
class of CNS tiles.

For simplicity of presentation, among Lagarias-Wang tiles, we have chosen
CNS tiles because the expanding matrix has positive determinants. This makes
easy the description of the oriented automata, in the sense that switching the
direction of the pieces is not necessary. Basically this direction change is not
necessary, since one can take the square the matrix in negative determinants case
at the cost of lengthy description. Since we do not use the specific properties of
the canonical number systems, the method should work in wider classes of tiles,
even in the aperiodic tiles with several protiles.

Several results around the boundary parametrization of fractal tiles are based
on a similar method that is, finding an appropriate ordering of an automaton, un-
der the implicit assumption that the tiles are disks. For a class of Rauzy fractals,
Messaoudi [36], [37] used an associated periodic tiling to parametrize the bound-
ary via an automaton. He could prove that the corresponding tiles are disk-like.
More recently, Bandt and Mesing [6] studied large classes of self-affine sets. They
constructed a neighbor graph in a slightly different way as the above definition
and analyzed the language associated to each boundary piece. They showed that
a self-affine tile is disk-like if and only if these languages have some properties,
algorithmically checkable. Comparing with these results, one advantage of our
method is that we will be dealing with non disk-like tiles as well. In this case
many identifications can occur between different subpieces. Consequently, the
structure of the language of the neighbor graph may be more intricate. However,
we will show that the identifications in the parametrization are still recognized by
an automaton (see Theorem 3).

We expect our parametrization to be a helpful tool in the study of the topology
of self-affine tiles. Not only for deciding whether a tile is disk-like or not, as done
in Section 5 for a class of examples. But also for the investigation of non disk-like
tiles, whose topology is by now less understood. Some examples were treated in
details [40], [32]. Our parametrization should help to get further. Indeed, as
mentioned above, the identifications in the parametrization are recognized by an
automaton. This automaton is trivial whenever the tile is a topological disk. We
think that the careful study of this automaton for non-disk like tiles will help in,
for example, quickly finding out the cut points of the tiles, or describing their
interior components.
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2. Main results.

Our purpose is to construct an explicit parametrization for the boundary of
so-called integral self-affine Zd-tiles. Let us specify this class of attractors. Let A

be a d× d real expanding matrix (that is, the eigenvalues of A are greater than 1
in modulus) and D ⊂ Rd a finite set. Then there is a unique nonempty compact
set T = T (A,D) satisfying

AT =
⋃

a∈D

(T + a) (2.1)

(see [21]). T is a self-affine tile if it has positive Lebesgue measure, i.e., λd(T ) > 0,
where λd is the d-dimensional Lebesgue measure, and if the digit tiles T +a(a ∈ D)
are essentially disjoint:

λd

(
(T + a) ∩ (T + a′)

)
= 0 if a 6= a′ ∈ D .

Fundamental properties of self-affine tiles were established in [16], [28], [29],
[31]. Among them is the tiling property. We say that T +J (J ⊂ Rd) is a tiling
of Rd if it covers the space without overlapping:

⋃

s∈J

(T + s) = Rd and λd

(
(T + s) ∩ (T + s′)

)
= 0 if s 6= s′ ∈ J .

Suppose now that the self-affine tile T is obtained from (A,D), where A is an
integer matrix and D ⊂ Zd is a complete residue system of Zd/AZd. Then T

is called integral self-affine tile with digit set D . In this case, the tiling set J is
a sublattice of Zd (see [31]). The property that J = Zd is closely related to
the behavior of natural approximations of the boundary ∂T of T . The connecting
tool is the contact set. Let e1, . . . , ed be the canonical basis of Zd and R0 :=
{0,±e1, . . . ,±ed}. Define recursively the sets

Rn :=
{
k ∈ Zd; (Ak + D) ∩ (l + D) 6= ∅ for some l ∈ Rn−1

}

and R :=
⋃

n≥0 Rn \ {0}. Then the so-called contact set R is a finite set ([16]).
Moreover, we call contact matrix the |R| × |R| integer matrix C with coefficients

ckl := |(Ak + D) ∩ (l + D)| (k, l ∈ R).

Let T0 be the unit d-dimensional cube spanned by the canonical basis and Tn
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defined recursively by

ATn =
⋃

a∈D

(Tn−1 + a).

Then the following assertions are equivalent.

(1) T + Zd is a tiling of Rd.
(2) limn→∞ ∂Tn = ∂T (Hausdorff metric).
(3) Let β be the spectral radius of the contact matrix C. Then β < |det(A)|.
This Tiling Theorem can be found in [12], [16], [50]. If the above assertions hold,
we call T an integral self-affine Zd-tile. We make the following remarks.

1. By [51], the assertions of the Tiling Theorem are also equivalent to:
(4) λd(T ) = 1.
(5) limn→∞ ∂Tn (Hausdorff metric) is not space filling.

2. The approximations Tn always converge to the attractor T in the Hausdorff
metric. Moreover,

Tn = A−nQ +
n∑

i=1

A−iD

and Tn + Zd is a tiling of Rd for all n.
3. For the boundary of the natural approximations, the relation

∂Tn =
⋃

s∈R

Tn ∩ (Tn + s) (2.2)

holds and connects the items of the Tiling Theorem ([16]). Under the assump-
tions of the theorem, it also enables the computation of the Hausdorff dimension
of ∂T in the case that A is a similarity (see [12], [47]).

Let T (A,D) be an integral self-affine Zd-tile. The contact set R can be used
to describe the boundary of T . Let M ⊂ Zd and G(M) be the graph defined as
follows. The vertices of G(M) are the elements of M , and for k, l ∈ M , there is a

transition k
a|a′−−→ l (a, a′ ∈ D) if and only if Ak + a′ = l + a. We may also simply

write k
a−→ l for such a transition, since a′ is then uniquely determined. Also, if

M := {m1, . . . , mp} ⊂ Zd and dkl the number of transitions in G(M) from ml to
mk, we define

D(M) := (dkl)1≤k,l≤p.
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It is the incidence matrix of G(M). It is a non negative matrix, and therefore it has
a dominant positive eigenvalue βM , called Perron-Frobenius eigenvalue. Taking
M = R, the contact set, G(R) is called the contact automaton of T . Note that
D(R) = tC, the transpose of the contact matrix. We will prove the following
proposition. It is the starting point of our construction. Its non trivial proof
includes several considerations found in previous papers [16], [43], [50].

Proposition 2.1. Let T (A,D) be an integral self-affine Zd-tile. Then there
is a set R ⊂ R and non-empty compact sets (Ks)s∈R such that

∂T =
⋃

s∈R

Ks (2.3)

and

Ks =
⋃

s
a−→s′∈G(R)

A−1(Ks′ + a). (2.4)

Moreover, βR = βR =: β.

A property of the above G(R) is that each state has at least one outgoing and
one incoming transition (it is a trim automaton). This may not hold for G(R).

Since T is a self-affine tile, iterating (2.1) gives T explicitly:

T =
{ ∑

j≥1

A−jaj ; (aj)j≥1 ∈ DN

}
.

Moreover, by Proposition 2.1, we have a natural onto mapping

ψ : G(R) → ∂T

w 7→
∑

j≥1

A−jaj ,

where w : s1
a1−→ s2

a2−→ · · · is an infinite walk in the automaton G(R).
To speak roughly, we will construct a mapping [0, 1] → G(R) and connect it

to the boundary ∂T via ψ in such a way that the resulting mapping C : [0, 1] → ∂T

is continuous. For the mapping [0, 1] → G(R), we will require the irreducibility of
the incidence matrix D(R). This is equivalent to G(R) being strongly connected.
For the connection to the boundary, compatibility conditions are needed. We can
formulate them as follows. Consider the subdivisions of ∂T as in Equations (2.3)
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and (2.4). We order these subdivisions, by ordering the states and the transitions
of G(R). We order the states of R from 1 to p := |R|. Also the transitions
starting from each state s ∈ R are given an order, from 1 to lmax (the number of
these transitions, depending on s). Thus we have a bijection:

G(R) → G(R)o

si a−→ sj 7→ i
a|o−−→ j =: (i;o).

We denoted by G(R)o this arbitrary ordered extension of G(R). There are finitely
many possible such extensions. We extend the bijection for consecutive transitions.

P : G(R)o → G(R)

(i;o1o2 . . .) 7→ w : si a1−→ sj1 a2−→ · · ·

whenever i
a1|o1−−−→ j1

a2|o2−−−→ · · · ∈ G(R)o. We say that G(R)o is a compatible
ordered extension of G(R) if

ψ
(
P (i; lmax)

)
= ψ

(
P (i + 1; 1)

)
(1 ≤ i ≤ p− 1) (2.5)

ψ
(
P (p; lmax)

)
= ψ

(
P (1; 1)

)
(2.6)

ψ
(
P (i;o, lmax)

)
= ψ

(
P (i; o + 1, 1)

)
(1 ≤ i ≤ p, 1 ≤ o < lmax). (2.7)

Here, o is the infinite repetition of oo . . . . Thus the above conditions result in
checking finitely many equalities between points having eventually periodic ex-
pansion in the basis A. Like in [19] they can also be expressed as equalities
between images of fixed points of contractions

(fa1 ◦ · · · ◦ fal
)
(
Fix(fal+1 ◦ · · · ◦ fal+n

)
)
,

where fa(x) := A−1(x + a). Consequently, whether an ordered extension is com-
patible or not can be checked algorithmically.

Theorem 1. Let T (A,D) be an integral self-affine Zd-tile and the set R as
in Proposition 2.1. Suppose that G(R) is strongly connected, i.e., its incidence ma-
trix is irreducible. Moreover, suppose that there exists a compatible ordered exten-
sion of G(R). Then there exist a Hölder continuous onto mapping C : [0, 1] → ∂T

with C(0) = C(1) and a sequence (∆n)n≥0 of polygonal curves with the following
properties.
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(1) limn→∞∆n = ∂T (Hausdorff metric).
(2) Denote by Vn the set of vertices of ∆n. For all n ∈ N , Vn ⊂ Vn+1 ⊂ C(Q(β)∩

[0, 1]) (i.e., the vertices have Q(β)-addresses in the parametrization).

An immediate consequence is that if T (A,D) satisfies the assumptions of the
theorem, then ∂T (thus T itself) is connected. We will even see that the boundary
parts Ks (s ∈ R) are then connected (see Proposition 3.11). They correspond
to intersections of T with some of its neighboring tiles T + s. This non trivial
topological result will easily follow from the construction of the parametrization.
Conversely, we conjecture that there exists always a compatible ordered extension
of the automaton G(R) whenever T is a planar connected tile (see also [33], [48]).

We mention that G(R) may not be strongly connected in general. However,
this assumption is valid for the class of plane canonical number system tiles pre-
sented in Section 5. For this class also a compatible ordered extension of G(R) is
found. Thus we are able to perform the boundary parametrization. In this case,
the approximating curves (∆n) are even simple closed curves, a property that we
think will remain in many cases.

Recent developments on generalized Hausdorff measure and the open set con-
dition for self-affine sets allow us to compare our parametrization of the boundary
∂T with an appropriate Hausdorff measure on ∂T . For any expanding matrix A,
a pseudo-norm w exists for which A becomes a similarity:

w(Ax) = |det(A)|1/dw(x) (x ∈ Rd). (2.8)

For this pseudo norm, Hausdorff measures H α
w (α > 0) and dimensions can be

defined in a similar way as for the Euclidean norm (see [20]). Showing that ∂T

satisfies an open set condition will lead us to the following theorem.

Theorem 2. Let T (A,D) satisfy the assumptions of Theorem 1, C be the
corresponding parametrization. Furthermore, let w be a pseudo-norm such that
(2.8) holds,

α := d
log(β)

log(|det(A)|) .

and H α
w the associated Hausdorff measure. Then, for each boundary part Ks

(s ∈ R) as in Proposition 2.1,

∞ > H α
w (Ks) > 0.

Moreover, there is a subdivision of the interval [0, 1], t0 := 0 < t1 < · · · < t|R| := 1
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such that

1
c
H α

w

(
C([ti, t))

)
= t− ti (ti ≤ t ≤ ti+1),

where c :=
∑

s∈R H α
w (Ks). If the additional separation condition

H α
w (Ks ∩Ks′) = 0 (2.9)

holds for all s 6= s′, then

1
c
H α

w

(
C([0, t))

)
= t (t ∈ [0, 1])

with c = H α
w (∂T ).

The separation condition (2.9) is related to the Hausdorff dimension of the
triple points in the tiling induced by T , compared with the dimension of the
boundary. In the case of plane canonical number system tiles, we will show that
it is always satisfied.

The paper is now organized as follows. In Section 3, we construct the bound-
ary parametrization for self-affine tiles. We introduce a numeration system induced
by strongly connected automata and extend it under compatibility conditions to a
continuous mapping from the unit interval to the boundary of tiles. In Section 4,
we describe a way to check the compatibility conditions by automata. In Section
5, we apply our considerations to the case of canonical number system tiles. We
obtain a parametrization of their boundary with standard properties. In Section
6, we consider the relation to the recurrent set method. We end up in Section
7 with some comments and questions on the generalization of this procedure to
larger classes of tiles.

3. Parametrization of graph directed sets.

The boundary of a self-affine tile is the attractor of a graph directed iterated
function system. This is described by an automaton B, which is usually non de-
terministic. To define a numeration system on B, we need a weak deterministic
version Bo. This will be obtained by ordering the states and transitions of B.
If the automaton is strongly connected, a numeration system of Dumont-Thomas
type [11] can be introduced and results in a injective mapping [0, 1] → Bo. How-
ever, any ordering may not allow us to extend this mapping to the attractor set.
We will give conditions for which this extension exists and obtain a continuous
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mapping from the unit interval to the boundary of the tile. This follows a work of
Hata [19] concerning a criterion for iterated function systems to be a simple arc.

Let us start with several definitions and fundamental facts on automata. Let
Λ be a finite set, or alphabet. Its elements are letters and sequences of letters
are words. Λ∗ denotes the set of finite words, Λω the set of infinite words. If
l = (l1, . . . , ln) ∈ Λ∗, we write |l| = n for the length of l and l|m = (l1, . . . , lm) for
the prefix of l of length m ≤ n. If l ∈ Λω, then |l| = ∞ and prefixes l|m are defined
for all m ≥ 1. The concatenation of two words a and b is denoted by a&b. If a
word a is repeated infinitely many times, we write a, meaning a&a&a . . . .

An automaton is a triple A = (S, Λ, E). S is a finite set of states and Λ an
alphabet. E ⊂ S×Λ×S is the set of transitions. If (s, l, s′) ∈ E, we write s

l−→ s′.
If for each (s, l) ∈ S × Λ a transition s

l−→ s′ exists for at most one s′ ∈ S, we
will say that the automaton is weak deterministic; if such a transition exists for
exactly one s′ ∈ S, the automaton is deterministic. In the other cases, we will
call the automaton non-deterministic. A walk w in the automaton A is a finite or
infinite sequence of transitions (sn, ln, s′n)n≥1 such that s′n = sn+1. We write

w : s1
l1−→ s2

l2−→ s3
l3−→ · · ·

We say that w starts from s1, and if w is finite of the form (sn, ln, s′n)1≤n≤m, we
say it ends at s′m. Having two walks w and w′ such that w ends where w′ starts,
we may concatenate them and write w&w′. The associated sequence l = (ln) of
letters of a walk w is the label of w. If the automaton is deterministic or weakly
deterministic, then the walk w is completely defined by its starting state s1 and
its label l, hence we may simplify the notation and write w = (s1; l). As for
words, we can define length and prefixes of the walk: the length of w is simply
|w| = |l| and a prefix w|m (m ≤ |w|) consists of the first m transitions of w:

w|m : s1
l1−→ s2

l2−→ · · · lm−→ sm.

Let now B = (M, Σ, EB) be an automaton such that:

• Σ is a finite set of contractions on Rd;
• each s ∈ M has an outgoing transition: s

f−→ s′ ∈ EB , for at least one f ∈ Σ
and one s′ ∈ M .

Then we call B a graph iterated function system or GIFS. By [13], [35], there
exists a unique vector of non-empty compact sets (Ks)s∈M with

Ks =
⋃

s
f−→s′∈EB

f(Ks′) (3.1)
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(s ∈ M). (Ks)s∈M is called system of graph directed sets. If f is an affine contrac-
tion for all f ∈ Σ, it is called system of graph directed self-affine sets.

For w : s
f1−→ s1

f2−→ · · · fn−→ sn ∈ B, we write fw = f1 ◦ f2 ◦ · · · ◦ fn. Then for
any infinite walk

w : s
f1−→ s1

f2−→ · · · ,

the intersection
⋂

n≥1 fw|n(Ksn
) consists of exactly one point, xw =

limn→∞ fw|n(0) ∈ Ks. Note that xw depends only on the label (fn)n≥1 of w.
This gives a well-defined onto mapping

ψ : B → K :=
⋃

s∈M

Ks

w 7→ xw.

Definition 3.1. Let B = (M, Σ, EB) a GIFS. We call Bo = (S, Λ, E) an
ordered extension of B any weak deterministic automaton constructed from B in
the following way.

• The states of B are ordered, from 1 to p = |M |, to provide the states of
Bo.

• Also the transitions starting from a given state s are given an order, from 1
to ls (the number of these transitions).

Hence S = {1, . . . , p}, Λ = {1, . . . , m} for m = max{ls; s ∈ M}, and the transitions
have the form (i; o) = i

o−→ j for some i, j ∈ S and o ∈ Λ.

From now on, we consider that B = (M, Σ, EB) is a GIFS and Bo = (S, Λ, E)
is an associated ordered automaton. For convenience, we suppose that M =
{1, . . . , p} (= S). Thus, to each transition i

f−→ j ∈ B corresponds a unique

transition i
o−→ j ∈ Bo. This sometimes will be condensed to: i

f |o−−→ j. We call P

the natural bijection:

P : Bo → B

(i; o1, o2, . . .) 7→ w : i
f1−→ s1

f2−→ · · ·

whenever (i; o1, o2, . . .) = i
f1|o1−−−→ s1

f2|o2−−−→ · · · ∈ Bo.
In Bo, the set of transitions is an ordered set, from the transition (1; 1) to the

transition (p; lp). A direct consequence is that for all n the set of walks of length
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n is lexicographically ordered, as well as the set of infinite walks. For convenience,
we will write lmax if we refer to the value li, independently of the value of i. The
minimal and maximal infinite walks are then respectively

wmin = (1; 1, 1, 1, . . .) = (1; 1) and wmax : p
lp−→ s1

ls1−−→ s2

ls2−−→ · · · = (
p; lmax

)

(that is, all the transitions are labeled by the maximal order).
Our aim is to map the automaton Bo into [0, 1]. We will need the following

assumption. Let li,j be the number of transitions from j to i (by convention,
lij := 0 if there is no such transition). The incidence matrix is L = (lij)1≤i,j≤p.
We suppose that L is irreducible. We call β its Perron-Frobenius eigenvalue.
We choose the corresponding positive left eigenvector u = (u1, . . . , up) satisfying
u1 + · · ·+ up = 1.

In the mapping, the walks w = (i; o1, o2, . . .) starting from the state i will be
sent to a subinterval of [0, 1] of length ui. We define a function on the transitions:

φ0(i; o) =





0, if o = 1
∑

1≤k<o,

i
k−→j

uj , if o 6= 1.

Thus φ0(i; o) <
∑

1≤k≤li,i
k−→j

uj = βui for all transitions (i; o).

We set u0 := 0 and map the infinite walks to [0, 1].

Proposition 3.2. The mapping

φ : Bo −→ [0, 1]

w 7→ lim
n→∞

(
u0 + u1 + · · ·+ ui−1

+
1
β

φ0(i; o1) +
1
β2

φ0(s1; o2) + · · ·+ 1
βn

φ0(sn−1; on)
)

whenever w is the infinite walk :

w : i
o1−→ s1

o2−→ · · · on−→ sn
on+1−−−→ · · · .

is well-defined, increasing and onto.
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Proof. φ is well-defined and the straight forward proof of monotony is
omitted. To show the surjectivity, one constructs directly an inverse as follows.
We use the fact that the subdivisions of [0, 1] of length ui/βn are ordered by the
automaton. We define a piecewise linear expanding mapping H. Consider the
intervals of length ui:

Ii := [u0 + · · ·+ ui−1, u0 + · · ·+ ui) (1 ≤ i ≤ p).

For each i, Ii is subdivided in li subintervals according to the transitions of the
automaton starting from the state i:

Ii = I(i;1) ∪ · · · ∪ I(i;li),

where we have, whenever i
o−→ j:

I(i;o) =
[
u0 + · · ·+ ui−1 +

1
β

φ0(i; o), u0 + · · ·+ ui−1 +
1
β

φ0(i; o) +
uj

β

)
.

H is then the piecewise increasing affinity, expanding by a factor β on each I(i;o)

and onto Ij . We add the convention H(1) = 1. Note that, if t ∈ [0, 1), then there
are unique integers d0(t), d1(t) such that t ∈ I(d0(t);d1(t)). Thus let

φ(1) : [0, 1] → Bo

t 7→ (
d0(t); d1(t), d1(H(t)), . . . , d1(Hn(t)), . . .

)
.

Then one can check that, for all t ∈ [0, 1], φ ◦ φ(1)(t) = t. Hence φ is onto. ¤

By this proposition, any t ∈ [0, 1] has a β-representation whose coefficients are
lead by an infinite walk in the automaton Bo. It is the number system induced by
the automaton Bo. A similar result is well-known as Dumont-Thomas substitutive
numeration system [11]. Note that also in our case a substitution σ on the set of
states {1, . . . , p} can be associated to the automaton Bo. The image σ(i) of a state
i is the sequence of states j such that there is transition from i to j; the sequence of
states in σ(i) is ordered by the labels of the transitions. In [11], the definitions are
more restrictive: a unique fixed point is considered, the corresponding mapping
φ is always injective. However, in the construction of our parametrization, the
non-injectivity of φ will play an essential rôle (see Proposition 3.5). The following
lemma shows that the identifications occur exactly on lexicographically consecutive
walks.
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Lemma 3.3. Let w 6= w′ ∈ Bo, say for example w >lex w′. Then φ(w) =
φ(w′) if and only if

1.

{
w =

(
i + 1; 1

)

w′ =
(
i; lmax

) or 2.

{
w =

(
j; o1, . . . , om, o + 1, 1

)

w′ =
(
j; o1, . . . , om, o, lmax

)

holds for some state i = 1, . . . , p or some prefix (j; o1, . . . , om) and an order o.

Proof. First note that the equality φ(w) = φ(w′) holds for the above pairs
of walks w, w′. Consider for example





w = i + 1 1−→ s1
1−→ s2

1−→ · · ·

w′ = i
lmax−−−→ s′1

lmax−−−→ s2
lmax−−−→ · · ·

for some state i ≤ p− 1. Then for all n,

φn(w′|n) = u0 + · · ·+ ui−1 +
1
β

(
βui − us1

)
+ · · ·+ 1

βn

(
βusn−1 − usn

)

= u0 + · · ·+ ui−1 + ui − usn

βn

= φ(i + 1; 1)− usn

βn
,

which converges to φ(i+1; 1) as n →∞. The other pairs of walks identify through
the mapping φ in the same way.

Let us show that no other identifications occur. Suppose that

w = (i;w1, w2, . . .) >lex w′ = (i′;w′1, w
′
2, . . .)

are two walks in the automaton. Assume first i > j. Note that

φ(w) ≥ φ(i; 1) = u0 + · · ·+ ui−1

and this inequality is strict as soon as i′ > i + 1 or wk 6= 1 for some k. On the
contrary,

φ(w′) ≤ φ
(
i′; lmax

)
= u0 + · · ·+ ui′−1 + ui′ ,
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with strict inequality if wk 6= lmax for some k. Indeed, let k be the index of the
first such occurrence, then

φ(w′) ≤ φ
(
i′; lmax, . . . , lmax, w

′
k, lmax

)

= φ
(
i′; lmax, . . . , lmax, w

′
k + 1, 1

)

< u0 + · · ·+ ui′−1 + ui′ .

Therefore, the difference φ(w) − φ(w′) vanishes only if i = j + 1 and wn = 1,
w′n = lmax for all n. This gives the first kind of pair of walks identified by φ.

Assume now i = i′, w|n = w|n′ for some n ≥ 0 and wn+1 > w′n+1. We denote
by j the ending state of w|n. Then

φ(w)− φ(w′) =
1

βn+1

(
φ(j;wn+1, . . .)− φ(j;w′n+1, . . .)

)

≥ 1
βn+1

(
φ(j;wn+1, 1)− φ(j;w′n+1, lmax)

)

=
1

βn+1

(
φ(j;wn+1, 1)− φ(j;w′n+1 + 1, 1)

)

> 0

as soon as wn+1 6= w′n+1 + 1. Thus wn+1 = w′n+1 + 1 must hold. The necessary
conditions wk = 1 and w′k = lmax for k ≥ n + 2 follow. This gives the second kind
of pairs of identified walks. ¤

By this lemma, if t ∈ [0, 1], then φ−1(t) consists of at most two elements.
Therefore an inverse of φ can be defined as

φ(1) : [0, 1] −→ Bo

t 7→ max lexφ−1(t),
(3.2)

where maxlex maps a finite set of walks to its lexicographically maximal walk.

We are now able to link the unit interval to the GIFS attractor K =
⋃p

i=1 Ki.

Proposition 3.4. The mapping C : [0, 1]
φ(1)

−−→ Bo P−→ B
ψ−→ K is well-

defined and surjective. Furthermore, let
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A :=
{

t ∈ [0, 1]; t = u0 + u1 + · · ·+ ui−1

+
1
β

φ0(i; o1) +
1
β2

φ0(s1; o2) + · · ·+ 1
βn

φ0(sn−1; on)

for some finite walk i
f1|o1−−−→ s1

f2|o2−−−→ · · · fn|on−−−→ sn ∈ Bo

}
.

Then C is continuous on [0, 1]\A, and right continuous on A. Also, if t ∈ A,
limt− C exists.

Proof. Let us first prove the continuity of C on [0, 1] \ A. Suppose that
t ∈ [0, 1] \ A. Then w = φ(1)(t) = (i; o1, o2, . . .) is a walk of Bo which does not
end up in 1 nor in lmax. Let us write

P (w) : i
f1−→ s1

f2−→ s2
f3−→ · · ·

for the corresponding walk in B. Now, for any given ε > 0, there exists n such
that

diam(f1 ◦ · · · ◦ fn(K)) <
ε

2
.

Let n0, n1 ≥ n such that





t− φ(i; o1, . . . , on0 , 1) ≥ u

βn0

φ(i; o1, . . . , on1 , lmax)− t ≥ u

βn1

where u = min{u1, . . . , up}. We set N := max{n0, n1} and N ′ := min{n0, n1}.
Let δ := u/βN . Then for any t′ with |t′ − t| < δ,

φ(i; o1, . . . , oN ′ , 1) ≤ t′ ≤ φ
(
i; o1, . . . , oN ′ , lmax

)
.

We used here the monotony of φ. Hence, since φ(φ(1)(t′)) = t′, and again by
monotony of φ, we obtain that

(i; o1, . . . , oN ′ , 1) ≤ φ(1)(t′) ≤ (
i; o1, . . . , oN ′ , lmax

)
.

This implies that ψ(P (φ(1)(t′))) ∈ f1 ◦ · · · ◦ fN ′(K) ⊂ f1 ◦ · · · ◦ fn(K), thus
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‖C(t′)− C(t)‖ ≤ ε.

We now prove the right continuity of C on A. Let t ∈ A. Then w = φ(1)(t) =
(i; o1, . . . , on0 , 1) is a corresponding walk in the automaton Bo, to which corre-
sponds

P (w) = i
f1−→ s1

f2−→ s2
f3−→ · · ·

in B. Again, for a given ε > 0, there exists n ≥ n0 such that

diam(f1 ◦ · · · ◦ fn(K)) <
ε

2
.

We choose N ≥ n such that

t = φ(i; o1, . . . , on0 , 1) < φ
(
i; o1, . . . , on0 , 1, . . . , 1︸ ︷︷ ︸

N digits

, lmax

)
=: t1.

In this case, if δ := u/βN (u defined as above), then for all t′ with 0 ≤ t′ − t < δ

we have t ≤ t′ < t1, hence

(i; o1, . . . , on0 , 1) ≤ φ(1)(t′) ≤ (
i; o1, . . . , on0 , 1, . . . , 1︸ ︷︷ ︸

N digits

, lmax

)
.

This insures that

C(t′) ∈ ψ
(
P (i; o1, . . . , on0 , 1, . . . , 1︸ ︷︷ ︸

N digits

)
) ⊂ f1 ◦ · · · ◦ fn(K),

thus

‖C(t′)− C(t)‖ ≤ ε.

Finally, if t ∈ A, then C admits a limit in t−. This is obtained by a similar
argument as above but taking the representatives w = (i; o1, . . . , on0 , lmax) such
that φ(w) = t, instead of w = φ(1)(t). The limit is then

C(t−) = ψ(P (w)) = lim
n→∞

f ′1 ◦ f ′2 ◦ · · · ◦ f ′n(0),
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where the contractions f ′i are defined via the label of P (w) = i
f ′1−→ s1

f ′2−→ s2
f ′3−→

· · · . ¤

The above proposition means that discontinuities of C may occur if ψ does
not identify walks that are “trivially” identified by the number system φ. The
following proposition indicates that only finitely many conditions can be checked
to insure continuity.

Proposition 3.5. C is continuous on [0, 1] with C(0) = C(1) if and only
if the following equalities hold :

ψ
(
P (i; lmax)

)
= ψ

(
P (i + 1; 1)

)
(1 ≤ i ≤ p− 1) (3.3)

ψ
(
P (p; lmax)

)
= ψ

(
P (1; 1)

)
(3.4)

ψ
(
P (i; o, lmax)

)
= ψ

(
P (i; o + 1, 1)

)
(1 ≤ i ≤ p, 1 ≤ o < li). (3.5)

In this case, it is even −(log(δ)/ log(β))-Hölder continuous (δ is the maximal con-
traction factor among all the contractions f ∈ Σ).

Proof. We first prove the continuity statement. By Proposition 3.4, C is
continuous on [0, 1] if and only if it is left continuous on the countable set A. Note
that (3.5) means that C(0) = C(1). Also, (3.3) and (3.4) mean that C is left
continuous at the points associated to walks of length n = 0 and n = 1 in the
definition of A. Hence we just need to prove that this is sufficient for C to be
continuous on the whole set A. But this follows from the definition of ψ. Indeed,
let t ∈ C associated to a walk of length n ≥ 2 but not to a walk of smaller length.
Thus

t = φ
(
i; o1, . . . , on, 1︸ ︷︷ ︸

w

)

with on 6= 1. We write (f1, f2, . . .) for the labeling sequence of P (w). Then,

C(t) = ψ(P (w)) = f1 ◦ · · · ◦ fn ◦ ψ
(
P (j; on, 1)

)

= f1 ◦ · · · ◦ fn ◦ ψ
(
P (j; on − 1, lmax)

)
(by Condition (3.4))

= C(t−)

(here j is the ending state of the walk w|n−1 in the automaton Bo). Thus C is
left continuous in t.
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We now show the Hölder continuity property. We set α := −(log(δ)/ log(β)).
The parametrization C has the following property. For w ∈ Bo of length |w| = n

and ending at the state j, let Iw be the following subinterval of [0, 1]:

Iw =
[
φ(w&1), φ(w&1) +

uj

βn

)
.

Then
⋃

w∈Bo,|w|=n

Iw = [0, 1)

(disjoint union), and

C(Iw) = fw(Kj).

Note that by the left continuity condition, if w ∈ Bo with |w| = n starts in i and
ends in j, and w+1 ∈ Bo is the “next walk” of length n in the lexicographical
order (starting in i′ and ending in j′), then

fw(Kj) ∩ fw+1(Kj′) 6= ∅.

In this way, if t 6= t′ ∈ [0, 1] with |t− t′| ≤ min{u1, . . . , up}, and n is such that

min{u1, . . . , up}
βn+1

≤ |t− t′| ≤ min{u1, . . . , up}
βn

,

then C(t) and C(t′) belong to two touching subpieces of K:

C(t) ∈ fw(Kj), C(t′) ∈ fw′(Kj′), fw(Kj) ∩ fw′(Kj′) 6= ∅,

w, w′ being two walks of length n ending at the state j and j′, respectively (w = w′

is allowed). This leads to

‖C(t)− C(t′)‖ ≤ c0|t− t′|α

for some constant c0. ¤

Remark 3.6.

1. The walks P (i; lmax) etc. involved in Conditions (3.3)–(3.5) end up in cycles in
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B. Thus these conditions can be written as finitely many equalities between
fixed points of contractions (see example in Section 5).

2. This result is similar to Hata’s result ([19]) on iterated function systems (T =
∪fi(T )). This result included the case where the subpieces fi(T ) are flipped
with respect to T . This is also possible in our setting by allowing increasing as
well as decreasing piecewise affinities in the definition of the mapping H.

Finally, we give a characterization for K to be a circle.

Characterization 3.7. Suppose that Conditions (3.3)–(3.5) are fulfilled.
Then K is a simple closed curve if and only if for all w, w′ ∈ B,

ψ(w) = ψ(w′) ⇒ φ(P−1(w)) = φ(P−1(w′)). (3.6)

Indeed, (3.6) means that if ψ does not identify “too many” walks, that is, not
more than these already identified by the number system φ, then the mapping C

becomes injective on [0, 1).
For the remaining part of this section we suppose the mapping C : [0, 1] → K

to be continuous with C(0) = C(1). We now construct a sequence of polyg-
onal closed curves ∆n converging to K with respect to the Hausdorff metric.
For N points M1, . . . , MN of Rd, we denote by [M1, . . . , MN ] the curve joining
M1, . . . , MN in this order by straight lines.

Definition 3.8. Let w
(n)
1 , . . . , w

(n)
Nn

be the walks of length n in the automa-
ton Bo, written in the lexicographical order:

(1; 1, . . . , 1) = w
(n)
1 ≤lex w

(n)
2 ≤lex · · · ≤lex w

(n)
Nn

= (p; lmax, . . . , lmax),

where Nn := |Bo
n| is the number of these walks. For n = 0, these are just the

states 1, . . . , p. Let

C
(n)
j := C

(
φ(w(n)

j &1)
) ∈ ∂T (1 ≤ j ≤ Nn).

Then we call

∆n :=
[
C

(n)
1 , C

(n)
2 , . . . , C

(n)
Nn

, C
(n)
1

]
,

the n-th approximation of K.

Proposition 3.9. ∆n is a polygonal closed curve and its vertices have Q(β)-
addresses. Moreover, (∆n) converges to K in Hausdorff metric.
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Proof. By construction, ∆n is a polygonal closed curve, and for all 1 ≤
j ≤ Nn,

φ
(
w

(n)
j &1

)
=: t

(n)
j ∈ Q(β).

Hence the vertices C
(n)
j = C(t(n)

j ) have Q(β)-addresses.
The convergence in Hausdorff distance now results from the Hölder continuity

of the parametrization. Indeed, let α be a Hölder exponent and c0 a constant such
that for all t, t′ ∈ [0, 1]

‖C(t′)− C(t)‖ ≤ c0|t′ − t|α.

Moreover, note that t
(n)
1 = 0, and setting t

(n)
n+1 := 1, we have

∣∣t(n)
j+1 − t

(n)
j

∣∣ ≤ u

βn

for all 0 ≤ j ≤ n (with u := max{u1, . . . , up}). This implies that

sup
x∈K

inf
y∈∆n

{‖x− y‖} n→∞−−−−→ 0.

Indeed, let ε > 0 and n0 such that u/βn0 < (ε/c0)1/α. Then for all n ≥ n0 and
t ∈ [0, 1], there is a t

(n)
j with

∥∥C(t)− C
(
t
(n)
j

)∥∥ < ε.

Thus, by surjectivity of C, d(x,∆n) ≤ ε for all x ∈ K.
Similarly, supy∈∆n

infx∈K{‖x− y‖} n→∞−−−−→ 0. Consequently,

dH(∆n,K) n→∞−−−−→ 0,

where dH denotes the Hausdorff distance associated to ‖ · ‖. ¤

If the contractions of the GIFS are affine mappings, then (∆n)n≥0 becomes
the natural approximation sequence for the graph directed set K. For w ∈ Bo

n,
we write w+1 the next walk in the lexicographical order. We make the convention
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that the maximal walk has the minimal one as follower. For i = 1, . . . , p, let

∆(n)
i :=

⋃
w∈Bo,|w|=n
w starts in i

[
C(φ(w&1)), C(φ(w+1&1))

]
.

Proposition 3.10. For all n ∈ N ,





∆n =
p⋃

i=1

∆(n)
i

∆(n+1)
i =

⋃

i
f−→j∈B

f
(
∆(n)

j

)
.

(3.7)

Proof. This follows from the left continuity of C. Indeed, for n = 0, that
is for w = (i) and w(+1) = (i + 1), we have C(φ(i; lmax)) = C(φ(i + 1; 1)) by (3.3).
Also,

⋃

i
f−→j∈B

f
(
∆(0)

j

)
=

⋃

i
f|o−−→j∈Bo

f
([

ψ(P (j; 1)), ψ(P (j + 1; 1))
])

=
⋃

i
f|o−−→j∈Bo

f
([

ψ(P (j; 1)), ψ(P (j; lmax))
])

by (3.3)

=
⋃

i
f|o−−→j∈Bo

[
ψ(P (i; o, 1)), ψ(P (i; o, lmax))

]

=
⋃

i
f|o−−→j∈Bo

[
ψ

(
P ( i; o︸︷︷︸

w

, 1)
)
, ψ(P (w+1&1))

]
by (3.5)

= ∆(1)
i .

If (3.7) is now true for all n ≤ N , then by iteration we have

⋃

i
f−→j1∈B

f(∆(N)
j1

) =
⋃

i
f1|o1−−−→j1−→···

fN |oN−−−−→jN∈Bo

f1 ◦ · · · ◦ fN

(
∆(0)

jN

)
.

Using again (3.3) and (3.5) successively, we obtain (3.7) for n = N + 1. ¤

We have now the tools to prove Theorem 1. Let T (A,D) be an integral self-
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affine Zd-tile. We first show that B = G(R) is a good candidate to perform the
parametrization, by giving a proof of Proposition 2.1.

Proof of Proposition 2.1. The proof runs as follows. A reduction pro-
cedure for G(R) was introduced in [43]. The resulting reduced automaton is then
a GIFS, for which a unique attractor K exists. On the other hand, it is proved in
[50] that for a Zd-tile T , if (Tn) converges to T and the sequence of boundaries
(∂Tn) converges to some K, then K = ∂T . Thus we will show that the GIFS
obtained after reduction still describes boundary approximations of ∂T and apply
the result of [50].

Let Red(G(M)) be the graph emerging from G(M) when all states that are
not the starting state of an infinite walk in G(M) are removed. Define R to be
the subset of R such that Red(G(R)) = G(R). This reduction procedure does
not affect the spectral radius of the incidence matrix: βR = βR. Also, G(R) is a
GIFS. Now, let T0 be the cube spanned by the canonical basis and (Tn)n≥0 be the
corresponding sequence of approximations of T . Then, for n large enough, setting
K

(n)
s := Tn ∩ (Tn + s), we have





∂Tn =
⋃

s∈R

K(n)
s

K
(n)
s =

⋃

s
a−→s′∈G

(
R)

A−1(K(n−1)
s′ + a

)
.

(3.8)

This is proved as follows. By definition, for all n,





∂Tn =
⋃

s∈Rn

K(n)
s

K
(n)
s =

⋃

s
a−→s′∈G(R)

A−1
(
K

(n−1)
s′ + a

)
.

We first show that the set R is sufficient to describe the boundary of a fine enough
approximation: there is n0 such that Rn0 ⊂ R. Suppose that this does not hold,
that is, there is a sequence of sn ∈ Rn \R ⊂ R. By the finiteness of R, one can
find a subsequence sni

with sni
= sn1 =: s for all i. By construction of Rn, for

all i we obtain a walk in G(R), from sni
= s to some si ∈ Rn1 , of length ni − n1.

Thus there are walks of arbitrary length in G(R) starting from s, and again by
finiteness of R, this implies that s is the starting state of an infinite walk in G(R).
Therefore s ∈ R, a contradiction.

This approximation satisfies
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∂Tn0 =
⋃

s∈R

K(n0)
s .

Moreover, Tn0 +Zd is a tiling by polyhedra. Thus the intersection Tn0 ∩ (Tn0 + s)
has at most dimension d− 2 for s /∈ R. (3.8) is now true for all n ≥ n0 + 1. This
can be shown inductively, using the following stability property of R.

R =
{
s ∈ Zd \ {0}; (As + D) ∩ (s′ + D) 6= ∅ for some s′ ∈ R

}
=: R′.

Indeed, R was obtained from the contact set R by removing the elements that are
not starting states of an infinite walk in G(R). Thus R ⊂ R′: any s ∈ R must be

the starting state of a transition s
d|d′−−→ s′ ∈ G(R), meaning that As+d′ = s′+d,

that is, (As + D) ∩ (s′ + D) 6= ∅. On the contrary, if s ∈ R′, then there is some

s′ ∈ R and d, d′ ∈ D such that s
d|d′−−→ s′ is a transition in G(R). But s′ being the

starting state of an infinite walk in G(R), this is also true for s, hence s ∈ R.
We show that (3.8) is true for n = n0 + 1. The proof can be extended to the

induction step. Since Tn0+1 tiles by Zd,

∂Tn0+1 =
⋃

s∈Zd

Tn0+1 ∩ (Tn0+1 + s).

For all s ∈ Z2,

Tn0+1 ∩ (Tn0+1 + s) =
⋃

a,a′∈D

A−1
(
Tn0 ∩ (Tn0 + As + a′ − a) + a

)
,

where an intersection on the right part is at most d− 2-dimensional if s′ = As +
a′ − a /∈ R. Moreover, by the stability property of R, if s

a−→ s′ ∈ G(R) with
s′ ∈ R, then s ∈ R. It follows that

Tn0+1 ∩ (Tn0+1 + s) =
⋃

s
a−→s′∈G(R)

A−1
(
Tn0 ∩ (Tn0 + s′) + a

)
,

and

∂Tn0+1 =
⋃

s∈R

Tn0+1 ∩ (Tn0+1 + s).

Thus (3.8) holds for n = n0 + 1, and in a similar way for all n ≥ n0 + 1.
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Now, since G(R) is a GIFS, the vector of sets (K(n)
s )s∈R converges in

Hausdorff metrics to some vector of non-empty compact sets (Ks)s∈R. Let
K :=

⋃
s∈R Ks. The property that K = ∂T is now implied by the fact that

T induces a Zd-tiling. The proof can be found in [50, Theorem 3]. ¤

Proof of Theorem 1. Take B = G(R) as in Proposition 2.1. Then the
theorem is a consequence of Propositions 3.4, 3.5 and 3.9. ¤

The following topological result is a consequence of the construction of the
parametrization.

Proposition 3.11. Let T (A,D) satisfy the assumptions of Theorem 1 and
R as in Proposition 2.1. Then the set Ks ⊂ T ∩ (T +s) is connected for all s ∈ R.

Proof. It follows from the construction of the parametrization C that the
set Ks ⊂ T ∩(T +s) (s ∈ R) is the image of a subinterval of [0, 1] by C. Therefore,
it is connected. ¤

Note that the set R must contain all the adjacent neighbors of T , that is, all
s ∈ Zd such that

T ∩ (T + s) ∩ int(T ∪ (T + s)) 6= ∅.

Thus we obtained that each intersection of T with an adjacent neighbor T + s

contains an “essential” part Ks, which is connected, and

∂T =
⋃

s;T+s
adjacent neighbor

Ks.

We end up this section by the measure comparison between subsets of [0, 1]
and their images by the parametrization C (see Theorem 2). Let T (A,D) ⊂ Rd

be any self-affine set satisfying the open set condition. If A is a similarity matrix,
the Hausdorff dimension of T = T (A,D) is equal to its similarity dimension and
the corresponding Hausdorff measure of T is positive (and finite). If A is not a
similarity, a pseudo-norm w such that

w(Ax) = |det(A)|1/dw(x) (x ∈ Rd)

can be used. The Hausdorff measures H α
w (α > 0) can be defined in terms of

the pseudo-norm, and 0 < H α
w (T ) < ∞ for some α > 0. We refer to [20] for the

details. In [34], this work is extended to graph directed self-affine sets with open
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set condition when the contractions involve a single matrix A in the following way.
We recall that the GIFS B is said to satisfy the open set condition (OSC) if there
exist open sets V1, . . . , Vp such that for all i = 1, . . . , p,

p⋃

j=1

⋃

i
f−→j∈B

f(Vj) ⊂ Vi,

the above union being disjoint. Let

α := d
log(β)

log(|det(A)|) .

Suppose that the incidence matrix of B is irreducible. Then H α
w (Ki) > 0 for

i = 1, . . . , p. Moreover, for this class of GIFS, the OSC is related to the structure
of the translation sets carrying the approximations of K.

Proposition 3.12. Let B be a strongly connected GIFS. Suppose that the
contraction labels are affinities of the form f(x) = A−1(x + a), where A does not
depend on the transition. Let

D (n)(i, j) :=
{ n−1∑

k=0

Akan−k; i a1−→ · · · an−−→ j ∈ Bn(i, j)
}

,

where Bn(i, j) is the set of walks of length n in B starting from i and ending at
j. Then the following properties are equivalent.

( i ) B satisfies the open set condition.
( ii ) If i, j ∈ {1, . . . , p}, then |Bn(i, j)| = |D (n)(i, j)| for all n ≥ 1 and⋃

n≥1 D (n)(i, j) is uniformly discrete.

Also this result had been first obtained in the case of self-similar tiles (see
[44]), then extended to self-affine tiles in [20] and remains valid in the above case
of GIFS (see [34]).

Let now T (A,D) ⊂ Rd be an integral self-affine Zd-tile. We show that the
boundary GIFS G(R) satisfies the OSC. The proof of Theorem 2 then follows.

Proposition 3.13. Let G(R) be the reduced contact automaton of an inte-
gral self-affine Zd-tile. Suppose that it is strongly connected. Then it satisfies the
open set condition.
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Proof. Since A and D have integral coefficients, the uniform discreteness
property is trivially true. The equality of cardinalities follows from the fact that
D is a complete residue system of Zd modulo AZd. Indeed, suppose that there
are two states s, s′ of the contact automaton and two walks w 6= w′ of the same
length starting at s and ending at s′ leading to the same integral point:

n−1∑

k=0

Akan−k =
n−1∑

k=0

Aka′n−k.

Since D is a complete residue system of Zd modulo AZd, we have ak = a′k for
all k. However, consider the automaton obtained by reversing the transitions of
the contact automaton. In this automaton, if s′ a−→ s′1, then s′ + a = As′1 + b for
some b ∈ D . Again, the property of D implies that s1 is completely determined by
the pair (s′, a). In other words, this automaton is weakly deterministic. It follows
that the digit sequence (an, . . . , a1) defines a unique walk starting from s′ in this
automaton. This contradicts w 6= w′. ¤

Proof of Theorem 2. The Hausdorff measure H α
w is translation invari-

ant and has the following scaling property:

H α
w (A−1(E)) =

1
β

H α
w (E) (3.9)

for all E ⊂ Rd (see [20]). The following can be found in [34]. Since the OSC is
satisfied and B = G(R) has irreducible incidence matrix,

∞ > H α
w (Ki) > 0

for all i ∈ R. The second inequality is an application of the mass distribution
principle. Moreover, for each i, the union is disjoint in the sense of the measure
H α

w . Indeed, for i = 1, . . . , p,

H α
w (Ki) = H α

w

( ⋃

i
a−→j∈G(R)

A−1(Kj + a)
)

≤ 1
β

∑

i
a−→j∈G(R)

H α
w (Kj)

=
p∑

j=1

djiH
α

w (Kj),
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where dij are the coefficients of the incidence matrix of G(R). Since β is the
Perron Frobenius eigenvalue of this primitive matrix, the above inequality is in
fact an equality:

H α
w (Ki) =

1
β

∑

i
a−→j∈G(R)

H α
w (Kj), (3.10)

and (H α
w (Ki))/(

∑p
i=1 H α

w (Ki)) = ui, where u1, . . . , up are the values used to
construct the parametrization C.

Let now t = φ(i; o1, o2, . . .) ∈ [0, 1]. We set ti := u0 + · · · + ui−1 (u0 = 0).
Then

C([ti, t)) =
⋃

n∈N

⋃

i

a1|o′1−−−→s1

a2|o′2−−−→···
an|o′n−−−−→sn∈Bo

(i;o′1,...,o′n)<lex(i;o1,...,on)

fa1 ◦ · · · ◦ fan(Ksn).

Here, fa(x) = A−1(x+a). For each n, let Gn denote the second union of sets in the
above equality. Then (Gn)n≥1 is increasing. Hence it follows from the separation
conditions (3.10) that

H α
w

(
C([ti, t))

)
= lim

n→∞

∑ H s
w (Ksn

)
βn

.

Here, for each n the sum is taken over the walks i
a1|o′1−−−→ · · · an|o′n−−−−→ sn ∈ G(R)o

satisfying

(i; o′1, . . . , o
′
n) <lex (i; o1, . . . , on).

By definition, this sum is equal to c(φn(i; o1 . . . , on) − ti), where c :=∑p
j=1 H s

w (Kj). Thus

1
c
H α

w

(
C([ti, t))

)
= t− ti

and the first part of the theorem is proved.
If now (2.9) is assumed, that is, if the sets Ki,Kj are also measure disjoint

for i 6= j, then c = H α
w (∂T ) and

1
c
H α

w

(
C([0, t))

)
= t. ¤
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4. Automata.

In this section, we construct the automata that enable to check the compatibil-
ity conditions of our parametrization. These conditions assure that walks trivially
identified by the number system φ give rise to the same boundary point. The
section will end up with a theoretical result: the existence of a Büchi automaton
that gives the non trivial identifications.

A Büchi automaton is a quintuple A = (S, Λ, E, I, F ) where (S, Λ, E) is an
automaton, I ⊂ S a set of initial states and F ⊂ S a set of final states. An infinite
walk

w : s1
l1−→ s2

l2−→ s3
l3−→ · · · ∈ A

is admissible if s1 ∈ I and {sn;n ≥ 1} ∩ F is infinite, i.e., if w visits F infinitely
often. The language L (A ) ⊂ Λω of the Büchi automaton A is the set of labels
of the admissible walks. Conversely, a subset L of Λω is recognized by a Büchi
automaton if there is a Büchi automaton A such that L = L (A ).

Let T (A,D) be an integral self-affine Zd-tile and G(R) as in Proposition
2.1. We denote by G(R)o any ordered extension G(R), giving rise to a Dumont
Thomas number system φ (see Definition 3.1 and seq.). For simplicity, we will
consider that R = {1, . . . , p} = S, the set of states of G(R)o, unless the elements
of R obviously refer to integer vectors. Remember that we have a natural bijection
P : G(R)o → G(R). Finally, the mapping ψ : G(R) → ∂T reads ψ(w) =∑

n≥1 A−nan, whenever (an)n≥1 ∈ DN is the labeling sequence of w.
We will construct the following three automata. They contain all the infor-

mations on the occurring identifications.

• A φ: pairs of walks (w, w′) ∈ G(R)o×G(R)o leading to trivial identifications
in the Dumont Thomas numeration system φ : G(R)o → [0, 1], i.e., to
φ(w) = φ(w′). See Proposition 4.1.

• A sl: pairs (w, w′) ∈ G(R)o × G(R)o of distinct walks having the same
contraction labels, i.e., such that P (w) and P (w′) have the same labeling
sequences. See Proposition 4.2.

• A ψ: pairs (w, w′) ∈ G(R)o × G(R)o arising from the identifications on
∂T , that is, such that ψ(P (w)) = ψ(P (w′)) where P (w) and P (w′) have
different labeling sequences. See Proposition 4.5.

Proposition 4.1. The set

{
(w, w′) ∈ G(R)o ×G(R)o;w 6= w′, φ(w) = φ(w′)

}

is given by a weak deterministic Büchi automaton A φ.
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Proof. Using Lemma 3.3, this Büchi automaton can be constructed from
the automaton G(R)o = (S, Λ, E). We easily get an automaton A φ

>lex
that gives

the walks

{
(w, w′) ∈ G(R)o ×G(R)o;w >lex w′, φ(w) = φ(w′)

}
.

The alphabet is Λ× Λ. We first create the states

i | i and i ‖ j

for all i, j ∈ S. The union of these states is the set S′. The transition set E′ is
then constructed in the following three steps.

1. For each state i ∈ S, we set a transition

i | i o|o−−→ j | j if and only if i
o−→ j ∈ G(R)o.

2. Also, for each i ∈ S, the transition

i | i o+1|o−−−−→ s ‖ s′ if and only if





i
o+1−−→ s

i
o−→ s′

∈ G(R)o.

3. Moreover, for each s ‖ s′,

s ‖ s′
1|ls′−−−→ t ‖ t′ if and only if





s
1−→ t

s′
ls′−→ t′

∈ G(R)o.

(ls′ is the number of transitions starting from s′ in G(R)o). We now define

• the states i | i (1 ≤ i ≤ p) and i + 1 ‖ i (1 ≤ i ≤ p− 1) as initial states (set
I ′),

• all the states i ‖ j as final states (set F ′).

Then it follows from Lemma 3.3 that ((S′,Λ × Λ, E′, I ′), F ′) =: A φ
>lex

is the re-
quired Büchi automaton. Note that some states s ‖ s′ may be on none of the
admissible walks. Therefore they can be erased from the automaton.

In a similar way, one gets the automaton A φ
<lex

that gives the walks

{
(w, w′) ∈ G(R)o ×G(R)o;w <lex w′, φ(w) = φ(w′)

}
.
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Some pairs of states are found in both automata: they should be marked
differently. A φ is then the (disjoint) union A φ

>lex
∪A φ

<lex
. ¤

Proposition 4.2. The set

{
(w, w′) ∈ G(R)o ×G(R)o;w 6= w′, P (w) and P (w′) have the same label

}

is given by a Büchi automaton A sl.

Proof. We create the states

i | i and i ‖ j

for all i, j ∈ S, and define the transitions as follows.

1. i | i o|o−−→ j | j if and only if i
o−→ j ∈ G(R)o.

2. i | i o|o′−−→ j ‖ j′ if and only if o 6= o′ and there is a ∈ D such that





i
a|o−−→ j

i
a|o′
−−→ j′

∈

G(R)o.

3. i ‖ i′
o|o′−−→ j ‖ j′ if and only if there is a ∈ D such that





i
a|o−−→ j

i′
a|o′
−−→ j′

∈ G(R)o.

We now set

• i | i (i ∈ S), i ‖ i′ (i, i′ ∈ N with i > i′) and 1||p as initial states;
• i ‖ i′ (i, i′ ∈ S) as final states.

The corresponding Büchi automaton has the required property. ¤

In the Zd-tiling induced by T (A,D), we denote by S the set of neighbors of
T :

S = {s ∈ Zd; (T + s) ∩ T 6= ∅}.

Then G(S ) is called neighbor automaton. It can be obtained algorithmically
from the data A,D . Indeed, the relation T ∩ (T + s) 6= ∅ bounds the norm of s

and implies that there are finitely many candidates for s ∈ S . Call this set of
candidates M0. Then G(M0) is easily computed. The automaton obtained from
G(M0) after erasing the states that are not the starting state of an infinite walk
is exactly G(S ).

G(S ) can be seen as the maximal GIFS describing the boundary of T . In
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particular, we have G(R) ⊂ G(S ). The mapping ψ naturally extends to G(S ).
The following lemma can be found in the literature [22], [24].

Lemma 4.3. x =
∑∞

j=1 A−jaj = s +
∑∞

j=1 A−ja′j ∈ T ∩ (T + s) if and only
if there is an infinite walk

s
a1|a′1−−−→ s1

a2|a′2−−−→ s2
a3|a′3−−−→ · · ·

in G(S ).

Lemma 4.4. There is a Büchi automaton I ψ on the alphabet D × D such
that for w, w′ two walks in G(S ) labeled by (an)n≥1, (a′n)n≥1, then ψ(w) = ψ(w′)
if and only if (an)n≥1 = (a′n)n≥1 or there is a walk labeled by an | a′n in this
automaton.

Proof. Suppose ψ(w) = ψ(w′), that is,
∑

n≥1 A−nan =
∑

n≥1 A−na′n,
with different labeling sequences. Then, this point being on ∂T , there is an s ∈ S
such that it belongs to T ∩ (T + s). Thus there is a sequence (a′′n)n≥1 such that

∑

n≥1

A−nan =
∑

n≥1

A−na′n = s +
∑

n≥1

A−na′′n.

By Lemma 4.3, this means that two walks





s
a1|a′′1−−−→ s1

a2|a′′2−−−→ · · ·

s
a′1|a′′1−−−→ s′1

a′2|a′′2−−−→ · · ·

exist in G(S ).
Consequently, we construct the automaton as follows.

1. s | s a|a−−→ t | t if and only if s
a−→ t ∈ G(S ).

2. s | s
a|a′−−→ t ‖ t′ if and only if a 6= a′ and there is a′′ such that





s
a|a′′−−−→ t

s
a′|a′′−−−→ t′

∈

G(S ).

3. s ‖ s′
a|a′−−→ t ‖ t′ if and only if there is a′′ such that





s
a|a′′−−−→ t

s′
a′|a′′−−−→ t′

∈ G(S ).

We set
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• s | s as initial states;
• t ‖ t′ as final states.

This defines a Büchi automaton I ψ. By construction, if two walks w, w′ ∈
G(S ) with different labelings (an), (a′n) lead to the same boundary point (ψ(w) =
ψ(w′)), then the sequence (an|a′n) is the label of a walk in I ψ.

Reciprocally, if (an|a′n) is the labeling sequence of a walk W in I ψ, then W

provides two walks in G(S ). These two walks lead to the same boundary point
by Lemma 4.3. Since the value ψ(w) only depends on the label of w, this remains
true for any two walks with the same labels. ¤

Proposition 4.5. The set

{
(w, w′) ∈ G(R)o ×G(R)o;

P (w) and P (w′) have different labels and ψ(P (w)) = ψ(P (w′))
}

is given by a Büchi automaton A ψ.

Proof. First we need to erase from the automaton I ψ the pairs (w, w′)
whose labels (an), (a′n) can not be found as labeling sequences of walks in G(R).
This is done by the following intersection procedure. We prepare an automaton
G2 which is a product of G(R) with itself. The states of G2 are the pairs s | s′ of
states of G(R), and all states of G2 are both initial and final. Moreover, there is
a transition

s | s′ a|a′−−→ s1 | s′1 ∈ G2 if and only if





s
a−→ s1 ∈ G(R)

s′ a′−→ s′1 ∈ G(R)
.

Now we intersect the languages of the automata I ψ and G2. Note that a walk in
I ψ, as soon as it has visited its first final state, visits afterward only final states.
Thus the intersection is constructed via the following automaton G2 ∩ I ψ. The
states are the pairs (x, y) where x is a state of G2 and y a state of I ψ. There is
a transition

(x, y)
a|a′−−→ (x1, y1) if and only if





x
a|a′−−→ x1 ∈ G2

y
a|a′−−→ y1 ∈ I ψ

.

We set
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• (x, y), where x ∈ G2 and y is initial state of I ψ, as initial states;
• (x, y), where x ∈ G2 and y is final state of I ψ, as final states.

Restricting the states of this automaton G2∩I ψ to their first components, we
have an automaton G(R)ψ (after marking differently the pairs s | s′ that appear
several times). A walk in G(R)ψ consists in a pair of walks of G(R). Thus the
automaton A ψ is easily obtained via the correspondence P−1 between G(R) and
G(R)o. ¤

We now describe the use of the automata A φ,A sl and A ψ. Let Atm denote
one of these automata. By definition, L (Atm(state)) is the language of the set of
walks in “Atm” that start at “state”. It consists of sequences of pairs of orders
(on | o′n)n≥1. Also, each state x in Atm is associated to a pair (s, s′) of states of
G(R). Given two automata Atm1, Atm2, we will write Atm1 ⊂ Atm2 if for each
initial state x of Atm1, there is an initial state x′ of Atm2 associated to the same
pair of states as x such that L (Atm1(x)) ⊂ L (Atm2(x′)).

It follows that the compatibility conditions for parametrization (3.3) to (3.5)
are equivalent to A φ ⊂ A ψ. If moreover A ψ ∪ A sl ⊂ A φ, then ∂T is a simple
closed curve (Condition (3.6)). In this case, all the identifications on the boundary
are trivial with respect to the numeration system φ.

For further topological information in the case that ∂T is not a simple closed
curve, it will be of interest to compute an automaton giving the non trivial iden-
tifications. The following theorem assures the existence of such an automaton. It
relies on the complementation procedure of Büchi automata, which happens to
be very difficult to perform in practice. We refer to [41], [49] for details on the
construction. However, we have some examples where this complementation is
tractable (see forthcoming papers).

Theorem 3. The set

{
(w, w′) ∈ G(R)o ×G(R)o;ψ(P (w)) = ψ(P (w′)) and φ(w) 6= φ(w′)

}

is given by a Büchi automaton A ψ\φ.

Proof. We wish to express that the difference A ψ ∪A sl \A φ is again an
automaton. For convenience, we write A1 = A ψ∪A sl, A2 = A φ. For each initial
state x of the automaton Ai (i = 1, 2), Ai(x) is a Büchi automaton with unique
initial state x. L (Ai(x)) is a subset of Λ×Λ, where Λ = {1, . . . , m}, m being the
maximal order on the transitions of G(R)o. Let now x be an initial state of A1

and (s, s′) the pair of states associated to x. For y initial state of A2 associated
to (s, s′), the language
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L (A1(x)) \L (A2(y)) = L (A1(x)) ∩ (Λ× Λ)∞ \L (A2(y))

is recognized by a Büchi automaton Axy (see [41, Chapter 1–Theorem 9.4] or [49,
Theorem 2.1]). This language consists in a set of sequences (on | o′n) that are such
that

• w := (s; o1, o2, . . . , on, . . .) and w′ := (s′; o′1, o
′
2, . . . , o

′
n, . . .) are infinite walks

in G(R)o.
• φ(w) 6= φ(w′).
• ψ(P (w)) = ψ(P (w′)).

Consequently, the automaton A ψ\φ is the (disjoint) union
⋃

x,y Axy, where x

describes the initial states of A1 and y is an initial state of A2 associated to the
same pair of states as x. ¤

5. Application to the CNS-tiles.

Our main result is now applied to a special class of integral self-affine plane
tiles. For each tile in this class, we obtain a continuous parametrization together
with a sequence of approximations of the boundary having standard properties.
Let us first recall the definitions and well-known properties of the class. Let

A =
(

0 −B
1 −A

)
and D =

{(
0
0

)
, . . . ,

(
B − 1

0

)}
,

where −1 ≤ A ≤ B and B ≥ 2. Exactly for this choice of coefficients, the pair
(A,D) has an algebraic property: it is called a canonical number system. We will
not use this property and simply refer to [7], [15], [26], [25] for more informations
on the subject. We choose this class because the main tool we need –the automaton
of Proposition 2.1– was already computed in [3].

The set T = T (A,D) satisfying AT = T + D is the associated quadratic
CNS tile T = T (A,D). The Knuth dragon is an example of quadratic CNS tile
(A = B = 2). It is known from [25] that T is a Z2-tile. Topological properties
of these tiles can be found in [2], [4], [38], [42] or in the survey [3]. In fact, ∂T

is a simple closed curve if 2A < B + 3. This was proved in [4] “from inside”:
the authors showed that the interior of T is connected and used results of plane
topology to conclude. Otherwise (2A ≥ B + 3), T has disconnected interior and
not much is known. It is proved in [39] that for A = 4, B = 5, T has no cut
point and the infinitely many components of T o are closed disks. A description of
these components can be found in [32]. A more complicated st! ructure (like the
existence of cut points) is suspected for other cases.

We will prove the following theorem.
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Theorem 4. Let T be a quadratic CNS tile. Let β be the spectral radius
of the corresponding contact matrix. Then there exists C : [0, 1] → ∂T Hölder
continuous onto mapping and a hexagon Q ⊂ R2 with the following properties.
Let T0 := Q and

ATn =
⋃

a∈D

(Tn−1 + a).

be the sequence of approximations of T associated to Q. Then:

(1) limn→∞ ∂Tn = ∂T (Hausdorff metric).
(2) For all n ∈ N , ∂Tn is a polygonal simple closed curve.
(3) Denote by Vn the set of vertices of ∂Tn. For all n ∈ N , Vn ⊂ Vn+1 ⊂

C(Q(β)∩[0, 1]) (i.e., the vertices have Q(β)-addresses in the parametrization).

Moreover, let α := 2(log(β)/ log(B)). Then there is a Hausdorff measure H α
w with

respect to a pseudo-norm w such that

1
c
H α

w

(
C([0, t))

)
= t (t ∈ [0, 1])

with c = H α
w (∂T ) > 0.

Remark 5.1.

1. Apart from the measure theoretical considerations, this description can be com-
pared to [23]. The boundary of the tiles was approximated by a sequence of
simple closed curves, but through iteration on a rectangle instead of a hexagon.
The parametrization relied on a modification of the recurrent set method in
order to avoid some cancellation problems. Our theorem gives a geometrical
interpretation of this modification (see also Section 6).

2. By construction, the vertices Vn of the approximations have eventually periodic
expansion in the base A. We will see that the vertices V0 of the first approx-
imation are even purely periodic. The vertices of the further approximations
have the same ending periods. Hence these points can be interpreted as control
points in the sense of Solomyak [45].

3. If A is a similarity, the pseudo-norm w can be taken simply as the Euclidean
norm, and the Hausdorff measure is the usual one. This includes the case of
the well-known Twin Dragon.

We derive from the previous sections a parametrization of the boundary of
canonical number system tiles. Let T be a CNS tile. The automaton G(R) was
computed in [4]. It is depicted on Figure 1. We denoted the digits simply by the
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Figure 1. A strongly connected automaton for the boundary
(left) and a compatible ordered extension G(R)o (right).

letter a instead of the vector
(

a
0

)
. We have

R = {±P,±Q,±N},

where

P =
(

1
0

)
, Q =

(
A− 1

1

)
, N =

(−A
−1

)
.

Note that in the depicted automaton the most general case B ≥ A − 1 ≥ 1 is
assumed. For simplicity, we will detail the proofs only for this case. If B = A ≥ 2,
no transition exists from −P to N and from P to −N , hence the automaton is
even lighter. However, the irreducibility of its incidence matrix is not affected (see
Proposition 5.2). The case |A| = 1 is treated in a similar way. For A = 0, the tile
is just a rectangle.

The following proposition is an easy consequence of Proposition 2.1.

Proposition 5.2. Let T be a CNS-tile and D := D(R) the incidence matrix
of G(R). Then D is irreducible. Moreover, there exists a unique family of non-
empty compact sets (Ks)s∈R such that
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



∂T =
⋃

s∈R

Ks,

Ks =
⋃

s
a−→s′∈G(R)

A−1(Ks′ + a).

That is, ∂T is the GIFS directed by the graph G(R).

Consider the ordered extension G(R)o on the right side of Figure 1. We use
the notations of Section 3. Let C be the onto mapping

C : [0, 1]
φ(1)

−−→ G(R)o P−→ G(R)
ψ−→ ∂T

obtained in Proposition 3.4. We show that it is a parametrization of the boundary.

Lemma 5.3. The mapping C : [0, 1] → ∂T is Hölder continuous. Moreover,
C(0) = C(1).

Proof. We check the conditions of Proposition 3.5:

ψ
(
P (i; lmax)

)
= ψ

(
P (i + 1; 1)

)
(1 ≤ i ≤ 5) (5.1)

ψ
(
P (i; o, lmax)

)
= ψ

(
P (i; o + 1, 1)

)
(1 ≤ i ≤ 6, 1 ≤ o < li). (5.2)

Condition (5.1) is easily seen. Indeed, for i = 1, we have the equalities :

P (1; lmax) = 1 0−→ 3 B−1−−−→ 5 B−A−−−→ 1 0−→ · · ·

P (2; 1) = 2 0−→ 4 B−1−−−→ 6 B−A−−−→ 2 0−→ · · ·

The walks on the right side are cycles of length 3 with the same labels. Hence the
equality

ψ
(
P (1; lmax)

)
= ψ(P (2; 1))

holds trivially. This is also the case for the other values of i = 2, 3, 4, 5.
In the same way as above, we have ψ(P (6; lmax)) = ψ(P (1; 1)), giving C(0) =

C(1).
For Condition (5.2), only the values i = 2, 3, 5, 6 have to be considered, since

l1 = l4 = 1. Note that if B = A, then only the values i = 2, 5 make sense.
We treat the case i = 2. The parity of o (1 ≤ o < l2 = 2A−1) is of importance.
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If o is odd, then

P (2; o, lmax) = 2 a−→ P (4; lmax)

P (2; o + 11) = 2 a−→ P (5; 1).

for some digit a. Hence, by (5.1), the equality ψ(P (2; o, lmax)) = ψ(P (2; o + 1, 1))
again holds trivially. If o is even, we have

P (2; o, lmax) = 2 a−→ P (5; lmax)

P (2; o + 1, 1) = 2 a−→ P (2; 1).

for some a ∈ {0, . . . , A−2}. The label of P (5; lmax) is (an)n≥1 = (B −A)0(B − 1),
and the label of P (2; 1) is (a′n)n≥1 = (B − 1)(B −A)0. Hence it remains to check
that these digit sequences lead to the same boundary point, that is

∑
n≥1 A−nan =∑

n≥1 A−na′n. This is a consequence of Lemma 4.3, because the walks





Q
a|a′′−−−→ −Q

B−A|0−−−−→−N
0|B−1−−−−→ −P

B−1|B−A−−−−−−−→−Q
B−A|0−−−−→ · · ·

Q
a+1|a′′−−−−−→ N

B−1|0−−−−→ P
B−A|B−1−−−−−−−→ Q

0|B−A−−−−→ N
B−1|0−−−−→ · · ·

both exist in G(R) for some digit a′′ (remember that G(R) ⊂ G(S )).
The proof is similar for i = 3, 5, 6. ¤

Remark 5.4.

• The compatibility conditions (5.1) and (5.2) may also be checked by con-
structing and comparing the automaton of trivial identifications emerging
from the number system (see Proposition 4.1) and the automaton of bound-
ary identifications (see Proposition 4.4). Note that the construction of the
latter requires the whole boundary automaton G(S ).

• As we mentioned, (5.1) and (5.2) can be written as fixed points equalities.
Indeed, let Fix(f) denote the fixed point of a contraction f and fa the
contraction associated to the digit a. Then the equality

∑
n≥1 A−nan =∑

n≥1 A−na′n, where (an)n≥1 and (a′n)n≥1 are the ultimately periodic se-
quences

(an)n≥1 = a(B −A)0(B − 1),

(a′n)n≥1 = (a + 1)(B − 1)(B −A)0,
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Figure 2. Knuth dragon (A = B = 2): tiling with ∆0; ∆0 ∪∆1, ∆5, ∆8, ∆11.

Figure 3. A = 4, B = 5: ∆0, . . . , ∆4.

Figure 4. A = 5, B = 5: ∆0, . . . , ∆3.

reads

fa

(
Fix(fB−A ◦ f0 ◦ fB−1)

)
= fa+1

(
Fix(fB−1 ◦ fB−A ◦ f0)

)
.

As seen in Section 3, we obtain together with the parametrization a sequence
of approximations (∆n) converging to the boundary of T in the Hausdorff distance
(see Proposition 3.9). The first terms of the approximation sequence are depicted
in Figures 2 to 4 for some examples.

We now show that the polygonal approximations ∆n are simple closed curves
equal to the boundary ∂Tn of the natural approximations of T , when starting from
a special hexagon. We use the notations of the previous section, but will simply
write C1, . . . , C6 instead of C

(0)
1 , . . . , C

(0)
6 . Hence we have:

C1 = ψ
(
0(A− 1)(B − 1)

)
, C2 = ψ

(
0(B − 1)(B −A)

)
,

C3 = ψ
(
(A− 1)(B − 1)0

)
, C4 = ψ

(
(B − 1)(B −A)0

)
,

C5 = ψ
(
(B − 1)0(A− 1)

)
, C6 = ψ

(
(B −A)0(B − 1)

)
.

Proposition 5.5. [C1, . . . , C6, C1] is a simple closed curve. Let Q be the
closure of its bounded complementary component. Then Q + Z2 is a tiling of
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the plane. Two neighboring tiles have 1-dimensional intersection. Moreover, the
neighbors of Q are the tiles Q + s with s ∈ R, that is,

∂Q =
⋃

s∈R

Q ∩ (Q + s).

Proof. We study the relative positions of the points, whose coordinates are
easily computable and have rational expressions in A,B. We have the following
relations.

C1 = C3 + (1, 0)T , C6 = C4 + (1, 0)T ,

C2 = C6 + (A− 1, 1)T , C3 = C5 + (A− 1, 1)T .
(5.3)

Moreover, C6 − C5 = (A(A + 1)/(A + B + 1), A/(A + B + 1))T . The hexagon is
depicted on the left part of Figure 5. Note that 0 < A/(A + B + 1) =: x < 1/2.

Figure 5. Tiling property of Q: proof of Proposition 5.5.

After a translation of the triangle [C1, C2, C3] (gray part) by −(A − 1, 1)T ,
we obtain a union of two parallelograms (see the right part of Figure 5). Now a
translation of the triangle [C3, C4, C5] by +(1, 0)T leads to a single parallelogram
which obviously tiles the plane by Z2. Hence this is also the case for the hexagon
Q. The neighboring tiles are then obtained from the relations (5.3). ¤

We consider the approximations (Tn)n≥0 of the tile T obtained by starting
with T0 := Q, the hexagon of the above proposition. Thus for all n ≥ 0,

ATn+1 =
⋃

a∈D

(Tn + a).

Proposition 5.6. For all n, ∂Tn is a simple closed curve.

Proof. One can show inductively that AnTn is a connected union of trans-
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lates of Q and it tiles the plane by AnZ2. Since the tiling by Q has only 1-
dimensional intersections, AnTn has no cut point. Moreover, by the tiling prop-
erty, also R2 \AnTn is connected. Indeed, suppose it has a bounded component
R1. Then R1 intersects some translate z1 + AnTn (z1 6= 0). It follows that
z1 +AnTn ⊂ R1. Iterating this argument gives a sequence of translates zp +AnTn

(p ≥ 1) inside R1, where zp 6= zq for p 6= q. This contradicts the local finiteness
of the tiling. Thus AnTn is a locally connected continuum without cut point and
with connected complement. By a result of Torhorst (see [27, X, II, Theorem 4]),
it is homeomorphic to a disk. ¤

By definition, ∂T0 and ∆0 are both equal to ∂Q. We will now prove the
equality of the whole sequences. Recall that ∆n satisfies the GIFS equation of ∂T

(see (3.7)). We will show that this is also true for ∂Tn.

Proposition 5.7. For all n ≥ 0, ∆n = ∂Tn.

Proof. We write B
(n)
s := Tn ∩ (Tn + s) for s ∈ R. Then





∂Tn =
⋃

s∈R

B(n)
s

B
(n+1)
s =

⋃

s
a−→s′∈G(R)

A−1
(
B

(n)
s′ + a

)
.

(5.4)

First note the following stability property of the set R due to its definition.

R =
{
k ∈ Z2 \ {0}; (Ak + D) ∩ (l + D) 6= ∅ for some l ∈ R

}
=: R′.

This general property can be found in the proof of Proposition 2.1. It has the
following consequence on the Z2-tiling induced by the approximation Tn. Indeed,
for k ∈ Z2,

(Tn + k) ∩ Tn 6= ∅ ⇐⇒ k ∈ R.

This can be shown by induction (the case n = 0 is given by Proposition 5.5).
Thus, by the tiling property,

∂Tn =
⋃

s∈R

B(n)
s ,

and
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B(n+1)
s = A−1

⋃

d,d′∈D

(Tn + d) ∩ (Tn + d′ + As)︸ ︷︷ ︸
6=∅⇔As+d′−d∈R

=
⋃

s
a−→s′∈G(R)

A−1
(
B

(n)
s′ + a

)
.

We eventually notice that with the correspondence i ↔ s between the orders and
the states of G(R), we have

[Ci, Ci+1] = B(0)
s .

Thus, ∆n and ∂Tn satisfying the same recursion, they are equal for all n. ¤

We are now able to prove our theorem.

Proof of Theorem 4. It follows from Lemma 5.3 that C : [0, 1] → ∂T is a
Hölder continuous onto mapping. The hexagon Q defined in Proposition 5.5 defines
a sequence (Tn)n≥0 of approximation of T with the required properties. Indeed,
by Proposition 5.6, ∂Tn is a simple closed curve. Moreover, by Proposition 5.7,
the vertices of ∂Tn have Q(β)-addresses. Finally, the convergence of ∂Tn toward
∂T in Hausdorff metrics is a consequence of Proposition 3.9.

The measure theoretical part is an application of Theorem 2. We just show
that the additional separation condition is fulfilled, that is,

H α
w (Ks ∩Ks′) = 0

for s 6= s′. Note that by the proof of Theorem 2, this measure separation condition
is satisfied for subsets of a single boundary part. More precisely, if w and w′ are
two distinct walks in G(R)o given by

i
a1|o1−−−→ s1

a2|o2−−−→ · · · an|on−−−−→ sn

and

i
a′1|o′1−−−→ s′1

a′2|o′2−−−→ · · · a′n|o′n−−−−→ s′n

respectively, then

H α
w

(
fa1 ◦ · · · ◦ fan

(Ksn
) ∩ fa′1 ◦ · · · ◦ fa′n(Ks′n)

)
= 0,
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where fa(x) = A−1(x + a). Thus it is sufficient to show that for s 6= s′, a state i

and a common sequence a1 = a′1, . . . , an = a′n can be found such that sn = s and
s′n = s′. Indeed, in this case,

H α
w

(
fa1 ◦ · · · ◦ fan(Ks) ∩ fa1 ◦ · · · ◦ fan(Ks′)

)
= 0,

thus Ks and Ks′ must also be separated with respect to H α
w , because of the scaling

property H α
w (fa(E)) = 1/βH α

w (E).
We check in Figure 1 this property for every pair of states {s, s′}. We illustrate

the case of the pair {1, 6}. If B ≥ A − 1, we have walks 6 B−1−−−→ 4 0−→ 3 B−1−−−→ 1
and 6 B−1−−−→ 2 0−→ 1 B−1−−−→ 6, thus H s

w (K1 ∩ K6) = 0. If A = B, we have walks
2 0−→ 1 B−1−−−→ 3 0−→ 2 B−1−−−→ 1 and 2 0−→ 5 B−1−−−→ 2 0−→ 1 B−1−−−→ 6, thus again H s

w (K1 ∩
K6) = 0. We can check that this property holds for every pair {s, s′}, except for
{3, 6}. However, this case corresponds to the intersection T ∩ (T − P ) ∩ (T + P ),
which is empty (see [4], where the whole list of the neighbors of T was computed).

¤

We now give a proof of disk-likeness for canonical number system tiles with
polynomial x2 + Ax + B with 2A − B < 3. In this case, the contact set and the
neighbor set are equal: R = S , hence the automaton of Figure 1 is the boundary
automaton. We show that for this choice of coefficients, no identifications occur
in the parametrization other than the trivial identifications (see Characterization
3.7). We recall that this can be done by comparing three automata: A φ of trivial
identifications, A sl of walks in G(R)o carrying the same contraction labels, and
I ψ of boundary identifications. Following the constructions of Section 3, we
obtain the automata of Figures 6 to 8. The initial states are colored, the final
states are circled by a double line. Remember that a single walk in these automata
corresponds to a pair of walks in the automaton G(R)o (or in G(S ) = G(R)).
In the depicted automata A φ and A sl, the transitions carry both order (letters
o) and contraction labels (letters a). To get a lighter picture, the walks in these
automata correspond only to the pairs (w, w′) with w >lex w′. For simplicity, we
also avoided repetition of the labels in the core of the automata, where the two
walks do not yet distinguish.

“Projecting” the identification automaton A φ on the boundary, that is, look-
ing only at the contraction labels, we obtain the automaton I ψ together with
walks whose labeling sequences have the form (an|an)n≥1 (hence the correspond-
ing boundary points are trivially the same). This confirms the continuity of the
parametrization. Also, the walks in I ψ can all be found in A φ, meaning that two
walks having distinct contraction digit sequences but leading to the same bound-
ary points are trivially identified by the number system φ. Considering A sl, we
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Figure 6. Automaton A φ
>lex

.

see that this is also the case for two walks carrying the same contraction digit
sequences. Thus C([0, 1]) is a simple closed curve and the tile T is homeomorphic
to a disk.

In the case 2A−B ≥ 3, non trivial identifications occur, that is, we can find
t 6= t′ ∈ [0, 1] such that C(t) = C(t′). Indeed, consider the contact graph of Figure
1. There exists a digit a′ such that the transitions

Q
0|B−A+1−−−−−−→ −Q and −Q

a′|B−A+1−−−−−−−→ Q.

This is because B − A + 1 ≤ A − 2. This implies the existence of the following
infinite walk in I ψ.

Q | Q 1‖0−−→ N ‖ −Q
B−1‖B−A+1−−−−−−−−−→ P ‖ Q

B−A‖A−2−−−−−−−→ Q ‖ −Q

0‖a′−−−→
a′‖0←−−−

−Q ‖ Q.

This leads to a non trivial identification
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Figure 7. Automaton A sl
>lex

.

Figure 8. Automaton I ψ for 2A < B + 3.

C(φ(2; 3, 1, 1, 2o)) = C(φ(2; 2, lmax − 1, lmax − 1),o2).

Thus the corresponding tiles are not disk-like.
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6. A relation to the recurrent set method.

The recurrent set method was introduced in [8], [9] by Dekking. Let 〈a, b〉 be
the free group generated by two letters. The recurrent set method associates to a
given endomorphism

σ : 〈a, b〉 → 〈a, b〉

and a homomorphism

g : 〈a, b〉 → R2

the boundary of a replication fractal tile. This boundary curve is approximated by
polygonal curves enclosing square-like tiles (contracted copies of the parallelogram
generated by g(a), g(b)). The approximations are geometrical realizations of the
iterates of the substitution σ on the initial word aba−1b−1. Under some conditions,
they converge in the Hausdorff distance to a boundary curve. The corresponding
class of Dekking endomorphisms on 2-letters was characterized in [46] in terms of
digit systems. It followed that for example no 2-letter endomorphism can be found
in order to obtain the boundary of the canonical number system tiles associated
to the base −n + i, n ≥ 3.

In this section, we consider the substitution given by the contact automaton
of a canonical number system tile T and adapt the recurrent set method to recover
the boundary of T . A suitable mapping g will be defined in terms of a hexagonal
tiling corresponding to the tile T , obtained in the last section.

Let T be a canonical number system tile defined by the matrix A and the digit
set D . We consider the following substitution, associated to its ordered automaton
G(R)o. It is the endomorphism of the free group over three letters 〈1, 2, 3〉, first
defined for 1, 2, 3 according to Figure 1:

1 → 3 2 → 1̇(2̇1̇)A−1 3 → (2̇1̇)B−A2̇,

where 1̇, 2̇, 3̇ stand for the inverses of the letters 1, 2, 3 and replace 4, 5, 6 of the
automaton. This definition is then extended to 〈1, 2, 3〉 by concatenation. We call
this substitution σ.

We now map the words into the plane. To each letter 1, 2, 3, 1̇, 2̇, 3̇, we as-
sociate a vector of R2, corresponding to a side of the hexagon Q of Proposition
5.5:

v1 := C2 − C1, v2 := C3 − C2, v3 := C4 − C3,

v1̇ := C5 − C4 = −v1, v2̇ := C6 − C1 = −v2, v3̇ := C1 − C6 = −v3,
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and construct directed curves in the plane via two mappings. The first one is the
homomorphism

g : 〈1, 2, 3〉 → R2

o1o2 . . . on → vo1 + . . . + von
.

The mapping g connects the action of σ on the words and the action of A on the
plane.

Lemma 6.1. For all words w ∈ 〈1, 2, 3〉,

g(σ(w)) = Ag(w).

Proof. It is sufficient to show this property on the letters 1, 2, 3. For this,
observe that

AC1 = C3, AC2 = C4, AC3 = C5 + (A− 1, 0)T ,

AC4 = C6 + (B − 1, 0)T , AC5 = C1 + (B − 1, 0)T , (6.1)

AC6 = C2 + (B −A, 0)T .

Thus

g(σ(1)) = g(3) = v3 = C4 − C3 = A(C2 − C1) = Av1 = Ag(1).

Also,

g(σ(2)) = −v1 − (A− 1)(v2 + v1) = C5 − C4 − (A− 1)(C3 − C1).

By the relations (5.3), C3 − C1 = −(1, 0)T , thus

g(σ(2)) = C5 − C4 + (A− 1, 0)T = A(C3 − C2) = Ag(2).

A similar computation gives g(σ(3)) = Ag(3). Thus the equality g(σ(o)) = Ag(o)
holds for each letter o ∈ {1, 2, 3}, and by extension for each word of 〈1, 2, 3〉. ¤

The second mapping is p : 〈1, 2, 3〉 → R2. If W = o1 . . . on is a reduced
word of 〈1, 2, 3〉, p(W ) is the directed polygonal curve joining the end points of
the vectors
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0, g(o1), g(o1o2), . . . , g(o1o2 . . . on).

For example, if W0 := 1231̇2̇3̇, then the curve p(W0) is the boundary of the hexagon
Q up to a translation by −C1. We say that a directed curve encloses a bounded
set Q0 if it is a simple closed curve oriented counterclockwise and equal to the
boundary of Q0.

Proposition 6.2. For all n ≥ 1, p(σn(W0)) encloses Q − C1 + D + · · · +
An−1D +

∑n−1
k=0 Ak(1, 0)T .

Proof. First note that

p(W0) = p(1231̇2̇3̇) = p(31̇2̇3̇12) + g(12).

Since g(12) = C3−C1 = −(1, 0)T by the relations (5.3), this means that p(31̇2̇3̇12)
encloses Q− C1 + (1, 0)T .

Now we prove the above statement by induction on n. For n = 1,

p
(
σ(1231̇2̇3̇)

)
= p

(
3(1̇2̇)B 3̇(12)B

)

= p
(
31̇(2̇1̇)B−12̇3̇(12)B

)

= p
(
31̇(2̇3̇31̇)B−12̇3̇(12)B

)

= p
(
(31̇2̇3̇)B(12)B

)

=
B−1⋃
a=0

[
p(31̇2̇3̇12) + ag(31̇2̇3̇)

] \
B−1⋃
a=1

[
p(3̇) + ag(31̇2̇3̇)

]

=
B−1⋃
a=0

[
p(31̇2̇3̇12) + (a, 0)T

] \
B−1⋃
a=1

[
p(3̇) + (a, 0)T

]
.

We made a slight abuse of notation, since in the last lines, the endpoints of the
translates of p(3̇) are in fact included in the curve p(σ(1231̇2̇3̇)). Each p(31̇2̇3̇12)+
(a, 0)T encloses the boundary of the hexagon

Q− C1 + (1, 0)T + (a, 0)T ,

and these hexagons are essentially disjoint by the tiling property of Q. Thus
p((σ(1231̇2̇3̇)) is the boundary of the union
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Q− C1 + (1, 0)T + D

of hexagons glued together through the edges p(3̇)+ (a, 0)T . The intersections are
one-dimensional. In other words, p((σ(1231̇2̇3̇)) encloses Q− C1 + (1, 0)T + D .

Suppose now the statement true for some n ≥ 1. Then

p
(
σn+1(1231̇2̇3̇)

)

= p
(
σn((31̇2̇3̇)B)σn((12)B)

)

= p
(
(σn(31̇2̇3̇))B(σn(12))B

)

=
B−1⋃
a=0

[
p(σn(31̇2̇3̇12)) + ag(σn(31̇2̇3̇))

] \
B−1⋃
a=1

[
p(σn(3̇)) + ag(σn(31̇2̇3̇))

]

=
B−1⋃
a=0

[
p(σn(31̇2̇3̇12)) + An(a, 0)T

] \
B−1⋃
a=1

[
p(σn(3̇)) + An(a, 0)T

]
.

We observe again that p(σn(1231̇2̇3̇)) = p(σn(31̇2̇3̇12)) + g(σn(12)). Thus by
induction hypothesis, p(σn(31̇2̇3̇12)) encloses

Q− C1 + D + · · ·+ An−1D +
n−1∑

k=0

Ak(1, 0)T + An(1, 0)T ,

which tiles the plane by AnZ2. Consequently, p(σn+1(1231̇2̇3̇)) encloses the union
of tiles

Q− C1 + D + · · ·+ An−1D +
n∑

k=0

Ak(1, 0)T + AnD ,

and we are done. ¤

Let (T ′n)n≥0 be the sequence defined by T ′0 = Q− C1 and AT ′n+1 = T ′n + D .
That is to say, T ′n = Tn−A−nC1, where (Tn)n≥0 satisfies the same recurrence re-
lation but starts with T0 = Q. Then it follows from our parametrization in the last
section that the curves Kn := A−np(σn(W0)) converge in Hausdorff distance to a
curve K. Moreover, K is the boundary of the self-affine set T +

∑∞
k=1 A−k(1, 0)T .
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7. Concluding remarks.

In this paper, we assumed that the “reduced” contact automaton G(R) of
T (A,D) is strongly connected. Unfortunately this is not always valid. However,
it follows from Section 3 that this automaton can be replaced by any strongly
connected GIFS containing enough information to describe the boundary. For a
given tile, a way to obtain this minimal automaton is to replace R by a smaller set
with the minimal property D +R′ ⊂ AR′+D . We should also require that there
is a polygonal fundamental domain Q of the lattice with the set R′ as “adjacent”
neighbors (translates of Q having d − 1-dimensional intersection with Q). Then
all approximations Tn of T admit R′ as set of adjacent neighbors. Thus we may
perform the recurrent set method on this polygonal tiling. Note that a good
candidate, if it can be guessed, is the set of adjacent neighbors of the tile itself (in
this case s is adjacent to T if (T + s) ∩ T ∩ ((T + s) ∪ T )o 6= ∅).

The following example shows that sometimes the lack of strong connectedness
can not be avoided. Consider the tile T (A,D), where

A =
(

2 −1
0 3

)
and D =

{(
0
0

)
,

(
0
1

)
,

(
0
2

)
,

(
1
0

)
,

(
1
1

)
,

(
1
2

)}
.

It is depicted in Figure 9. Its contact automaton consists of two disjoint compo-
nents. Let

R′ :=
{(−1

0

)
,

(−1
−1

)
,

(
1
0

)
,

(
1
1

)}
.

Then G(R′) is enough to describe the boundary, since the other two states lead
just to two boundary points. Note that the attractor corresponding to the state
(−1,−1) is the interval [0, 1] of the x-axis. G(R′) is still not strongly connected: it
is possible to parametrize ∂T , but in a non-uniform way, which does not fit exactly
to the framework of this paper. We refer to [1] for a large class of examples whose
boundary parametrization could be performed despite the disconnectedness of the
contact automaton.

By our parametrization, we are expecting to obtain deep topological informa-
tion of ∂T and T when it is not a disk. The advantage of this method is that the
set of non-trivial identifications occurs in the parametrization is recognized by a
Büchi automaton (see p. 559, Theorem 3). Though in practical computation lan-
guages of Büchi automaton are difficult to handle, we found several applications
when the size of this Büchi automaton is small. This topic will be discussed in a
forthcoming paper.
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Figure 9. A tile with non primitive reduced contact automaton.

It is important to extend our result to a suitable class of (not necessarily
periodic) planar self-affine tilings by several different tile shapes. We believe that
this method gives an idea to define the fundamental polygons to start with and
to extend the recurrent set method to such tilings. Also the boundary of tiles
that do not fulfill any tiling condition may be considered. Indeed, even if overlaps
happen, the boundary of the tile is still described by an automaton (see [10], [20]).
Another challenge would be to generalize the result in higher dimensional case. It
is not clear whether we will obtain one dimensional parametrizations [0, 1] → ∂T ,
that is, space-filling curves. We rather expect the standard parametrization of the
boundary of a d-dimensional tile by the boundary of the d-dimensional unit cube
such that the natural projections on lower dimensional faces preserve the complex
structure. An example for our motivation is the neighbor graph of a 3-dimensional
twin dragon obtained in [6].
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[17] K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar

tilings of Rn, IEEE Trans. Inform. Theory, 38 (1992), 556–568.
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