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Abstract. Building on the work by J. Jost and C.-J. Xu [32], and E.
Barletta et al. [3], we study smooth pseudoharmonic maps from a compact strictly
pseudoconvex CR manifold and their generalizations e.g. pseudoharmonic unit
tangent vector fields.

Introduction.

The purpose of this paper is to study several analogs to differential geometric
objects appearing in Riemannian geometry and admitting a treatment based on
elliptic theory e.g. the Laplace-Beltrami operator (cf. [40]), harmonic maps
among Riemannian manifolds (cf. [49]), and harmonic vector fields (regarded as
smooth maps of a Riemannian manifold into the total space of the tangent bundle
endowed with the Sasaki metric, cf. [51] and [52]). We obtain the following
results. Boundary values of Bergman-harmonic maps ¢ :  — S from a smoothly
bounded strictly pseudoconvex domain 2 C C" into a Riemannian manifold S are
shown to be pseudoharmonic maps, provided their normal derivatives vanish. We
prove that dj-pluriharmonic maps are pseudoharmonic maps. A pseudoharmonic
map ¢ : M — S” from a compact strictly pseudoconvex CR manifold into a sphere
is shown either to link or to meet any codimension 2 totally geodesic sphere in S”.
Also we prove that a smooth vector field X : M — T(M) from a strictly
pseudoconvex CR manifold M is a pseudoharmonic map if and only if X is
parallel (with respect to the Tanaka-Webster connection) along the maximally
complex, or Levi, distribution. We start a theory of pseudoharmonic vector fields
i.e. unit vector fields X € Z(M,0) which are critical points of the energy
functional E(X) =1 [}, traceg, (mzX*Sp) 0 A (df)" relative to variations through
unit vector fields. Any such critical point X is shown to satisfy the nonlinear
subelliptic system A, X + ||V X||*X = 0. Also infxeq (119 E(X) = n Vol(M, 0) yet
F is unbounded from above. We establish first and second variation formulae for
E:%(M,0) — [0,+00) and give applications.
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1. Boundary values of Bergman-harmonic maps.

In their seminal 1998 paper J. Jost and C.-J. Xu studied (cf. [32]) the
existence and regularity of weak solutions ¢:Q — (S,h) to the nonlinear
subelliptic system

Hy +Z( 10 0) Xa(¢)Xa(6") =0, 1<i<w, (1)

where H = =Y " | X*X, is the Hérmander operator associated to a system X =
{X1,...,X;n} of smooth vector fields on a open set 2 C R", verifying the
Hérmander condition on Q, (S,h) is a Riemannian manifold and I % are the
Christoffel symbols associated to the Riemannian metric h. Their study is part of
a larger program aiming to the study of hypoelliptic nonlinear systems of
variational origin similar to the harmonic maps system, although but degenerate
elliptic. Indeed, if X = b%(z)9/0z? then X'f = —0(b’(z)f)/0x* for any f €
Cl(2) hence

B 0 ap, . Ou
HU_;&TA (a (x) 8;UB>

where a8(z) =Y. bA(2)bB(x) so that in general [a?P] is only semi positive
definite. Hence H is degenerate elliptic (in the sense of J.M. Bony [7]). As
successively observed (cf. E. Barletta et al. [3]) solutions of systems of the form
(1) may be built within CR geometry as S'-invariant harmonic maps ® : C(M) —
S where S§' — C(M) - M is the canonical circle bundle over a strictly
pseudoconvex CR manifold M and harmonicity is meant with respect to the
Fefferman metric Fy (associated to a choice of contact form 6 on M, cf. J. M. Lee
[36]). Base maps ¢ : M — S corresponding (i.e. ® = ¢ o 7) to such ® were termed

pseudoharmonic maps and shown to satisfy
a6+ 3 (T o 8) X6 Xu(6h) =0, 1<i<y, @
a=1

where A is the sublaplacian associated to (M,0) and {X, : 1 < a < 2n} is a local
orthonormal frame of the maximal complex, or Levi, distribution H(M) of M.
The sublaplacian may be locally written A, = — Eg”l X' X, hence the similarity
among the systems (1) and (2). The formal adjoint X of X, is however meant
with respect to the L? inner product (u,v)= [uv6 A (df)", while in [32] one
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integrates with respect to the Lebesgue measure on 2 (the precise quantitative
relationship among the two notions is explained in the next section).

The derivation of (1) by analogy to the harmonic map system (replacing the
Laplace-Beltrami operator with the Hérmander operator) is nevertheless rather
formal. Indeed C'R manifolds appear mainly as boundaries of smooth domains ) in
C" and it is not known so far whether boundary values of harmonic maps from {2
extending smoothly up to 02 are pseudoharmonic. One of the results in this paper
is the following

THEOREM 1. Let Q C C" (n > 2) be a smoothly bounded strictly pseudo-
convex domain and g the Bergman metric on ). Let S be a complete v-dimensional
(v > 2) Riemannian manifold of sectional curvature Sect(S) < k? for some k > 0.
Assume that S may be covered by one coordinate chart x = (y',...,4") : S — R".
Let f € WH2(Q,8) N C%(Q, S) be a map such that f(Q) C B(p, ) for some p € S
and some 0 < p < min{7/(2k), i(p)} where i(p) is the injectivity radius of p. Let
¢ = Q — S be the solution to the Dirichlet problem

() =0 inQ, ¢=f ond (3)
If f € C*(09,S) then

N() = =gy (), 1<% @

for any local coordinate system (w,y') on S such that ¢(Q) Nw # 0 (fi =y’ o f).
Also N = —JT and T is the characteristic direction of 9Q. In particular if N(f?) =
0 then f: 00 — S is a pseudoharmonic map.

Here 7,(¢) € (¢ 'TS) is the tension field of ¢ as a map among the
Riemannian manifolds (£2, g) and S (cf. Section 3 for definitions). The key idea in
the proof of Theorem 1 is (as first observed by A. Koranyi and H. M. Reimann
[34]) that the K&hlerian geometry of the interior of 2 and the contact geometry of
the boundary 992 may be effectively related through the use of the Bergman kernel
K(z,¢) of Q. The main technical ingredient in the proof is an ambient linear
connection V (the Graham-Lee connection, cf. R. Graham et al. [22], or
Appendix A in [4]) defined on a neighborhood of 99 in © and inducing the
Tanaka-Webster connection (cf. [47], [50]) on each level set of ¢(z) =
—K(z, z)_l/("H) (z € Q). See also Section 5.3 in [5, pp. 87-95]. The proof of
Theorem 1 is relegated to Section 3 of this paper.
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2. Pseudoharmonic maps.

Let (M,T1o(M)) be a (2n + 1)-dimensional orientable CR manifold, of CR
dimension n. The mazimally complex distribution is H(M) = Re{Ti1o(M) &
Toa(M)}. Tt carries the complex structure J: H(M) — H(M) given by J(Z +
Z)=i(Z - Z) for any Z € Tio(M). A pseudohermitian structure is a globally
defined nowhere zero C™ section @ in the conormal bundle H(M)" c T*(M). The
Levi form is Gp(X,Y) = (dF)(X,JY) for any X,Y € H(M). Throughout
(M,T1o(M)) is assumed to be strictly pseudoconvex i.e. Gy is positive definite
for some pseudohermitian structure . Then 6 is a contact form, that is to say
U =0 A (df)" is a volume form on M. Let T be the characteristic direction of df
i.e. the globally defined nowhere zero tangent vector field on M, everywhere
transverse to H(M), determined by 6(T") = 1 and T | df = 0. Strictly pseudocon-
vex CR manifolds are equipped with a natural second order differential operator
(similar to the Laplace-Beltrami operator on a Riemannian manifold)

Apu = div(V7u), ue C*(M), (5)

the sublaplacian of (M, ). Here div is the divergence with respect to Ui.e. Zx¥ =
div(X)¥ where Zx is the Lie derivative, and V7u =75Vu (the horizontal
gradient of u). Also Vu is the gradient of u with respect to the Riemannian metric
gp given by

g&(Xv Y) = GH(Xv Y)7 gH(Xa T) =0, gg(T, T) =1, (6)

for any X,Y € H(M) (the Webster metric of (M

,0)) and 7y : T(M) — H(M) is
the projection relative to the decomposition T'(M) =

H(M) @ RT. The sublapla-
cian is degenerate elliptic (in the sense of J. M. Bony [7]) and subelliptic of order
1/2 (cf. G.B. Folland [16]) hence hypoelliptic (cf. L. Hérmander [29]). Let us
assume that M is compact and consider the energy functional

1
B(6) =5 | tracec (muoh) W (7

where 7y B denotes the restriction to H(M) of the bilinear form B. Here E is
defined on the set of all C* maps ¢: M — S from M into a v-dimensional
Riemannian manifold (S, ). A pseudoharmonic map is a C* map ¢ : M — S such
that {dE(¢,)/dt},_, = 0 for any smooth 1-parameter variation ¢, : M — Sof ¢ i.e.
¢p = ¢. Let us set
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2n

(Hyo)'= 2 + > (T 0 6) Xa(@) Xa(9h), 1<i<w.
a=1

The Euler-Lagrange equations of the variational principle 6E(¢) = 0 are Hy(¢) =
0 (cf. [3]). Let ¢ : M — S be a pseudoharmonic map. Let (U,z*) and (V,4') be a
local coordinate systems on M and S such that ¢(U) C V. Let {X,:1<a < 2n}
be a local Gg-orthonormal frame in H(M) defined on the open set U. As a
consequence of the nondegeneracy of M the vector fields {(dp)X,:1 <a < 2n}
form a Hormander system on 2 = ¢(U) C R*"*! where ¢ = (2',...,2?"*!). As the
formal adjoint of X, = bf@/@x“‘ with respect to ¥ is given by X u=
—9(b2u)/0x* — bPT 4 pu one may conclude that f=¢op™:Q— S is a sub-
elliptic harmonic map if and only if Lf = 0 in Q where L is the (purely local) first
order differential operator Lu = Ziil baBFﬁBXau and I“g,c are the local coefficients
of the Tanaka-Webster connection of (M, §) with respect to (U, z4). If for instance
M = H, (the Heisenberg group, cf. e.g. [14, pp. 11-12]) then L =0 and the two
notions coincide.

To demonstrate a class of pseudoharmonic maps we look at d-pluriharmonic
maps of a nondegenerate C'R manifold into a Riemannian manifold. We need a few
additional notions of pseudohermitian geometry (cf. e.g. [14, Chapter 1]). The
tangential Cauchy-Riemann operator is the first order differential operator

Oy : C(M) — I (Ty 1 (M)")
defined by (9,f)Z = Z(f) for any C* function f : M — C and any Z € Ty o(M). A

(0,1)-form is a C-valued differential 1-form n on M such that 17 (M) | n =0 and
T |n=0. Also a (1,1)-form is a C-valued differential 2-form w on M such that

WZW)=w(Z,W)=0, T|w=0,

for any Z, W € T1o(M). Let A (M) — M and A" (M) — M be the correspond-
ing vector bundles. Besides from 0, we need the differential operator

8y : T®(A% (M) — T=(AL (M)

defined as follows. Let 7 be a (0, 1)-form. Then dyn is the unique (1, 1)-form on M
coinciding with dn on T} o(M) @ To1(M).

A C? function u : M — R is said to be dy-pluriharmonic if 9,0yu = 0 (cf. [11]
or Section 5.6 in [5, p. 112]).
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The notion of a dy-pluriharmonic function admits a natural generalization to
smooth maps ¢ : M — S with values in a Riemannian manifold. The second
fundamental form of ¢ is given by (cf. R. Petit [45])

Bo(X,Y) = (¢7'V") .Y — 0. VXY, X,Y € 2(M). (8)

As to the notation adopted in (8), V" is the Levi-Civita connection of (S, h), V is
the Tanaka-Webster connection of (M,#), and ¢.X is the cross-section in the
pullback bundle ¢~'T'S — M given by (¢.X), = (d,¢)X, for any z € M. Also
¢~'V" is the connection in ¢~'T'S — M induced by V" i.e. locally

Ayl /.
(¢_1V}L)6AXk = 87¢A (F;k o ¢> X;.

Here (U,z?) and (w,%’) are local coordinate systems on M and S respectively
(with ¢(U) C w), 04 is short for 9/0z4, ¢’ = y' o ¢, and X; is the natural lift of
9/0y' i.e. Xi(z) = (9/0y') () (so that {X; : 1 <i < v}isalocal frame in ¢~'TS —
M defined on the open set ¢~1(V)). We say ¢ : M — S is 0y-pluriharmonic if

Bo(X,Y) + Bu(JX,JY) =0, X,V € H(M). (9)
Equivalently 3,(Z,W) =0 for any Z,W € T1(M). This may be locally written
(20,0')(Z, W) + Z(¢")W(¢") T 0 6 =0

hence if S = R then 9,0,¢' = 0 i.e. each ¢ is a Oy-pluriharmonic function.

PROPOSITION 1.  Let M be a strictly pseudoconver CR manifold and S a
Riemannian manifold. Every 0y-pluriharmonic map ¢ : M — S is a pseudohar-
monic map.

PROOF. Let {W, : 1 < a < n} be alocal orthonormal (that is Go(W,, Wg) =
6qp) frame of Tj o(M) so that locally

Apu = AW Wau + WaWou — (Viv, Wa)u — (Vi Wa Ju}

a=1

for any u € C?(M). As ¢ is 9)-pluriharmonic
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Wanébi - (Vw, Wﬁ)fbi + Wa(¢j)Wﬁ(¢k) Fz‘k °0¢p=0

hence
Ay’ +2) Wal¢))Wa(@") Ty 06 =0
a=1
which is easily seen to be equivalent to (2). O

A theory of harmonic vector fields on a Riemannian manifold M was started
by G. Wiegmink [51], and C. M. Wood [52], starting from the observation that
the total space T'(M) of the tangent bundle over a Riemannian manifold (M, g)
carries a Riemannian metric gg naturally associated to g (the Sasaki metric, cf.
e.g. D.E. Blair [6]). Then one may consider the ordinary Dirichlet energy
functional E(X) =1 [}, trace,(X*gs) dvol(g) defined on C~(M,T(M)). As it
turns out a vector field X : M — T'(M) is a harmonic map, i.e. a critical point of E
for arbitrary smooth 1-parameter variations of X if and only if X is absolutely
parallel. Hence the space C*(M,T(M)) is intuitively too “large” for ones
purposes. The same result is got however when looking for critical points of F
restricted to the space of all smooth vector fields 2 (M).

A new and wider notion of harmonicity is however obtained by looking at
unit vector fields X and restricting oneself to variations of X through unit vector
fields. Precisely, let U(M, g), = {v € T,(M) : g.(v,v) = 1} (x € M). A unit vector
field X: M — U(M,g) is harmonic if {dE(X;)/dt},_, =0 for any smooth 1-
parameter family of smooth unit vector fields X;: M — U(M,g) such that
Xy = X. The corresponding Euler-Lagrange equations are

AX 4 |[VIX|’X =0, (10)

where A = —(V9)"VY is the rough Laplacian and VY is the Levi-Civita connection
of (M, g). A rather different theory (of harmonic vector fields) arises, aspects of
which (e.g. stability of Hopf vector fields on spheres, the interplay with contact
geometry) were subsequently investigated by many authors (cf. F.C. Brito [8],
D.-S. Han et al. [23], A. Higuchi et al. [26], C. Oniciuc [39], D. Perrone [42]-[44],
A. Yampolsky [54]). A similar approach also led to the more general theory
of harmonic sections in vector bundles (cf. K. Hasegawa [24], J. J. Konderak [33],
O. Gil-Medrano [18]).

Inspired by the geometric interpretation of subelliptic harmonic maps (in
terms of the Fefferman metric, cf. [3]) together with the extension of the harmonic
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vector field theory to semi-Riemannian geometry (cf. O. Gil-Medrano et al. [19])
D. Perrone et al. studied (cf. [13]) a subelliptic analog to harmonic vector fields.
There one considers vector fields X € H(M) on a strictly pseudoconvex CR
manifold M endowed with a contact form 6 (with Gy positive definite) such that
Gp(X,X) =1 and the horizontal lift X' : C(M) — T(C(M)) (with respect to the
connection 1-form o € I'*°(T*(C(M)) ® L(S')) in C. R. Graham [21]) is harmonic
with respect to the Fefferman metric Fyp (which is a Lorentzian metric on C(M),
cf. [36]). By a result in [13] any such X satisfies

AX + AV X + 27X + 66JX = MN(X) X (11)

where

NX) = —||7g VX|]* + 4g5(Vr I X, X)
+2g(7J X, X) 4 6g0(¢J X, X).

This is a nonlinear subelliptic system of variational origin (actually (11) are the
Euler-Lagrange equations associated to the functional Z(X) = — [}, A(X)0 A
(d0)"/2) yet formally rather dissimilar from the harmonic vector fields system
(10) in Riemannian geometry. In the present paper we build (cf. Section 6)
another subelliptic analog to the theory of harmonic vector fields, starting from
the functional (7) restricted to the space of all unit vector fields (with respect to
the Webster metric gg) and allowing only for variations through unit vector fields.

3. The Graham-Lee connection and C* regularity up to the
boundary of Bergman-harmonic maps.

Let Q C C" (n > 2) be a bounded domain and g its Bergman metric (cf. e.g.
S. Helgason [25, p. 369]). A smooth map ¢ : 2 — S into a Riemannian manifold S
is Bergman-harmonic if it is a critical point of the energy functional

B6) = [ 1] dvol(g

where ||dg|| is the Hilbert-Schmidt norm of d¢. The Euler-Lagrange system of the
variational principle 6E(¢) =0 is 7,(¢) = 0 where 1,(¢) € T®(¢'TS) is locally
given by

i i i a¢j 6¢k .
T9(¢) = Ago' + (ij ° ¢) 9 @GAB, 1<i<y,
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where (z!,...,22") are the Cartesian coordinates in R*" and [GAP] = [G4p] ",
Gap = g(0a,0p), 0a = 0/0x?. Also A, is the Laplace-Beltrami operator of (2, g).
For instance if € is the unit ball B" = {z € C" : |z| < 1} then

n a?u
Agu =412 (6 — 27) ——
g ”ZZI J J azlazj

hence A, is elliptic in B" yet its coefficients vanish at 9B" (also the second order
differential operator > (& — %)) 0%/02;0z; is not elliptic at OB"). The
degeneracy of the ellipticity of A, at 9B" is responsible for pathologies such as the
failure of C* regularity up to the boundary of the solution to the Dirichlet
problem for Bergman-harmonic functions.

From now on we assume that the Riemannian manifold S satisfies the
requirements adopted in Theorem 1. As S is covered by one coordinate chart
x='...,y"): S — R’ the Sobolev space W'?(Q, S) is unambiguously defined
as

WH(Q,8) ={¢p: Q= S:¢' =y opc WH(Q), 1<i<v}

Let p € S and p > 0 be chosen as in Theorem 1. Let d be the distance function on
S associated to the given Riemannian metric. The metric ball B(p,u) ={g€ S:
d(p,q) < p} is usually referred to as a regular ball and maps f : Q — S satisfying a
convexity condition f(Q) C B(p, ) behave very much like maps with values in
RY. Indeed, by a classical result of S. Hildebrand, H. Kaul and K. Widman [27],
for any fe W' (Q,8)NC%Q,S) with values in a regular ball B(p,u), by
exploiting the variational origin of 7,(¢) = 0 the Dirichlet problem (3) may be
solved i.e. there is a unique ¢y € Wh3(Q,S) N L>(R, S) such that ¢yl = f (that
is qSZ}} —fie WOI"Q(Q), 1 <i<vw), ¢4(Q) C B(p, p), ¢y minimizes E among all such
maps, and ¢y is a weak solution to 7,(¢) = 0 that is

, , d¢} dgk:
/Q {g*(cw% de) = (U0 6) o G%} dvol(g) =0

9z OxB

for any ¢ € C5°(2). It is also well known (cf. S. Hildebrand and K. Widman [28])
that ¢ € C(Q, S). Moreover continuous solutions to a class of quasilinear elliptic
systems including 7,(¢) = 0 are known (cf. e.g. S. Campanato [9], M. Giaquinta
[17]) to be smooth hence ¢y € C*(Q, 5).

Assuming additionally that f e C*(Q,S) it is a natural question whether
¢r € C*(Q,5). As we shall briefly recall, due to the fact that the ellipticity of the
system 7,(¢) = 0 degenerates at 0f2, the C* regularity of ¢; up to the boundary
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fails in general. For instance if Q@ = B" and S = R then (by a result of C.R.
Graham [20]) ¢; € C®(Q, R) implies that f must be the boundary values of a
pluriharmonic function. Therefore, in general one expects that whenever ¢;
C>(9, S) the datum f must satisfy additional compatibility relations which one
may indicate formally as €(f) =0 on 99Q. A differential geometric approach to
deriving €(f) = 0 in the scalar case (i.e. S = R) was proposed by C.R. Graham
and J.M. Lee [22], and relies on the construction of a canonical ambient
connection (the Graham-Lee connection, cf. Theorem 2 below). It is then natural
to ask 1) what is the geometric nature of the compatibility conditions €(f) =0
and of course 2) are €(f) = 0 sufficient (to conclude that ¢; is C*° up to 92)7?
Theorem 1 gives a partial answer to the first question while the second is an open
problem (except for the scalar case, cf. [20], [22]).

The remainder of this section is devoted to the proof of Theorem 1. Let €2 be a
smoothly bounded strictly pseudoconvex domain in C" and K(z,() its Bergman
kernel (cf. e.g. [25, pp. 364-371]). By a result of C. Fefferman [15], ¢(z) =
—K(z,2) 7Y™ s a defining function for Q (and Q = {p < 0}). Let us set § =
£(0— 0)p. Then

LEMMA 1 (E. Barletta [1]). For any smoothly bounded strictly pseudocon-
vex domain Q C C" the Bergman metric g is given by

g(x, vy =1 {i (Dp N D) (X, JY) — do(X, JY)}, (12)
¢ Lo

for any XY € Z°(Q), where J is the complex structure on C".

For each € > 0 we set M, = {2z € Q : p(2) = —e}. There is ¢y > 0 such that M,
is a strictly pseudoconvex CR manifold of CR dimension n — 1 for any 0 < e < €.
Hence there is a one-sided neighborhood V of 0} carrying a tangentially CR
foliation .# (cf. also S. Nishikawa et al. [12]) by level sets of ¢ such that

VIF={M::0<e<e}

Let H(#) — V (respectively T1¢(.#) — V) be the bundle whose portion over M,
is the Levi distribution H(M,) (respectively the CR structure T} o(M.)) of M..
Note that

T1o(F)NToa(F) = (0),
[ (T10(F)), I*(T1o(F))] S T(T10(F)).

Here Ty1(%) = T10(%). We need the following
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LEMMA 2 (J. M. Lee and R. Melrose [35]).  There is a unique complez vector
field € on V, of type (1,0), such that 0p(§) =1 and & is orthogonal to Ty o(.F) with
respect to 90y i.e. 00p(&,Z) =0 for any Z € Ty o(.F). Let r = 2000(&,€) be the

transverse curvature of @. Then r € C®(Q) i.e. r is smooth up to the boundary.

Let £ = (N —4T)/2 be the real and imaginary parts of £. Then

(dp)(N) =2, O(N)=0, 9p(N)=1,
(dp)(T) =0, O(T) =1,

In particular T is tangent to .#. Let gy be given by
gH(Xv Y) = (dg)(Xa JY)v gﬁ(Xv T) =0, g(f(Tv T) =1, (13)

for any X,Y € H(.%). Then gy is a tangential Riemannian metric for the foliation
Z i.e. a Riemannian metric in T(.#) — V. As a consequence of (12) we may state

LEMMA 3.  The Bergman metric g of Q@ C C" is given by

n+1

g X,v) ="t (X Y), X,YeH(Z). (14)

9(X,T)=0, g(X,N)=0, X e H(%), (15)

o(T,N) =0, ¢(T,T)=g(N,N)= ”+1<1r> (16)
¥

In particular 1 — rp > 0 everywhere in €.

Using (14)—(16) one may relate the Levi-Civita connection V9 of (V, g) to the
Graham-Lee connection of (V, ¢). The latter has the advantage of staying finite at
the boundary (in the limit it gives the Tanaka-Webster connection of 0f2).

Let us recall the Graham-Lee connection. Let V be a linear connection on V.
Let us consider the T'(V)-valued 1-form 7 on V defined by

(X)=Tv(T,X), XeT(V),
where Ty is the torsion tensor field of V. We say Ty is pure if

To(Z,W) =0, To(Z,W) = 2igs(Z,W)T, (17)
Ty(N,W)=rW+it(W), (18)
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for any Z, W € T1 (%), and

T(Tho(F)) C Toa(F), (19)

7(N) = —-JVr —2rT. (20)

Here V1 is defined by Vr = 75 Vr and go(Vr, X) = X(r), X € T(F). Also 7y :
T(#) — H(F) is the projection associated to the direct sum decomposition
T(F)=H(Z)® RT. We recall

THEOREM 2 (C. R. Graham and J. M. Lee [22]). There is a unique linear
connection V on 'V such that i) Ty o(F) is parallel with respect to V, ii) Vgy =0,
VT =0, VN =0, and iii) Ty is pure.

V given by Theorem2 is the Graham-Lee connection of (V,¢). The proof of
Theorem 2 follows from (cf. also [4])

LEMMA 4. Let ¢ : T(F) — T(F) be the bundle morphism given by ¢(X) =
JX, for any X € H(F), and ¢(T) = 0. Then

P?=—-I+60xT,
gﬁ(XvT) :a(X)7
90(0X, 9Y) = go(X,Y) — 0(X)0(Y),

for any X, Y € T(F). Moreover, if V is a linear connection on V satisfying the
azioms (1)—(iil) in Theorem 2 then

poT+T0o0p=0 (21)

along T(F). Consequently T may be computed as

T(X) =— % o(ZLr9)X, (22)

for any X € H(F).
A calculation (relying on Lemma 3) leads to

THEOREM 3. Let Q2 C C" be a smoothly bounded strictly pseudoconvex
domain, K(z,() its Bergman kernel, and ¢(z) = —K(z, z)_l/(nH). Then the Levi-
Civita connection V9 of the Bergman metric g and the Graham-Lee connection of
(V, ) are related by
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VLY = VxY + { 90(TX,Y) + go(X, ¢Y)}T

2
1—or

- {gg(X,Y) g gg(X,mY)}M
g — 1 b
V4T =7X — (sp—r)ng—M{X(T)TﬂaﬁX)(r)N},
VN — _<l_r>x+T¢X+L{<¢X><r>T—X<r>N},
© 2(1 —rp)
g — 1 ®
VX = 92X = (2= )oX - g E S (XOT + (630N,
VX = VX~ Xt g {(0X) ()T - X()V),
PO 1 © 4 2r
VNT__§ ¢VHT_2(1—7"@{<N(T)+¢2_sD)T—’_T(r)N}'
g 1 ® 4 6r 9
Vil = 2 #vir - 2(1 —rp) {(N(r) " E - E t >T+T(T)N}7
. B 1 © 4 6r
VT = ~3 vy — m {T(T)T (N(r) +E - @+4TQ>N}’

VYN = —% Vi + ﬁ {T(r)T - (N(r) + 2 %)N},

for any XY € H(F).

281

(25)

(26)

(27)

Using Theorem 3 we may attack the proof of Theorem 1 (a similar technique
was used in [2]). To this end let {W, :1 < a <n—1} be a local orthonormal
frame of T o (F) i.e. gog(Wa, WB) = 8u5. Here Wy = W,,. Let us set 1 = ¢/(1 — ry)

for simplicity. Then

2
Ea: - L4 ”a, En: w(p
n+1

£

is a local orthonormal frame of T"(V) i.e. g(E}, Ey) = 6j,. For any u € C*(Q2)
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Agu = i{EJ‘Ea“ + Byl — (VB Ju— (VEE, u}
=

n—1

=—- i - ;{WaWau + WaWou = (Vi Wa Ju— (Vi Wa )u}
2 g () (7))

On the other hand (by (28)—(31) in Theorem 3)

1
Vggz—ZVHr—g(]\H—iT)

¢
hence
. F ey 9 1 2 2 1 H
§£+£§—V5£—Vz§=§(1\f +T)+§V r+rN. (32)
Moreover (by (23) in Theorem 3)
ngu Wg =V, W5 — (N +4T) (33)

for any 1 < o <n — 1. Let us substitute from (32)—(33) so that to obtain

2 -1
P A p(n—1)
n+1 n+1

N+ wfl {N*+T*+V"r+2rN}  (34)
n

g

where A, is given by

n—1
A=Y (WoWz + WaW, — Viy, Wz = Vi W, u.

a=1

For each z € V the definition of (Ayu)(z) doesn’t depend upon the choice of local
orthonormal frame {W, : 1 < a <n — 1} of 71 (%) at z. Also A, restricts to each
leaf of .# as the sublaplacian of the leaf. ~

Let g1 = g(9;,0;) where 9; = 0/07) and 9; = /07", If [¢*] = [ngr1 then

) 464

ABy _
G™7] = %(g’%—gyﬂ %(gy'ﬁ_,_g}k)
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Consequently

O¢b O¢*

— 3;15[’841)0 ik
Ozt OxB

02 077

(T 0 9) G =2(T. 0 0)

=23 (T 0 ) E()) B ().

The last equality follows from 9/92/ = N'E}, and gk = > ,uﬁplj where p = AL,
We may conclude that '

(o) 2 2

Oz4 OxB
—n2+ (r koqﬁ){zw (&")W; ¢k>—zws<w>z<w>}. (35)

Taking into account (34)-(35) the system 7,(¢)’ = 0 may be written
Ayd' +2(n — )N — p(N? + T + V- + 2rN) ¢!

2(ijo¢){§:W ()W ¢k>—2¢§<w>z<¢k>} =0. (36)

Let ¢ = ¢ be the solution to the Dirichlet problem (3) with f € C*(99, S). Let us
assume that ¢ € C*(£,5). Note that 1) = O(y). Therefore as ¢ — 0 the equation
(36) leads to

(Hyf)'42(n —1)Nf =0, 1<i<u,

which is (4) in Theorem 1. Note that, in opposition to the elliptic case, the normal
derivatives of the map f:0{ — S may be determined in terms of purely
tangential quantities.

4. An alternative expression for the first variation.

Let ¢ : M — S be a smooth map of a compact strictly pseudoconvex CR
manifold M of CR dimension n endowed with a contact form 6 (such that the Levi
form Gy is positive definite) into a v-dimensional Riemannian manifold (S, h). Let
¢ M — S, |t| < e, be a smooth 1-parameter variation of ¢ (with ¢y = ¢). By a
result in [3] the first variation formula is
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d N n
B0} == [ BV H(0) 01 (a8)

where V € I'(¢~1T'S) is the infinitesimal variation associated to {¢})y<c and his
the Riemannian bundle metric in ¢~'T'S — M induced by h and Hy(¢) =
traceg, (T B,). In this section we derive an alternative expression for the first
variation formula which is imitative of the approach in [49, pp. 132-139]. By a
classical result of J. C. Nash [37], there is an isometric immersion ¢ : S — R for
some K > v, hence h = 1*gy where gy is the Euclidean metric on RX. Let ® = 1 0 ¢.
If {¢t}|t\<s is a l-parameter variation as above we set ®; =10 ¢;. Also let us
consider

Y Mx(—ee) =8, P(x,t)=¢i(x), zeM, [t]<e

and U =,01. We wish to compute e(¢) = 1/2traceg,(mg¢*h). To this end let
{Es:1<a<2n} be alocal Gy-orthonormal frame of H(M), defined on an open
set U C M. Then

1277,

€(¢)w = 5 ZQOJP(:L') ((dx@)Ea,zy (dzq))Ea,z)a zeU.
a=1

If we adopt the customary identifications F,:T,(RY) — RX given by
F(0/0u), = eq for 1<A<K (so that goo(F, (&), F, ' (n) = (&mn) for any
¢,m € RY) then

2
6((,25)1 = 5 Z [UA (EI)(x)(d:r(p)Ea,J:)] .
a,A
Here (u!,...,uf) and {e4:1< A< K} are the Cartesian coordinates and

canonical basis of RX. Let 14 = u% o and let BJA = 01" /0y be the Jacobian of
the given immersion, where (V,3') are local coordinates on S such that
¢~ 1(V) CU. We may assume without loss of generality that U is the domain of
alocal coordinate chart (z',...,2*""): U — R* on M. If E, = Eigl Ur 9/0z?
for some U? € C*(U) then

8(;57} ?

(0) =5 X |UBt o) 5

a,A

(37)
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on U. Then (by (37))

e0r), = 5 O Fi

a,A

where fA(xz,t) = UP(x) BA(¢(x,t))(0¢'/0xP)(z,t). Let £(t) = E(¢;) hence

a

A
&'(0) :XA: / fA(x,0) 3{‘9’% (2,0) dz

where dz = (6 A (d6)")(z). Also fA(z,0) = B(¢(x))(E.¢'), and

aft Y 0y oy
¢ = (Ui [(ng) 5 o T B oY) (%cpat} (38)

Here 7 : M x (—¢,¢) — M is the natural projection and Bf} = 0B /0y, Let W €
'>(¢~1TS) be given by

9
ot

i )
= z,0)—
@) Ot Dy

V[/.’E = (d(al:ﬁ()) ¢)

@‘(1)'
Let us consider the functions WA :U — R, 1 < A< K, given by
WA(z) = u(Fp) (dymy)Ws), z€U.
We shall need the following
LEMMA 5. Let ®4 = 140 ¢. Then

£(0) = — / SO (8,4 de. (39)
A

PROOF. Note that (9v'/0xP)(x,0) = (0¢'/0zP)(z). Similarly if we set
g'(x) = (0 /0t)(x,0) then (0% /0xPOt)(x,0) = (0g'/0xP)(x). Next (by (38))
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so that
/ (B2 0 6) Eu(¢) Eu(W)da (40)
a,A

due to W4 = ¢/(B# 0 ¢). Let us consider the tangent vector field X € 2°(U) given
by

X=> WABog) V¢
A
By taking into account the identity
D EuGo(X, E,)) = div(X) + Y Go(X, Vi, Eo)
we may integrate by parts in (40)
£0=3 [EvA Bl o0 E.6)
S WAE((BY 0 ¢) Eut)} da /{ZE (Co(x

S WA[(B o ) B2 + (B o 0) <Ea¢i><w>] } i
a,A
so that to get

&0 =~ [ S wr{(Bro0) dst + T (B0 0) (BB b (1)
A a
Since E,(®4) = (B o ¢) E,¢' the identity (5) yields
D@ = (B 0 ¢) Ay’ + Z (B o ¢) (Ead')(Eag) (42)

and (39) follows from (41). Lemma 5 is proved. O

At this point we need to recall the Gauss formula for the immersion ¢ : S —
RE (cf. e.g. [10])
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A _ pATk A
B, =B, T}, + A5 (43)

where Fj-k are the coefficients of the induced connection, A(9;, 9;) = A;‘} a/out is
the second fundamental form of ¢, and 9; is short for 9/9y'. By (43) one may write
(42) as

(200) ()

D(z)

= (dg(a)t) [(Ab(ﬁ) ) 6?/’5

+ 3 Ayw) (6Ea),, (6-Ea),) (44)

+ (67 V) 6.,

é(z)

for any x € U. We may state

THEOREM 4. Let¢: M — S be a smooth map of a strictly pseudoconver CR
manifold M into a Riemannian manifold S. Let v:S — RX be an isometric
immersion of S in some FEuclidean space RX. Then ¢ is a pseudoharmonic map if
and only if

(A®)(z) = Fo)(traceg,mu (4" A)), (45)

for any x € M, where Ay® = (Ay®1, ..., A®) and A is the second fundamental
form of ¢.

PROOF. We may choose a variation {¢} .. such that

0
WI: = tan¢(£) (A[)QA) ([L’) w ( ), T e ]\4’7
d(x

where tan, : T, (R") — T,(S5), is the projection associated with the direct sum
decomposition

Tz,(y)(RK) = [(d,)T,(S)] & E(v) yeSs,

Y’

and E(¢) — S is the normal bundle of . Then (by (39) in Lemma 5) W = 0 so that
(44) yields (45). O

COROLLARY 1. Let M be a compact connected strictly pseudoconvexr CR
manifold. Then any pseudoharmonic map ¢ : M — R is constant.
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PROOF. We may embed R’ as a totally geodesic submanifold into some
Euclidean space R hence (by (45)) Ay®4 = 0. Then Ay(®4)* = 2||[V7d4|* so
that (by integrating over M and applying Green’s lemma) VZ®4 =0. In
particular 9,®4 = 0 i.e. ®* is a R-valued CR function. O

On the other hand

LEMMA 6. On a nondegenerate connected CR manifold any real valued CR
function is constant.

PrROOF. Let {T,:1<a <n} be a local frame of T y(M) defined on the
open set U C M. Let u: M — R be a CR function i.e. a C" solution to Tx(u) =0
where Ty = T,. By complex conjugation T, (u) = 0 as well. Finally by the purity
axiom satisfied by the torsion of the Tanaka-Webster connection of (M,0) (cf.
(1.37) in [14, p. 25))

29,5T(w) = T Tx(u) = T2 T, (u) — [To, T5)(u) = 0

for any local frame {15 : 1 < a <n} of Tyg(M). Here g,5 = Gy(Ta, T;) and Iy,
are the local coefficients of the Tanaka-Webster connection (a,b,cé€
{1,...,n,1,...,m}). Hence T(u) = 0 so that u is locally constant. O

5. Pseudoharmonic maps into spheres.

Let S"={z=(21,...,011) E R :a?+ - +22 =1} and let T =
{x € §” : 21 = 29 = 0}. Let M be a topological space. A continuous map ¢ : M —
S” meets ¥ if (M) N #£0. Let ¢ : M — S” be a map that doesn’t meet 3. We
say ¢ links 3 if the map ¢ : M — S” \ ¥ is not null-homotopic. Our purpose in this
section is to establish the following

THEOREM 5. A nonconstant pseudoharmonic map ¢ : M — S” of a compact
strictly pseudoconvexr CR manifold M into a sphere S¥ either links or meets X.

Theorem 5 is the subelliptic counterpart of a result by B. Solomon [46]. As in
[46] the proof relies on the observation that S”\ X is isometric to the warped
product S x, ' where v : 847! x S' — (0,400) is given by v(y, z) = y, for any
y€ S and any z€ S' C C where 7' ={y=(v,y,) € R":ye€S”, y, >0}
Indeed I(y,u+ iv) = (y,u,y,v,y) is an isometry of S_’fl x S' endowed with the
warped product metric mg,_; +v® 591 into S”\ X. Here my : Sylx St — Sf’[l
and 79 : S’jr’1 x S' — S' are the natural projections. Also we denote by g the
standard metric on S* ¢ R*"!. The first step is to establish
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LEMMA 7. Let ¢: M — S be a pseudoharmonic map of a compact strictly
pseudoconvex CR manifold into a Riemannian warped product S = L x,, R with
w € C®(L). Then ¢(M) C L x {ty} for somety € R.

PrROOF. Weset F=pjo¢pand u=pyo¢p wherep; : S— Landpy,: S — R
are the natural projections. The target manifold carries the Riemannian metric
h=pigr+(wo p1)? dt ® dt where gy, is a Riemannian metric on L and ¢ = p,. Let
w € C*(M) and let ¢ : M — S be given by ¢(z) = (F(z),u(x) + te(x)) for any
z € M and any [t| <e. Then {¢}; . is a smooth 1-parameter variation of ¢ and

traceg, (Tp¢;h) = traceg,(TuF*gr) + (wo F)* |V,

where u; = ps 0 ¢4, so that

E(¢)) = E(F) + %/ (wo F)?||VHu||” 6 A (d6)".

As ¢ is pseudoharmonic (integrating by parts)

d
0= - E(¢p)} g = / (wo F)Ge(VTu, V)0 A (dO)"
M
_ / pdiv((wo F)* V'u) 0 A (do)"
M
hence u satisfies the subelliptic equation
div((w o F)? vHu) —0. (46)

Finally (by (46)) div((wo F)? VHu2) = 2(wo F)*|[V¥u||* and then (by Green’s
lemma) [, (w? o F)[[VHu|*@ A (d8)" = 0 so that u is a R-valued CR function and
hence u = constant. Lemma 7 is proved. O

We shall apply Lemma 7 for L = S‘jr’l and w € COO(S‘J’;I) given by w(y) = y,.
The proof of Theorem 5 is by contradiction. Precisely we assume that ¢ : M —
S”\ ¥ is a null-homotopic pseudoharmonic map and show that ¢ must be
constant.

Let p: R — S' be the exponential map p(t) = €. Also let us consider the
warped product metric pjg,—1 + (wo p1)2 dt ® dt on S7! x R. Then w = (id,p) is a
local isometry of Sf’[l X R onto Sfl x, 8. Let F =m o4 and u = my 0 9 where
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p=1I"'o¢. Let xg € M and 2y = u(xg) € S'. Let ty € R such that p(ty) = 2. As
Y : M — 871 x S is null-homotopic it follows that w, mi(M,zg) =0 hence by
standard homotopy theory (cf. e.g. Proposition 5.3 in [30, p. 43]) there is a unique
function @ : M — R such that 4(zg) =ty and p o @ = u. As u is smooth it follows
that @ € C*(M) as well. The following result is immediate

LEMMA 8. Let¢: M — S be a pseudoharmonic map from a compact strictly
pseudoconvexr CR manifold into a Riemannian manifold S. If m: S — S is a local
isometry then any smooth map ¢ : M — S such that wo ¢ = ¢ is pseudoharmonic.

By Lemma 8 it follows that ¢ = (F,a) : M — S”! x,, Ris a pseudoharmonic
map. Then (by Lemma 7) (M) C S%~' x {t} for some ¢t € R. We may conclude
the proof of Theorem 5 by using

LEMMA 9.  Any pseudoharmonic map ¢ : M — S’jr’l of a compact strictly
pseudoconvexr CR manifold M into an open upper hemisphere Sfl 15 constant.

PROOF. Let ¢:S""! — R” be the inclusion and ® = 10 ¢. It is a standard
matter to compute the second fundamental form of «. As a corollary of (45) in
Theorem 4

AP = |[EDP Y, 1< A<y, (47)

where |E®* = Z:(LA(EJI)A)2 with respect to a local Gy-orthonormal frame
{E,:1<a<2n} of HIM). Cf. also (4.52) in [14, p. 257]. As ¢(M) C S~ one
has ®” > 0. Let us set A = v in (47), integrate over M and use Green’s lemma. It
follows that [,, @ |E®|* 6 A (df)" = 0 hence ® is a R”-valued CR function on M.
As M is nondegenerate ® must be constant. O

6. Pseudoharmonic vector fields.

6.1. Total bending.

Related to (5) we consider the sublaplacian on vector fields. Let M be a
strictly pseudoconvex CR manifold and € a contact form on M such that Gy is
positive definite. If X is a C? vector field on M then A, X is the vector field locally
given by

; , Looxt  for , N\ oy
(A X)" = A X' + 20T, ot a* <—axjff + T30, — F;kl“;£> Xt (48)
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where X = X'9/0x' and F;k are the coefficients of the Tanaka-Webster
connection V of (M,6) with respect to the local coordinate system (U,z') on
M. Also a” = g/ — T'T7 and [g"] = [g;;]"" where gij = g9(8;,0;), 9 = 8/dx'. Let

U(M,0) = {X € (M) : go(X, X) = 1}

be the set of all C* unit vector fields on (M, gg). The pseudohermitian biegung, or
total bending, is the functional & : % (M,0) — [0,+00) given by

1
B(X) = 5/]” IVIX|P W, X e %(M,0). (49)

Here VEX € T™(H(M)* ® T(M)) is the restriction of VX to H(M). The biegung
(49) is a pseudohermitian analog to R. Wiegmink’s total bending (cf. [51]) of a
vector field on a Riemannian manifold (and Z(X) measures the failure of X to
satisfy VyX =0 for any Y € H(M)). We adopt the following definition. A
pseudoharmonic vector field is a C* unit vector field X € (M, 0) which is a
critical point of #Z with respect to l-parameter variations of X through unit
vector fields. For simplicity we assume that M is compact (otherwise we may
modify the definition (49) by integrating over a relatively compact domain Q C M
and consider only variations supported in §2). Pseudoharmonic vector fields will
be shown to satisfy the nonlinear subelliptic system

AX + |[VIX|PX =0, (50)

(the Euler-Lagrange equations of the variational principle associated to (49)).
The pseudohermitian biegung (49) is related to the functional (7). To see this we
need the CR analog to the Sasaki metric (on the total space of the tangent bundle
of a Riemannian manifold).

6.2. Geometry of the tangent bundle over a CR manifold.

Let 7 'TM — T(M) be the pullback of the tangent bundle, where 7 :
T(M) — M is the projection. If X is a vector field on M then X = X o7 is its
natural lift (a cross section in 7 'TM — T(M)). Let 6 be a contact form on M
with Gy is positive definite. The Tanaka-Webster connection V of (M, #) induces a
connection V in 7'M — T (M) which is easiest to describe in local coordinates.
Let (U,%') be a local coordinate system on M and (7~ '(U),z%,y') the naturally
induced local coordinates on T(M). Let X; be the natural lifts of 9/9%' (a local
frame in 7 'TM — T(M) defined on the open set 7 (U)). Let I‘jk be the local
coefficients of V with respect to (U, Z"). Then V is locally given by
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Vo, X = (T 0m) X,V Xp =0, (51)
where 9; = 9/0z' and 0 = 0/0y' for simplicity. Let £ be the Liouville vector i.e.
locally . = ' X;. A tangent vector field 2 on T'(M) is horizontal if Vo =0.A
calculation based on (51) shows that 2" = 270; + 2779, is horizontal if and
only if 27" = —N/27. Here Nj = Fékyk and m = 2n + 1. Let

0y ={Z: £ horizontal}, weT(M).

Then

8 =0, —Nid;, 1<i<m, (52)

is a local frame of ## — T(M) on 7~ }(U) hence S is a C* distribution of rank m
on T'(M) and

T(T(M)) = A ® Ker(dn). (53)
Thus the restriction to JZ of

L:T(T(M)) -7 'TM, L,% = (d,n)Z,
Z eT,(T(M)), uweT(M),
is a bundle isomorphism whose inverse is denoted by 3: 7 'TM — J# (the

horizontal lift associated to V). Let v: 7 'TM — Ker(dr) be the vertical lift i.e.
locally vX; = 9;. The Dombrowski map is the bundle morphism

K:T(T(M)) -7 'TM, K=~"'0Q,

where Q : T(T(M)) — Ker(dn) is the projection associated to the decomposition
(53). The given data induces a Riemannian metric Sy on T(M) given by

SQ(%, @) = 99(-[“%7 L@) + gG(K%a K@), 2, € T(T(M))

As well as in Riemannian geometry (cf. D.E. Blair [6]) Sy is referred to as the
Sasaki metric of (M,0). The total space of the tangent bundle of a strictly
pseudoconvex CR manifold possesses a rich geometric structure whose inves-
tigation is (as opposed to the Riemannian case, cf. [6] and references therein) far
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from being complete. For instance, note that the Riemannian manifold (T (M), Sp)
carries the compatible almost complex structure

J(BX)=~X, J(yX)=-8X, Xcr'TM.
A simple calculation shows that the Nijenhuis tensor field of J is given by

Ny (BX,8Y) = yR(X,Y)Z + T(X,Y),
Ny(vX, BY) = BR(X,Y)Z —7T(X,Y),
NJ(Pva 'yY) = _’YR(X> Y)g - ﬂT(X7 Y)a

for any X,Y € n~'TM. Here
R(X,Y)Z = RY(BX,BY)Z, T(X,Y)=T"(8X,B5Y).
Also RY is the curvature tensor field of V and TV is defined by
TV, W) = Vo LY — Ny LZ — L2, %]

for any tangent vector fields 2, % on T'(M). As the Tanaka-Webster connection
has torsion J is never integrable.

6.3. The first variation formula.
Let us consider the functional E : C*°(M,T(M)) — R given by

E(¢) = %A] tracegg (ﬂ'H(,ZS*S;)) )4

where mp¢*Sy denotes the restriction of the bilinear form ¢*Sy to H(M) ® H(M).
We shall show that

THEOREM 6. Let M be a compact strictly pseudoconvex CR manifold and 0
a contact form with Gy positive definite. Let X be a smooth vector field on M. Then

E(X)=nVol(M,0) + B(X), (54)
where Vol(M,0) = [,,¥. Consequently i) E(X) > nVol(M,0) with equality if

and only if VAX = 0. Alsoii) X : (M,0) — (T(M), Sp) is a pseudoharmonic map if
and only if VX =0. Let us assume additionally that X € %(M,0) and let



294 S. DRAGOMIR and Y. KAMISHIMA

XM x (=6,6) = T(M) be a smooth 1-parameter variation of X through unit
vector fields (2 (x,0) = X(x), x € M) and let us set V = (0X;/0t),_, where
Xi(z) = Z(x,t), x € M, |t| <. Then iii) go(V,X) =0 and

d
G EX = [ av.ax)w. (59)
M
Consequently iv) a C* unit vector field X on M is a pseudoharmonic vector field if
and only if X is a C* solution to (50).

Statement (ii) extends a result by T. Ishihara [31], and O. Nouhaud [38], to
the subelliptic case.

PROOF OF THEOREM 6. Let v € M and {E,:1 < a < 2n} be a local
orthonormal (with respect to Gy) frame of H(M), defined on an open neighbor-
hood of z. If E, = X 9/0%7 then

(deX) Eae = Ny(@){8 + [(V;X7) 0 M0} x ()

where 6; are given by (52) and V; X’ = 9X'/0#/ 4+ ', X*. Then

2n

(traceg,mg X" Sp), = Z(X*SG)(Ea; E.),
= Z SB,X(z)((de)Ea,z7 (dIX)Ea,I)
=Y N @A @) {808, 6) + (VX ) (ViX*)S0(0r, 03} x(ay

=3 {g0(Eas Eu) + NV X (ViX*)grs -

Let T =T'0/0%. As Y.2" XM = g — T'T7 it follows that

a=1"a

traceg, (T X*Sy) = 2n + ||[VX|* — || V2 X |

where |[VX||* = ¢7(V; X*)(V; X )gre- As {Ej: 0 < j < 2n} (with Ey = T) is a local
go-orthonormal frame of T(M) one also has | VX||* = Z?ZO 90(Vg, X, Vi, X) hence
(54). Clearly (54) yields statement (i) in Theorem 6.

Let us prove (ii). If VX =0 then X is a pseudoharmonic map and an
absolute minimum for E in T'*°(M,T(M)). Viceversa let us assume X is a
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pseudoharmonic map of M into the Riemannian manifold (T'(M),Sp). Thus
{dE(X})/dt},_, = 0 for any smooth 1-parameter variation X; : M — T'(M) of X
(Xo = X). In particular for the variation X;(z) = (1 —¢)X,, z € M, |t| < e (by
(54))

dEX)|
7 . % {nVol(M,0) + B(X:)},_,

dt{ B [ v w}_oz— [ 1.

Let X € %(M,0). To prove the first variation formula (55) we need some
preparation. Let N =M x (—6,6) and let p: N — M be the projection. Let
p 'TM — N be the pullback of the tangent bundle T(M) — M by p. Then 2
may be thought of as a C™ section in p~!TM — N.If Y is a tangent vector field on
M we set Y =Y op. The Webster metric gy induces a bundle metric jy in
p'TM — N uniquely determined by §4(Y, Z) = go(Y, Z) o p. Also let D be the
connection in p'TM — N induced by the Tanaka-Webster connection V.
Precisely let Y be the tangent vector field on T(M) given by

O:

Yy = (doi)Ys, x €M, [t <6,
where i, : M — N, i;(x) = (z,t). Then D is determined by

, =VyZ, DoaZ=0, Y,Z€T(M).
Moreover a simple calculation shows that Dgy = 0 and

(D};%)(m_’,’) =(VyXy),, (z,t)eN.

Then

B(Xy) = 1/ zn:gg Vi, X, Vi, X)), V()

/AZggD X, Dg, )y ()

i

hence
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—%’ (Xi) = / de(Da/mDE”&V, D, 2) () ¥(2)

/J\ZQ&D DojonZ's D, ) () ¥(2)

1q

as RP(9/0t, E,)2 = 0 and [0/0t, E,] = 0. Moreover (by Dgs = 0)

—@ Xt / Z{Ea(QQ(DO/Bﬂ%v DE(L‘%.))

— 96(Dojn 2, D, D, )} 4p) ().
For each fixed |t| < 6§ we define Y; € H(M) by setting
Go(Y1,Y), = Go(Dojn 2", Dy ) 1)
for any Y € H(M) and any = € M. Then (by Vgy = 0)

Eo(Go(Dojon 2, Dpp, X)) = Ea(96(Yi, Ea))
- g@(vE,,}/tv a) +g€(n7vE,,Ea)'

As VU = 0 the divergence operator (see Section 2) is also given by
2n
div(Y) = trace{Z — VY } = Zgg(VEJY, E;).

=0

Finally (by Green’s lemma)

d
7 {E(X4)}—o
_ /M Go (Da/at%, ZL:{DE”DE”% — DV/ETEH %}) ( ())\I/(x)
—— [ av.8x),9()
M

and (55) is proved. If X is a critical point i.e. {dE(X;)/dt},_, =0 then (55)
together with the constraint go(V,X)=0 (obtained by differentiating
90(Xt, Xi) =1 at t =0) imply that Ay X = AX for some A € C°(M) and taking
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the inner product with X shows that A = g(A,X, X) = —||[VZ X]|>. Theorem 6 is
proved. ([

6.4. Unboundedness of the energy functional.
Under the assumptions of Theorem 6 we may prove the following

COROLLARY 2. The characteristic direction T of df is a pseudoharmonic
vector field and an absolute minimum of the energy functional E : % (M,0) —
[0, 400). Moreover, for any nonempty open subset Q@ C M and any unit vector field
X on M such that X € H(M) there is a sequence {Y,},-, of unit vector fields such
that each'Y, coincides with X outside Q and E(Y,) — 0o for v — oo. In particular
the energy functional E is unbounded from above.

PROOF. The first statement in Corollary 2 follows from V7T = 0 (and then
E(T) = infxeq g E(X) =nVol(M,0)). To prove the second statement let
h=(z',...,2™): U — R™ be a local coordinate system on M such that U C ,
h(U) D [-2m,27]™ and X = 9/0z' on U (cf. the proof of the classical Frobenius
theorem, e.g. [41, pp. 91-92]). Moreover let ¢ € Ci°(M) be a test function such
that i) 0 < p(x) <1 for any € M, ii) ¢ = 1 in a neighborhood V of the compact
set K = h1([—m,7]™) such that V C U, and iii) ¢ =0 outside h~!([—2m, 27]™).
For each v € Z, v > 1, let f, be the C*™ extension to M of the function sin(vz!)
(thought of as defined on the closed set V) and let us set a, = ¢f,. Next let us
consider the C* vector field

Y, = (cosay,) X + (siney,)T, v>1.

Then Y, is a unit vector field coinciding with X outside 2. As we may complete X
to a local frame of H(M) (and VT =0, §(VxX) =0)

IV > g0(V Y, VxYy) = X(ew) + (cos® o) [V X|* > X ()™

On the other hand X (a,) = X(p)f, + pv(cosvz!) on U so that X(a,) = vcosva!
on V O K. Hence

26(%) = [ VI w = [ X =2 [ cofut)v.
K K K

If dvol(gg) = \/G(z)dx' A--- Adx™ is the Riemannian volume form of (M, gy)
(with G(z) = det[g;;(x)]) there is a constant ¢, > 0 such that ¥ = ¢, dvol(gs) (and
¢, = 2"nl, cf. [48]). Let us set a = inf,cx \/G(z). Then a > 0 and



298 S. DRAGOMIR and Y. KAMISHIMA

/ cos?(va') U > ac,,,/ cos?(vth) dt' - - dt™ = a2" 'n!(27)"
K

[—7,a]™

Hence E(Y,) > a2"2n!(27)"v — oo for v — oo. O

6.5. The second variation formula.
Let X € %(M,0) and let us consider a smooth 2-parameter variation of X

W :MxI;—T(M), Is=(-6"0), 6>0,
Xt,s = @Oit,s; t,s € Lg, X(),() = X.

Here we set N =M x I? and 4,5 : M — N, i;4(z) = (z,t,s) for any x € M. We
shall prove the following

THEOREM 7. Let V = (0X;,/0t),_,_, and W = (0X;:/0s),_,_,. Let us
assume that X, € U(M,0) for any t,s€ls. If X € U(M,0) is a smooth
pseudoharmonic vector field then

62
Otos

(B} g=— [ Ve 8+ [TIX W), (56)
M

In particular for any smooth 1-parameter variation of X

2
G A= [ AV = 9V v (57)
M
The identity (56) is the second variation formula (of the pseudohermitian
biegung). To prove Theorem 7 let p : N — M be the projection and p~!TM — N
the pullback of T(M) by p. Then & is a C* section in 7 'TM — N. Let gy and D
be respectively the Riemannian bundle metric induced by gy and the connection
induced by the Tanaka-Webster connection V in 7 !TM — N. Similar to the
conventions adopted in the proof of Theorem 6 we set

YV(.’v,t,s) = (d:cit,,s)yjm VS Ma t,s € I&-

For simplicity we set T =09/0t and S=0/9s (T,S € Z(N)). Then (by
Dgy = 0)
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a 2n
— B(X,,) 7/ Zgg (DrDy %, Dy %)V

ot
/ZggD Dr%, Dy %)
W

1 q

due to

Then

0? 0
B(X;s) = —Ggo(Dp D1?%', D+ v
ason 71Kt /M ' 55 0\ P5. D1, Dy ¥)
:/ Z{gg(DsDEaDT@, DE‘u@) —|—§9(DE~HDT52/, DSDEag/)}\IJ
M
(as [S, E.] = 0 and RP(S,E,)% = 0)

= / Z{QH(DEHDSDTQ/’ DEag) + QQ(DEHDTW, DEHDSQ/)}\I/

/ > {Eu(§o(DsDr%, Dy %)) — go(DsDr%, Dy Dy )
M

+ Ea(gg(DTg, DE(LDSW)) — QQ(DT@, DE"QDE"QDS@)}\II- (58)
For each fixed (¢,s) € I? we define Y; s € H(M) by

G@(Y}ﬁs, Z) (DsDT@ D @) 2t,s)? VAS H(M)

Then
ZEll(gﬂ(DSDTg D“ @)) = ZE(L(QG(Y;,.” Ea)) ©

= Z{ge ViYis Ea)+90(Yis, Vi, Ea)}op

= div(Y;.) op+ go(DsDr?, Y

Similarly, given Z,, € H(M) determined by
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Go(Zis, Z), = go(Dr¥, D7 Ds¥),

z,t,5)

one has

> Eu(go(D2r¥, Dy D5 ¥))

a

= div(Z.s) o p + i <DT@/, > D~ DS@/).

Going back to (58) one has (by Green’s lemma)

82
507 (P Xes)} s

+ Go (DT@, dAD

Ds% — DEUDEHDS@/}) } o

Vi, By t=s=0

= [ {00, 80X) + gu(V. A}

where we have set U = (9°X;,/0t0s),_,_,- Moreover (by differentiating
9o(#, %) =1)

gﬁ(Ua X)I = QH(DSDTQ, @)(1,070)
={89(D2%, #)) = §o(D1¥, Ds¥)} 100y = —96(V, W),

and (as X is pseudoharmonic i.e. a smooth solution to (50))

32
otos

(B s = [ UV X000 - oV, S

:_/ @V, AW + [V X|PW) 0
M

and (56) is proved. Finally given an arbitrary smooth 1-parameter variation 2 :
M x Is — T(M) of X through unit vector fields the identity (57) follows from (56)
for the particular 2-parameter variation % :M x Iy, — T(M) given by
Y (x,t,5) = X (w,t+ s) for any x € M and any t,s € I5/,. Indeed
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d2

G BN o= = [ oV, A+ 97XV, (59)

On the other hand, for any smooth vector field V on M

2n

A|VIP =D {EEVI* = (Ve Ed)IVI*}
a=1
=2 {Ego(VE,V. V) = 9o(Vv, 5V, V)}

=23 {9(VE VeV, V) +0(Ve V. VEV) — 9(Ve, 5V, V)}

hence

A IVIP = 2{go(AV, V) + [VIV]*}. (60)

Now (57) follows from (59)—(60) and Green’s lemma.
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