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Abstract. Neumann and Wahl introduced the notion of splice-quotient

singularities, which is a broad generalization of quasihomogeneous singularities

with rational homology sphere links, and proved the End Curve Theorem that

characterizes splice-quotient singularities. The purpose of this paper is to give

another proof of the End Curve Theorem. We use combinatorics of ‘‘monomial

cycles’’ and some basic ring theory, whereas they applied their theory of

numerical semigroups.

1. Introduction.

Let ðX; oÞ be a normal complex surface singularity with Q-homology sphere

link � and � : eX ! X a good resolution with the exceptional set E. Then there

uniquely exists a universal abelian covering q : ðY ; oÞ ! ðX; oÞ; by definition q is a

finite morphism of normal surface singularities which induces an unramified

Galois covering Y n fog ! X n fog with covering transformation group H :¼
H1ð�;ZÞ. In [5] Neumann proved that if ðX; oÞ is quasihomogeneous, then ðY ; oÞ is
a Brieskorn-Pham complete intersection, and that its system of equations and the

H -action are explicitly obtained from the weighted dual graph � of E. This

situation is significantly generalized by Neumann and Wahl; see [9], [8].

They introduced the notion of splice type singularities whose equations are

explicitly obtained from � satisfying the ‘‘semigroup condition.’’ Suppose that we

obtained a splice type singularity ðZ; oÞ from �. They proved that ðZ; oÞ is an

isolated complete intersection surface singularity, and that if the ‘‘congruence

condition’’ on � is satisfied and equations are chosen so that H naturally acts on

ðZ; oÞ, then the quotient Z=H is a normal surface singularity with resolution

graph �, and the quotient morphism Z ! Z=H is the universal abelian covering.
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We call ðZ=H ; oÞ a splice-quotient singularity; this gives a generalization of

quasihomogeneous singularities with Q-homology sphere links, and furthermore

the class of these singularities includes rational singularities and minimally

elliptic singularities with Q-homology sphere link (see [11]).

A characterization of splice-quotient singularities (cf. Theorem 2.10) is given

by

END CURVE THEOREM (Neumann-Wahl [7]). Let E1; . . . ; En denote the

irreducible components at the end of E. If there exist Q-Cartier prime divisors

H1; . . . ; Hn on X satisfying eHi � E ¼ eHi � Ei ¼ 1, where eHi denotes the strict

transform of Hi, then ðX; oÞ is a splice-quotient singularity. In fact, functions zi
with divY ðziÞ ¼ q�Hi give ‘‘coordinates’’ of the splice type singularity Y .

This theorem, first announced in [6], also plays a key role in the proofs of the

formula for the geometric genus of splice-quotient singularities ([12]), the Casson

invariant conjecture for splice type singularities ([4]) and the extension due to

Némethi and Nicolaescu ([3]).

First, Neumann and Wahl proved the End Curve Theorem in the case where

H is trivial, applying a theory of numerical semigroups which concerns

irreducible curve singularities, that they developed ([9, Sections 3–4]). For the

general case, they further extended the theory to study reducible curves with

H -action (for example, q�Hi above).

The purpose of this paper is to give another proof of the End Curve Theorem.

The author has studied splice-quotient singularities using a terminology ‘‘mono-

mial cycle’’ ([11], [12]). We will take this approach. Although the notion of

monomial cycles is elementary, it is useful for connecting the combinatorics of the

resolution graph to analytic subjects such as the existence of the curves eHi. For

the proof, we will use these methods, some basic ring theory, and a formula for the

delta invariant of curve singularities; the idea of computing the delta invariant

was used in [9, 4.1].

This paper is organized as follows. In Section 2, we review the definition of

splice-quotient singularities in terms of monomial cycles. In Section 3, we prove

that the assumption of the End Curve Theorem implies the ‘‘monomial

condition,’’ which is equivalent to the semigroup and congruence conditions. In

Section 4, we study the associated graded rings with respect to certain filtrations

of the local rings of universal abelian covers, and compute the delta invariants of

hyperplane sections. These results will conclude the proof.

The author would like to thank the referee for helpful comments.
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2. Splice-quotient singularities.

We recall the definition of splice-quotient singularities in terms of ‘‘monomial

cycles.’’ We refer [12, Section 2] for more details.

Let ðX; oÞ be a normal complex surface singularity whose link is a

Q-homology sphere, and � : eX ! X a good resolution with exceptional divisor

E ¼ ��1ðoÞ. Then E is a tree of rational curves. Let fEvgv2V denote the set of

irreducible components of E and L the group of divisors supported in E; i.e.,

L ¼
X
v2V

ZEv:

We call an element of L (resp. L�Q) a cycle (resp. Q-cycle). Since the

intersection matrix IðEÞ :¼ ðEv � EwÞ is negative definite, for each v 2 V there

exists an effective Q-cycle E�
v such that E�

v � Ew ¼ ��vw for every w 2 V , where �vw
denotes the Kronecker delta. Let

L� ¼
X
v2V

ZE�
v :

Let �v denote the number of irreducible components of E intersecting Ev, i.e.,

�v ¼ ðE � EvÞ � Ev. A curve Ev is called an end (resp. a node) if �v ¼ 1 (resp.

�v � 3). Let E (resp. N ) denote the set of indices of ends (resp. nodes). A

connected component of E � Ev is called a branch of Ev. LetCfzg :¼ Cfzw;w 2 E g
be the convergent power series ring in #E variables.

DEFINITION 2.1. An element of a semigroupM :¼
P

w2E Z�0E
�
w, where Z�0

is the set of nonnegative integers, is called a monomial cycle. For a monomial

cycle D ¼
P

w2E �wE
�
w, we associate a monomial zðDÞ :¼

Q
w2E z

�w
w 2 Cfzg.

DEFINITION 2.2. We say that E (or its weighted dual graph) satisfies the

monomial condition if for any node Ev and any branch C of Ev, there exists a

monomial cycle D such that D� E�
v is an effective cycle supported on C. The

monomial zðDÞ is called an admissible monomial belonging to the branch C.

The monomial condition is equivalent to the semigroup and congruence

condition (see [8, Section 13]). The original definition of admissible monomials

requires only the semigroup condition ([8, Section 2]); the congruence condition is

needed to obtain ‘‘appropriate’’ splice diagram functions (cf. Theorem 2.7).

DEFINITION 2.3. Assume that the monomial condition is satisfied. Let Ev

be a node with branches C1; . . . ; C�v , and let mi denote an admissible monomial
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belonging to Ci. Let ðcijÞ be an arbitrary ð�v � 2Þ � �v matrix with cij 2 C such

that every maximal minor of it has rank �v � 2. We define polynomials

f1; . . . ; f�v�2 by fi ¼
P�v

j¼1 cijmj. We call F v :¼ ff1; . . . ; f�v�2g a Neumann-Wahl

system at Ev, and
S
v2N F v a Neumann-Wahl system associated with E.

Let avw denote the ðv; wÞ-element of the matrix �IðEÞ�1 and dðEÞ the

absolute value of det IðEÞ. We define positive integers ev, ‘vw, and mvw as follows:

‘vw ¼ dðEÞavw; ev ¼ dðEÞ= gcdf‘vw j w 2 V g; mvw ¼ evavw:

DEFINITION 2.4. For any v 2 V , we define the v-weight of zw to be mvw.

Therefore, the v-degree of a monomial
Q

w2E z
�w
w is

P
w2E �wmvw. The leading form

of f 2 Cfzg with respect to the v-weight is called the v-leading form of f and

denoted by LFvðfÞ. The v-degree of LFvðfÞ is called the v-order of f .

Note that for D ¼
P

w2V �wEw 2 M we have

v-deg zðDÞ ¼ ev�v ¼ �evD � E�
v :

DEFINITION 2.5. We call a set

F :¼ ffvjv j v 2 N ; jv ¼ 1; . . . ; �v � 2g � Cfzg

a system of splice diagram functions associated with E if fLFvðfvjvÞ j fvjv 2 Fg is a

Neumann-Wahl system associated with E. A germ of a singularity in ðC#E ; oÞ
defined by a system of splice diagram functions is called a splice type singularity.

THEOREM 2.6 (Neumann-Wahl [8, 2.6]). A splice type singularity is an

isolated complete intersection surface singularity.

Let us recall that the first homology group of the link of ðX; oÞ is isomorphic

to a finite group H :¼ L�=L of order dðEÞ. The intersection form L� � L� ! Q

induces a pairing

� : H � L� ! Q=Z !e C�;

where eðxÞ ¼ expð2�
ffiffiffiffiffiffiffi
�1

p
xÞ. We denote by �ðDÞ the character determined by

�ð � ; DÞ. The group H acts on the power series ring Cfzg as follows. For any

ðh;DÞ 2 H �M , we define h � zðDÞ 2 Cfzg by

h � zðDÞ ¼ �ðh;DÞzðDÞ:
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If f 2 Cfzg and � 2 Ĥ :¼ HomðH ;C�Þ satisfies h � f ¼ �ðhÞf for all h 2 H , we

call f a �-eigenfunction; for example, a Neumann-Wahl system at a node Ev

consists of �ðE�
vÞ-eigenfunctions.

THEOREM 2.7 (Neumann-Wahl [8, 7.2]). Suppose that ðZ; oÞ is a singularity

defined by a system of splice diagram functions ffvjvg such that every fvjv is a

�ðE�
vÞ-eigenfunction. Then the quotient Z=H is a normal surface singularity whose

weighted dual graph is the same as that ofX, and the quotient map Z ! Z=H is the

universal abelian covering.

DEFINITION 2.8. A singularity whose universal abelian cover is a splice

type singularity is called a splice-quotient singularity.

DEFINITION 2.9. We say that eX satisfies the end curve condition if for each

w 2 E there exists an irreducible curve Hw � eX, not contained in E, such that

Hw � E ¼ Hw � Ew ¼ 1 and ewðE�
w þHwÞ � 0. We call Hw an end curve at Ew.

Let Divð eXÞ denote the group of divisors on eX and c1 : Divð eXÞ ! L� a map

defined by c1ðDÞ ¼
P

v2V ð�D � EvÞE�
v . We fix a section

� : L� ! Divð eXÞ

of the homomorphism c1, which satisfies that dðEÞ�ðDÞ � dðEÞD for every

D 2 L�. Using �, the �ðDÞ-eigenspace of H0ðOY Þ is expressed as

H0ðOeXð��ðD� ½D	ÞÞÞ, where ½D	 denotes the integral part (see [12, Section 3.2]).

If the end curve condition is satisfied, then for each w 2 E there exists a

section sw 2 H0ðOeXð��ðE�
wÞÞÞ which defines a divisor �ðE�

wÞ þHw, and hence we

obtain an H -equivariant C-algebra homomorphism

 : Cfzg ! OY ;o;  ðzwÞ ¼ sw: ð2:1Þ

Our goal of this article is to prove the following:

THEOREM 2.10 (End Curve Theorem). If eX satisfies the end curve con-

dition, then X is a splice-quotient singularity; in fact, the homomorphism  is

surjective, and its kernel is generated by a system of splice diagram functions with

H -action.

REMARK 2.11. If ðX; oÞ is splice-quotient, then every �ðDÞ-eigenfunction in

H0ðOY Þ is a series of monomials zðD0Þ with D0 2 LþD.
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3. The monomial condition.

In this section we will prove the following.

PROPOSITION 3.1. The end curve condition implies the monomial condition.

From now on, we always assume that eX satisfies the end curve condition, and

fix a homomorphism  : Cfzg ! OY ;o in (2.1). For any section f 2
H0ðOeXð��ðDÞÞÞ with D 2 L�, there exists D0 2 L such that divðfÞ � �ðDÞ �D0

has no component of E. Then we define the Q-cycle ðfÞE to be DþD0. For

example, ð ðzwÞÞE ¼ E�
w. For any Q-cycle D ¼

P
i2V ciEi, we write cffEiD ¼ ci.

LEMMA 3.2 (cf. [12, 2.14, 2.16]). The end curve condition is satisfied on
(1) a sufficiently small neighborhood of any connected reduced cycle E0, and
(2) a surface obtained by blowing up eX at a singular point of E or at the

intersection of E and an end curve.

PROOF OF PROPOSITION 3.1. By [11, 5.10], Theorem 2.10 is valid in case

#N ¼ 1. Therefore we may assume that it is valid in case the number of nodes is

less than #N . Let Ev be an arbitrary node and E0 an arbitrary branch of Ev. Let

L0 denote the group of cycles supported in E0. We have to show that there exists a

cycle D 2 L0 such that SuppðDÞ ¼ E0 and that E�
v þD is a monomial cycle. We

may assume that E0 is not a chain (cf. [11, 3.5]). By Lemma 3.2, we may also

assume that Ev has only three branches E1, E2, and E
0. Let ai ¼ �E2

i for each i.

Then za11 and za22 are admissible monomials at Ev; indeed ð ðzaii ÞÞE ¼ E�
v þ Ei.

Since the images of  ðza11 Þ and  ðza22 Þ in H0ðOEvð��ðE�
vÞÞÞ span this vector space,

we may assume that the image of f :¼  ðza11 þ za22 Þ in the space has a zero at

Ev \ E0. Let E0 be the irreducible component of E0 intersecting Ev, and

F ¼ ðfÞE � E�
v 2 L. Since cffEiðfÞE ¼ cffEiE

�
v for i ¼ 1; 2; v, and since �ðfÞE is

nef, we have SuppðF Þ ¼ E0, ðfÞE � Ev ¼ 0, cffE0
ðF Þ ¼ 1, and that �F is nef on E0.

Let eX0 be a sufficiently small neighborhood of E0. By a natural isomorphism

OeX0 ð��ðE�
vÞÞ ! OeX0 , the section f jeX0 corresponds to a regular function f 0 on eX0

with ðf 0ÞE0 ¼ F . By assumption, eX0 is a good resolution of a splice-quotient

singularity. Therefore f 0 can be represented by a series of monomials associated

with monomial cycles in L0 (cf. Remark 2.11). Hence there exists a monomial

cycle D 2 L0 which is reduced at E0.

In case a0 ¼ 1, it is clear that D � E0 ¼ 0, and hence E�
v þD is a monomial

cycle. For general case, consider the blowing up at Ev \ E0. By Lemma 3.2, we can

apply the argument above, and thus obtain the cycle D. Then the direct image of

D on eX is a desired cycle. �
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4. Filtrations.

In the following we will apply some results of [12, Section 3], which are

obtained without using the end curve theorem.

Recall that the universal abelian cover q : Y ! X fits into the following

commutative diagram, where p is finite and unramified over eX n E, � is a partial

resolution, and eY has only cyclic quotient singularity at the fiber of the singular

points of E (cf. [10, Section 3.2]):

Then F :¼ p�1ðEÞ is the �-exceptional set on eY . Let v 2 V and Fv ¼ p�1ðEvÞ. For
each n 2 Z�0, we define the ideal In of OY ;o by

In ¼ ��OeY ð�nFvÞ� �
o
:

We call fIngn�0 the v-filtration. Let GðY ; vÞ denote the graded ring
L

n�0 In=Inþ1.

It follows from [12, 3.3] that GðY ; vÞ is a finitely generated C-algebra. Clearly

GðY ; vÞ is reduced and two-dimensional, and has a naturalH -action. Since p�Ev ¼
evFv by [10, 3.4], it follows from the definition of the v-weight that In contains all

functions  ðfÞ with v-ordðfÞ � n.

4.1. By virtue of Proposition 3.1, we can discuss Neumann-Wahl systems

associated with E. Let Ev be an arbitrary node, and let fmig be the admissible

monomials at Ev as in Definition 2.3. We consider the vector space V :¼P
Cmi � Cfzg. Then  ðV Þ is a subspace of H0ðOeXð��ðE�

vÞÞÞ. Consider the

composite

� : V ! H0 OeXð��ðE�
vÞÞ

� �
! H0 OEvð��ðE�

vÞÞ
� �

:

Since � is surjective and h0ðOEvð��ðE�
vÞÞÞ ¼ 2, the kernel of � determines a

Neumann-Wahl system at Ev (cf. [11, 5.6]). Applying this argument to every

node, we obtain a Neumann-Wahl system F associated with E. We denote by Y 0

the splice type singularity defined by F . Then Y 0=H and X have the same

weighted dual graphs by Theorem 2.7; in fact, we can conclude that Y is an

equisingular deformation of Y 0 when the main theorem is verified (cf. [11, 5.10]).
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Let G ¼ GðY ; vÞ and G0 ¼ GðY 0; vÞ. Let Iv be the ideal of the polynomial

ring C ½z	 :¼ C ½zw;w 2 E 	 generated by the v-leading forms LFvF :¼
fLFvðfÞ j f 2 Fg.

PROPOSITION 4.1. G0 is a reduced complete intersection ring, naturally

isomorphic to C ½z	=Iv, and regarded as an H -equivariant graded subring of G.

PROOF. By [12, 3.3], the v-filtration of OY 0;o coincides with the filtration

induced by v-order. Hence [8, 2.6] implies the first claim. Via  we have a natural

homomorphism C ½z	 ! G. By the definitions of F and Iv, we obtain a natural

H -equivariant homomorphism � : G0 ! G of reduced graded rings. Since H acts

transitively on the set of the irreducible components of SpecG0, Im� is pure two-

dimensional. Hence Ker� ¼ ð0Þ. �

For any � 2 Ĥ , let G� � G denote the �-eigenspace, and let G�
n ¼ G� \Gn.

In case � ¼ 1, we also write G� ¼ GH ; this is the invariant subring.

The map � induces the surjective map V �n ! H0ðOEvð��ðnE�
vÞÞÞ. Regarding

H0ðOeXð��ðevE�
vÞÞÞ as an H -invariant subspace of H0ðOeY Þ, from the argument of

[12, Section 3.2] we obtain the following.

LEMMA 4.2. For every n 2 N , we have

G0H
nevmvv

¼� GH
nevmvv

¼� H0ðOEvð��ðnevE�
vÞÞÞ:

From [12, 3.7], G0H
n ¼ 0 if n 6
 0 (mod evÞ. The following lemma shows that

G0H
nev

6¼ 0 for every sufficiently large n.

LEMMA 4.3. For every sufficiently large n, there exists a monomial cycle

D 2 L such that cffEvD ¼ n.

PROOF. Let C1; . . . ; C�v be the branches of Ev, and let Ei � Ci be the

component intersecting Ev. It follows from [8, 5.1] that for each Ci there exists a

monomial cycle eCi 2 L supported on Ci such that eCi � Ei ¼ �1. Let ci ¼ cffEi
eCi.

For each k 2 Z�0 and each 0 � l < mvv, put Dk;l ¼ kevE
�
v þ lEv þ l

P�v
i¼1

eCi and
ck;l ¼ �Dk;l � Ev. We assume that k is sufficiently large so that ck;l � 0. Let D1 be a

cycle supported on C1 such that E�
v þD1 is a monomial cycle. Then Dk;l þ ck;lD1 is

a monomial cycle with cffEv ¼ kmvv þ l. �

4.2. We fix an end Ew and the node Ev nearest to w. Let M 0 ¼P
i2E nfwg Z�0E

�
i . Let  

0 : Cfzg ! OY 0;o be the natural surjective homomorphism.

To simplify notation, for f 2 Cfzg let us also denote by f the functions  ðfÞ and
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 0ðfÞ. Let G ¼ G=zwG and G 0 ¼ G0=zwG
0. From [11, 4.4] we obtain the following.

LEMMA 4.4. G 0 is a reduced complete intersection ring, naturally isomor-

phic to C ½z	=Iv þ ðzwÞ. Moreover zðDÞ 2 G 0 is regular and the support of G 0=ðzðDÞÞ
is the origin for every D 2 M 0.

LEMMA 4.5. There exists D 2 M 0 such that zðDÞG � G0.

PROOF. For each � 2 Ĥ , there exists a monomial cycle D� such that

� ¼ �ð�D�Þ. Then zðD�ÞG� � GH . It follows from Lemma 4.3 that for each

0 � l < mvv there exist kl 2 N and a monomial ml 2 G0H
ðklmvv�lÞev . Let m ¼

zð
P

�2Ĥ D�Þ
Qmvv�1

l¼1 ml. Using Lemma 4.2, we have mG�
k � G0 for every ðk; �Þ 2

N � Ĥ . Hence mG � G0. Suppose zw j m. For each x 2 G, we have ðmxÞ2 ¼
mðmx2Þ 2 zwG

0. By Lemma 4.4, mx 2 zwG
0 and zw is regular. Therefore we have

ðmz�1
w ÞG � G0. This implies the assertion. �

COROLLARY 4.6. G 0 and G have the same normalizations.

PROOF. Let m be a monomial described in Lemma 4.5. Then the inclusion

G0 � G implies the isomorphism G0½m�1	 ¼� G½m�1	 of localizations. Hence SpecG 0

and SpecG are isomorphic outside the origin, and hence G is reduced as G 0 is.

Therefore the natural homomorphism G 0 ! G is injective (cf. Proposition 4.1). By

Lemma 4.2, for every ðk; �Þ 2 Z�0 � Ĥ and every x 2 G�
k , we have that xn 2 G 0

for some n 2 N . Hence G is integral over G 0. �

Let H (resp. H 0) denote the hypersurface of Y (resp. Y 0) defined by zw ¼ 0,

and fJngn�0 (resp. fJ 0
ngn�0) the filtration of OH;o (resp. OH 0;o) induced by the

v-filtration. Then G ¼
L

n�0 Jn=Jnþ1 and G 0 ¼
L

n�0 J
0
n=J

0
nþ1.

REMARK 4.7. We can see that G 0 ¼ C ½z	=Iw þ ðzwÞ and that G 0 is also

obtained from the w-filtration. This filtration measures the vanishing order at

o 2 H.

Next we give a formula for the delta invariant of the curve singularity ðH; oÞ.

PROPOSITION 4.8. We have the following formula.

�ðH; oÞ ¼
1

2
p�E�

w � ðKeY � p�E�
wÞ ¼

jH j
2ew

X
v2V nfwg

ð�v � 2Þmwv þ 1

0
@

1
A:
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PROOF. Let eH � eY be the strict transform of H. Then diveY ðzwÞ ¼
p�E�

w þ eH, and eH intersects the exceptional set F transversally; indeed,eH ¼ p�Hw for an end curve Hw at Ew. Therefore applying [2, 2.1.4], we have

the first equality. By log-ramification formula and the relation p�Ev ¼ evFv, we

have KeY 
 p�ðKeX þ E �
P

v2V
1
ev
EvÞ. Using the equality c1ðKeX þ EÞ ¼P

v2V ð2� �vÞE�
v , we obtain

p�E�
w � ðKeY � p�E�

wÞ ¼ jH jE�
w �

X
v2V nfwg

ð2� �vÞE�
v �

X
v2V

1

ev
Ev

0
@

1
A:

Hence the formula follows from ewE
�
w � E�

v ¼ �mwv. �

This proposition implies �ðH; oÞ ¼ �ðH 0; oÞ. On the other hand, H (resp. H 0)

is a �-constant deformation of SpecG (resp. SpecG 0) (cf. [13, (5.15)], [1]).

Therefore �ðSpecG ; oÞ ¼ �ðSpecG 0; oÞ. By Corollary 4.6, we obtain the following.

COROLLARY 4.9. G 0 ¼ G .

COROLLARY 4.10.  : Cfzg ! OY ;o is surjective.

PROOF. Since H is a deformation of SpecG and C ½z	 ! G 0 ¼ G is

surjective, Y is embedded by the functions fzigi2E . �

PROOF OF THEOREM 2.10. Let v be an arbitrary node. For each n 2 Z�0, leteIn denote the ideal of OY ;o generated by the images of the elements of Cfzg having
v-order � n. Let eG denote the graded ring

L
n�0

eIn=eInþ1. By Corollary 4.10 we

have eG ¼ C ½z	=eI for a suitable homogeneous ideal eI � C ½z	 with respect to

v-weight. Since eIn � In for n � 0, we obtain a natural homomorphism 	 : eG! G.

Since eI contains the set fLFvðfÞ j f 2 Fg, it follows from Proposition 4.1 that

there is a surjective homomorphism G0 ! eG, and the composite G0 ! eG!	 G is

injective. Therefore G0 ¼ eG, and hence eG is reduced. Applying [13, (2.2)] and the

proof of [12, 3.3] we obtain that eIn ¼ In for every n � 0, and hence G0 ¼ G. Let

F v � F be a Neumann-Wahl system at Ev. Recall that F v � G�ðE�
v Þ. Then for

each f 2 F v there exists a �ðE�
vÞ-eigenfunction fþ 2 Cfzg with v-ordðfþÞ >

v-ordðfÞ such that f þ fþ 2 Ker (cf. [11, Section 5]). Since v is an arbitrary

node, Ker contains a system of splice diagram functions eF :¼ ff þ fþ j f 2 Fg.
Since OY ;o is a two-dimensional domain, it follows from Theorem 2.6 that Ker is

just generated by eF . �
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