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Abstract. We calculate the cuspidal class number of a certain quotient
curve of the modular curve Xo(M) with M square-free. For each factor r of M, let
w, denote the Atkin-Lehner type involution of X, (M). Let M be a divisor of M,
and W, the subgroup of the automorphism group of Xo(M) consisting of all w,
with 7 dividing M. Our object is the quotient of X((M) by Wy. In this paper, we
consider the case where M is odd.

1. Introduction.

As is well known, the cuspidal divisor class group of a modular curve is finite
(Manin [6], Drinfeld [2]). Concerning modular curves of type Xo(n), Xi(n), or
X(n), the full cuspidal class numbers are calculated by several authors (Ogg [7],
Kubert and Lang [4], [5], Takagi [9], [10], [11], [12], [13]) though the choice of n
is restricted. Concerning the curve Xj(n) the order of a certain subgroup of the
cuspidal divisor class group is also calculated (Klimek [3], Kubert and Lang [4],
[5], Yu [14]) without any condition on n.

In this paper we consider another type of modular curves, which is a quotient
of the modular curve Xy(M) with M a square-free integer, and calculate its
cuspidal class number. More precisely, for each factor r of M, let w, denote the
Atkin-Lehner type involution of X((M) (Atkin-Lehner [1]). Let M be a divisor of
M, and W, the subgroup of the automorphism group of Xy(M) consisting of all w,
with r | My. Our object is the quotient curve of Xo(M) by Wy. This work is a
continuation of [12].

In this paper, in order to avoid some complexity, we confine ourselves to
considering only the case where M is odd.

Our main results are Theorems 7.8 and 7.14. As a special case, we have the
following (Corollaries 7.9 and 7.15).
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THEOREM. Letp and q be distinct odd primes. Let X be the quotient curve of
the curve Xo(pq) by w,. Then the cuspidal class number h of X is equal to the
numerator of (1/24)(p — 1)(g+ 1) or (1/12)(p — 1)(¢ + 1) according as (g) =1 or
—1, respectively. The cuspidal divisor class group of X is a cyclic group of order h
generated by the divisor class of Py — Px.

In the theorem above, the symbol (g) denotes the Legendre symbol. The
symbols P, and P, denote the cusps on X represented by 1/¢ and oo respectively.

This theorem is related to a result by Ogg ([8, Corollary 1]), which proves
that the divisor P, + P, — P, — Py, on Xy(pgq) defines a divisor class of order
exactly equal to the numerator of (1/24)(p — 1)(q + 1), where P, (x =1, p, q, pq)
denotes the cusp on X,(pg) represented by 1/x. Note that the cusp P,, coincides
with the cusp represented by oo.

The contents of the present paper are the following. In Sections 2-4, we
summarize some results of [12, Sections 1-4]. In Section 4 some new results are
added (Proposition 4.4 and Corollary 4.5). In Section 5 the value of <I)§,p) at the
type s element §; is given. In Section 6 we determine the unit group on the
quotient curve of Xo(M) by Wy (Theorem 6.4). It is our first main theorem. In
Section 7 we divide the case into two (Cases I and IT), and determine the cuspidal
class number in each case (Theorems 7.8, 7.14). They are our main theorems. In
Section 8 we determine the p-Sylow group of the cuspidal divisor class group for
the case p # 2,3 (Theorem 8.1) and the case p =3 under certain conditions
(Theorem 8.5).

In the present paper we denote by Z, Q, C, 1, the ring of rational integers,
the field of rational numbers, the field of complex numbers, the two-by-two unit
matrix, respectively. For any prime number p we denote by Z,, @, the ring of
p-adic integers, the field of p-adic numbers, respectively.

2. Transformation formulas for Siegel functions.

In this section we summarize some results of [12, Section 1]. It is assumed
that the reader is familiar with the contents of [9, Section 1].

2.1. The Principal congruence subgroup I'(I) of G(v/M).

Let M be a square-free integer (# 1) fixed throughout the present paper. We
denote by T the set of all positive divisors of M, and regard it as a group with the
product defined by ros=rs/(r,s)> where (r,s) denotes the greatest common
divisor of r and s (r,s € T'). Let € be the order defined by ¢ = %", Z+/r. For any
two positive integers n and m such that m is a divisor of M, put I = ny/m&. Then
the set I is an ideal of the order &. We assume that N = nm # 1.
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Let I'(I) be the principal congruence subgroup of the group G(v/M). (For the
definitions of G(v/M) and T'(I), we refer to [9, Section 1.1].) Let §; be the field of
all automorphic functions with respect to the group I'(Z) such that their Fourier
coefficients belong to the cyclotomic field ky = Q(e*™/N). Let &, be the field of all
automorphic functions with respect to the group G(v/M) such that their Fourier
coefficients belong to @. Then it is known ([9, Section 1 (1.15)]) that the field §; is
a Galois extension of §Fy, and its Galois group is isomorphic to the group
Yr(+) =91/{x1}, where ¥; denotes the group consisting of all elements « of
GLy(0/I) which are of the form

)(mod[) (2.1)

with a,b,e,d€ Z, r €T, and r* = M/r. Since the element r of T above is
determined by the element «, we call it the type of «, and denote it by t(«). We
denote by o(a) the element of the Galois group Gal(F;/§1) corresponding to a.

2.2. Some properties of Siegel functions.

Here we recall some properties of Siegel functions. For any element a =
(a1,a9) of the set Q* — Z*, the Siegel function g,(7) (7 € §) is defined in [5]. (The
symbol $ denotes the upper half plane.) It has the following g-product

o0
ga(T) — _q‘(rl/Q)Bg(al) 2mias(a;—1)/2 1 —q¢ H 1 _ qT(b 1 _ QT/QZ) (22)
k=1
where ¢, = €*™7 q, = €™, 2 = 17 + ag, and By(X) = X? — X + (1/6) (the second

Bernoulli polynomial). If b= (by,by) € Z*, then we have ga+;,( ) =e(a,b)ga(7),
where €(a, b) is a root of unity defined by

271
(a b) = eXp|: (b1b2 + by + by + arby — agbl):l (23)

If o € SLy(Z), then we have g,(a(7)) = ¥(®)gaa(T), where 1) denotes the character
of SLy(Z) appearing in the transformation formula for the square of the Dedekind

a b

n-function. Explicitly the value of ¢(«) with a = (P d) is given by

(=)D exp [—{ —¢)d + ac(1 — d?)}} if d is odd,
(o) = (2.4)

71'(71)([371)/2 exp [g {(a+ d)c+bd(1 - 62)}:| if ¢ is odd.
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In particular, we note that ¢(—12) = —1. (It is known that the kernel of 4 is a
congruence subgroup of level 12 with index 12, and coincides with the
commutator subgroup of SLy(Z).)

2.3. Modified Siegel functions with respect to the ideal I.
Here we define the modified Siegel functions with respect to the ideal I. Let r
be an element of T, and A'I(r) be the set of all row vectors u of the following form

() e

m,r) n(m,r*)

where z and y are rational integers satisfying u ¢ Z+/r x Z\/r* = Z") . We call the
element r of T above the type of u and denote it by t(u). Put A} =J,; A'I(T>
(disjoint). If u is an element of A} of type r, and « an element of G(vV'M) of type s
(r,s € T), then the product uc is an element of A} of type r o s.

Let u= (a1 T, ag\/F) be an element of A} of type r (a1,a2 € @), and put
u® = (a1,as) (€ Q* — Z%). Then we define the modified Siegel function g,(7)
(1 € 9) with respect to the ideal I by

gu(T) = guo( Zx T>. (2.6)

For an element v = (bjy/r,b2v/7*) of Z) (b1, by € Z), write v° = (by,bs) (€ Z?).
For elements u € A/I(r) and v e Z"), we put

e(u,v) = e(u’®,v°). (2.7)

Let

(2.8)

(o )
Vs dys

be an element of G(\/M) of type s (a,b,¢c,d € Z, s € T). For an element r of T, we
put

ol = ( alr;s) b(T; 5*)) (2.9)

Then the matrix a(") belongs to SLy(Z).
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Now we have the following transformation formulas for the modified Siegel
functions ([12, Proposition 1.1]).

PROPOSITION 2.1.  Let u be an element of A} of type r.
(1) Let v € ZU). Then gy o(T) = (u,v)gy (7).
(2) Let o € G(vVM). Then g,(a(1)) = ¥()gua(T), where b,(a) = p(a).
(3) Let a € T'(I). Then gy, (a(7)) = eu(@)hr () gu(7), where e,(a) = e(u,v) with v =
ua —u(€ Z0).

Since the number e(u,v) (respectively v,(«)) in this proposition is a 2Nth
root (respectively a 12th root) of unity, the function gEN"w] depends only on the
residue class of u modulo Z), and is invariant under the exchange u — —u. (The
symbol [2N, 12] denotes the least common multiple of 2N and 12.) Moreover, the
function ngN"l?] belongs to the function field §; and has no zeros and poles on the

upper half plane 9.

3. Modular units on the curve X,(M) and its quotient curves.
In this section we summarize some results of [12, Sections 2, 3].

3.1. The modular curve Xy(M) and its quotient curves.
Let M be the square-free integer fixed in the present paper. Let T'y(M) be the

subgroup of SLy(Z) consisting of all elements of the form (’; Z) with ¢ =0

(mod M). Let T" be a Fuchsian group of the first kind. We denote by X the
complete nonsingular curve associated with the compactification of the quotient
space I'\$). When I' = T'y(M), the curve Xr is written as Xo(M). Let f(7) (7 € )
be an automorphic function with respect to I'. If the function f(7) has no zeros
and poles on §, we call f as a modular unit with respect to I and also a modular
unit on the curve Xr.

Let Tj be a subgroup of T'. Let I'; be the subgroup of G(\/M) consisting of all
elements such that their types belong to Ty. When Ty = {1} (= 1), the group I'; is
isomorphic to T'g(M); more precisely,

I'i = ! 0 711_‘M ! 0 3.1
1—(0 \/M) of )<0 m) (3.1)

Hence, if T' =T, then the curve X, (= X)) is isomorphic to the modular curve
Xo(M). In general, if I' = 'y, then the curve Xr, (= X7,) is a quotient curve of
X1 by a subgroup of the automorphism group of X;. This subgroup can be
described as follows. Since the group I'y is a normal subgroup of I'y with
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I'r, /Ty = Ty, to each element r of Tj there exists an automorphism of the curve
X1, whose corresponding automorphism of the curve Xo(M) is the Atkin-Lehner
involution w,. Moreover, the subgroup consisting of all w, with r € Ty is
isomorphic to the group Ty. Hence, the curve Xy, is isomorphic to the quotient
curve of Xy(M) by the group consisting of all Atkin-Lehner involutions w, with
re TU~

3.2. Cuspidal prime divisors.

We use the notation in [9, Section 1]. Let G4, be the adele group associated
with G(\/M), and U its unit subgroup. Let Uy, be the subgroup of U consisting of
all elements such that their types belong to Ty. Put S = Q* < VM > Ur,. Then
to this S corresponds the function field Fg. For simplicity, we write F(7p) for this
field §s. Then the field CF(Tp) is the field of all automorphic functions with
respect to the group I'y,, and @ is algebraically closed in F(7p) ([9, Proposition
1.6]). It can be shown in a similar way to [9, Proposition 1.7] that the field F(Tp) is
the field of all automorphic functions with respect to I'y; such that their Fourier
coefficients belong to Q. In particular, we have §(T') = §; (for the definition of §;
see [9, Section 1]). The field §(1p) is an abelian extension of F; such that the
Galois group is isomorphic to T'/Ty. The field F(1) (Tp = 1) is isomorphic to the
function field [= Fo(M)] which consists of all automorphic functions with respect
to To(M) such that their Fourier coefficients belong to Q. More precisely, we have

s ={1(5) |70 e} (32)

Let Py, denote the prime divisor of §(7p) defined by the g-expansion. Let P be
a prime divisor of F(Tpy), and vp the valuation of P. For any element o of
Gal(§(Ty)/§1) (=2 T/Ty), the prime divisor P? is defined by vpe(h”) = vp(h)
(h € F(Tp)). We can regard the prime divisor PZ as a prime divisor of CF (1), in
other words, a point on the curve Xr,. More precisely, let us denote by the same
symbol o the corresponding element of T/Ty. Let a be any element of G(v/M)
whose type belongs to the coset 0. Then the prime divisor P corresponds to the
point on the curve X, represented by a~!(c0). The set of the prime divisors PZ
can be identified with the set of all the cusps on the curve X7;. The group T'/Ty
and the set of all the cusps on the curve X7, correspond bijectively by the
mapping o — PJ. We call the prime divisors PZ the cuspidal prime divisors of
$(To).

Let 2 be the free abelian group generated by the cuspidal prime divisors of
F(Ty), and 2, the subgroup of Z consisting of all elements with degree 0. Let #
(respectively Z¢) be the group of all modular units in F(7p) (respectively
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C3(Tp)). Then we have F¢ = C*.F, hence we can identify the divisor group
div(.%#) with the divisor group div(#¢), and the factor group

@ = Do /div(F) (3.3)

with the cuspidal divisor class group on the curve Xr,.

Let R = Z[T/Tp) be the group ring of T/Ty, and Ry the additive subgroup of
R consisting of all elements with degree 0. Then the mapping PJ — o defines an
isomorphism

p:92>R (3.4)

and we have p(%2y) = Ry.

3.3. The function f(p) and modular units.

Here we construct modular units in the field §(7p) by modlﬁed Siegel
functions. Let p be any prime factor of M, and put I, = \/p0. Let <%7 (reT)be
the subset of A conblbtmg of all elements u which are of the form u =
(0, (y/p)Vr*) o ((x/p)\/— 0) according as p 1 r or p | r, where y (respectively z) is
an integer satisfying 1 <y < p/2 (respectively 1 < x < p/2).

When p = 2 (this case occurs only when M is even), the set %’(IZ) contains only
one element u that is (0, (1/2)v/7*) or ((1/2)y/7,0) according as 21 r or 2 | r. For
this element wu, the Siegel function g,(7) is a square of an automorphic function.
We can express square roots of the function g,(7) as products of modified Siegel
functions with respect to the ideal 2v/2¢. For definiteness, we denote by V9u(T)
one of the square roots defined by

90,/ /4) (1) g(\/F/Q,\/r_*/4)(7’) - C if 2¢r,

. (3.5)
907/20)(T) * 9 yrjaiya) (T) - (=¢) i 2],

V9u(T) = {

where ¢ = exp[27i x (7/16)].

For an element u of %’Z), we define the function g,(7) by

o Jen) ifp#2,
gu(T)—{@(T) £ p—2. (3.6)

Now, for each prime factor p of M and each coset p € T'/T, we define the
function f,Ep ) (1) by
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@O =118 11 @ ¢- (3.7)

rep uet@y)
'

Then we have the following proposition ([12, Proposition 2.1]).

PROPOSITION 3.1.  Letp be a prime factor of M, and p a coset in T /Ty. Then

12
the function (f,ﬁ”)) : is a modular unit contained in the function field F(Tp).
Moreover, if we identify Gal(F(Ty)/F1) with T /Ty, then for an element o € T /Ty,

we have
{() ™} = ()™

3.4. The function h, and modular units.
Here we construct another type of modular units in the field F(7;) by the
Dedekind n-function 7(7). Let H(7) be the function defined by

7) = L _ 1/ - _4n )
H(r) n(m> 21 RV (3.8)

where t = exp [27ri7/\/ M} .
Now, for each coset p € T'/T, we define the function h,(7) by

T, HOT)

o(7) [Ty H(sT)’

(3.9)

where the symbol [1] denotes the unit element of T/Tpy, namely, [1] =Tp. In
particular, we have hj;(7) = 1. In general, we denote by [r] (r € T') the coset rTj.

About the relation between f,gp)(r) and h,(7), we have the following
proposition ([12, Proposition 2.3]).

PROPOSITION 3.2.
(1) Let p be a prime factor of M, and p a coset in T/Ty. Then we have

where ¢1 is a nonzero constant. In particular, f[(lp]) (1) = hyy(7) X c1.
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(2) Let p; (i=1,...,k) be prime factors of M. Then we have

Bl () = F) o (F) X S8 (1) 5 x 09 (7) x e,

where ¢y 1s a nonzero constant.

By Propositions 3.1 and 3.2, we see that the function (hp)12M is a modular
unit in the field §(Tp). Later in Corollary 4.5 we shall see some stronger
statements concerning the powers of fép) and h,,.

3.5. The divisors of f,(,p) and h,.
Put 29=2® Q and Rg = R® Q. Then we can extend the isomorphism
(3.4) to an isomorphism Z¢g = Rg, which we also denote by . Since the functions

() \ % 1201 : . o
(f,) ) and (h,) are contained in the field §(Tp), their divisors are well

defined. We denote by le( P ) and div(h,) the elements of Z¢ defined by

diV(f,(,”)) = 117pdiV((f,§p))12p), div(h,) = 121M div((hp)m’f). (3.10)

Let 6 be the element of Rg defined by

S (Z ) = 5 TT0 + i), (3.11)

peT/TU rep p|M

where p runs through all prime factors of M. Then we have the following
propositions ([12, Proposition 2.4, Lemma 3.1]).

PROPOSITION 3.3.  Let p be a prime factor of M, and p a coset in T /Ty.
(1) ¢(aiv(£)) = p(p] = 1)0.
(2) ¢(div(h,) = (p - 1P.

PROPOSITION 3.4.  The element 0 is invertible in the algebra Rg.

3.6. The group of modular units.

In [12, Section 3], we proved that every modular unit in the field F(7p) can be
expressed by the functions h,. Namely, we have the following theorem ([12,
Theorem 3.3]).
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THEOREM 3.5. Let g(7) be any modular unit in the field §(Ty). Then there
are rational integers m(p) (p € T /Ty, # [1]) and a rational number ¢ # 0 such that

g(t)=c- H hp(T)m(”),
pET /T, #(1]

and moreover this expression is unique.

4. The characters %) and ¥,,.

In order to calculate the cuspidal class number, we need to determine the
group .# of all modular units in the function field §(7p). The determination
reduces to the determination of the characters <I>§,p) and ¥, of the group I'z; . In this
section we recall some results of [12, Section 4] and add some new results
(Proposition 4.4 and Corollary 4.5).

4.1. Definition of %) and ¥,.
Let p be a prime factor of M, and p a coset in T'/Ty. Since the functions
12p y
(fép)) and (hp)wM are automorphic functions with respect to the group I'y,, we

can define the characters <I>E,p ) and ¥, of I'yy by the following equations:

)
°s
—
Q2
—
Bl
~—
~—
I

o (a) - f9)(7), (4.1)

P

(for all & € T'py).
Let g(7) be a function of the form

gr)="[I n()"", (4.3)

peT [Ty, #(1]

where m(p) are rational integers (p € T/Tp, # [1]). Then the function g(7) belongs
to the group & of the modular units in the field F(7p) if and only if the following
equation holds for all o € I'zy:

I {v@}™=1 (4.4)

peT /Ty, #(1]

Thus, taking account of Theorem 3.5, in order to determine the group .# of the
modular units, we need to know the character ¥,. Let p = [p1]--- [pi], where p;
(i=1,...,k) are prime factors of M. Then, by (2) of Proposition 3.2, we have
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Ty(a) =) (a) @) () B () (4.5)

(for all a €T'g). We shall first determine the character @E,p >, and next the
character ¥, by the relation (4.5).

4.2. Generators of the factor group I'r, / & I‘(Mﬁ’).
Put e = 2 or 4 according as M is odd or even. Also, put

M=2-3- 1] » (4.6)
p|M #£2,3

where p runs through all prime factors of M satisfying p # 2,3. Then we have the
following proposition ([12, Lemma 4.2]).

PROPOSITION 4.1.  Let p be a prime factor of M, and p a coset in T /Ty. Then
the characters @E,m and ¥, of I'y, are trivial on the group £T'(MO).

Hence, in order to determine the characters <I>,(3p) and ¥,, it is sufficient to
determine their values for some elements of I'y; which generate the factor group
Iy, £ D(MO).

For each prime factor ¢ of M and an element s of Tj, we define the elements
oy, By, v and 6, as follows. Let oy, (5, and 7, be elements of I'y; of type 1 which
satisfy the following congruences:

Qg = ((1) \/1M> (mod ¢/ @), =1, (modq /MO), (4.7)

(0 d¢’0), =15 (modg MO 4.8
ﬂq—<m 1>(m0q )7 :2(11’10(] )7 ()
o = (d(_) 2) (mod ¢/ @), =1, (mod g~ M6), (4.9)

where f is a positive integer such that ¢/ || ]\~4, and d is a positive integer such that
d is a primitive root mod ¢ or equal to 5 according as g # 2 or ¢ = 2. Let §; be an
element of I'r; of type s which satisfies the following congruences for every prime
factor ¢ of M with ¢f || M:
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<s(f§ ig)(nmdqwﬂ if (q,8) =1,

bs = (4.10)

0 Vs :
(S*l\/; 0 ) (mod ¢’ 0) if (g,5) # 1.

Then the set of the elements oy, B;, 7, and 6, generates the factor group
Ir/ £ ['(MO), where s runs through a subset of Ty which generates the group Tp.

Though the element 7, depends on the choice of d, we do not indicate the
dependence in its notation because as we shall see in the following subsection the
values of <I>(p) and V¥, at the element -, do not depend on d.

4.3. The values of <I’(p) and ¥, at the elements oy, B4 and .

The values of <I> ) and ¥, at the elements oy, B, and 7, are given in the
following propositions ([12, Propomtlons 4.1, 4.2]). The symbols A, and A, there
are defined as follows. Let p be a prime factor of M, and p a coset in T/TO. Then
A,=1or (—1)|T°‘ according asp # 2 or p = 2. If p = [p1] - - - [px] where p; are prime
factors of M, then A, = A, ----- AV

PROPOSITION 4.2.  Let p be a prime factor of M, and p a coset in T /Ty. Then
for each prime factor q of M, we have the following:

2mi
Apexp|— i ZS—Z if q=2,
L s€lplp TEP
q)(p)(a )= r
PNl 27t .
Apexp | — Zsfz if q=3,
s€lplp rep
1 if ¢#2.3,
2
Apexp | — i Zs —Z if =2,
L s€lplp rEP
) (8,) = [
p q 2
Apexp|— i Zs —ZT if g=3,
rep
1 if ¢ # 2,3,

‘I)(p)(’yq) _ { (‘Ulm lf q=p,
1 if ¢ # p.
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PROPOSITION 4.3.  Let p be a coset in T /Ty. Then for each prime factor q of
M, we have the following:

2mi
Ayexp | — i ZS—Z if q=2,
i sep rell]
Up(aq) = [
2
Apexp| == [ Ys=Dr ifa=3,
i 6 \s&
1 if ¢# 2,3,
o
A, exp il Zs 727’ if q=2,
L 8 SEP rell]
\II/)(/B(]) = [
2
A, exp m Z Z if ¢q=3,
L s€p re(l]
1 if q# 2,3,
-1 i To=1andq]|p,

00 = {

1 otherwise.

In the expression for W,(v,) in Proposition 4.3 with Tj = 1, the coset p is
identified with its unique representative. As a consequence of these propositions,
we have the following.

PROPOSITION 4.4.  Let p be a prime factor of M, and p a coset in T/T,.
(1) The character <I>(pp) takes its values in the group of 24th roots of unity, in the
group of 12th roots of unity if Ty # 1 or p # 2, and moreover in the group of 6th
roots of unity if M is odd and Ty # 1.
(2) The character ¥, takes its values in the group of 24th roots of unity, in the
group of 12th roots of unity if M is odd or Ty # 1, and moreover in the group of 6th
roots of unity if M is odd and Ty # 1.

PrROOF. (1) In the following we use Proposition 4.2. If Ty =1, then the
clement 6; (s = 1) belongs to ['(M&), hence <I> (61) = 1. By the definition of é;
the element 62 can be written as a product of elements v, modulo +D(MO).
Hence, if Ty, #1, we have <I>gp) (6?) =1, therefore (D(pp)((SS) = =+1. Since
Zse[p]p s — Zrep r* = Zse[p]p* s — Zrep* r with p* = p[M], we have <I>£,p) (B2) =

-1
{@iﬁ)(ag)} . Thus, it is sufficient to consider the value of ay. The 24th roots
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part of the statement is obvious. Let us assume p # 2. Since p?> =1 (mod 8), we
have 37 i, 8 =2 ,c,p0or =2, pr (mod8), hence

Y s=> r=(p-1)) r(mod8). (4.11)

s€lplp rep rep

This implies that the term on the left of the congruence (4.11) is even. Next, let us
assume p = 2. Let p/ (respectively p”) be the set of all » € p such that = is odd
(respectively even). Since 2 o r = 2r or /2 according as r € p’ or p”, the difference
2o0r —ris always odd. Hence

Y s=> r=> (20r—7)=|Tj| (mod?2). (4.12)

se2]p rEP rEP

This implies that if Ty # 1, then the term on the left of the equation (4.12) is even.
Thus, Zse[p]ps - Zrepr is even if Ty # 1 or p # 2, which proves the 12th roots
part of the statement. If M is odd and Ty # 1, then the equation (4.11) implies
that Zse[p]p § — Zrepr is a multiple of 4, which proves the 6th roots part of the
statement. (2) This follows from (1) and the relation (4.5). O

COROLLARY 4.5.  Let p be a prime factor of M, and p a coset in T /Tj.
(1) The unit group F of §(Ty) contains the 24th power off,gm, the 12th power off,(}p)
if Ty # 1 or p # 2, and moreover the 6th power of f,(,p) if M is odd and Ty # 1.
(2) The unit group F of §(To) contains the 24th power of h,,, the 12th power of h,, if
M is odd or Ty # 1, and moreover the 6th power of h, if M is odd and Ty # 1.

5. Calculation of the value of <I>(pp) at 4,.

In this section we calculate the value of @fjp) at 6;. For our later use, it is
sufficient to consider the case where p # 2 and (p,s) = 1. Since <I>§]m(61) =1, we
can assume that s # 1, hence Ty # 1. Therefore, in the Subsections 5.1-5.4, we
assume that

p#2, (p,s) =1, s# 1 (51)

5.1. Decomposition into two parts.
By the definition (3.7) of f}}’)(T) we have

f,(,p)(&s(T)) = H H 9u(05(7)) ¢, (5.2)

rep ue%(jz)
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where I, = /p0. Since g,(6s(7)) = 1,(6s)gus,(T) by Proposition 2.1, we have the
decomposition into two parts:

s =13 TI o) ¢ TIS T 9. ¢ (5.3)

rEP ue%Z) rep ue(%’(]:)

5.2. The ¥ part.

LEMMA 5.1.  4,(85)

PROOF. Put
(5.4)

Assume (s,6) = 1. In the definition (4.10) of §5, putting ¢ =2 and 3, we have
as=d=1(mod2°-3) and b = ¢ =0 (mod 2° - 3). Hence, d(r*,s) = (r*, s) (mod 4)
and b(r,s*) = c(r*,s") =0 (mod 12). Combining these results with ,(6;) =
@_/)(6?')) and the equation (2.4), we have 1,(8,) = (—1)/2{")=1 " (Note that
d(r*,s) is odd.) The other cases (s,6) = 2, 3, 6 can be treated similarly. O

In the decomposition (5.3), the ¢ part is given as follows.

LEMMA 5.2.

explzm'-;<p—1>-;2{<r*,s>—1}] ¥ 5.2 =1,

I8 IT ©-(8)

pot prt 1 .
P uej’(,p) exp l? 3 (p—1)- 3 Z(n s*)‘| if (s,2) # 1.

rep

N
3

~.
—_

PROOF. By the facts that 1,(8s) does not depend on u and that ‘,@?

(1/2)(p — 1), the case (s,2) =1 follows immediately from Lemma 5.1. Next, we
have HT’Ep{Hueﬁg")(_i)} = exp[2mi/2 - (1/2)(p — 1) - (1/2)|Tp|]. (Since Tp # 1, the
number |p| = [Ty is even.) From this and Lemma 5.1, the case (s,2) # 1 follows
immediately. O
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5.3. The g,s, part with r € p).

Let us denote by pM) (respectively p®) the set of all elements r € p with ptr
(respectively p | r). Here we assume r € p(). In this case the element u of 2\ is of
the form '

w=u(0,y;7) = (07%\/F>, (5.5)

where y is an integer with 1 <y < (p—1)/2.
Let 65 be written as in the equation (5.4). Then we have

w0, = (0 s, A ). 56)

Since (p,s) = 1 and p { r, we have p | (r*,s*) and r o s € p!1). Also by the definition
of 65 and the assumption (p,s) = 1, we have d = 1 (mod p).

For each y (1<y<(p—1)/2), we denote by k(y) the unique integer
satisfying 1 < k(y) < (p —1)/2 and

dy(r*, s) = +k(y) (modp). (5.7)

We call y to be of plus (respectively minus) type if the plus (respectively minus)
sign appears in the congruence (5.7). Note that if y; # yo, then k(y1) # k(y2).
Let [ be an integer satisfying

dy(r*,s) = +k(y) + pl. (5.8)
Then we have
w(0,y;7)0s = £u(0, k(y);r o s) + v, (5.9)
where
v= <cy(7‘,8) \/ros,l\/(ros)*>. (5.10)
p

Note that v € Z("%). By Proposition 2.1 we have

gu 0,y;7)b (T)
= E<iu(07 (y) ro S) U) : giu((),k(y);ms) (T)
B { e(u(0, k(y); 70 8),0) * Gu(o,k(y)sros) (T) if y is of plus type,

5.11
1) - e(—=u(0,k(y); 7 0 5),v) - Gu(o,k(y)iros)(T)  if y is of minus type. ( )
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In the equation (5.11) with y of minus type, we used the equalities (Proposition 2.1)

Gu(0.k(y)iros) (T) = Gu(0.k(y)ros) (—12)(T)) = Yros(=12) - gu(0(y)iros) (T) (5.12)
and the fact 1.0s(—12) = (1) = —1.

LEMMA 5.3.  With the notation above, we have
2m
e(Fu(0, k(y); 70 5),v) = exp | —~{y + k(y)} -

PROOF. Suppose that y is of plus type. By the definition, we have
e(u(0, k(y);ro s),v) = exp[2mi/2 - €], where

(o) L alrs) k) als)

p p p p

If we put ¢ =p in the definition (4.10) of &5, we have ¢ =0 (modp). Since
(r*,s*)/p € Z, we have £ € Z. First, assume (s,2) =1. If we put ¢ =2 in the
definition of &5, we have ¢ =0 (mod2) and d =1 (mod2). Thus, £ =1 (mod2).
Since p and d(r*, s) are odd, the equation (5.8) implies | = y + k(y) (mod 2). This
proves the case. Next, assume (s,2) # 1. If we put ¢ = 2 in the definition of §,, we
have ¢ =1 (mod2) and d = 0 (mod 2). Since (r*,s*)/p is an odd integer, we have
E=yl+y+1—k(y) -y (mod2). Since p is odd and d is even, the equation (5.8)
implies | = k(y) (mod 2). Thus we have £ =y + k(y) (mod 2). This completes the
proof of the case where y is of plus type. In the proof above, if we exchange k(y) by
—k(y), we obtain £ = y — k(y) (mod 2). Since y — k(y) = y + k(y) (mod 2), we have
the proof of the case where y is of minus type. O

Let us denote by #{y : —} the number of y which is of minus type.

where the symbol on the right term denotes the Legendre symbol.

LEMMA 5.4.  We have

PROOF. As was noticed above, we have d =1 (modp). Hence, by the
equation (5.7), y(r*,s) = £k(y) (modp). This implies Hp 1/2{y(7" s)} =
(1S k(y) (modp). Since T175"y = T4 k(y) (modp), we have

y=1
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(r*,s)*" V2 = (=1)"¥7} (mod p). On the other hand, it is well known that

(r*,5)P7 D2 = ((r;.fS)) (modp). Therefore, (—1)"¥}= (“}%) (modp). Since

p # 2, this congruence implies the equality. O
In the decomposition (5.3), the g,s. part with r € p!) is given as follows.

LEMMA 5.5.

14 I] o) b = H)(“‘*’S))- 14 I1 o

rep® | uez) repd p rep® | uez)

PROOF. Let r be an element of p). By the equation (5.11) and Lemmas
5.3-5.4, we have

H Gué, (T) = H gu((],y;r)éﬁ(T) : H Gu(0,y;7)6, (7—)
Y+ yi—

7. (r)
uejfl'

= [Texe| 5 {0+ k00D - aspron ()

Y+

< TICDexp| 5 -4 K0 - utoaion (1)

= (_1)j{y:7} - exp [? {Z Y+ Z k(y) }] : ng(O,k(y);ros)(T)
_ ((m’ s)> I 9.

p ue\"™
€X,

where y : 4+ (respectively y : —) means that y is of plus (respectively minus) type.
We have used the equality Zyy = Zy k(y). Since (p,s) =1 and p{r, we have
ptros, namely rosée p). This implies that if 7 runs through all the elements of
p), then so does r o s. Hence the equality of the lemma follows. O

LEMMA 5.6.  The number |p!M| of the elements of pV) is even, and we have

n(5)-()""

rept)
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PROOF. Since s # 1, if r € pM, then ros € p™ and r o s # r. This implies
that the set p(!) is a disjoint union of several pairs {r,r o s}, hence |pV]| is even,
and we can express the set p!) as a disjoint union of two subsets pgl) and p(;) such
that r € p(ll) if and only if ro s € pén. Now it is easy to see that for any elements

t1,ty € T the following equality holds:
(t1,t2)(t1 o b2, t2) = ta. (5.13)

If we put t; = r* and ¢t = s in the equation (5.13) and notice that 7* o s = (r o s)”,
we have (r*,5)((r o s)",s) = s. Using this relation, we have

™, s s ros),s s s\ 17|
I1(757) - ) )= 16 - 6)

reph) rep;

Since ’pgn‘ = (1/2)|pV

, the proof is completed. O

5.4. The g,s, part with r € p?.
Here we assume 7 € p(®, namely p | 7. In this case the element u of %(I;) is of
the form

w=u(z,0;r) = (% v 0), (5.14)

where z is an integer with 1 <z < (p —1)/2.
As before, let 65 be written as in the equation (5.4). Then we have

u(z,0;7)0s = <w \/TOS,M (ros)*). (5.15)

p

Since (p,s) = 1 and p | r, we have p | (r,5*) and 7o s € p®). By the definition
of 6, and the assumption (p,s) = 1, we have a = s~! (modp).

For each z (1 <z <(p—1)/2), we denote by k(z) the unique integer
satisfying 1 < k(z) < (p—1)/2 and

ax(r,s) = £k(z) (mod p). (5.16)

We call z to be of plus (respectively minus) type if the plus (respectively minus)
sign appears in the congruence (5.16). Note that if 21 # x9, then k(x) # k(z2).
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Let [ be an integer satisfying

ax(r,s) = £k(x) + pl. (5.17)
Then we have
u(zx,0;7)6s = tu(k(x),0;r08) + v, (5.18)
where
v= (l\/m, w (ro s)*) (5.19)

As before, we have v € Z(%) and by Proposition 2.1

gu(:n,O:,r)& (T)
E(u(k(l’), Oa ro 8)7 U) * Gu(k(x),0;r05) (7-) if  is of + type, 5.90
N (=1) - e(—u(k(x),0;7 0 8),0) -gu(k(x)’ogms)(T) if z is of — type. (5:20)

LEMMA 5.7.  With the notation above, we have
2mi
e(tu(k(z),0;7r05),v) = exp [2 {z+ k(m)}] .

PROOF. Since the proof is similar to that of Lemma 5.3, we only sketch it.
Suppose that z is of plus type. We have e(u(k(z),0;7 0 s),v) = exp[2mi/2 - {] where

b ’* ks b ,*
b8t | ki(e) ba(r st
p p p p

Putting ¢ = p in the definition of 65, we have b = 0 (mod p). Since (r, s*)/p € Z, we
have ¢ € Z. First, assume (s,2) = 1. By the definition of é;, we have b = 0 (mod 2)
and a = 1 (mod 2). Hence, £ =1 (mod 2). Since p and a(r, s) are odd, the equation
(5.17) implies | = z + k(x) (mod 2). This proves the case. Next, assume (s,2) # 1.
By the definition of §5, we have b =1 (mod 2) and a = 0 (mod 2). Since (r, s*)/p is
an odd integer, we have £ =lz + 1+ z + k(z)z (mod 2). Since p is odd and a is
even, we have | = k(z) (mod 2) by the equation (5.17). This completes the case of
plus type. Exchanging k(x) by —k(z), we have the proof for minus type x. O
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Let us denote by §{x : —} the number of x which is of minus type.

where the symbol on the right term denotes the Legendre symbol.

LEMMA 5.8.  We have

PROOF. Since the proof is similar to that of Lemma 5.4, we only sketch it.
Since a = s~ (mod p), we have {s~1(r, s)}*"V/? = (—1)"} (modp) the same as
Lemma 5.4. Since (s71)?™1/2 = s¢-D/2 (mod p), we have the result. O

In the decomposition (5.3), the gys, part with r € p?) is given as follows.

LEMMA 5.9.

I14 T sty = IT(*22) - I14 T a0

rep® | ues)) repe P rep® | ue))

PROOF. Let r be an element of p®). Then, the same as the proof of
Lemma 5.5, we have

I gus.() = (()) 1 o0

ue%(;) p ue%(;os)
P P

using the equation (5.20) and Lemmas 5.7-5.8. If 7 runs through p(®), so does r o s.
Thus we have the proof. ([

LEMMA 5.10. The number |p<2)| of the elements of p® is even, and we have

(%))

rep®

PROOF.  Similarly to the proof of Lemma 5.6, we can show that the set p® is

a disjoint union of two subsets p§2> and pg) such that r € ,052) if and only if
ros € péQ), whence |p!?)| is even. Setting t; = r and ¢, = s in the equation (5.13),

we have (r,s)(r o s,s) = s. Thus, we have
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s(r,s s(r,8)\ (s(ros,s 58 s\l
I1(%57) - IS (5 - G - G)

rep? TEp(lz) S

Since ‘p(f)‘ = (1/2)|p"?|, the proof is completed. O

5.5. The value of &%) at the element &,.
The value @S,p)(&s) with p#2 and (p,s)=1 is given as follows. Since
@E,p)(és) =1if s =1, we consider the case s # 1, whence T # 1 and |Tp| is even.

PROPOSITION 5.11.  Let p be a prime factor of M, and p a coset inT/Ty. Let
s be an element of Ty. Assume that Ty # 1 and s # 1. Also assume that p # 2 and
(p,s) = 1. Then we have

v S 3I7
expl%é(p—1)'%2{(7*75)—1}] (5 e

q;(p)((gs) = e
’ omi 1 1 5\ 20
exp [2 5 (p—1)- 5;(7’, s*)] . <p> if (s,2) # 1.

PROOF. This follows immediately from Lemmas 5.2, 5.5, 5.6, 5.9, 5.10 and
the following equalities:

<s>%lﬂ“>| <s>%lﬂ(2>| <s>%(|ﬂ“)+ﬂ“)) <s>%ﬂ (S)%Tu
p p S\ e )

6. Determination of the unit group # with T, = (M,).

6.1. The values &%) (8,) and ¥ ,(8,) with Ty = (M,).

For any divisor N of M, we denote by (V) the subgroup of T consisting of all
factors r of N. Henceforth, we take a divisor My of M, and consider the case
To = (My). Put My = M /M. Then, for each coset p € T'/T}, there exists a unique
factor r of M; such that r is contained in p. We denote this integer r by r,. The
mapping p — r, gives an isomorphism from T'/Tj to (M;). Since the group T is
generated by the prime factors of M, in order to determine the characters @Ejp)
and ¥,, it is sufficient to determine the values at the elements ¢, for all prime

factors g of M (cf. Propositions 4.2, 4.3).

PROPOSITION 6.1.  Let Ty = (My), p a prime factor of M, and p a coset in
T/Ty. Assume that p is odd. Then for each odd prime factor q of My (# 1), we have
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1 if p=gq,

) (5,) = 3Tl
p ,
’ ! <q> Zf p 7& q,

where the symbol (g) denotes the Legendre symbol.

PROOF. First, suppose that p = ¢. Since this condition implies p € Ty, the
function f(7) is a constant (Proposition 3.2). Hence, we have ®*(6,) = 1. Next,
suppose that p#g¢. We prove first > (r",q) = (¢+1)-(1/2)|To[. Put
p={r*|rep}(=po[M]). Since q € Ty, we have r* o g € p* for all r € p. Since
either r* or 7* o ¢ is prime to ¢ and the other a multiple of ¢, half of the elements of
p* are prime to ¢ and the others are multiples of q. From this the equality follows
immediately. By the use of this equality, we have

30153 -1 =5 6- 15 @+ imi- 5]

p= 2 2

1

= = Da-1) 5T,

Thus, by Proposition 5.11 and the law of quadratic reciprocity, we have

1 1
-Da-1) <q> }QITol _ (p) 570l
p q

PROPOSITION 6.2.  Let Ty = (My), and p a coset in T/T,. Assume that r, is
odd. Then for each odd prime factor q of My (# 1), we have

r, %\To\
\Il,,(éq) = (q) »

where the symbol (%”) denotes the Legendre symbol.

e

e (&) = 5 (~1)
{ :

PROOF. First, suppose that p = Tj. Then r, = 1, hence the right term of the
equality is 1. On the other hand, we have h,(7) = 1, whence ¥,(6,) = 1. Thus the
equality holds. Next, suppose that p# Ty. Let r,=p;----- p; be the prime
factorization. Then p; # ¢ for all i because r, is a factor of M;. Also the primes p;
are odd because r, is odd by the assumption. Thus, by the previous proposition
and the equation (4.5), we have
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( 1 2 ( ]
‘I'p(‘sq) = 'I)[;])m[pl](‘sq) ’ ‘I)E;]).“[p,](‘sq) """ <I>[f])(6q)

(p1>%lTo (m)%Tol (pl)%Tu (r,,)éT“
- \g¢ q q - \g¢ '

6.2. Determination of the unit group £.

Now we determine the condition that a product of the functions h, is an
automorphic function with respect to the group I'r,. For simplicity, we denote by
S(My) the sum of all factors of My. Then S(Mo) =[], (1 +q), where ¢ runs
through all prime factors of M.

THEOREM 6.3.  Let Ty = (My). Assume that M is odd, My # 1, and My # 1.
Let m(r) be rational integers parametrized by all factors r # 1 of My. Then the
function

gy = I hetr)®

peT [Ty #[1]

belongs to the group F of all modular units in the function field §(Tp) if and only if
the integers m(r) satisfy the following conditions (1), (2) and (3):
(1) S(Mo) - 3 yas, o (r = 1) -m(r)} = 0 (mod 24),
2) if 3| Mu, then S(Mo) - 3,1, (r3)=1{r - m(3r)} = 0 (mod 3),

) if My is a prime integer q and there exists a prime factor p of My satisfying
) = —1, then [T, ()"0 = 1.

PROOF. The condition that the function g(7) belongs to .# is equivalent to
that the equation (4.4) holds in all the cases where a = ay, 3,, 7, with ¢ prime
factors of M, and 6§, with ¢ prime factors of M. Since W,(a,) = ¥,(3,) =1 for
q # 2,3, and ¥,(v,) = 1 for all ¢ by Proposition 4.3, it is sufficient to consider the
cases a =g, az, [, (B3, and 6, (q|Mp). Let a=ay. Since Zseps =
>y (12 1p) = 15 - S(Mp) for any coset p, we have by the proposition cited above

3
p
q

[T @)™ =exp| -2 800 X {(r, = 1) mlr)} |,

peT /T, #(1] peT /Ty, #1]

whence the equation (4.4) with a = s is equivalent to

S(My) - > {(r—1)-m(r)} =0 (mod8). (6.1)

7| My #1
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Let o= (. Similarly to the case above, since r, = M;/r,, we have the
congruence

S(My)- > {(% - Ml) -m(r)} =0 (mod ). (6.2)

My, #£1

Since M is odd, we have r?=1 (mod8). Hence, M;/r— M;=7r>-M;/r—
My =M, - (r—1) (mod8). Since (M;,8) =1, the congruence (6.2) is equivalent
o (6.1). Similarly, the equation (4.4) with o = a3 gives the congruence

S(Mp) - > {(r—1)-m(r)} =0 (mod3), (6.3)

| My #1

and the one with o = (3 gives

S(My)- > {(% - Ml) -m(r)} =0 (mod 3). (6.4)

My, #1

The combination of the two congruences (6.1) and (6.3) coincides with the
condition (1) of the theorem. Assume 31 M;. Then r* =1 (mod3) for r | M,
whence the congruence (6.4) is equivalent to the congruence (6.3), and contained in
the condition (1). Next, assume 3 | My. Then the summation in the congruence
(6.4) can be replaced by Y {M;/r-m(r)} where r runs through all factors of M;
with 3|r. Put »=3r; and Mj;= M;/3. Then Y {M;/r-m(r)} => {Ms/r -
m(3r1)} (mod 3), where r; runs through all factors of M; with (r1,3) = 1. Since
r? =1 (mod 3), we have Ms/ry =13 - Ms/ry = M; -7 (mod 3). Since (M3,3) = 1,
this implies that the congruence (6.4) is equivalent to the condition (2) of the
theorem. Let o = §,. Assume that M) is composite. Then (1/2)|Tp| is even, hence
U,(6,) = 1 for all ¢ by Proposition 6.2. Next, assume that M is a prime integer g,
and that (g) =1 for all prime factors p of M;. Then again, ¥,(§,) =1 for all ¢ by
Proposition 6.2. Thus, in the result, we have the condition (3) of the theorem. O

By Theorems 3.5 and 6.3, we have the characterization of the unit group .%#.

THEOREM 6.4. Let Ty = (My). Assume that M is odd, My # 1, and My # 1.
Then the group % of all modular units in the function field F(Ty) consists of all
functions g(7) which have the form g(1) = ] er/m 4 hp(T)m<r”), where ¢ is a
nonzero rational number, and m(r) are rational integers parametrized by all
factors r #£ 1 of My such that the conditions (1), (2) and (3) of Theorem 6.3 are
satisfied.
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REMARK 6.5. If M; =1, then the number of the cusps of the curve Xz, is
one. Therefore the unit group .% consists of all nonzero rational numbers.

7. Calculation of the cuspidal class number with T, = (M,).

In this section we calculate the cuspidal class number of the curve X7, with
Ty = (Mp). First in Section 7.1 we reduce the problem to one of purely algebraic
nature without the assumption Ty = (My). After Section 7.2 we assume that
Ty = (My). Because of the condition (3) of Theorem 6.3, we shall divide the
problem into two cases.

7.1. Reduction to an algebraic problem with T, general.

In this Section 7.1 we make no assumptions on the group T except for
Ty #T. Let R, Ry, 2, and ¥ be the same as in Section 3.2. Let ¢ : 2 = R be the
isomorphism (3.4), and 0 the element of Rg defined by the equation (3.11).

We denote by I(Tp) the subset of Ry consisting of all elements o = > m(p) -
(p—1) (peT/Ty,# [1], m(p) € Z) such that the function g,(r) = th(r)m(p)
(p € T/Ty,# [1]) belongs to the group .# of all modular units in the function field
F(Th). Then we have the following proposition.

PROPOSITION 7.1.  For any Ty # T, we have
P(div(F)) = I(Ty)0.

PrOOF. This follows immediately from (2) of Proposition 3.3 and
Theorem 3.5 d

By this proposition we have
€ = Ry/1(Th)0. (7.1)
Hence the cuspidal class number h of the curve Xz, is given by
h =[Roy: I(Tp)0]. (7.2)

Let A and B be two lattices of Rg, and C a lattice contained in AN B. Then the
quotient [A: C]/[B: C] does not depend on the choice of C. We denote this
number by [A: B]. It satisfies the usual multiplicative property, namely
[A: B]=[A:D|[D: B]. In particular, by (7.2) above, we have h = [Ry: Ry -
[Rof : I(Tp)d]. Since 0 is invertible (Proposition 3.4), we have [Rof: I(Tp)0] =
[RO : I(To)}, thus
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h = [RO : Roe] . [RQ : I(To)} (73)
On the value [Ry : Ryf], we have the following.

PROPOSITION 7.2.  For any Ty # T, we have

Ro Bof] = T3 5 T+ x(D) ¢
X#1 p|M

where x runs through all non-trivial characters of T /Ty and p all prime factors of M.
PROOF. This can be proved the same as [12, Proposition 5.2]. O

Though the following proposition is not necessary in the calculation of h, we
include it because of interest.

PROPOSITION 7.3.  For any Ty # T, both of the sets 1(Ty) and I(Tp)0 are
ideals of the ring R.

PROOF. First we consider the case of I(T))6d. Let o € Gal(F(Tp)/F1), and P
a prime divisor of (7). As was seen in Section 3.2, P? is cuspidal if and only if P
is. This implies that if g € .%, then also ¢° € #. Let us identify the group T'/T;
with Gal(§(7y)/81). Then we have div(g”) =>_ 77, vpr(97) - PL. Hence,

e(div(9”)) = X er/m, Vo (97) - P= 2 ey, Vo (9) - p =00 (Zpemo vprr(9) - po) =
o0 ¢(div(g)). The relation o o p(div(g)) = p(div(g?)) implies that ¢(div(.%)) is an
ideal of R. Thus, by Proposition 7.1, I(T;)0 is an ideal of R. The statement that
I(Tp) is an ideal follows from this and the fact that 6 is invertible in Rg. O

7.2. The ideal I(T,) with Ty = (Mp).
Hereafter we consider the case T = (M) as in Section 6.1. The following is a
restatement of Theorem 6.4.

THEOREM 7.4. Let Ty = (My). Assume that M is odd, My # 1, and My # 1.
Then the ideal 1(Ty) coincides with the set of all elements a = > m(r) - ([r] — 1) of
Ry (r| My, # 1) such that m(r) are rational integers satisfying the conditions (1),
(2) and (3) of Theorem 6.3.

7.3. Calculation of the cuspidal class number: Case I.

Now we calculate the cuspidal class number of the curve X, with Ty = (M).
By the relation (7.3) and Proposition 7.2, it is sufficient to consider the index
[Ro : I(Tp)]. In this Section 7.3, we restrict ourselves to the case where the
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condition (3) on the ideal I(Tp) stated in Theorem 7.4 is null. We call it Case I. In
other words, we assume that one of the following conditions is satisfied.

CASE I-1: M is odd, M, is a prime ¢, M7 # 1 and every prime factor p of M;
satisfies (g) =1.

CASE I-2: M is odd, M, is composite, and M; # 1.

Let I; be the subgroup of Ry consisting of all elements

a= Y m(r)- (-1 (7.4)

My ,£1

such that m(r) are rational integers satisfying the condition (1) of Theorem 6.3.
We consider the indices [Ry : I1] and [I; : I(Tp)] separately.

Let M, = p; - - - p be the prime factorization of My, and § = (p1 — 1,...,pp — 1)
the greatest common divisor.

LEMMA 7.5.  Let 6 be as above. Then ), (r—1)Z =6Z.

PROOF.  The inclusion 37, ,,(r—1)Z D 6Z is obvious. Put r' =r—1 for
each factor r of M;. Let r = p)---p() be the prime factorization of r # 1. Since
7 =]L;(1+p}) —1€06Z, we have the reverse inclusion >, (r—1)Z C é6Z.
This proves the lemma. O

Since My (# 1) and M; (# 1) are odd, the numbers S(Mj) and § are even
integers. Let d be the greatest common divisor of 6 and (1/4)6S5(My):

d= (6, i 5S(MO)). (7.5)

LEMMA 7.6. Let d be as above. Then [Ry : I,] =6/d.

PROOF. Let a be an element of Ry written as in the equation (7.4). Let
¢ : Ry — Z be the homomorphism defined by ¢(a) = S(My) - > {(r—1)-m(r)}
(r| My,# 1). Then by Lemma 7.5, we have o(Rg) = S(My)-6Z. Let ¢: Z —
Z/24Z be the homomorphism induced by the reduction modulo 24. Let
a = (24,65(My)) be the greatest common divisor. Then aZ = 24Z + 6§S(My) Z.
This implies that ¢(o(Ry)) = ¢p(aZ) = aZ/24Z. Since (¢ o ) '(0) = I}, we have
Ro/ll %aZ/24Z Hence, [R0]1]224/a:6/d ([

LEMMA 7.7.  We have [I : I(Ty)] = 3 or 1 according as the following three
conditions (i), (ii) and (iii) are satisfied, or not: (i) 3t S(My), (ii) 3 | My, (iii) there
exists a prime factor p of My satisfying p = 2 (mod 3).



Cuspidal class number formula 41

PROOF. If 3| S(My), then the condition (2) on I(Tp) stated in Theorem 7.4
is trivial. Also, if 3t Mj, the same condition on I(7p) is null. Thus if one of the
conditions (i) and (ii) does not hold, we have I} = I(T;). Assume the condition
(iii) does not hold. In this case every factor r of M; satisfies r = 0 or 1 (mod 3). Let
a be an element of I; written as in (7.4). Then replacing (mod 24) by (mod 3) in
the condition (1) of Theorem 6.3, we have S(My) - > {(—1) - m(r)} =0 (mod 3),
where r runs through all factors of M; with r = 0 (mod 3). If we write r = 3r; for r
with 7 =0 (mod3), then r =1 (mod3), so that m(3r1) =r; - m(3r;) (mod3).
This implies that « satisfies the condition (2) of Theorem 6.3. Thus we have
I = I(Tp). Assume that all the conditions (i), (ii) and (iii) hold. Let a be an
element of I; written as in (7.4). Let ¢ : I; — Z be the homomorphism defined by
ola) = S(Mo) - > {r-m(3r)} (r| My, (r,3)=1), and ¢: Z — Z/3Z the homo-
morphism induced by the reduction modulo 3. We prove ¢(p(I1)) = Z/3Z. Let p
be a prime factor of M; satisfying p =2 (mod3), and put o, =8([3] — 1)+
8([p] — 1) (€ Ry). Then we have «, € I;. In fact, concerning this element ), the
value of the term on the left-hand side of the congruence in (1) of Theorem 6.3 is
equal to S(My) - 8(p + 1), which is a multiple of 24, hence «, € I;. Now we have
(o) = 8S5(My), whence ¢(p(wyp)) is a non zero element of Z/3Z. This proves
d(p(1)) = Z/3Z. Since (¢po ) '(0) = I(Ty), we have I,/I(Ty) = Z/3Z. This
proves the lemma. O

By the equation (7.3), Proposition 7.2, and Lemmas 7.6-7.7, we have the
following theorem. For simplicity, we put a3 =3 or 1 according as all the
conditions (i), (ii) and (iii) in Lemma 7.7 are satisfied, or not.

THEOREM 7.8.  Assume that Case 1 holds. Let d and a3y be as above. Then
the cuspidal class number h of the curve Xg, with Ty = (M) is given by

1
TS 55 e+ x@h)

x#1 pIM
where x runs through all non-trivial characters of T /Ty and p oll prime factors of M.

COROLLARY 7.9. Let M = pq, where p and q are distinct odd primes with
(g) = 1. Put Ty = (q). Then the cuspidal class number h of the curve Xr, is the
numerator of (1/24)(p —1)(¢+1). The cuspidal divisor class group is a cyclic

group of order h generated by the class of the divisor corresponding to [p] — 1.

7.4. Calculation of the cuspidal class number: Case II.
In this Section 7.4, we consider the case, Case II, where the following
condition is satisfied.
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CASE II: M is odd, Mj is a prime ¢, and there exists a prime factor p of M;
satisfying (}(—';) =—1.

Let J; (respectively J;) be the subgroup of R, consisting of all elements

o= 3 m)- (-1 (7:6)
r|My,#1

such that m(r) are rational integers satisfying the condition (3) (respectively (1)
and (3)) of Theorem 6.3. We consider the indices [Ry : J1], [J1 : Jo] and [J2 : I(Tp)]
separately.

For each factor r of My, put e(r) = 1 or 0 according as (é) = —1lor 1. Then the
condition (3) of Theorem 6.3 can be written as follows:

Z e(r) - m(r) = 0 (mod 2). (7.7)

| My, #1
LEMMA 7.10. [Ro:Ji]=2.

PROOF. Let a be an element of Ry written as in (7.6). Let ¢ : Ry — Z be the
homomorphism defined by ¢(a) =3 e(r)-m(r) (r| My,# 1). Let p be a prime
factor of M satisfying (g) =—1.If a« = [p] — 1, then ¢(a) = 1. Hence ¢(Ry) = Z.
Let ¢: Z — Z/2Z be the homomorphism induced by the reduction modulo 2.
Then ¢(o(Ry)) = Z/2Z and (¢ o )~ '(0) = J;. This implies [Ry : Ji] = 2. d

Let My =L, pi - Hj [j (1 <i<a,1<j<b)be the prime factorization of Mj,
where p; (respectively [;) are prime factors satisfying (%) = —1 (respectively
(%) =1). Ifa>2, let 6 =(p2—p1,.-.,0a —p1) (>0) be the greatest common
divisor, and put dy = (1/4)(¢+1)6;. If a=1, put dy =0. If b>1, let 6 =
(1 = 1,...,1y — 1) be the greatest common divisor, and put dy = (1/4)(q + 1)é. If
b =0, put dy = 0. Note that d; and ds are non-negative integers.

LEMMA 7.11. Let ¢:Jy — Z be the homomorphism defined by o(a) =
(g+1)->A{(r—1)-m(r)} (r | My,# 1), where o is of the form (7.6). Let dy and dy
be as above, and D = (2(p1 — 1)(g+ 1),4d;,4ds) the greatest common divisor.
Then o(J1) = DZ.

PROOF. First we prove ¢(J;) D DZ. If a=2([p;] — 1), then o € J; and
pla) =(¢g+1) - (p1 —1)-2, whence ¢(J1) D2(p1 —1)(¢+1)Z. If a > 2, for each
index ¢ (2<i<a), put a=—(p1]—1)+ ([pi] —1). Then a € J; and ¢(a) =
(g+1) - (pi — p1), whence ¢(J;) D (¢+1)(pi —p1)Z. If b>1, for each index j
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(1<j<b), put a=][lj]—1. Then a€ J; and ¢(a)=(¢+1)-(I; — 1), whence
o(J1) D (¢+1)(l; —1)Z. Thus we have @(J;) D 2(p1 —1)(g+1)Z +3,(q¢+1)
(i —p1)Z+ 3 ;(q+1)(l; —1)Z = DZ. Second we prove ¢(J1) C DZ. Let a be
an element of J; written as in (7.6). Since « satisfies the condition (7.7),
there exists an integer k with >, e(r) -m(r) = 2k. Since m(pi) =2k —
S e(r) - m(r), we have ()= (q+D{(p1—1)-m(pi)+ X (r—1)-m(r)} =
(q+D2(p1 —1) - k+>{r—1—e(r)(pr — 1)} -m(r)], where 3" means the sum-
mation over r with | My, # 1 and # p;. Thus it is sufficient to prove that the
number

fr)=(g+D{r—1—e(r)(p = 1)}

is contained in DZ (r | My,# 1,p1). Let us write ¥’ = r — 1 for each factor r of Mj.
Then by the definition of D, we have (i) (¢+ 1)p; = (¢+ 1)p} (mod DZ)
(1<i<a), (i) (¢+1);j=0(modDZ) (1<j<b), and (iii) (¢+1)p}-h=
0 (mod DZ) for any h € 2Z. It is easy to see that we have (iv) (¢+ 1)s}sh =
0 (mod DZ) for any two prime factors s; and sy of M;. Now we prove f(r) € DZ.
Let r=1t;---t. be the prime factorization of r. By the equation ' =r—1=
(1+t))---(1+t.)—1 and the property (iv), we have (v) (¢+1)r=
(g+ 1ty +---+ (¢+ 1)t, (mod DZ). Assume that e(r) =0, i.e. (g) = 1. Then the
number n(r) of the prime factor p| M; with (Z—;) = —1 which appears in the
set {t1,...,t.} is even. Hence f(r)=(¢+1)r=(@+1)ti+---+(g+1)t.=
(¢+ 1)p| - n(r) = 0 (mod DZ) by the properties (v), (i), (ii) and (iii). This implies
f(r) € DZ. Next assume that e(r) =1, i.e. (g) = —1. Then the number n(r)
defined the same as above is odd. Hence we have f(r) = (¢+ 1)r' — (¢ + 1)p| =
(q+ Dty + -+ (q+ Dt — (¢+ py = (¢ + 1)pi-{n(r) — 1} = 0 (mod DZ) by the
properties (v), (i), (ii) and (iii). This implies f(r) € DZ, and completes the
proof. O

Let d be the following greatest common divisor
1
d= 675(171 —1)(g+1),di,do ). (7.8)

LEMMA 7.12.  Let d be as above. Then [J; : J3] = 6/d.

PROOF. Let ¢:J; — Z and D be the same as in Lemma 7.11. Let ¢ : Z —
Z/24Z be the homomorphism induced by the reduction modulo 24. Since
4d = (24, D), we have 4dZ = 24Z + DZ. This and Lemma 7.11 imply ¢(¢(J1)) =
¢(DZ) =4dZ/24Z. Since (¢ o @)71(0) = Jo, wehave Jy/Jy 2 4dZ /247 ~=dZ[6Z.
This completes the proof. ([l
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LEMMA 7.13.  We have [J2 : I(Tp)] = 3 or 1 according as the following three
conditions (1), (ii) and (iii) are satisfied, or not: (1) 31 S(My)(= g+ 1), (ii) 3 | My,
(iii) there exists a prime factor p of My satisfying p = 2 (mod 3).

PROOF. This can be proved the same as Lemma 7.7. ([

By the equation (7.3), Proposition 7.2, and Lemmas 7.10, 7.12 and 7.13, we
have the following theorem. For simplicity, we put a3 = 3 or 1 according as all
the conditions (i), (ii) and (iii) in Lemma 7.13 are satisfied, or not.

THEOREM 7.14.  Assume that Case Il holds. Let d and a(3) be as above. Then
the cuspidal class number h of the curve X, with Ty = (My) is given by

1

B 120,(3)
h*T'g QE(PJFX([Z?D) )

where x runs through all non-trivial characters of T /Ty and p all prime factors of M.

COROLLARY 7.15. Let M = pq, where p and q are distinct odd primes with
(g) = —1. Put Ty = {q). Then the cuspidal class number h of the curve Xr, is the
numerator of (1/12)(p —1)(¢+1). The cuspidal divisor class group is a cyclic
group of order h generated by the class of the divisor corresponding to [p] — 1.

8. The p-Sylow group of the cuspidal divisor class group.

In this section we study the p-Sylow group of the cuspidal divisor class group
of the curve X7,. In Section 8.1 we consider the case where Tj is general. In
Section 8.2 we consider the case where p = 3 and Ty = (M)).

8.1. The p-Sylow group with Ty general.

In this Section 8.1 we make no assumptions on the group T except for
To#T.

Let x be a character of the group T'/Ty, and e, the element of Rq defined by

1

€X:

> x(o)p. (8.1)

|T/T0| peT /Ty

These e, are the elementary idempotents of Rq. Let a(x) be the eigenvalue of 6
belonging to ey, i.e., fe, = a(x)ey. Then we have

() = 5 [10 +px(la)) (5.2

pIM
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THEOREM 8.1.  Let a(x) be as above, and p a prime # 2,3. Then a(x) € Z,
for all x, and the p-Sylow group of the cuspidal divisor class group of the curve Xy,
is isomorphic to the direct sum

@(ZP/G(X)ZP)7

x#1
where x runs through all non-trivial characters of T/T,.

PROOF. Since p # 2,3, the fact a(x) € Z, is obvious. In the following we
consider the elements e,, a(x) and 0 as contained in R ® Q,. As is well-known the
p-Sylow group of a finite abelian group G is isomorphic to G ® Z,. Hence, by
the isomorphism (7.1), the p-Sylow group of ¥ is isomorphic to ¥ ® Z, =
(Ro/I(Ty)0) © 2, = (Ry & Z,)/(I(To)0 & Z,) = (Ry ® Z,)/(I(Ty) & Z,)0). By
Corollary 4.5 we have Ry D I(Ty) D 24Ry. Since p # 2,3, this implies I(Tj) ®
Z,=Ry® Z,. Thus we have ¢ ® Z, & (Ry® Z,)/((Ry ® Z,)0). Since p # 2, the
set of the elements e, with x # 1 constitutes a basis of Ry® Z, over Z,
(Takagi [12, Lemma 6.1]). Hence we have ¢ ® Z, = (P Z,e,)/ (D Z,e,)b) =

(D Zye)/ (D Zpext) = (D Zyey)/ (D Zpa(x)ey) = B(Zp/a(x)Zy). 0

PROPOSITION 8.2.  Assume that the index [Ry : I(Tp)] is prime to 3. Then
a(x) € Zs for all x # 1, and the 3-Sylow group of the cuspidal divisor class group of
the curve Xr, is isomorphic to the direct sum

B (2s/a(x) Z5),

x#1
where x runs through all non-trivial characters of T'/T,.

PROOF. Asin the proof of Theorem 8.1 we have the isomorphism ¢ ® Z3 =
(Ry® Z3)/((I(Th) ® Z3)0). By the assumption we have I(T)) ® Z3 = Ry ® Zs,
whence € ® Z3 = (Ry ® Zs3)/((Ry ® Z3)0). Since the set of the elements e, with
X # 1 is a basis of Ry ® Z3 over Zs3, we have € ® Z3 = (P Zze,) /(D Zza(x)ey)-
Thus we have the inclusion Zza(x)e, C Zse,, which implies a(x) € Z3. This
completes the proof. O

8.2. The 3-Sylow group with Ty = (Mj).
Here we consider the case where p = 3 and Ty = (Mj).

PROPOSITION 8.3.  Let Ty = (My). Assume that M is odd, My # 1, My # 1,
and that either the following condition () or (ii) is satisfied: (i) 3 | S(My), (ii) every
prime factorp of My satisfiesp = 1 (mod 3). Then the index [Ry : I(Ty)] is prime to 3.
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PROOF. We consider the Cases I and II separately. First, assume that the
condition of Case I is satisfied (Section 7.3). By the proof of Theorem 7.8, we have
[Ro : I(Ty)] = 6as)/d. It is easy to see that if either of the conditions (i), (ii) holds,
then a(3) = 1 and 3 | d. This implies that the index [Ry : I(1p)] is prime to 3. Next,
assume that the condition of Case II is satisfied (Section 7.4). By the proof of
Theorem 7.14, we have [Ry : I(Ty)] = 12a3)/d. As in the Case I, we see again that
if either of the conditions (i), (ii) holds, then a3 = 1 and 3 | d. Hence we see that
the index [Ry : I(Tp)] is prime to 3. O

REMARK 8.4. If neither the condition (i) nor (ii) is satisfied, then the index
[Ro : I(Tp)] is not prime to 3.

By Propositions 8.2 and 8.3 we have the following theorem.

THEOREM 8.5. Let Ty = (My). Assume that M, My and My satisfy the
condition of Proposition 8.3. Then a(x) € Zs for all x # 1, and the 3-Sylow group
of the cuspidal divisor class group of the curve Xr, is isomorphic to the direct sum

@(ZS/G(X)ZS)a

X#1

where x runs through all non-trivial characters of T'/T,.
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