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Abstract. Let V be a total valuation ring of a division ring K with an auto-
morphism o and let A = @;czA; X* be a graded extension of V in K[X, X ~1;0], the
skew Laurent polynomial ring. We classify A by distinguishing four different types
based on the properties of A1 and A_1. A complete description of A; for all ¢ € Z is
given in the case where A; is a finitely generated left O;(Aj)-ideal.

Introduction.

Let K be a division ring with an automorphism o and let V' be a total val-
uation ring of K, that is, for any non-zero k € K, either kK € V or k~! € V.
A graded subring A = ®;czA4; X of K[X, X 1;0], the skew Laurent polynomial
ring, is called a graded total valuation ring of K[X, X ~!; o] if for any non-zero ho-
mogeneous element aX® of K[X, X 1;0], either aX’ € A or (aX?)~! € A, where
Z is the ring of integers. A graded total valuation ring A of K[X, X ~1; 0] is said
to be a graded extension of V in K[X, X ! 0] if Ag=V.

A Gauss extension S of V in K (X, o), the quotient ring of K[X, X~1; 0], was
defined in [1] as a total valuation ring of K(X,o) with SN K = V that satisfies
the following conditin:

aS =a;X'S

for any o = Ya; X7 € K[X, X 1;0] with a;X*S D a;X7S for all j. Then the
following results were obtained:

THEOREM 0.1.  There is a one-to-one correspondence between the set of all
Gauss extensions of V in K(X,0) and the set of all graded extensions of V in
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K[X, XY 0], which is given by S — SN K[X,X 0], where S is a Gauss
extension of V in K(X,0) ([1, (1.8)]).

THEOREM 0.2. Let S be a Gauss extension of V in K(X,o) and let
A=SNK[X,X Y 0]. Then

(1) The mapping ¢ : I — I, =INK[X, X ;0] is a one-to-one correspon-
dence between the set of all (right) ideals of S and the set of all graded (right)
ideals of A.

(2) ¢ induces a one-to-one correspondence between the set of all prime ideals
of S and the set of all graded prime ideals of A ([1, (2.1)]).

We note that Gauss extensions in [1] were considered in a more general con-
text. Total valuation rings in Ore extensions or in skew polynomial rings have
been studied in [2], [3], [6] and [7].

Theorems show that it suffices, in some sense, to study graded extensions in
order to study the Gauss extensions (in particular, ideal theory of Gauss exten-
sions).

The aim of the paper is to classify the graded extensions of V in K[X, X ~!; 0]
and to study the structure of them.

In Section 1, we will give some basic properties of graded extensions. Let
A= ®@;czA; X" be a graded extension of V in K[X, X !;0] and let W = O;(A;)
be an overring of V. There are two cases: namely, either A; is a finitely generated
left W-ideal, say, Ay = Wa for some a € Ay, or A; is not a finitely generated left
W-ideal.

In this paper, we will concentrate on the case where A; = Wa (in the case
where A; is not a finitely generated left W-ideal, we will study the graded ex-
tensions in a forthcoming paper). If A; = Wa, then it is shown that either
Ay=0"Ya tJ(W))or A_; = Wo~Y(a"t), where J(W) is the Jacobson radical
of W. From this information, in Section 2, we will classify graded extensions A
into four cases and will give complete descriptions of A; for all i € Z. Except for
the case where A; = Wa = ac(W), A_1 = o (a"tJ(W)) and J(W) D J(W)?,
A is uniquely determined (see Theorem 2.2 and Theorems 2.4 ~ 2.6). However,
in the case A; = Wa =aoc(W), A_1 = o Y a tJ(W)) and J(W) D J(W)?, there
are infinitely many different graded extensions (the cardinality is at least ).

To give a complete description of the graded extensions, we need a map from
Z to Z which is called a nice map (see Section 2 for the definition of nice maps).

In Section 3, we will give a complete description of nice maps.

Section 4 contains an example of total valuation rings V and W with W D> V
and J(W) D J(W)? such that the cardinality of the set of all graded extensions
B = ®iezB; X of V in K[X,X ;0] with A; = Wa =ac(W) = By and A_; =
o (a7'J(W)) = B_; is larger than X.
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Let I be a right V-submodule of K. Then [ is called a right V-ideal if al C V'
for some non-zero a € K. Left V-ideals are defined similarly. It is well known that
the set of all right (left) V-ideals is linearly ordered by inclusion, which is used
without reference. Let I be an additive subgroup of K. Then the right and left
order of I are defined to be

O,(I)={keK|IkCI}and O;(I)={ke K | kI CI}.
Furthermore, for any subsets I and J of K, we use the notation:

(J:I)p,={ke K|IkCJ},
(J:I)={keK|kICJ}and
I ={ct|cel,c#0}.

We refer the readers to [5] for some basic properties of non-commutative valuation
rings.

1. Some basic properties of graded extensions.

Throughout this paper, V will denote a total valuation ring of a division
ring K with an automorphism o of K. K[X, X !;0] will be the skew Laurent
polynomial ring with its quotient division ring K (X, o). In this section, we will
give some basic properties of graded extensions of V in K[X, X 1;0]. We start
with the following easy lemma.

LEMMA 1.1. Let A= ®;ezA; X" be a subset of K[X, X ;0] with Ay =V.
Then A is a graded extension of V if and only if

(1) Ajo?(Aj) C Ay for alli,j € Z and A; is an additive subgroup of K for
alli € Z and

(2) AiUc(A~,)=K forallic Z.

PROOF. Suppose that A = @®;czA; X’ is a graded extension of V in
K[X,X'; o]. Then (1) easily follows, because A;X"A; X7 = A;0%(A;) X+ C
A;i1j X, To prove (2), let a € K,a # 0. If aX® € A, then a € A;. If aX® & A,
then 4 5 (aX") ™! = X~%a™! = 07 %a 1) X% so that 0~ %(a™1) € A_;. Hence
a € 0'(AZ,), showing that A; Uc?(A7,) = K.

Suppose that (1) and (2) hold. Then A is a graded subring of K[X, X !;0]
by (1). To prove that A is a graded extension of V in K[X, X 1:0], let aX® €
K[X, X Y0]. If a € A;, then aX' € A. If a € A;, then a € 0'(A7,), ie.,
o~(a"t) € A_;. Hence, (aX?) ' =07 (a 1) X "€ A. O
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The following lemma is more or less known.

LEMMA 1.2.  Let W be a total valuation ring. Then

(1) Let I and J be left W-ideals of K such that J(W)I C J C I. Then either
J=1orJ=JW)I.

(2) Let I and J be right W-ideals of K such that IJ(W) C J C I. Then
either J =1 or J =I1J(W).

PROOF.

(1) Suppose that J(W)I C J C I. Then there exist b € J\ J(W)I and
ce€I\J. Thus JIW)I C Wb C We, because the set of all left W-ideals is
linearly ordered by inclusion. Hence bc=! € J(W) and so b € J(W)c C J(W)I, a
contradiction. Therefore, we have either J =1 or J = J(W)I.

(2) This is just a right version of (1). O

The following results will be used in the investigation of graded extensions.

LEMMA 1.3.  Let W be a total valuation ring of K, o € K witha #0,1 € Z
with i # 0 and let I and J be subsets of K. Then

(1) IfI=Wa and J 2 U’i(oflJ(W)) then I Uo'(J™) =

(2) If I = ac* (W) and J D J(W)o 4 (a™?), then ITUc*(J~ )

(3) If I = ad®(J(W)) and J = Wo~¢(a™t), then I Uo? (J )=

4) If I =JW)a and J = o~ (a")o =4 (W), then I Uo?(J~

PRroor.

(1) Let b € K\ I. Then Wb D I and so @ = wb for some w € J(W).
Thus o~ (b7!) = o7 (a " w) € o7 (a " J(W)) C J, ie., b € ¢°(J7). Hence
TUcoi(J™) = K follows.

(2) This is proved as in (1).

(3) Let b € K\I. Then it follows that a=1b & o*(J(W )) so that o/(W)a~1b D
ot(J(W)). Thus o*(W)a~1b D o!(W) and so o (W)a~t D o?(W)b~1. Let b=1 =
ol(w)a~?! for some w € W. Then o~ (b~1) = wo ¢ (a™ ) € Jand so bt € o(J),
i.e., be o' (J7). Hence I Uo?(J™) = K follows.

(4) This is proved as in (3). O

):K.

Let A = ®;czA; X" be a graded extension of V in K[X, X !0, O;(4;) =
W and O,(A4;) = ¢*(U). Then note that W and U are both overrings of V,
because A; is a left V and right ¢*(V)-ideal. The following lemma is crucial for
the classification of graded extensions.

LEMMA 1.4. Let A= ®;czA; X" be a graded extension of V in K[X, X 1;0]
with Oy(A;) = W and O,.(A;) = o'(U) for a fized i € N, where N is the set of all
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natural numbers.
(1) Suppose that A; = Wa for some non-zero o € K. Then
(i) IfW =V and Va = ac’(V), then either A_; = Vo~ (a™t) or A_; =
J(V)o~i(a™t).
(ii) If either W DV or Va D ac*(V) (when W = V), then A_; =
o a"tJ(W)).
(2) Suppose that A; = ac*(U) for some non-zero a € K and ac*(U) D Ua.
Then A_; = J(U)o ¢ (a™1).

PRrooOF.

(1) First we will prove that o*(A_;) D a~1J(W). Since o?(A_;) is a right V-
ideal, we have either o'(A_;) D a LJ(W) or 0'(A_;) C a LJ(W). If 0*(A_;) C
a~tJ(W), then take any element b = o~ w for some w € J(W) with b & o*(A_;).
It is clear that b=' ¢ o%(A”,) and b™' = w™la ¢ Wa = A;. Thus b~! ¢
A; Uo'(AZ,;) = K, a contradiction by Lemma 1.1. Hence o'(A_;) D a~tJ(W)
follows. Furthermore, from A;0'(A_;) C V, we derive 0*(A_;) C (V : A;),. First
suppose that W D V, then (V : A;), = a~*J(W) by [4, the right version of Lemma
1.1]. Hence o*(A_;) = a YJ(W), ie., A_; = o7 (a 1J(W)). Next suppose
that W = V, then o= 1J(V) C ¢*(A_;) C (V : A;), = o 'V. Thus we have
either 0'(A_;) = o=V or 0'(A_;) = a~1J(V) by Lemma 1.2, i.e., either A_; =
o a"V)or A_; = o7 (a"1J(V)). Hence, in the case when Va = ac?(V), either
A =Vo(a ) or A_; = J(V)o~%(a™!). Finally in the case when W =V and
Va D acl(V), if 0'(A_;) =a 'V, then V 2 A_;07%(A;) = 0 “(a”Va), and so
o (V) 2 a™Va, a contradiction. Hence A_; = o~ (a1 J(V)).

(2) This is proved in the same way as in (1), noticing o*(A_;) 2 o*(J(U)a™?1)
first. g

COROLLARY 1.5. Under the same notation and assumption as in Lemma
1.4, we have

(1) Suppose that A; = Wa for some non-zero o € K. Then A;o*(A_;) D
J(W).

(2) Suppose that A; = ac®(U) for some non-zero o € K. Then o'(A_;)A; 2
o*(J(U)).

PROOF.

(1) This easily follows, because o*(A_;) 2 a~1J(W) by the proof of Lemma
1.4.

(2) This is proved in the same way as in (1). O

LEMMA 1.6. Let A = ®;czA; X" be a graded extension of V in K[ X, X ;0]
with O;(A1) =W and O,.(41) = o(U). Then



428 G. XIE and H. MARUBAYASHI

(1) If Ay = Wa for some non-zero a € K, then J(W)A;+1 C A1o(A;) C Aijya
for alli e N.

(2) If Ay = ao(U) for some non-zero a € K, then A 101 (J(U)) C
AiO'i(Al) Q Ai+1 fOT all i S N.

PROOF.
(1) Tt is clear that Aj0(4;) € A;p; and A 10 ' (A1) € A;. So
O'(Afl)AiJrl Q O'(AZ) Thus AlU(Afl)AiJrl g Ald(AZ) follows. Since A10(A,1) 2

J(W) by COI‘OH&I‘y 15, we have J(W)AH_l Q Ala(A_l)Ai_H Q Al()'(Al) g Ai+1.
(2) This is proved in the same way as in (1).

O

2. A classification of graded extensions of V in K[X, X !;0] with
Al = Wa.

Let A = ®;ezA; X be a graded extension of V in K[X, X ~1; 0] with O;(A;) =
W, an overring of V. Suppose that A; is a finitely generated left W-ideal. Then
it is principal, say, A; = Wa. Since A; and ac(W) are both right o(V')-ideals, by
Lemma 1.4, we can distinguish the following four cases for A:

() W=V, Ay =Va=aoc(V)and A_; = Vo t(a1).

(b) Ay =Wa D ac(W).

(¢c) Ay = Wa C ac(W) (in this case, W D V).

(d) Ay = Wa = ac(W) and Ay = o~ Y(a 1J(W)) (in this case, we must
consider two cases, J(W) = J(W)? and J(W) D J(W)?).

The aim of this section is to describe the structure of A; and A_; based on
the properties of A; and A_; according to the classification above.

In the remainder of this section, we assume that A = @;czA4;X* is a subset
of Vin K[X, X 1;0] with Ag =V and A; = Wa for some a € K, where W C K
is an overring of V.

For a fixed non-zero a € K, we set

ai=ao(a) -0 Ha),a_; =0 (a; ") for all i € N and ag = 1.
Then we have
a_j=0 a o (a0 (aY) foralli € N,a; = o'(a”})

and

OéiO'i(Oéj) = Qjyj for all 1,] € Z,



Graded extensions 429

which are freely used in this section.
In Lemma 2.1, we will use the following general property of total valuation
rings: If W DV, then J(V) D J(W) and J(V)J(W) = J(W).

LEMMA 2.1.  Let W and U be overrings of V and let 0 # a € K as above.
Then

(1) Suppose that Wa = ac(W). Then Wa; = a0t (W), JW)a; =

o(J(W)) for all i € Z. Furthermore, if J(W) is principal, say, J(W) =
Wb L= bW for some b=t € J(W), then J(W)a; = ;o' (J(W)?) for all
1,] € Z, where JW) = Wb,

(2) Suppose that Wa D aoc(W). Then Wa; D ajot(W), J(W)a; C
;o (J(W)) and JW)a_jo= (J(W)) = a_jo" (J(W)) for all i € N. In par-
ticular, Way is a right o*(W)-ideal and a_;oc=*(J(W)) is a left W -ideal.

(3) Suppose that ac(U) D Ua. Then a;o'(U) D Uay, a;o'(J(U)) C J(U)ay,
and J(U)a_;jo= (J(U)) = J(U)a—; for alli € N. In particular, c;o*(U) is a left
U-ideal and J(U)a—; is a right o~*(J(U))-ideal.

Proor.

(1) For any i € Z, the formulas Wa; = a;o' (W), J(W)a,; = a;o?(J(W)) are
easily proved by induction on i. In the case when J(W) is principal, J (W)ozZ =
;o' (J(W)) implies J(W) Loy = ;o (J(W) 1) and so J(W)la,; = a;ot(J(W)F)
is also proved by induction on j for any j € Z.

(2) We inductively have: o 'Wa; D o(a; }Wa;—1) D - D o4(W)
and so Wa; D ao'(W) follows. From o 'Wa; D o'(W), we derive
a; 'T(W)ay € o'(J(W)) and so J(W)a; C a;o(J(W)) follows. Furthermore,
o' (JW)) D a; ' J(W)a; implies J(W) D o~ (a; o™ (J(W))o " (ay). So it fol-

lows that J(W)a’i(ai_l)ofi(J(W))a’i(ai) = Jii(ozi_l)of_i(J(W))cr*i(ozi). Thus
JW)a_;jo7"(J(W)) = a_;o~(J(W)), because a_; = 0~ *(a; '). The last state-

ment is now clear.
(3) This is proved in a similar way as in (2). O

We start with the case (a) which is the simplest one.

THEOREM 2.2. Let A = ®;czA; X" be a subset of K[X, X 1; 0] with Ay =
V,A =Va=ao(V) and Ay = Vo= l(a™t). Then A = DiczA; X" is a graded
extension of V in K[X, X 1;0] if and only if A; = Vo, for alli € Z.

PROOF. Suppose that A = @®;czA; X? is a graded extension of V in
K[X,X Y 0]. We will prove that A; = Va; for all i € N by induction
on i. Assume that A; = Va; for some i € N. A_j07'(A;11) C A; im-
plies that o(A_1)A;11 C o(A4;). So Ajp1 C aoc(A;) € Ajpq1. Hence 4,11 =
Ayo(A;) = Vac(Va;) = Vayyq. Similarly we have A,y = A_j07Y(A_;) =
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VU_I((I_I)O'_l(VCM,Z‘) =Va_;_1.

Conversely, suppose that A4; = Vo, for all i € Z. Then A = ®;czA4; X?
is an additive subgroup of K[X, X !;0]. Since Va; = a;0*(V) by Lemma 2.1
and a;0'(aj) = a4 for all i,j € Z, we have A; X A; X7 = A;; X", For any
i € Z with i # 0, we have 4; = Vo, = a0’ (V) = o'(a=})a* (V) 2 oi(a”} J(V))
and A, = Va_; = a_jo (V) = 07(a;'V) D 0 (a_}J(V)). Thus A; U
0(AZ;) = K by Lemma 1.3 (1). Hence A = &;cz4;X" is a graded extension of V
in K[X, X !;0] by Lemma 1.1. O

The following are typical examples of graded extensions of V in K[X, X1, o].

PrOPOSITION 2.3.  Let W and U be overrings of V.

(1) Suppose that either Wa D ac(W) or Wa = ac(W). Set A; = Way,
Ay = a_jo  (J(W)) and Ag =V for alli € N. Then A = ®jczA; X" is a
graded extension of V in K[X, X 1;0].

(2) Suppose that ac(U) D Ua. Set A; = ;o' (U), A_; = J(U)a—; and
Ay =V foralli € N. Then A = @iz A; X" is a graded extension of V in
KX, X Y 0].

PROOF. We will only prove this in the case where A; = Wa D ac(W). It is
clear that A is an additive subgroup of K[X, X ~!; 0] and that A;Uc(A~;) = K for
alli € Z by Lemma 1.3 (1) and (3). Thus it suffices to prove that A;0%(A4;) C A;4;
for all i,j € Z by Lemma 1.1, which will be proved in the following way:

For any i,j € N, by using Lemma 2.1 (2), we have
Aio"(A)) = Waya' (Way) = Wao'(W)o' (o) = Wairj = Aigj,
Ao (Ay) = asio T (J(W)A)) = aio (A-j) = ayo ' (a_jo I (J(W)))
=a o TII(W)) = Aiy,
Aio'(A-j) = Wayo' (a—jo 7 (J(W))) = Waio'(a_j)a" I (J(W))
=Wa;_joc" I (J(W)) C A;_; and

ALio i (Ay) = a0 (I(W))o~ (Way) = o~ (o)

TI(W)ay).

Soif j > i, then A_;07(A4;) C o~ (c"(J(W))a; ta;) = J(W) o7 a; o™ (ay) =
J(W)Oé_i+j - A—H—j' If ¢ < j, then A_z'O'_i(Aj) = Oé_iO'_i(J(W)OZj) -
a_io " ajo (J(W))) = a_jpjo T (J(W)) = A_;4;. If either i = 0 or j = 0,
then it is clear that A;0%(A;) = A;1;. Hence A is a graded extension of V in
KX, X Y 0]
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In the case where A} = Wa = ac(W), it is proved in a similar way by using
Lemmas 1.1, 2.1 (1), and 1.3 (1) and (3).

(2) This is also proved in a similar way as in (1) by using Lemmas 1.1, 2.1
(3), and 1.3 (2) and (4). d

Second, we will consider the case (b), i.e., Ay = Wa D ac(W).

THEOREM 2.4. Let W be an overring of V and let A = ®;czA; X" be a subset
of K|X, X Y 0] with Ag =V and Ay = Wa D ac(W). Then A = @;czA; X" is
a graded extension of V in K[X, X Y;0] if and only if A, = Wa; and A_; =
a_io (J(W)) for alli € N.

PROOF. Suppose that A is a graded extension of V in K[X, X 1;0]. We
will prove that A; = W for all i € N by induction on 7. Assume that A; = Way
for some i € N. Then Aj0(A;) = Waoc(W)o(a;) = Wao(a;) = Wayy1, because
Waoc(W) = Wa. Because of J(W)A;11 C Ajo(A;) C A1 € WA+ by Lemma
1.6, it follows from Lemma 1.2 that either J(W)A;11 = Wa;41 or Ajy1 = Wayqq.
Assume that J(W)A;11 = Wa,41. By Lemma 1.4, 0(A_1) = a='J(W) and so
a_lJ(W)A7;+1 = O'(Afl)AiJrl Q U(Al) = O'(WO[Z'). Thus WO(Z'+1 = J(W)AZ+1 g
ac(Wa;) and so Wa C ao(W) follows, which is a contradiction. Hence A;41 =
Waii1, as desired. Tt follows from Lemma 1.4 that A_; = o~ (a; ' J(W)) =
a_jo " (J(W)). 4

Conversely, suppose that A; = Wa; and A_; = a_;c7*(J(W)) for all i € N.
Then A is a graded extension of V in K[X, X ~!; o] by Proposition 2.3. O

Third, we will consider the case (c), i.e., Ay = Wa C ac(W). In this case,
we note that W O V and o(W) D a *Wa = O,(A;) = o(U). So it follows
that W D U D V and A; = ac(U) D Ua. Furthermore, o(A_1) = a 1J(W) =
a *JW)aa=! = o(J(U))a"!. Note that ac(U) D Ua implies ac(W) D Wa.
Hence the proof of following theorem will be similar to the proof of Theorem 2.4.

THEOREM 2.5. Let W be an overring of V and let A = @iezA; X" be a
subset of K|X,X Y 0] with Ag =V and Ay = Wa = Wao(V) C ac(W). Set
a*Wa = o(U) and assume U DO V. Then A is a graded extension of V in
KX, X Y 0] if and only if A; = ;o™ (U) and A_; = J(U)a—; for alli € N.

Finally, we will study the case (d), i.e., A1 = Wa = ac(W) and A_; =
oY a 1J(W)). In this case, we note that A_; = J(W)a_; by Lemma 2.1. We
first consider the case where J(W) = J(W)2.

THEOREM 2.6. Let W be an overring of V and let A = @;czA; X" be a
subset of K[X, X Y;0] with Ag =V, Ay = Wa = ac(W) and A_1 = J(W)a_;.
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Suppose that J(W)? = J(W). Then A is a graded extension of V in K[X, X 1;0]
if and only if A; = Wa,; and A_; = JW)a_; for alli € N.

PROOF. Suppose that A is a graded extension of V in K[X, X !;0]. We
will prove that A; = Wa; for all ¢ € N by induction on 7. Assume that A; = Wa;
for some i € N. Then A10(A;) = Way4q since Wa = ac(W). Since J(W)A;11 C
A10(4;) by Lemma 1.6, it follows that A;11 € (Wa1 @ J(W)), = Wayg,
because J(W)? = J(W) and (W : J(W)),, = W. Hence A;11 = Wa,1 follows.
By Lemma 1.4, either A_; = o~ (a; ' J(W)) or A_; = Wo ™ (a; ') = o7 (aj] ' W).
Assume that A_; = 0! (a;'W) for some | € N (we may assume that [ is the
smallest natural number for this possibility). Then [ > 1 and so we have, by
Lemma 2.1,

ALy D Ao (i) = 07 o W - Wayo) = o~ (o Par-10 (W)
= o Ha W) =0 Ha W) Do a LT (W)) = A_,

which is a contradiction. Hence A_; = o~ (a; 'J(W)) = a_jo  (J(W)) =
J(W)a_; for all i € N by Lemma 2.1.
Conversely, suppose that A; = Wa,; and A_; = J(W)a_; for alli € N. Then

A is a graded extension of V in K[X, X ~!; 0] by Lemma 2.1 and Proposition 2.3.
O

As it has been seen in Theorems 2.2 and 2.4 ~ 2.6, the graded extension
A = ®;jczA; X" is uniquely determined by A; and A_; in the cases (a), (b), (c)
and (d) with J(W) = J(W)2. However, in the case (d) with J(W) > J(W)2, A is
not uniquely determined by A; and A_;. In fact, we will show in Section 3 that
the cardinality of the set of all graded extensions is at least N.

In the remainder of this section, we assume that J(W) > J(W)2, i.e., J(W)
is principal, say, J(W) = b='W = Wb~! for some b= € J(W) as well as A;
Wa=aoc(W)and A_y = J(W)a_;.

LEMMA 2.7. Let A = ®;czA; X" be a graded extension of V in K[X, X~ 1; 0]
with Ay = Wa = ac(W) and A_y = J(W)a_1. Suppose that J(W) = bW =
Wb~t. Then for anyi € Z, there is an element k € Z such that WbF~1a; C A; C
Wbtka; and WA; = Wbka;. In particular, W A; is a right o*(W)-ideal.

PROOF.  First note that J(W)*a; = a;0'(J(W)F) for all i, k € Z by Lemma
2.1.

We will first prove that Wb*~1a; € A; € WhFa; for any i € N by induction
oni. If i = 1, then k = 0 and so we may assume that WbF—1a; C A; C Whka,
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for some k > 0. Then WA; = Wb*a; by Lemma 1.2 and so Aro(4;) = Whka, 1.
Thus, from J(W)A;11 C Ayjo(A;) € Aiyq, we have either WA; 1, = WbFa;
or b71WAi+1 = kaOéi+1, ie., WAiJrl = kaJrlOéiJrl. So kailaprl C Ai+1 -
kaozlqu in the former case and kaozH_l CAi+1 C kaHOziH in the latter case.
Since A_; = J(W)a_1, we can prove that for any i € N, WbF"la_; ¢ A_; C
Wbka_; and WA_; = WbFa_; for some k < 0 in the same way. It is clear that
W A; is a right o¢(W)-ideal for all i € Z. O

In Lemma 2.7, for any i € Z, WA; = Wb*q; for some k € Z. More generally,
we have

LEMMA 2.8. Let W be an overring of V' and let v; € K be nonzero elements
such that Woy; = 70 (W), vio'(v;) = Yitj and vo = 1 for all i,j € Z. Suppose
that J(W) = b=W = Wb~ and that, for any i € Z, there is an f(i) € Z with
f(0) =0. Set B; = Wbl O, for alli € Z with i #0 and By = V. Then

(1) For anyi,j € Z with j # —i, B;o"(B;) C Byy; if and only if f(i)+ f(j) <
1+ ). |

(2) For any i € Z, B; Uo"(BZ,;) = K if and only if f(i) + f(—i) > —1.

Proor.

(1) Because of v;a'(J(W)*) = J(W)*~; as in Lemma 2.7, for any i,k €
Z, we have B;o'(B;) = Wb/ ot (Wb/0)oi(y;) = Wo/OFH0)y,00(v;) =
Wb/ O+/G)n, . Hence Bio'(B;) C Byyj if and only if f(i) + f(j) < f(i + j)
for all ¢,j € Z with j # —i.

(2) Suppose that B; Uc*(B~,) = K for all i € Z. If f(i) + f(—i) < =2 for
some i € Z, then i # 0 and ¢ = b/ (D +1y, ¢ B;. Then we have

C71W — ,.Yi—lbff(i)flw _ O_z(bef(z)fl),Yl—l ») a_i(bef(i)fz.y_i)
2 o' (W) =o' (By).
Thus ¢ € B; Uo(B~,) = K, a contradiction. Hence f(i) + f(—i) > —1 for all
1€ Z.

Conversely, suppose that f(i) + f(—i) > —1 for all i € Z. If ¢ € K with
¢ & B;, then b/ Dn;c=t € J(W) = b~'W and so b/ ()+1,c~1 € . Thus we have

ey IO C A O = Ui’(be(_i))v;l

=o' (Wb "N o' () = o*(B_y).

So ¢ € ¢*(BZ;) and hence B; U (0°(BZ;) = K follows. O
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From Lemma 2.8 we have the following definition:

A map f: Z — Z is called a graded map if f(0) =0, f(¢)+ f(j) £ f(i +7)
and f(i)+ f(—i) > —1foralli,j € Z.

A graded map f is called a nice map if f(1) =0, f(—1) = —

If f is a graded map, then we note that either f(i) + f(— z) = —1lor f(i) +
f(=i) =0 for any i € Z, because —1 < f(i) + f(—i) £ fi +(—i)) £ f(0) =0
Furthermore, £(7) + f(j) = f(i + ) or (i) + f(j) = f(i + ) — 1 for any i, € Z,
because £(3) > f(i+ ) + f(—j) = f(i+J) — £(j) 1.

Assume that W # V is an overring of V. Then, under the notation and
assumption in Lemma 2.8, we have B = @;czB; X" is a graded extension of V in
K[X,X % 0] if and only if f is a graded map with f(i) + f(—i) = —1 for any
i # 0. Furthermore, B is a graded extension of V in K[X, X ;0] with B; = W~
and B_; = J(W)~_; if and only if f is a nice map with f(i) + f(—i) = —1 for
any i # 0.

Now under the notation and assumption in Lemma 2.7, for any i € Z, WA; =

b*a; for some k € Z. We define f(i) = k. Then we have

LEMMA 2.9.

(1) The map f defined above is a nice map.

(2) WHfO=1a; ¢ A; € Wbl Doy for some i € Z with |i| > 2 if and only if
W #V and f(i) + f(—i) =

PRrooF.
(1) It is clear that f(0) =0= f(1) and f(—1) = —1, since Ay = Wa,Ag =V
and A_; = JW)a_; = Wb ta_;. Now let B; = WA; = WbfWa, for any i € Z

with ¢ # 0 and Bo = V. Then B;c'(B;j) = WA;oc'(W)o'(4;) = WA;o'(4;) C
WA;y; = By if j # —i, since WA, is a right o?(W)-ideal. Furthermore, it is
clear that B; O A; and B_; O A_; for alli € Z. Hence f is a nice map by Lemmas
1.1 and 2.8.

(2) Suppose that Wb/ ~ta; ¢ A; € Wb/, for some i € Z. Then [i| > 2
since A1 = Wa and A_; = Wb~ 'la_;. By Lemma 1.2, W # V. Assume that
(@) + f(=i) = —1. Let 8 = wb/Da; € WblDa; \ A, then w is a unit of W and
S0

BIW = 0 FOW = ' (B CIW) et = ot (WHF D) !
=o' (Wbf ) ) D ot(Ay),
which shows 8 & 0'(AZ,) U A; = K, a contradiction. Hence f(i) + f(—i) =0

Conversely, suppose that W # V and f(i) + f(—4) = 0. Then it is clear that
li| > 2, because f(1) = 0 and f(—1) = —1. Assume that A; = Wb/Da;. Then,
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by Lemma 1.4, we have A_; = o (a; "o~ /O J(W)) = a_,o  (Wp/(=D-1)
Wbl (=D=1q_; a contradiction. Hence Wbf (D=1, ¢ A; € Wb/ follows.

(]
LEMMA 2.10.  Let f be a graded map with f(1)+ f(=1) =0 for somel € N.
Then
(1) fe+0)=f6G)+f1) and fi—1)= f(i)+ f(=1) foralli€ Z.
(2) Suppose that [ is the smallest natural number with f(1)+ f(—=1) = 0. Then
FG)+ f(=7)=01ifand only if j € 1Z.

ProoOF.

(1) Forany i € Z, f(i) = fG+1-0) > fG@e+1) + f(=1). So fi +1) >
F@O+fO) > fG+D)+ f(=1)+ f(1) = f(i+1), which shows f(i+1) = f(i) + f(1).
Similarly, we have f(i —1) = f(i) + f(=1).

(2) If j = lq for some q € Z, then f(j) + f(—j) = qf (1) + ¢f (=) =0 by (1).
Conversely, suppose that f(j) + f(—j) = 0 and let j = Ip + 4 for some p,i € Z
with 0 £ ¢ <. Then 0 = f(j) + f(—j) = f(4) + f(—¢) by (1), which shows i = 0,
ie.,jelz. O

Now we are ready to describe the case (d) with J(W) D J(W)2.

THEOREM 2.11. Let W be an overring of V and let A = ®;ezA; X" be a
subset of K[X, XY 0] with Ag =V, Ay = Wa =ac(W) and A_; = J(W)a_;.
Suppose that J(W) = b='W = Wb~! for some b=' € J(W). Then A is a graded
extension of V in K[X, X ~1; 0] if and only if the following properties hold:

(1) There is a nice map f such that WA; = Wbf Oy, for alli € Z.

(2) (a) If either W =V or f(i)+ f(—i) = —1 for all i € Z with i # 0, then

Ay = Wb/ Dey for alli € Z with i # 0.

(b) If W # V and there is anl € N (I > 2) with f(I) + f(=1) =0
(assume l is the smallest natural number for this property), then A; =
Wb Doy for all i ¢1Z and B = @jezAlejl s a graded extension
of Vin K[X', X4 o] with Wbl iD=1ay ¢ Ay ¢ WblUDay, for all
jeZ.

PROOF. Suppose that A = @;czA; X’ is a graded extension of V in
K[X,X'; 0]. Then there is a nice map f such that WA; = Wb/@Wq; for all
i € Z by Lemmas 2.7 and 2.9. In the case (2) (a), it follows from Lemmas 2.7 and
2.9 that A; = Wb/, for all i € Z with i # 0. In the case (2) (b), the statement
follows from Lemmas 2.9 and 2.10.

Conversely, suppose that (1) and either (2) (a) or (2) (b) hold. Then A is
an additive subgroup of K[X, X~1;0] with Ag = V. In order to prove that A; U
0'(A7,) = K for all i € Z, we may assume that f(i)+ f(—i) = —1, A; = Wb/ (Wq,
and A_;, = Wb/(=Da_; by the assumption. Then A_;, = a,ia’i(be(*i)) =
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a_io (Wb D=1 = =i(a; b= J(W)). Hence A; Uc*(A”,) = K by Lemma
1.3 (1).

Finally we will prove that A is a ring. Note that A;0%(4;) C
Wb Da,0' (W Da,) = Wbl OF a0t (o)) = Wb/ O+ G a, i by Lemma 2.1.
Soifi+j ¢ 1Z, then A;0'(A;) C A;4; follows. In the case when i+ j € [Z, there
are two cases, i.e., either i,j € [Z ori,j ¢ Z. If i,j € IZ, then A;0°(4;) C Aiyj,
since B is a graded extension of V in K[X, X ;0.

If i,j ¢ IZ, then j = kl — i for some k € Z. So we have f(i) + f(j) =
F@) + f(—=i+ kD) =fG@)+ f(—i)+ f(kl) = =14 f(kl) = =14 f(i + j) by Lemma
2.10. Thus AiO'i(Aj) - be(z)Jrf(j)ath = be(iJrj)ilaiij C AiJrj by Lemma 2.7.
Hence A is a graded extension of V in K[X, X ~!; 0| by Lemma 1.1. O

3. Description of nice maps.

As it has been seen in Section 2, nice maps are useful in the study of graded
extensions of V in K[X, X~ 1;0]. In this section we will give a full description of
nice maps.

LEMMA 3.1. Let f be a nice map. Then
(1) f()+1> fi+1) > f(i) foralli € Z.
(2) 0= f(i) <i foralli € N.

PROOF.

(1) Since f(i+1) > f(i)+ /(1) = f(3) and f(i) > F(i+1)+F(-1) = fi+1)—1,
we have f(i) +1> f(i+1) > f(i).

(2) This easily follows from (1) by induction on . O

Let f be a nice map. Then 0 < f(i)/i < 1 for all i € N by Lemma 3.1. Let
~v=sup{f(#)/i|i € N}. We will use this v to describe all nice maps.

LEMMA 3.2. Let f be a nice map with f(I) + f(—=1) = 0 for some l € N,
then f(i)/i < f(1)/1 for alli € N.

ProOOF. Let v = f(1)/l. Suppose, on the contrary, that f(k)/k > ~ for
some k € N. By Lemma 2.10, f(kl) = kf(l) and so f(kl)/kl = f()/l = ~.
On the other hand, f(kl) > f(k) + f((l — 1)k) = --- = [f(k), which implies
f(ED) /Kl > f(k)/k > ~, a contradiction. Hence f(i)/i < f(I)/l forallie N. O

LEMMA 3.3. Let f be a nice map andy =sup{f(i)/i|i € N}. If f(i)/i <~
for alli € N, then iy > f(i) >iy—1 for alli € N.

PROOF. We suppose, on the contrary, that f(k) < ky — 1 for some k € N.
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Then there is a t; € N big enough with f(k) < ky—1— (k/t1). Similarly we take
ate € N with f(i)/i <y —(1/tz) foralli € N (1 <i< k). Set t = max{t1,ta}.
Since v = sup{f(¢)/i | i € N}, there is an [ € N with f(I)/l > v — (1/t) (assume
that [ is smallest for this property). Note that [ > k by the choice of t. f(k) <
ky—1—k/t implies f(k) < [ky—k/t] — 1, where [3] is the Gauss’ symbol of a real
number 3. Since f(—k) > —f(k) —1, we have f(—k) > —[ky — k/t]. Furthermore,
f)/t > v —(1/t) implies f(I) > Iy —1/t. Thus f(I—k) > f(I) + f(—k) >
Wy =(1/1) =kly=(1/t)] = (= k)(y— (1/1)), L.e.,, fFI=k)/(1=k) >y —(1/t) with
[ >1—k >0, which is a contradiction to the choice of {. Hence iy > f(i) > iy —1
for all i € N. (]

The following Lemma is crucial for the description of all nice maps.

LEMMA 3.4. Let vy be a real number with 0 < v < 1. Then

(1) If0 <y <1 and fy is a map from Z to Z defined by f(i) = [iv] for all
i € Z, then f is a nice map.

(2) If0 <y =<1 and f,§1> is a map from Z to Z defined by fﬂ(,l)(O) =0,
ivy—1< f,(yl)(i) < iy and f§1)(—i) = —fasl)(i) —1 foralli € N, then ffsl) is a nice
map.

(3)IfOo<L v <1 and fﬁ(fl is a map from Z to Z defined by f( 1)( 0) =0,

»571)(1') = [i7v] and ffgfl)(—i) = f7 1)( ) —1 for alli € N, then fy is a nice
map.

Proor.
(1) It is clear that f,(0) =0= f,(1) and f,(—1) = —1. For any ¢,j € Z, we
have [iy] + [—i7] 2 —1 and [¢ ] [17] S iy +jy=(i+j)y for all 4,5 € Z. Hence

f~ is a nice map.

(2) If v =1, then it is clear that f(l)( ) =14—1and f(l)( 1) = —i for all
i € N. Hence f1 is a nice map. For any v with 0 < v < 1, if « is not a
rational number, then it is clear that f(l) = fy. If v is a rational number and
let [ be the smallest natural number with Iy € Z. Then, for any ¢« € IN, we have

7(1)(2‘) =i4y—1ifi €lZ and f§1)(i) = [in]if i ¢ IZ. So it is easy to see, by
tedious calculation case by case that fn(,l) is a nice map.

(3) If v = 0, then fé_l)(i) =0 and fé_l)( i) =—1forallie N. So f( 2
is a nice map. For any « with 0 < v < 1, if 4 is not a rational number, then it is
clear that f»(fl) = fy. If v is a rational number and let [ be the smallest natural
number w1th Iy € Z. Then, for any i € N, f( 1)( ) =4y if and only if ¢ € IZ
and f7 ( ) = [i7] with [iy] < évy if and only if ¢ ¢ [Z. Hence it is easy to see, by
tedious calculation case by case that fy D is a nice map. O
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Now we are in a position to describe all nice maps.

THEOREM 3.5. {f, ,(yl), 571) | 0 < v < 1 and v is a real number} U
{fé_l) 1(1)} is the set of all nice maps.

ProOF. By Lemma 3.4, it suffices to prove that any nice map f is one in
the theorem. Let v = sup{f(¢)/i | ¢ € N}. Then 0 £ v £ 1 by Lemma 3.1. If
v =0, then it is easy to see that f = féfl). So we may assume that 0 <~y < 1. If
v =1, then f(i)/i <~y =1for all € N by Lemma 3.1.

Case 1. Suppose that f(i)/i <« for all ¢ € N. Then iy > f(i) > iy — 1 by
Lemma 3.3 and for all ¢ > 0, f(—i) = —f(i) — 1 by Lemma 3.2. Hence f = A(,l).

Case 2. Thereisanl € N with v = f(I)/l. We choose [ as the smallest one for
this property and may assume that 0 < v < 1 by the discussion above. We claim
that [ is the smallest natural number with Iy € Z. Let k be the smallest natural
number with kv € Z. Then [ = pk for some natural number p € N. If p > 1, then
f(k)/k < ~,and so f(k) £ ky—1. Tt follows that f(—k) > —kv, i.e., —f(—k) < k~.
Furthermore, since f(k) > f(2k)+ f(—k), f(2k) < f(k)— f(—=k) £ 2ky—1 < 2k~.
Inductively, we have f(pk) < pk-, i.e., f(I) < lv, a contradiction. Hence, [ = k,
as claimed. We will prove that

f(@) = [ivy] for all i € N.

For any ¢ € N, since f(il) > if(l) = ily and f(il)/il < -, we have f(il) = ily =
[ily]. We suppose, on the contrary, that f(j) # [j7] for some j € N. Then
F(G) £ 7] — 1 and j & 1Z. So [j3] < jy and f(—j) = —[jr] follows. Let q € N
with gl > j. Then f(ql —j) > f(ql) + f(—j) = alv + (=[j7]) > qly — j, which
implies f(ql — j)/(gl — j) > =, a contradiction. Hence f(i) = [i7] for all ¢ € N.
Next we will prove that

f(=i)=—f()—1and f(—i) =[—iy] for all i ¢ I Z.

Suppose that there is an ¢ € N with ¢ € [Z such that f(—i) + f(¢) = 0. Then
f(@)/i = v by Lemma 3.2, so that ¢ € [Z, a contradiction. Hence f(—i) = —f(i)—1
for all « € N with ¢ ¢ [Z. In particular, f(—i) = —f(i) — 1 = —[iy] — 1 = [—iv]
for any i € N with ¢ ¢ [Z. Now, f(I) = lv implies either f(—Il) = —lvy or
f(=l) = =ly —1. If f(-1) = —lv, then we have f(—il) = —ily = [—ily] for all
i € N by induction on ¢. Hence f = f, follows. If f(—I) = —Iy — 1, then we have
f(=il) = —ily =1 = —f(il) — 1 for any 7 € N by induction on ¢, which shows
f= fﬂgfl). This completes the proof. O
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4. The cardinality of the set of the graded extensions.

Let A = @;ezA; X" be a graded extension of V in K[X, X !;0] with 4; =
Wa = ac(W), Ay = JW)a_; and J(W) = bW = Wb~! for some b~! €
J(W). Set . = {B = ®iczB; X" | B is a graded extension of V in K[X, X 1;0]
with By = Wa and B_; = J(W)a_1}. Then it follows from Theorems 2.11 and
3.5 that || > N. In this section, we will give an example of a total valuation ring
V such that .| > N.

LEMMA 4.1.  Let f be a nice map with f(I) + f(=1) =0 and |l > 2 (assume
that 1 is the smallest natural number for this property) and let W D U DV be
overrings of V with Wa = ac(W) and J(W) = b='W = Wb~ for some b=1 €
J(W). Suppose that C = @jec zC; X" is a graded extension of V in K[ X', X ;o'
with C; = Ubf Dy, Then be(ﬂ)_lajl cCjC be(ﬂ)ajl forallje Z.

Proor. C; = UWWq implies C; = o Yo'/ JU) =
a0t (=D J(U)) by Lemma 1.4. So WC; = Wb/, and, by Lemma 2.1
(1), WC_; = Wb/"Da_,;. In the case where j € N, we will first prove this as-
sertion by induction on j. It is clear that Wb O-1o, ¢ ¢; ¢ Wb, and so we
may assume that be(jl)*lajl cCjC be(jl)ajl for some j € IN. Then since
f()+ f(431) = f(l +1) by Lemma 2.10, we have

be(jl+l)_104jl+l _ Ubf(l)be(jl)_lalal(ajl)
= U Doyl (WH'h=1q )

C o' (Cy) C Clis
To prove be(jl“‘l)ale 2 (141, consider the formulas:

o (a_ ) EOW 4 = ol (a0 WO Cliy = (WK TDa ) Cliyy
=o' (WC_107(Cji1)) € o' (WCyy).
Hence
Ciit1 C bf(l)al(a:ll)ol(Wle) = /Ot (Wb ay)

— bf(l)be(jl)ozlal(aﬂ) — be(jl+l)04jl+l~

To prove be(ﬂ)_lajl cCj C be(jl)ajl, it suffices to prove that Cj; is not a
left W-ideal by Lemma 1.2. On the contrary, assume that Cj; is a left W-ideal.
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Then we have Cjj4; = be(jl+l)0éjl+l, because

Cjiy 2 WCia'(Cj) = W Oayo! (C1) = aua (WD Cyy)
= alﬂl(be(jl“)aﬂ) — algl(ajlajl(be(le)))

- ajl_,_lale(be(jHl)) - be(jHl)ale_
Hence

le ) O_lail(CjH_l) = Oé_ldil(bf(il)J(U)be(jl+l)04jl+l)
= Oz_lofl(be(jl))ail(ozjl_,_l) = be(jl)ajl D le,

which is a contradiction. Since J(U) D J(W) = Wb~!, we have
Ci=a_io 'V J0) 2 a o @D JW)) = wp/ D 1a_,
and
C_ Ca_jo '@ EOW) =W Do,

So, by the similar argument above, we have Wb/(="D~1la_;, c C_; C
be(_jl)a,jl for all 7 € N, completing the proof. O

LEMMA 4.2.  Let f be a nice map with f(I) + f(—=1) =0 and I > 2 (assume
that 1 is the smallest natural number for this property) and let W D> U DV be
overrings of V with Wa = ac(W) and J(W) = b=*W = Wb~ for some b= €
J(W). Set C; = UbfWay and suppose that Cy is a right o' (V)-ideal. Then there is
a graded extension C = ®jezC; X7 of V in K[X', X4 0!] with WblD =1, C
Cy c WbfUbay, forallj € Z.

PROOF. Since C is a right o!(V)-ideal, we have the following three cases;
C, =Ucq = o' (U) or C; = Uey D ¢al(U) or C; = Ue C ¢ot(U), where
¢ = bfWqy, which are in the same situation as in Section 2. Hence, in all cases, we
have a graded extension C = @jezC;; X’ of V in K[X!, X~!;6'] by Proposition
2.3 or Theorem 2.5, and so be(jl)_lozjl Cc Cjy C Wb-f(jl)ajl for all j € Z by
Lemma 4.1. O

PROPOSITION 4.3.  Let f be a nice map with f(I) + f(—=1) = 0 and | > 2
(assume that 1 is the smallest natural number for this property) and let W be an
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overring of V with J(W) = bW = Wb~! for some b=' € J(W), Ay = Wa =
ac(W) and A_y = J(W)a_1. Suppose that the cardinality of {VA | W D V3 DV
and Vy are overrings of V'} is larger than X and that Cy; = Vib'Way is a right
ol(V)-ideal for each . Then the cardinality of ¥ = {B = ®iczB; X' | B is a
graded extension of V in K[X, X 1;0] with By = Wa and B_1 = J(W)a_1} is
larger than N.

ProOF. For each V), by Lemma 4.2, there is a graded extension C) =
@jezCH X7 of V in K[X!, X 6!] with G} = Vab/Way and Wa/0D"1ay; C
Ch C Wbliay, for all j € Z. Set B} = Wb/Wa; for all i ¢ IZ and B}, = C),
for all j € Z. Then By = ®;czB} X" is a graded extension of V in K[X, X };0]
with B} = Wa and B*; = J(W)a_; by Theorem 2.11. Hence |.#| > X follows.
O

In the following we will give a concrete example of total valuation ring and a
nice map satisfying the conditions in Proposition 4.3, by using the method in [6]:

Let A be a totally ordered group with |A| > X and G = Z; ® Z> ® (DrcaZ))
be a direct sum of Z; and Z, (¢ = 1,2, € A), where Z; and Z), are copies of Z,
which is a totally ordered abelian group by lexicographic ordering. Furthermore,
let Fy be a field and F = Fo({z;,xzx}) be the rational function field over Fy in
indeterminates x; and = (i =1,2,\ € A). We let o be an automorphism defined
by; o(a) = a for any a € Fy,o(zy) = zx,0(x1) = x2 and o(x3) = x1 so that
0? = 1. We also define a valuation v of F as follows; v(a) = 0 for any a € Fy,
v(x;) = g; and v(zy) = gx, where g; and gy are elements in G such that the i-th
component and the A-component are 1, and the other components are all zeros,
respectively. Let Vj be the valuation ring of F' determined by v. Then it is easy
to see that o(Vp) € Vo and 0%(Vp) = Vp. Set

© = Nnenzy Vo Mrea (Mnenzi Vo)
and
Px = ﬂ)\<u(mn€N$2VO)

for each A € A. Then p and g, are all prime ideals of Vj with p C px C @, if
> A (see [6, example 2.5]). Let Wy = Vj, and Vpy = Vi, , the localization of Vj
at g and gy, respectively. So we have Wy D Vo D Vg, if u > A

In order to prove that J(Wy) = x1Wo, let U = Fy({x2,xr})[z1], which is
contained in Wy. Since U\z1U C Vj\ p, it follows that Wy 2 U,, v, a discrete rank
one valuation ring of F and so Wy = U,y follows. In particular, J(Wp) = z1Wj.
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Let S = F[y, o] be the skew polynomial ring over F in the indeterminate y and
T = Sys, the localization of S at the maximal ideal yS. For any ¢t = f(y)g(y) ™' €

T, where f(y) = fo + fiy + -+ fuy”™ and g(y) = go + g1y + -+ + gmy™ with
go # 0, we define the map

p: T — F

by ¢(t) = fogy ‘- Then ¢ is a ring epimorphism with kerp = yT' (see [6, Section
1]). Set W = o1 (W) = Wo+yT,Va = o 1 (Vor) = Vox+yT and V = o~ (V) =
Vo + yT', the complete inverse images of Wy, Vy and Vj by ¢, respectively. Then
W, Vy and V are all total valuation rings of K = F'(y,0), the quotient ring of S
which is a division ring, with J(W) = ;W = Wz, and W D V) D V for each
A € A by [6, (1.6)]. Note that o is naturally extended to an automorphism of K
which is the conjugation by y. We denote it by the same symbol o. It is clear
that 02 = 1. Now we set y~! = @ and b=! = ;. Then we have the following
properties:

(i) Wa=ac(W) and J(W) =b"'W = Wb~

(i) 9={Va | WDVaDV,Ae A} and |[¢]| > N

(iii) For each A € A, V\bas is a right V-ideal.

The statements (i) and (ii) are obvious. In order to prove (iii), note that
as =y~ 2. So we have

Vibag = Vaby 2 =y 2Vib =y 2(Vox +yT)ay ' =y 2(z~ Vo + yT),

which is a right V-ideal (note that o?(V) = V). Let f = fi/2 be the nice map
defined in Lemma 3.4. Then it is clear that f(2) 4+ f(—2) = 0. Hence, by Propo-
sition 4.3, the cardinality of . = {B = @®;czB; X" | B is a graded extension of V'
in K[X, X ;0] with By = Wa and B_; = J(W)a_,} is larger than X.

Finally, we give some simple examples of total valuation rings satisfying the
conditions in Theorems 2.4 ~ 2.6:

Let Wy D V4 be valuation rings of a field F' with an automorphism o and let
F[y, o] be the skew polynomial ring over F in indeterminate y. As before, let

p:T =85 —F

be the ring epimorphism, W = ¢~ 1(Wp) and V = ¢~(1;), which are all total
valuation rings of K = F(y,0). Since J(W) = J(Wy)W, it follows that J(W) =
J(W)? if and only if J(Wy) = J(Wp)?, and that o(W) C W if and only if o(Wy) C
Wo. Furthermore, for any nonzero element a € F, we have aWW = Wa, because a
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is a unit in 7. Hence we have the following:

(i) Suppose that Wy D a(Wp) and Vy = (V) ([6, (2.5)]). Let a be a nonzero

element in F. Then Wa D ac(W) (Theorem 2.4).

(ii) Suppose that Wy C o(Wy) and Vy = o(Vp). Let a be a nonzero element

in F. Then ac(W) D aW = Wa = Wao (V) (Theorem 2.5).

(iii) Let a = y~! and suppose that J(Wy) = J(Wy)2. Then Wa = ac(W)

and J(Wy) = J(Wy)? (Theorem 2.6).
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