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Abstract. In this paper, we are considering the Baire property of the
eventually different topology as a regularity property for sets of reals and
investigate the logical strength of the statements “Every ∆1

2 set has the Baire

property in the eventually different topology” and “Every Σ1
2 set has the Baire

property in the eventually different topology”. The latter statement turns out
to be equivalent to “ω1 is inaccessible by reals”.

1. Introduction.

Statements about regularity properties at the second level of the projective
hierarchy such as “Every ∆1

2 set of reals has property P ” or “Every Σ1
2 set of

reals has property P ” are complicated enough not to be ZFC theorems (typically,
they fail to hold in L) and thus it is interesting to investigate their relative logical
strength. The strongest such statement is “∀x(ωL[x]

1 < ω1)” (or “ω1 is inaccessi-
ble by reals”) which typically implies all of the above mentioned properties and
the weakest nontrivial such statement is “∀x(ωω\L[x] 6= ∅)” (which by [BL99,
Theorem 7.1] is equivalent to “every Σ1

2 set of reals is Sacks-measurable”).
Most of the regularity properties investigated in this context are derived from

forcing notions, and the computation of relative logical strength has been done
for many such properties, e.g., in [Sol70], [JS89], [BL99], [BHL05]. In this
paper, we continue this work by looking at the Baire property in the eventually
different topology (cf. Section 2) and the statements Σ1

2(E), “every Σ1
2 set of reals

has the Baire property in the eventually different topology”, and ∆1
2(E), “every

∆1
2 set of reals has the Baire property in the eventually different topology”. Based

on preliminaries on definability of ideals and forcing absoluteness (Section 3),
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we prove in Section 4 that Σ1
2(E) is equivalent to “ω1 is inaccessible by reals”

(Theorem 7). This result was not unexpected, as the present authors showed the
same for the Baire property in the dominating topology in [BL99, Theorem 5.11],
based on a combinatorial property of the Hechler ideal. In our proof here, we
use the analogue of that property for eventually different forcing (Theorem 2).
In Section 5, we then move on to ∆1

2(E) and show that it fails in the ω1-stage
finite support iteration of Hechler forcing (Theorem 18). With this ingredient, we
are then (Section 6) able to place ∆1

2(E) in the diagram of regularity statements
on the second level of the projective hierarchy and prove implications and non-
implications, giving an almost complete diagram.

The technical result leading to Theorem 18 (cf. Corollary 13 and Theorem
17) says that eventually different reals in the (iterated) Hechler extension are
necessarily dominating reals. This may be of independent interest.

2. Eventually different forcing.

The conditions of eventually different forcing, denoted by E, are pairs 〈s, F 〉,
where s ∈ ω<ω is a finite sequence of natural numbers and F is a finite set of reals.
We say that 〈s, F 〉 ≤ 〈t, G〉 if and only if t ⊆ s, G ⊆ F and for all i ∈ dom(s\t)
and all g ∈ G, we have that s(i) 6= g(i). In [ÃLab96], ÃLabȩdzki discusses all
basic properties of this forcing partial order, and we refer to this paper for details.
Eventually different forcing is a c.c.c. and even σ-centered forcing that generates
a topology E refining the standard topology on Baire space. Basic open sets of
E are of the form [s, F ] = {x ∈ ωω; s ⊆ x and ∀f ∈ F ∀n ≥ |s| (x(n) 6= f(n))}
where 〈s, F 〉 ∈ E. These sets are in fact closed in the standard topology and thus
E -clopen. Hence E -open dense sets are Fσ, and E -closed nowhere dense sets Gδ,
in the standard topology. Therefore the E -meager sets form an ideal IE which
has a basis of Σ0

3 sets in the standard topology (cf. also [ÃLab96, Theorem 3.1]).
We fix some reasonable coding of the Borel sets by real numbers, and write

BM
c for the Borel set coded by c as interpreted in the model M and Bc := BV

c (in
Lemma 5, we need to be more careful about our coding). Note that the statement
“c is a code for a Borel set in IE” is absolute between models of set theory,
allowing us to call a Borel code c E -meager if BM

c is meager in any model M of set
theory. For a given model of set theory M , we write EvD(M) for the set of reals
E-generic over M . Since E is a c.c.c. forcing notion, we have the usual connection
between E -meager Borel codes and the notion of E-genericity:

Lemma 1 ([ÃLab96, Theorem 3.3]). If M is a model of set theory and x ∈
ωω, then x is E-generic over M if and only if for all E -meager Borel codes c ∈ M ,
we have that x /∈ Bc.



Eventually different functions and inaccessible cardinals 139

Let 〈fα : α < 2ω〉 be a family of pairwise eventually different functions. Let
Eα := {x ∈ ωω;∃∞k ∈ ω(x(k) = fα(k))}. Note that these sets are E -nowhere
dense.

Theorem 2 (Brendle). If G is E -meager and 〈fα;α < 2ω〉 is a family of
pairwise eventually different functions then the set {α;Eα ⊆ G} is countable.

Proof. [ÃLab96, Theorem 4.7]. ¤

This theorem is the main ingredient of the proof that the additivity of the
meager ideal in E is ℵ1. Its combinatorics is based on the construction in [Bre95,
Theorem 2.1].

3. Preliminaries.

We shall work in the general framework introduced by Ikegami [Ike10] which
we briefly review: We call a forcing notion P arboreal if its conditions are (isomor-
phic to) a set of perfect trees ordered by inclusion and we call it strongly arboreal if
in addition for any T ∈ P and any t ∈ T , we have that {s ∈ T ; s ⊆ t∨ t ⊆ s} ∈ P .
For arboreal forcings, we say that a set X ⊆ ωω is P -null if for any T ∈ P there is
some S ∈ P such that S ≤ T and [S]∩X = ∅. We let IP be the σ-ideal generated
by the P -null sets. Using IP , we call a set X P -measurable if for any T ∈ P

there is an S ∈ P with S ≤ T such that either [S]∩X ∈ IP or [S]\X ∈ IP . We
define an ideal I ∗

P ⊇ IP by I ∗
P := {X;∀T ∈ P∃S ∈ P (S ≤ T ∧ [S]∩X ∈ IP )}.

If Γ is a pointclass and P is an arboreal forcing, we write Γ(P ) for the statement
“Every set in Γ is P -measurable”.

For all classical forcing notions (Cohen, random, Hechler, Laver, Miller, Sacks,
etc.), P -measurability coincides with the natural notion of measurability. It is easy
to see that for eventually different forcing E, the ideal IE is exactly the ideal of
E -meager sets (thus allowing us to use the same notation) and being E-measurable
coincides with having the E -Baire property.

In joint work with Halbeisen, the present authors introduced a notion of quasi-
genericity in [BHL05, Section 1.5]: given a model of set theory M , an ideal I
and a real r, we say that r is I -quasigeneric over M if for all Borel codes c ∈ M

such that Bc ∈ I , we have that r /∈ Bc.1 For classical c.c.c. forcing notions P

(Cohen, random, Hechler, eventually different, etc.), IP -quasigenericity agrees
with P -genericity (cf. Lemma 1 for eventually different forcing). These are partic-
ular instances of a general fact [Ike10, Proposition 2.17]. Ikegami established ab-

1Note that we are presupposing that “Bc ∈ I ” is absolute between models of set theory. This

is the case by Shoenfield absoluteness if I is sufficiently definable, for instance if it is Σ1
2 on Σ1

1

(cf. the definition before Lemma 5).
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stract connections between the existence of quasigenerics and measurability prop-
erties. To state Ikegami’s results, recall that if Γ is a projective pointclass, we say
Γ-P -absoluteness holds if for every sentence ϕ in Γ with parameters in V , V |= ϕ

if and only if V P |= ϕ.

Theorem 3 ([Ike10, Theorem 4.3]). If P is a proper and strongly arboreal
forcing notion such that {c; c is a Borel code and Bc ∈ I ∗

P } is Σ1
2, then the

following are equivalent :

( i ) Σ1
3-P -absoluteness,

( ii ) every ∆1
2 set is P -measurable, and

(iii) for every real x and every T ∈ P , there is a I ∗
P -quasigeneric real in [T ]

over L[x].

Theorem 4 ([Ike10, Theorem 4.4]). If P is a proper and strongly arboreal
forcing notion such that {c; c is a Borel code and Bc ∈ I ∗

P } is Σ1
2 and IP is Borel

generated, then the following are equivalent :

( i ) Every Σ1
2 set is P -measurable, and

( ii ) for every real x, the set {y; y is not I ∗
P -quasigeneric over L[x]} belongs to

I ∗
P .

Since the ideal I ∗
P ⊇ IP is equal to IP for c.c.c. forcing notions [Ike10,

Lemma 2.13] and since we only deal with c.c.c. forcing, we can ignore the difference
between I ∗

P and IP .
Suppose that Γ is a projective pointclass. A σ-ideal I is called Γ on Σ1

1 if
for every analytic set A ⊆ 2ω × ωω, the set {y ∈ 2ω;Ay ∈ I } is in Γ (where
Ay := {x; 〈y, x〉 ∈ A} is the vertical section at y). The notion of being Π1

1 on
Σ1

1 is a crucial property of ideals, as discussed in [Zap08, Section 3.8]. Most
ideals occurring in nature are ∆1

2 on Σ1
1. The ideal of E -meager sets is Π1

1 on Σ1
1

[Zap08, Proposition 3.8.12].

Lemma 5. Assume I is a Σ1
2 on Σ1

1 σ-ideal which has a Borel basis. Then
{c; c is a Borel code and Bc ∈ I } is Σ1

2.

Proof. By [Kec94, Theorem (35.5)], there is a coding of Borel sets by a
Π1

1 set D ⊆ ωω and a Σ1
1 set S ⊆ 2ω × ωω such that the Borel subsets of Baire

space are exactly {Sd; d ∈ D}.
Then Bc ∈ I if and only if there is d such that Sd ∈ I , Bc ⊆ Sd, and d ∈ D.

By assumption, the first statement is Σ1
2, and the second and third are obviously

Π1
1. ¤

A similar argument, using a universal analytic set instead, shows that if I is
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Π1
2 on Σ1

1, then {c; c is a Borel code and Bc ∈ I } is Π1
2.

4. Σ1
2 sets.

We start by proving a “Judah-Shelah-style characterization” connecting the
E -Baire property of all sets in ∆1

2 and the existence of generics.

Theorem 6. The following are equivalent :

( i ) Σ1
3-E-absoluteness,

( ii ) Every ∆1
2 set has the E -Baire property (i.e., ∆1

2(E)), and
(iii) for every x, there is an E-generic over L[x].

Proof. This follows immediately from Ikegami’s Theorem 3, keeping in
mind that in the case of E, having the E -Baire property and being E-measurable
are the same, that I ∗

E = IE , that IE-quasigenericity and E-genericity are the
same (Lemma 1), that IE has a basis consisting of Σ0

3 sets, that it is Π1
1 on Σ1

1

[Zap08, Proposition 3.8.12], and that {c; c is a Borel code and Bc ∈ IE} therefore
is Σ1

2 by Lemma 5. ¤

Here is the characterization of the E -Baire property of the Σ1
2 sets.

Theorem 7. The following are equivalent :

( i ) Every Σ1
2 set has the E -Baire property (i.e., Σ1

2(E)),
( ii ) for every x, the set of E-generics over L[x] is E -comeager, and
(iii) ω1 is inaccessible by reals.

Proof. The equivalence of (i) and (ii) follows from Ikegami’s Theorem 4.

“(iii)⇒(ii)”: If ω
L[x]
1 is countable, then there are at most countably many codes

for E -meager sets in L[x]. By Lemma 1, ωω\EvD(L[x]) =
⋃{Bc; c ∈ L[x] is an

E -meager Borel code} which now is a countable union of E -meager sets, and thus
E -meager. Consequently, EvD(L[x]) is E -comeager.

“(ii)⇒(iii)”: Towards a contradiction, let ω
L[x]
1 = ω1 for some fixed x. In L[x],

there is a family 〈fα;α < ω1〉 of pairwise eventually different functions. Recall
that the sets Eα := {y ∈ ωω;∃∞k(y(k) = fα(k))} are E -nowhere dense in L[x].
Therefore, ωω\EvD(L[x]) must contain all (i.e., uncountably many) of these sets
Eα. By Theorem 2, ωω\EvD(L[x]) cannot be E -meager, and thus EvD(L[x])
cannot be E -comeager. ¤
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5. ∆1
2 sets.

In this section we compare the E -Baire property of ∆1
2 sets with measurability

and the Baire property of Σ1
2 sets. We first show that the statement that all Σ1

2

sets are Lebesgue measurable, Σ1
2(B), implies ∆1

2(E).
The partial order LOC of localization forcing consists of all pairs 〈σ, F 〉 such

that σ ∈ ([ω]<ω)<ω is a finite sequence with |σ(n)| = n for all n < |σ| and F is
a finite set of reals with |F | ≤ |σ|. The order is given by 〈τ, G〉 ≤ 〈σ, F 〉 if and
only if τ ⊇ σ, G ⊇ F , and f(n) ∈ τ(n) for all f ∈ F and all n ∈ |τ | \ |σ|. The
forcing LOC is c.c.c. and even σ-linked (but not σ-centered) and adds a generic
slalom ϕ ∈ ([ω]<ω)ω given by ϕ =

⋃{σ; 〈σ, F 〉 ∈ G for some F} where G is the
generic filter over V . The slalom ϕ localizes the ground model reals in the sense
that f(n) ∈ ϕ(n) for almost all n for all reals f from V .

Lemma 8. The product LOC × C adds an E-generic real. In particular
E <◦ LOC ×C.

Proof. Let ϕ be the LOC-generic real. Since LOC ×C ∼= LOC ? Ċ, we
may think of Cohen forcing C as adding a generic real c over V [ϕ]. Furthermore,
we may think of C as being the order of finite partial functions s with s(n) /∈ ϕ(n)
for all n < |s|. That is, c(n) /∈ ϕ(n) for all n. We claim that this c is E-generic
over V .

Let D ⊆ E be open dense. Let (〈σ, F 〉, s) ∈ LOC ×C. Without loss we may
assume |σ| = |s|. By our stipulation in the preceding paragraph this means that
s(n) /∈ σ(n) for all n < |s|. We need to find (〈τ, G〉, t) ≤ (〈σ, F 〉, s) with |τ | = |t|
and 〈t, G〉 ∈ D. To see that this suffices note that such (〈τ, G〉, t) necessarily forces
that t ⊆ ċ and ċ(n) 6= f(n) for all n ≥ |t| and f ∈ G.

Clearly, 〈s, F 〉 ∈ E. There is 〈t, G〉 ≤ 〈s, F 〉 with 〈t, G〉 ∈ D. By extending
t, if necessary, we may assume that |t| ≥ |G|. Next extend σ to τ such that
|τ | = |t| and for all n with |s| ≤ n < |t| and all f ∈ F we have f(n) ∈ τ(n) and
t(n) /∈ τ(n). This is possible because t(n) 6= f(n) for all f ∈ F and all such n.
Then (〈τ, G〉, t) ≤ (〈σ, F 〉, s) is as required. ¤

In the following, we shall be interested in the statement “for all reals x, there
is a LOC-generic over L[x]”. Using Ikegami’s general methods, we can prove
that this is equivalent to the statement ∆1

2(LOC), i.e., every ∆1
2 set is LOC-

measurable, as in Theorem 6. We shall not go into details here, and just use the
notation ∆1

2(LOC) as a shorthand for the statement “for all reals x, there is a
LOC-generic over L[x]”.

Corollary 9. ∆1
2(LOC) implies ∆1

2(E).
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Proof. It is easy to see that LOC adds a Cohen real. Therefore E <◦
LOC ? ˙LOC by Lemma 8. In particular, if for all x there is a LOC-generic over
L[x], then for all x there is an E-generic over L[x], and ∆1

2(E) follows by Theorem
6. ¤

Lemma 10. ∆1
2(LOC) is equivalent to Σ1

2(B), the statement “all Σ1
2 sets

are Lebesgue measurable”.

Proof. By Bartoszyński’s characterization of additivity of measure [BJ95,
Theorems 2.3.11 and 2.3.12], ∆1

2(LOC) implies Σ1
2-Lebesgue measurability. The

same characterization yields that Σ1
2(B) implies that for all x, there is a slalom

localizing all reals in L[x]. By [Bre06, Lemma 2.1], this in turn entails that there
is a LOC-generic over L[x] for all x, that is, ∆1

2(LOC) holds. ¤

Corollary 11. Σ1
2(B) implies ∆1

2(E).

Proof. This follows from the two preceding results. ¤

After Lebesgue measurability, we are now considering the (regular) Baire
property. The statement Σ1

2(C), i.e., “all Σ1
2 sets have the Baire property (in

the ordinary topology)” is equivalent to ∆1
2(D), i.e., “all ∆1

2 sets have the Baire
property in the dominating topology” by [BL99, Theorem 5.8]. The rest of this
section will contain the proof that this statement does not imply ∆1

2(E).
For technical purposes, we consider a slight variant of standard Hechler forc-

ing: conditions of our D are trees T ⊆ ω<ω such that for any s ∈ T beyond the
stem, san belongs to T for almost all n. Obviously D is a σ-centered forcing
notion which adds a dominating real. So D × C adds a standard Hechler real
[BJ95, Corollary 3.5.3]. On the other hand, it is easy to see that standard Hech-
ler forcing adds a D-generic. (In fact, if d ∈ ωω is a standard Hechler generic
satisfying d(n) > n for all n, then d′ ∈ ωω given recursively by d′(0) = d(0) and
d′(n+1) = d(d′(n)) is a D-generic.) Thus, the finite support iterations of the two
partial orders have the same properties. In particular, the finite support iteration
of D forces ∆1

2(D).
The reason we use D is that this makes the rank analysis of Hechler forcing

(which is originally due to Baumgartner and Dordal [BD85]) a bit simpler. Recall
that, if s ∈ ω<ω and ϕ is a statement of the forcing language, we say s forces ϕ if
there is T ∈ D with stem s such that T forces ϕ. Next, define the rank ρϕ by:

ρϕ(s) = 0 ⇐⇒ s forces ϕ

ρϕ(s) ≤ α ⇐⇒ ∃∞n ρϕ(san) < α.
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Say that s favors ϕ if ρϕ(s) < ∞. The following are well-known and easy:

( i ) A sequence can force at most one of ϕ and ¬ϕ.
( ii ) Each sequence favors at least one of ϕ and ¬ϕ.
(iii) A sequence s forces ϕ if and only if s does not favor ¬ϕ.
(iv) A sequence s favors ϕ if and only if for all T with stem s there is U ≤ T

such that U ° ϕ.

We prove (and this is the main technical result of this section):

Theorem 12. Let W be a c.c.c. extension of V with the property that for
all infinite partial functions x : ω → ω in W which are not dominating over V ,
there are infinite partial functions {xn;n ∈ ω} in V such that whenever y ∈ ωω∩V

is infinitely often equal to all xn, then y is infinitely often equal to x. Then, if d is
D-generic over W , for all infinite partial functions x : ω → ω in W [d] which are
not dominating over V , there are infinite partial functions {xn;n ∈ ω} in V such
that whenever y ∈ ωω ∩ V is infinitely often equal to all xn, then y is infinitely
often equal to x.

Corollary 13 (Dichotomy for Hechler forcing). Let d be a Hechler real
over V and let x ∈ V [d] be a real. Then

( i ) either x is dominating over V

( ii ) or x is not eventually different over V .

Proof. Apply the theorem with V = W . ¤

The following consequence of Corollary 13 was pointed out to us by the anony-
mous referee and solved positively a conjecture in an earlier version of this work.2

Corollary 14. Assume that there is a proper class of Woodin cardinals.3

Let x ∈ V [d] be a new real. Then

( i ) either there is a dominating real (over V ) in V [x]
( ii ) or V [x] is a Cohen extension of V .

2The proof of Theorem 12 splits into three cases (see below); in Case 1 and Case 2, we find a

ground model real that is infinitely often equal to x (i.e., case (ii) in Corollary 13), and in Case
3, we can prove that x is dominating (i.e., case (i) in Corollary 13). In Corollary 14, the split

occurs along different lines: It can be shown that in Case 2 of the proof of Theorem 12, V [x]

does contain a dominating real.
3This assumption is needed for the full generality of [Zap08, Corollary 3.5.7] which is used

in the proof (W. Hugh Woodin, personal communication, 10 October 2009 for the consistency
strength upper bound). In some similar cases, the use of large cardinals can be completely

avoided if you restrict yourself to a concretely given forcing. In this particular case, we do not

know how to do this.
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Proof. Assume there is no dominating real over V in V [x]. By Corollary
13, there is no eventually different real over V in V [x] either. By the proof of
[BJ95, Lemma 2.4.8], the reals of V form a non-meager set in V [x]. Now [Zap08,
Corollary 3.5.7] applies, and we obtain that V [x] is indeed a Cohen extension of
V .

To see that the assumptions of [Zap08, Corollary 3.5.7] are indeed satisfied,
let ẋ be a D-name for x. Put Iẋ = {B;B is Borel and °D ẋ /∈ B}. Clearly, Iẋ

is a c.c.c. σ-ideal and the subforcing of D leading to the intermediate extension
V [x] is forcing equivalent to PIẋ , the quotient of Borel sets modulo sets in Iẋ.
Furthermore, since there is a Borel function f such that °D ẋ = f(ḋ) where ḋ is
the name for the D-generic, we obtain Iẋ = {B; f−1(B) ∈ ID} where ID is the
Hechler ideal (the ideal of meager sets in the dominating topology). Thus Iẋ is
universally Baire. ¤

One may even conjecture:

Conjecture 15. Let x ∈ V [d] be a new real. Then

( i ) either V [x] is a Hechler extension of V

( ii ) or V [x] is a Cohen extension of V .

This would probably require a proof that the various forms of Hechler forcing
(e.g., the one with trees we consider here, a second one with increasing functions
as side conditions, or a third one with arbitrary functions as side conditions) are
all forcing equivalent. This problem has been considered by a number of people,
including the first author.

Unlike the original dichotomy (Corollary 13), this conjecture cannot hold in
the iterated Hechler extension (because D ? Ḋ 6∼= D [Paw86]).

With respect to the eventually dominating order ≤∗ on the Baire space ωω,
one may consider three different kinds of eventually different reals: bounded reals,
unbounded reals which are not dominating, and reals which are dominating. E.g.,
random forcing B adds a bounded eventually different real and, since B is ωω-
bounding, there are no other kinds of eventually different reals. By Corollary 13,
D adds a dominating (and thus necessarily eventually different) real, but no other
eventually different reals. Finally, E adds an eventually different real which is
unbounded but not dominating and, again, there are no other kinds of eventually
different reals. This is so because a (n iteration of) σ-centered forcing cannot add
a bounded eventually different real. (The proof for this is similar to, but easier
than, the arguments in the proof of Theorem 12.)

Proof of Theorem 12. Let ẋ be a D-name for x. Call s ∈ ω<ω very good
if there is an infinite partial function xs : ω → ω in W which is not dominating



146 J. Brendle and B. Löwe

over V such that s favors ẋ(k) = xs(k) for all k ∈ dom(xs). By “not-dominating”
we mean, of course, that there is z ∈ ωω ∩ V such that xs(k) ≤ z(k) for infinitely
many k ∈ dom(xs). With respect to this notion we introduce a rank rkẋ exactly
as before:

rkẋ(s) = 0 ⇐⇒ s is very good

rkẋ(s) ≤ α ⇐⇒ ∃∞n rkẋ(san) < α.

We say that s is good if rkẋ(s) < ∞. Otherwise s is not good.

Case 1: All s are good.

This is the easiest case. By assumption, there is {xn;n ∈ ω} ∈ V such that
whenever y ∈ ωω ∩ V is infinitely often equal to all xn, then y is infinitely often
equal to all xs for very good s. So, choose y ∈ ωω ∩ V which is infinitely often
equal to all xn. We claim that the trivial condition forces that y is infinitely often
equal to ẋ.

For indeed, let k0 and T ∈ D be given. Let s be its stem. By assumption,
rkẋ(s) < ∞. Thus, by replacing T with a stronger condition if necessary, we may
assume without loss of generality that rkẋ(s) = 0, i.e., s is very good. Choose
k ≥ k0 such that y(k) = xs(k). Since s favors ẋ(k) = xs(k), there is a U ≤ T such
that U ° ẋ(k) = y(k), as required. a

Hence we may assume some s is not good. Then we can easily construct a
condition T with stem s such that all t ∈ T extending s are not good. We now work
below the condition T . Call such t not bad if there are infinite partial functions
yt, ft : ω → ω with the same domain in W such that yt is not dominating over V ,
ft is one-to-one, and saft(k) favors ẋ(k) = yt(k) for all k ∈ dom(yt). Define the
rank Rkẋ as before:

Rkẋ(t) = 0 ⇐⇒ t is not bad

Rkẋ(t) ≤ α ⇐⇒ ∃∞n Rkẋ(tan) < α.

We say that t is not very bad if Rkẋ(t) < ∞. Otherwise t is very bad.

Case 2: No t ∈ T is very bad.

Again, there is {xn;n ∈ ω} ∈ V such that whenever y ∈ ωω ∩ V is infinitely
often equal to all xn, then y is infinitely often equal to all yt for t which is not
bad. Choose y ∈ ωω ∩ V which is infinitely often equal to all xn. We claim that
T forces that y is infinitely often equal to ẋ.

Assume k0 and U ≤ T are given. Let t be the stem of U . By assumption,
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Rkẋ(t) < ∞. Without loss of generality, Rkẋ(t) = 0. Choose k ≥ k0 such that
y(k) = yt(k) and saft(k) belongs to U . Since saft(k) favors ẋ(k) = yt(k), there
is a U ′ ≤ U such that U ′ ° ẋ(k) = y(k). a
Case 3: Some t ∈ T is very bad.

Construct a condition U ≤ T with stem t such that all u ∈ U extending t are
very bad. We claim that U forces that ẋ is a dominating real over V .

To see this let z ∈ ωω ∩V and U ′ ≤ U . We need to find k0 and U ′′ ≤ U ′ such
that U ′′ ° ẋ(k) ≥ z(k) for all k ≥ k0.

Let t′ = stem(U ′). For u′ ∈ U ′, define the partial function xu′ by xu′(k) =
min{`;u′ favors ẋ(k) = `} if the latter set is non-empty; otherwise xu′(k) is un-
defined. Note that, since u′ is not (very) good, xu′ either has finite domain or
dominates V . Therefore there is k0 such that for all k ≥ k0, either xt′(k) is
undefined or xt′(k) ≥ z(k).

Similarly, for u′ ∈ U ′, define yu′ by yu′(k) = min{`; for some n, we have
u′an ∈ U ′ and u′an favors ẋ(k) = `} if the latter set is non-empty; otherwise yu′

is undefined. Again, since u′ is (very) bad, it is easy to see that yu′ either has
finite domain or dominates V .

Now we recursively construct U ′′ ≤ U ′ with stem(U ′′) = t′, as well as numbers
ku′ for all u′ ∈ U ′′.

First put t′ into U ′′ and fix kt′ ≥ k0 such that for all k ≥ kt′ , either yt′(k) is
undefined or yt′(k) ≥ z(k). Next, put t′an into U ′′ if for all k with k0 ≤ k < kt′ ,
whenever t′an favors ẋ(k) = `, then ` ≥ z(k). This defines the successor level of
t′ because for each such k and each ` < z(k), there are only finitely many n such
that t′an favors ẋ(k) = `. By replacing the trees U ′

t′an by appropriate subtrees if
necessary, we may assume without loss of generality that U ′

t′an forces ẋ(k) ≥ z(k)
for all k with k0 ≤ k < kt′ . Thus, U ′′ will also force this. Notice that xt′an ≥ yt′

everywhere so that xt′an(k) ≥ z(k) for all k ≥ kt′ .
In general, assume u′ has been put into U ′′. Fix ku′ ≥ ku′�(|u′|−1) such that

for all k ≥ ku′ , either yu′(k) is undefined or yu′(k) ≥ z(k). Next, put u′an into
U ′′ if for all k with ku′�(|u′|−1) ≤ k < ku′ , whenever u′an favors ẋ(k) = `, then
` ≥ z(k). Since xu′(k) ≥ z(k) for all k ≥ ku′�(|u′|−1), this indeed defines the
successor level of u′. Again we may assume that U ′

u′an forces ẋ(k) ≥ z(k) for all
k with ku′�(|u′|−1) ≤ k < ku′ . Notice again that xu′an ≥ yu′ everywhere so that
xu′an(k) ≥ z(k) for all k ≥ ku′ .

This completes the construction of U ′′, and it is immediate from the construc-
tion that U ′′ forces ẋ(k) ≥ z(k) for all k ≥ k0. a

This completes the proof of the theorem. ¤

The following is proved by a standard argument.
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Lemma 16. Let γ be a limit ordinal. Assume (Pα, Q̇α;α < γ) is a finite
support iteration of c.c.c. forcing such that for all α < γ the following holds:

For every Pα-name ẋ : ω → ω for an infinite partial function
which is not dominating over V , there are infinite partial functions
xn : ω → ω, n ∈ ω, in V such that whenever y ∈ ωω ∩ V is
infinitely often equal to all xn, then y is forced to be infinitely
often equal to ẋ.

(?α)

Then (?γ) holds as well.

Proof. If cf(γ) > ω, then no new real number occurs at stage γ, and so
the claim is trivially true. Therefore we can assume that cf(γ) = ω. Since an
iteration of length γ with cf(γ) is isomorphic to one of length ω, we can without
loss of generality assume that γ = ω.

Let ẋ be a Pω-name for an infinite partial function. Assume the trivial con-
dition forces that ẋ is not dominating over V and fix n < ω. In the Pn-generic
extension Vn, define a partial function xn by xn(k) = min{`; there is a p in the
remainder forcing Pω/Pn such that p ° ẋ(k) = `} if this set is non-empty; other-
wise xn(k) is undefined. Notice that xn is an infinite partial function, and that it
cannot be dominating over V .

In the ground model V , we have Pn-names ẋn for all the xn. By (?n), we can
find a countable family {ym;m ∈ ω} such that whenever y ∈ ωω ∩ V is infinitely
often equal to all ym, then y is forced to be infinitely often equal to all ẋn. We
show that such a y is also forced to be infinitely often equal to ẋ.

Fix k0 and p ∈ Pω. Let n be such that p ∈ Pn. Step into Vn where the
generic contains p. Fix k ≥ k0 such that xn(k) = y(k). Let q be a condition in the
remainder forcing which forces ẋ(k) = xn(k). Then clearly raq̇ forces ẋ(k) = y(k)
for some r ≤ p in Pn, as required. ¤

Theorem 17 (Dichotomy for iterated Hechler forcing). Let (Pα, Ḋα;α < γ)
be a finite support iteration of Hechler forcing. Let x be a real in the Pγ-generic
extension. Then

( i ) either x is dominating over V

( ii ) or x is not eventually different over V .

More explicitly, if x is not dominating over V , then there are infinite partial func-
tions xn : ω → ω (n ∈ ω) in V , such that whenever y ∈ ωω ∩ V is infinitely often
equal to all xn, then y is infinitely often equal to x as well.

Proof. By induction on γ. The case γ = 1 is Corollary 13. More generally,
if γ = δ+1 is a successor, apply Theorem 12 with W being the Pδ-generic extension
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of V . If γ is a limit, apply Lemma 16. ¤

Theorem 18. Let G be L-generic for the ω1-stage finite support iteration
of Hechler forcing. Then in L[G], ∆1

2(D) holds while ∆1
2(E) fails.

Proof. By Theorem 17, it is immediate that the finite support iteration of
Hechler forcing does not add an E-generic over the ground model V . Thus, if the
ground model is L, then in the generic extension after adding ω1 Hechler reals,
there are no E-generics over L. This implies the failure of ∆1

2(E) by Theorem 6.
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Figure 1.

6. Conclusions.

Our two main results, Theorems 7 and 18, are enough to place the two state-
ments Σ1

2(E) and ∆1
2(E) in the diagram of regularity statements, as it has been

developed by other work. In the diagram given in Figure 1, the letters A, B, C,
D, E, L, M , R, S, and V stand for Amoeba, random, Cohen, Hechler, eventu-
ally different, Laver, Miller, Mathias, Sacks, and Silver forcing, respectively. The
notation “ev. diff.” stands for “for every x, there is an eventually different real
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over L[x]”.
The diagram in Figure 1 is complete in the sense that if there is no arrow

leading from a statement ϕ to another statement ψ in the diagram, then there
is a model of ϕ ∧ ¬ψ. The only exceptions to this are “∆1

2(L) ⇒ Σ1
2(V )” and

“∆1
2(L) ⇒ ∆1

2(V )” marked by “?” symbols whose status is unknown (we expect
that neither of the implications holds in general).

All implications and non-implications not involving E have been known before
this paper and in the following we’ll give arguments for all implications and non-
implications involving ∆1

2(E). In the arguments, we shall freely use Theorem 6
and its analogues for other forcings:

The statement “∆1
2(E) ⇒ ev. diff.” is trivial, and “∆1

2(E) ⇒ ∆1
2(C)” is

easy because E adds Cohen reals. Corollary 11 yields “Σ1
2(B) ⇒ ∆1

2(E)”, and
Theorem 18 shows that the Hechler model witnesses “∆1

2(D) 6⇒ ∆1
2(E)”.

Note that neither random nor Mathias forcing add Cohen reals, so that the
random model is a model of ∆1

2(B)∧¬∆1
2(C) and the Mathias model is a model

of ∆1
2(R)∧¬∆1

2(C). Since every E-generic defines a Cohen real, these two models
witness “∆1

2(B) 6⇒ ∆1
2(E)” and “∆1

2(R) 6⇒ ∆1
2(E)”, respectively.

Finally, the iteration of E adds neither dominating nor random reals, and thus
the eventually different model witnesses both “∆1

2(E) 6⇒ ∆1
2(L)” and “∆1

2(E) 6⇒
∆1

2(B)”.
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[ÃLab96] G. ÃLabȩdzki, A topology generated by eventually different functions, Acta Univ.

Carolin. Math. Phys., 37 (1996), 37–53.

[Paw86] J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic, 51 (1986),

957–968.

http://dx.doi.org/10.2307/2273792
http://dx.doi.org/10.1017/S0305004104008187
http://dx.doi.org/10.2307/2586632
http://dx.doi.org/10.1016/0168-0072(94)E0028-Z
http://dx.doi.org/10.1016/j.apal.2006.05.003
http://dx.doi.org/10.1016/j.apal.2009.10.005
http://dx.doi.org/10.1016/0168-0072(89)90016-X
http://dx.doi.org/10.2307/2273908


Eventually different functions and inaccessible cardinals 151

[Sol70] R. M. Solovay, A model of set-theory in which every set of reals is Lebesgue measur-

able, Ann. of Math. (2), 92 (1970), 1–56.

[Zap08] J. Zapletal, Forcing idealized, 174, Cambridge Tracts in Mathematics, Cambridge

University Press, Cambridge, 2008.

Jörg Brendle

Graduate School of System Informatics

Kobe University

Rokko-dai 1-1, Nada

Kobe 657-8501, Japan

E-mail: brendle@kurt.scitec.kobe-u.ac.jp

Mathematisches Institut

Rheinische Friedrich-Wilhelms-Universität Bonn

Endenicher Allee 60

53115 Bonn, Germany

Benedikt Löwe
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