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Abstract. Let V be a total valuation ring of a division ring K with an auto-
morphism σ and let A = ⊕i∈ZAiX

i be a graded extension of V in K[X, X−1; σ], the
skew Laurent polynomial ring. We classify A by distinguishing four different types
based on the properties of A1 and A−1. A complete description of Ai for all i ∈ Z is
given in the case where A1 is a finitely generated left Ol(A1)-ideal.

Introduction.

Let K be a division ring with an automorphism σ and let V be a total val-
uation ring of K, that is, for any non-zero k ∈ K, either k ∈ V or k−1 ∈ V .
A graded subring A = ⊕i∈ZAiX

i of K[X, X−1;σ], the skew Laurent polynomial
ring, is called a graded total valuation ring of K[X, X−1;σ] if for any non-zero ho-
mogeneous element aXi of K[X, X−1;σ], either aXi ∈ A or (aXi)−1 ∈ A, where
Z is the ring of integers. A graded total valuation ring A of K[X, X−1;σ] is said
to be a graded extension of V in K[X, X−1;σ] if A0 = V .

A Gauss extension S of V in K(X, σ), the quotient ring of K[X, X−1;σ], was
defined in [1] as a total valuation ring of K(X, σ) with S ∩K = V that satisfies
the following conditin:

αS = aiX
iS

for any α = ΣajX
j ∈ K[X, X−1;σ] with aiX

iS ⊇ ajX
jS for all j. Then the

following results were obtained:

Theorem 0.1. There is a one-to-one correspondence between the set of all
Gauss extensions of V in K(X, σ) and the set of all graded extensions of V in
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K[X, X−1;σ], which is given by S −→ S ∩ K[X, X−1;σ], where S is a Gauss
extension of V in K(X, σ) ([1, (1.8)]).

Theorem 0.2. Let S be a Gauss extension of V in K(X, σ) and let
A = S ∩K[X, X−1;σ]. Then

(1) The mapping ϕ : I −→ Ig = I ∩K[X, X−1;σ] is a one-to-one correspon-
dence between the set of all (right) ideals of S and the set of all graded (right)
ideals of A.

(2) ϕ induces a one-to-one correspondence between the set of all prime ideals
of S and the set of all graded prime ideals of A ([1, (2.1)]).

We note that Gauss extensions in [1] were considered in a more general con-
text. Total valuation rings in Ore extensions or in skew polynomial rings have
been studied in [2], [3], [6] and [7].

Theorems show that it suffices, in some sense, to study graded extensions in
order to study the Gauss extensions (in particular, ideal theory of Gauss exten-
sions).

The aim of the paper is to classify the graded extensions of V in K[X, X−1;σ]
and to study the structure of them.

In Section 1, we will give some basic properties of graded extensions. Let
A = ⊕i∈ZAiX

i be a graded extension of V in K[X, X−1;σ] and let W = Ol(A1)
be an overring of V . There are two cases: namely, either A1 is a finitely generated
left W -ideal, say, A1 = Wa for some a ∈ A1, or A1 is not a finitely generated left
W -ideal.

In this paper, we will concentrate on the case where A1 = Wa (in the case
where A1 is not a finitely generated left W -ideal, we will study the graded ex-
tensions in a forthcoming paper). If A1 = Wa, then it is shown that either
A−1 = σ−1(a−1J(W )) or A−1 = Wσ−1(a−1), where J(W ) is the Jacobson radical
of W . From this information, in Section 2, we will classify graded extensions A

into four cases and will give complete descriptions of Ai for all i ∈ Z. Except for
the case where A1 = Wa = aσ(W ), A−1 = σ−1(a−1J(W )) and J(W ) ⊃ J(W )2,
A is uniquely determined (see Theorem 2.2 and Theorems 2.4 ∼ 2.6). However,
in the case A1 = Wa = aσ(W ), A−1 = σ−1(a−1J(W )) and J(W ) ⊃ J(W )2, there
are infinitely many different graded extensions (the cardinality is at least ℵ).

To give a complete description of the graded extensions, we need a map from
Z to Z which is called a nice map (see Section 2 for the definition of nice maps).

In Section 3, we will give a complete description of nice maps.
Section 4 contains an example of total valuation rings V and W with W ⊃ V

and J(W ) ⊃ J(W )2 such that the cardinality of the set of all graded extensions
B = ⊕i∈ZBiX

i of V in K[X, X−1;σ] with A1 = Wa = aσ(W ) = B1 and A−1 =
σ−1(a−1J(W )) = B−1 is larger than ℵ.
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Let I be a right V -submodule of K. Then I is called a right V -ideal if aI ⊆ V

for some non-zero a ∈ K. Left V -ideals are defined similarly. It is well known that
the set of all right (left) V -ideals is linearly ordered by inclusion, which is used
without reference. Let I be an additive subgroup of K. Then the right and left
order of I are defined to be

Or(I) = {k ∈ K | Ik ⊆ I} and Ol(I) = {k ∈ K | kI ⊆ I}.

Furthermore, for any subsets I and J of K, we use the notation:

(J : I)r = {k ∈ K | Ik ⊆ J},
(J : I)l = {k ∈ K | kI ⊆ J} and

I− = {c−1 | c ∈ I, c 6= 0}.

We refer the readers to [5] for some basic properties of non-commutative valuation
rings.

1. Some basic properties of graded extensions.

Throughout this paper, V will denote a total valuation ring of a division
ring K with an automorphism σ of K. K[X, X−1;σ] will be the skew Laurent
polynomial ring with its quotient division ring K(X, σ). In this section, we will
give some basic properties of graded extensions of V in K[X, X−1;σ]. We start
with the following easy lemma.

Lemma 1.1. Let A = ⊕i∈ZAiX
i be a subset of K[X, X−1;σ] with A0 = V .

Then A is a graded extension of V if and only if
(1) Aiσ

i(Aj) ⊆ Ai+j for all i, j ∈ Z and Ai is an additive subgroup of K for
all i ∈ Z and

(2) Ai ∪ σi(A−−i) = K for all i ∈ Z.

Proof. Suppose that A = ⊕i∈ZAiX
i is a graded extension of V in

K[X, X−1; σ]. Then (1) easily follows, because AiX
iAjX

j = Aiσ
i(Aj)Xi+j ⊆

Ai+jX
i+j . To prove (2), let a ∈ K, a 6= 0. If aXi ∈ A, then a ∈ Ai. If aXi 6∈ A,

then A 3 (aXi)−1 = X−ia−1 = σ−i(a−1)X−i so that σ−i(a−1) ∈ A−i. Hence
a ∈ σi(A−−i), showing that Ai ∪ σi(A−−i) = K.

Suppose that (1) and (2) hold. Then A is a graded subring of K[X, X−1;σ]
by (1). To prove that A is a graded extension of V in K[X, X−1;σ], let aXi ∈
K[X, X−1;σ]. If a ∈ Ai, then aXi ∈ A. If a 6∈ Ai, then a ∈ σi(A−−i), i.e.,
σ−i(a−1) ∈ A−i. Hence, (aXi)−1 = σ−i(a−1)X−i ∈ A. ¤
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The following lemma is more or less known.

Lemma 1.2. Let W be a total valuation ring. Then
(1) Let I and J be left W -ideals of K such that J(W )I ⊆ J ⊆ I. Then either

J = I or J = J(W )I.
(2) Let I and J be right W -ideals of K such that IJ(W ) ⊆ J ⊆ I. Then

either J = I or J = IJ(W ).

Proof.

(1) Suppose that J(W )I ⊂ J ⊂ I. Then there exist b ∈ J \ J(W )I and
c ∈ I \ J . Thus J(W )I ⊂ Wb ⊂ Wc, because the set of all left W -ideals is
linearly ordered by inclusion. Hence bc−1 ∈ J(W ) and so b ∈ J(W )c ⊆ J(W )I, a
contradiction. Therefore, we have either J = I or J = J(W )I.

(2) This is just a right version of (1). ¤

The following results will be used in the investigation of graded extensions.

Lemma 1.3. Let W be a total valuation ring of K, α ∈ K with α 6= 0, i ∈ Z

with i 6= 0 and let I and J be subsets of K. Then
(1) If I = Wα and J ⊇ σ−i(α−1J(W )), then I ∪ σi(J−) = K.
(2) If I = ασi(W ) and J ⊇ J(W )σ−i(α−1), then I ∪ σi(J−) = K.
(3) If I = ασi(J(W )) and J = Wσ−i(α−1), then I ∪ σi(J−) = K.
(4) If I = J(W )α and J = σ−i(α−1)σ−i(W ), then I ∪ σi(J−) = K.

Proof.

(1) Let b ∈ K \ I. Then Wb ⊃ I and so α = wb for some w ∈ J(W ).
Thus σ−i(b−1) = σ−i(α−1w) ∈ σ−i(α−1J(W )) ⊆ J , i.e., b ∈ σi(J−). Hence
I ∪ σi(J−) = K follows.

(2) This is proved as in (1).
(3) Let b ∈ K\I. Then it follows that α−1b 6∈ σi(J(W )) so that σi(W )α−1b ⊃

σi(J(W )). Thus σi(W )α−1b ⊇ σi(W ) and so σi(W )α−1 ⊇ σi(W )b−1. Let b−1 =
σi(w)α−1 for some w ∈ W . Then σ−i(b−1) = wσ−i(α−1) ∈ J and so b−1 ∈ σi(J),
i.e., b ∈ σi(J−). Hence I ∪ σi(J−) = K follows.

(4) This is proved as in (3). ¤

Let A = ⊕i∈ZAiX
i be a graded extension of V in K[X, X−1;σ], Ol(Ai) =

W and Or(Ai) = σi(U). Then note that W and U are both overrings of V ,
because Ai is a left V and right σi(V )-ideal. The following lemma is crucial for
the classification of graded extensions.

Lemma 1.4. Let A = ⊕i∈ZAiX
i be a graded extension of V in K[X, X−1;σ]

with Ol(Ai) = W and Or(Ai) = σi(U) for a fixed i ∈ N , where N is the set of all
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natural numbers.
(1) Suppose that Ai = Wα for some non-zero α ∈ K. Then
(i) If W = V and V α = ασi(V ), then either A−i = V σ−i(α−1) or A−i =

J(V )σ−i(α−1).
(ii) If either W ⊃ V or V α ⊃ ασi(V ) (when W = V ), then A−i =

σ−i(α−1J(W )).
(2) Suppose that Ai = ασi(U) for some non-zero α ∈ K and ασi(U) ⊃ Uα.

Then A−i = J(U)σ−i(α−1).

Proof.

(1) First we will prove that σi(A−i) ⊇ α−1J(W ). Since σi(A−i) is a right V -
ideal, we have either σi(A−i) ⊇ α−1J(W ) or σi(A−i) ⊂ α−1J(W ). If σi(A−i) ⊂
α−1J(W ), then take any element b = α−1w for some w ∈ J(W ) with b 6∈ σi(A−i).
It is clear that b−1 6∈ σi(A−−i) and b−1 = w−1α 6∈ Wα = Ai. Thus b−1 6∈
Ai ∪ σi(A−−i) = K, a contradiction by Lemma 1.1. Hence σi(A−i) ⊇ α−1J(W )
follows. Furthermore, from Aiσ

i(A−i) ⊆ V , we derive σi(A−i) ⊆ (V : Ai)r. First
suppose that W ⊃ V , then (V : Ai)r = α−1J(W ) by [4, the right version of Lemma
1.1]. Hence σi(A−i) = α−1J(W ), i.e., A−i = σ−i(α−1J(W )). Next suppose
that W = V , then α−1J(V ) ⊆ σi(A−i) ⊆ (V : Ai)r = α−1V . Thus we have
either σi(A−i) = α−1V or σi(A−i) = α−1J(V ) by Lemma 1.2, i.e., either A−i =
σ−i(α−1V ) or A−i = σ−i(α−1J(V )). Hence, in the case when V α = ασi(V ), either
A−i = V σ−i(α−1) or A−i = J(V )σ−i(α−1). Finally in the case when W = V and
V α ⊃ ασi(V ), if σi(A−i) = α−1V , then V ⊇ A−iσ

−i(Ai) = σ−i(α−1V α), and so
σi(V ) ⊇ α−1V α, a contradiction. Hence A−i = σ−i(α−1J(V )).

(2) This is proved in the same way as in (1), noticing σi(A−i) ⊇ σi(J(U)α−1)
first. ¤

Corollary 1.5. Under the same notation and assumption as in Lemma
1.4, we have

(1) Suppose that Ai = Wα for some non-zero α ∈ K. Then Aiσ
i(A−i) ⊇

J(W ).
(2) Suppose that Ai = ασi(U) for some non-zero α ∈ K. Then σi(A−i)Ai ⊇

σi(J(U)).

Proof.

(1) This easily follows, because σi(A−i) ⊇ α−1J(W ) by the proof of Lemma
1.4.

(2) This is proved in the same way as in (1). ¤

Lemma 1.6. Let A = ⊕i∈ZAiX
i be a graded extension of V in K[X, X−1;σ]

with Ol(A1) = W and Or(A1) = σ(U). Then
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(1) If A1 = Wa for some non-zero a ∈ K, then J(W )Ai+1 ⊆ A1σ(Ai) ⊆ Ai+1

for all i ∈ N .
(2) If A1 = aσ(U) for some non-zero a ∈ K, then Ai+1σ

i+1(J(U)) ⊆
Aiσ

i(A1) ⊆ Ai+1 for all i ∈ N .

Proof.

(1) It is clear that A1σ(Ai) ⊆ Ai+1 and A−1σ
−1(Ai+1) ⊆ Ai. So

σ(A−1)Ai+1 ⊆ σ(Ai). Thus A1σ(A−1)Ai+1 ⊆ A1σ(Ai) follows. Since A1σ(A−1) ⊇
J(W ) by Corollary 1.5, we have J(W )Ai+1 ⊆ A1σ(A−1)Ai+1 ⊆ A1σ(Ai) ⊆ Ai+1.

(2) This is proved in the same way as in (1). ¤

2. A classification of graded extensions of V in K[X, X−1;σ] with
A1 = Wa.

Let A = ⊕i∈ZAiX
i be a graded extension of V in K[X, X−1;σ] with Ol(A1) =

W , an overring of V . Suppose that A1 is a finitely generated left W -ideal. Then
it is principal, say, A1 = Wa. Since A1 and aσ(W ) are both right σ(V )-ideals, by
Lemma 1.4, we can distinguish the following four cases for A:

(a) W = V, A1 = V a = aσ(V ) and A−1 = V σ−1(a−1).
(b) A1 = Wa ⊃ aσ(W ).
(c) A1 = Wa ⊂ aσ(W ) (in this case, W ⊃ V ).
(d) A1 = Wa = aσ(W ) and A−1 = σ−1(a−1J(W )) (in this case, we must

consider two cases, J(W ) = J(W )2 and J(W ) ⊃ J(W )2).
The aim of this section is to describe the structure of Ai and A−i based on

the properties of A1 and A−1 according to the classification above.
In the remainder of this section, we assume that A = ⊕i∈ZAiX

i is a subset
of V in K[X, X−1;σ] with A0 = V and A1 = Wa for some a ∈ K, where W ⊂ K

is an overring of V .
For a fixed non-zero a ∈ K, we set

αi = aσ(a) · · ·σi−1(a), α−i = σ−i(α−1
i ) for all i ∈ N and α0 = 1.

Then we have

α−i = σ−1(a−1)σ−2(a−1) · · ·σ−i(a−1) for all i ∈ N , αi = σi(α−1
−i )

and

αiσ
i(αj) = αi+j for all i, j ∈ Z,
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which are freely used in this section.
In Lemma 2.1, we will use the following general property of total valuation

rings: If W ⊃ V , then J(V ) ⊃ J(W ) and J(V )J(W ) = J(W ).

Lemma 2.1. Let W and U be overrings of V and let 0 6= a ∈ K as above.
Then

(1) Suppose that Wa = aσ(W ). Then Wαi = αiσ
i(W ), J(W )αi =

αiσ
i(J(W )) for all i ∈ Z. Furthermore, if J(W ) is principal, say, J(W ) =

Wb−1 = b−1W for some b−1 ∈ J(W ), then J(W )jαi = αiσ
i(J(W )j) for all

i, j ∈ Z, where J(W )j = Wb−j.
(2) Suppose that Wa ⊃ aσ(W ). Then Wαi ⊃ αiσ

i(W ), J(W )αi ⊂
αiσ

i(J(W )) and J(W )α−iσ
−i(J(W )) = α−iσ

−i(J(W )) for all i ∈ N . In par-
ticular, Wαi is a right σi(W )-ideal and α−iσ

−i(J(W )) is a left W -ideal.
(3) Suppose that aσ(U) ⊃ Ua. Then αiσ

i(U) ⊃ Uαi, αiσ
i(J(U)) ⊂ J(U)αi,

and J(U)α−iσ
−i(J(U)) = J(U)α−i for all i ∈ N . In particular, αiσ

i(U) is a left
U -ideal and J(U)α−i is a right σ−i(J(U))-ideal.

Proof.

(1) For any i ∈ Z, the formulas Wαi = αiσ
i(W ), J(W )αi = αiσ

i(J(W )) are
easily proved by induction on i. In the case when J(W ) is principal, J(W )αi =
αiσ

i(J(W )) implies J(W )−1αi = αiσ
i(J(W )−1) and so J(W )jαi = αiσ

i(J(W )j)
is also proved by induction on j for any j ∈ Z.

(2) We inductively have: α−1
i Wαi ⊃ σ(α−1

i−1Wαi−1) ⊃ · · · ⊃ σi(W )
and so Wαi ⊃ αiσ

i(W ) follows. From α−1
i Wαi ⊃ σi(W ), we derive

α−1
i J(W )αi ⊂ σi(J(W )) and so J(W )αi ⊂ αiσ

i(J(W )) follows. Furthermore,
σi(J(W )) ⊃ α−1

i J(W )αi implies J(W ) ⊃ σ−i(α−1
i )σ−i(J(W ))σ−i(αi). So it fol-

lows that J(W )σ−i(α−1
i )σ−i(J(W ))σ−i(αi) = σ−i(α−1

i )σ−i(J(W ))σ−i(αi). Thus
J(W )α−iσ

−i(J(W )) = α−iσ
−i(J(W )), because α−i = σ−i(α−1

i ). The last state-
ment is now clear.

(3) This is proved in a similar way as in (2). ¤

We start with the case (a) which is the simplest one.

Theorem 2.2. Let A = ⊕i∈ZAiX
i be a subset of K[X, X−1;σ] with A0 =

V , A1 = V a = aσ(V ) and A−1 = V σ−1(a−1). Then A = ⊕i∈ZAiX
i is a graded

extension of V in K[X, X−1;σ] if and only if Ai = V αi for all i ∈ Z.

Proof. Suppose that A = ⊕i∈ZAiX
i is a graded extension of V in

K[X, X−1;σ]. We will prove that Ai = V αi for all i ∈ N by induction
on i. Assume that Ai = V αi for some i ∈ N . A−1σ

−1(Ai+1) ⊆ Ai im-
plies that σ(A−1)Ai+1 ⊆ σ(Ai). So Ai+1 ⊆ aσ(Ai) ⊆ Ai+1. Hence Ai+1 =
A1σ(Ai) = V aσ(V αi) = V αi+1. Similarly we have A−i−1 = A−1σ

−1(A−i) =
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V σ−1(a−1)σ−1(V α−i) = V α−i−1.
Conversely, suppose that Ai = V αi for all i ∈ Z. Then A = ⊕i∈ZAiX

i

is an additive subgroup of K[X, X−1;σ]. Since V αi = αiσ
i(V ) by Lemma 2.1

and αiσ
i(αj) = αi+j for all i, j ∈ Z, we have AiX

iAjX
j = Ai+jX

i+j . For any
i ∈ Z with i 6= 0, we have Ai = V αi = αiσ

i(V ) = σi(α−1
−i )σ

i(V ) ⊇ σi(α−1
−i J(V ))

and A−i = V α−i = α−iσ
−i(V ) = σ−i(α−1

i V ) ⊇ σ−i(α−1
−i J(V )). Thus Ai ∪

σ(A−−i) = K by Lemma 1.3 (1). Hence A = ⊕i∈ZAiX
i is a graded extension of V

in K[X, X−1;σ] by Lemma 1.1. ¤

The following are typical examples of graded extensions of V in K[X, X−1, σ].

Proposition 2.3. Let W and U be overrings of V .
(1) Suppose that either Wa ⊃ aσ(W ) or Wa = aσ(W ). Set Ai = Wαi,

A−i = α−iσ
−i(J(W )) and A0 = V for all i ∈ N . Then A = ⊕i∈ZAiX

i is a
graded extension of V in K[X, X−1;σ].

(2) Suppose that aσ(U) ⊃ Ua. Set Ai = αiσ
i(U), A−i = J(U)α−i and

A0 = V for all i ∈ N . Then A = ⊕i∈ZAiX
i is a graded extension of V in

K[X, X−1;σ].

Proof. We will only prove this in the case where A1 = Wa ⊃ aσ(W ). It is
clear that A is an additive subgroup of K[X, X−1;σ] and that Ai∪σ(A−−i) = K for
all i ∈ Z by Lemma 1.3 (1) and (3). Thus it suffices to prove that Aiσ

i(Aj) ⊆ Ai+j

for all i, j ∈ Z by Lemma 1.1, which will be proved in the following way:
For any i, j ∈ N , by using Lemma 2.1 (2), we have

Aiσ
i(Aj) = Wαiσ

i(Wαj) = Wαiσ
i(W )σi(αj) = Wαi+j = Ai+j ,

A−iσ
−i(A−j) = α−iσ

−i(J(W )A−j) = α−iσ
−i(A−j) = α−iσ

−i(α−jσ
−j(J(W )))

= α−i−jσ
−i−j(J(W )) = A−i−j ,

Aiσ
i(A−j) = Wαiσ

i(α−jσ
−j(J(W ))) = Wαiσ

i(α−j)σi−j(J(W ))

= Wαi−jσ
i−j(J(W )) ⊆ Ai−j and

A−iσ
−i(Aj) = α−iσ

−i(J(W ))σ−i(Wαj) = σ−i(α−1
i J(W )αj).

So if j ≥ i, then A−iσ
−i(Aj) ⊆ σ−i(σi(J(W ))α−1

i αj) = J(W ) σ−i(α−1
i )σ−i(αj) =

J(W )α−i+j ⊆ A−i+j . If i < j, then A−iσ
−i(Aj) = α−iσ

−i(J(W )αj) ⊆
α−iσ

−i(αjσ
j(J(W ))) = α−i+jσ

−i+j(J(W )) = A−i+j . If either i = 0 or j = 0,
then it is clear that Aiσ

i(Aj) = Ai+j . Hence A is a graded extension of V in
K[X, X−1;σ].
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In the case where A1 = Wa = aσ(W ), it is proved in a similar way by using
Lemmas 1.1, 2.1 (1), and 1.3 (1) and (3).

(2) This is also proved in a similar way as in (1) by using Lemmas 1.1, 2.1
(3), and 1.3 (2) and (4). ¤

Second, we will consider the case (b), i.e., A1 = Wa ⊃ aσ(W ).

Theorem 2.4. Let W be an overring of V and let A = ⊕i∈ZAiX
i be a subset

of K[X, X−1;σ] with A0 = V and A1 = Wa ⊃ aσ(W ). Then A = ⊕i∈ZAiX
i is

a graded extension of V in K[X, X−1;σ] if and only if Ai = Wαi and A−i =
α−iσ

−i(J(W )) for all i ∈ N .

Proof. Suppose that A is a graded extension of V in K[X, X−1;σ]. We
will prove that Ai = Wαi for all i ∈ N by induction on i. Assume that Ai = Wαi

for some i ∈ N . Then A1σ(Ai) = Waσ(W )σ(αi) = Waσ(αi) = Wαi+1, because
Waσ(W ) = Wa. Because of J(W )Ai+1 ⊆ A1σ(Ai) ⊆ Ai+1 ⊆ WAi+1 by Lemma
1.6, it follows from Lemma 1.2 that either J(W )Ai+1 = Wαi+1 or Ai+1 = Wαi+1.
Assume that J(W )Ai+1 = Wαi+1. By Lemma 1.4, σ(A−1) = a−1J(W ) and so
a−1J(W )Ai+1 = σ(A−1)Ai+1 ⊆ σ(Ai) = σ(Wαi). Thus Wαi+1 = J(W )Ai+1 ⊆
aσ(Wαi) and so Wa ⊆ aσ(W ) follows, which is a contradiction. Hence Ai+1 =
Wαi+1, as desired. It follows from Lemma 1.4 that A−i = σ−i(α−1

i J(W )) =
α−iσ

−i(J(W )).
Conversely, suppose that Ai = Wαi and A−i = α−iσ

−i(J(W )) for all i ∈ N .
Then A is a graded extension of V in K[X, X−1;σ] by Proposition 2.3. ¤

Third, we will consider the case (c), i.e., A1 = Wa ⊂ aσ(W ). In this case,
we note that W ⊃ V and σ(W ) ⊃ a−1Wa = Or(A1) = σ(U). So it follows
that W ⊃ U ⊇ V and A1 = aσ(U) ⊃ Ua. Furthermore, σ(A−1) = a−1J(W ) =
a−1J(W )aa−1 = σ(J(U))a−1. Note that aσ(U) ⊃ Ua implies aσ(W ) ⊃ Wa.
Hence the proof of following theorem will be similar to the proof of Theorem 2.4.

Theorem 2.5. Let W be an overring of V and let A = ⊕i∈ZAiX
i be a

subset of K[X, X−1;σ] with A0 = V and A1 = Wa = Waσ(V ) ⊂ aσ(W ). Set
a−1Wa = σ(U) and assume U ⊇ V . Then A is a graded extension of V in
K[X, X−1;σ] if and only if Ai = αiσ

i(U) and A−i = J(U)α−i for all i ∈ N .

Finally, we will study the case (d), i.e., A1 = Wa = aσ(W ) and A−1 =
σ−1(a−1J(W )). In this case, we note that A−1 = J(W )α−1 by Lemma 2.1. We
first consider the case where J(W ) = J(W )2.

Theorem 2.6. Let W be an overring of V and let A = ⊕i∈ZAiX
i be a

subset of K[X, X−1;σ] with A0 = V , A1 = Wa = aσ(W ) and A−1 = J(W )α−1.
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Suppose that J(W )2 = J(W ). Then A is a graded extension of V in K[X, X−1;σ]
if and only if Ai = Wαi and A−i = J(W )α−i for all i ∈ N .

Proof. Suppose that A is a graded extension of V in K[X, X−1;σ]. We
will prove that Ai = Wαi for all i ∈ N by induction on i. Assume that Ai = Wαi

for some i ∈ N . Then A1σ(Ai) = Wαi+1 since Wa = aσ(W ). Since J(W )Ai+1 ⊆
A1σ(Ai) by Lemma 1.6, it follows that Ai+1 ⊆ (Wαi+1 : J(W ))r = Wαi+1,
because J(W )2 = J(W ) and (W : J(W ))r = W . Hence Ai+1 = Wαi+1 follows.
By Lemma 1.4, either A−i = σ−i(α−1

i J(W )) or A−i = Wσ−i(α−1
i ) = σ−i(α−1

i W ).
Assume that A−l = σ−l(α−1

l W ) for some l ∈ N (we may assume that l is the
smallest natural number for this possibility). Then l > 1 and so we have, by
Lemma 2.1,

A−1 ⊇ A−lσ
−l(Al−1) = σ−l(α−1

l W ·Wαl−1) = α−l(α−1
l αl−1σ

l−1(W ))

= σ−l(σl−1(a−1W )) = σ−1(a−1W ) ⊃ σ−1(a−1J(W )) = A−1,

which is a contradiction. Hence A−i = σ−i(α−1
i J(W )) = α−iσ

−i(J(W )) =
J(W )α−i for all i ∈ N by Lemma 2.1.

Conversely, suppose that Ai = Wαi and A−i = J(W )α−i for all i ∈ N . Then
A is a graded extension of V in K[X, X−1;σ] by Lemma 2.1 and Proposition 2.3.

¤

As it has been seen in Theorems 2.2 and 2.4 ∼ 2.6, the graded extension
A = ⊕i∈ZAiX

i is uniquely determined by A1 and A−1 in the cases (a), (b), (c)
and (d) with J(W ) = J(W )2. However, in the case (d) with J(W ) ⊃ J(W )2, A is
not uniquely determined by A1 and A−1. In fact, we will show in Section 3 that
the cardinality of the set of all graded extensions is at least ℵ.

In the remainder of this section, we assume that J(W ) ⊃ J(W )2, i.e., J(W )
is principal, say, J(W ) = b−1W = Wb−1 for some b−1 ∈ J(W ) as well as A1 =
Wa = aσ(W ) and A−1 = J(W )α−1.

Lemma 2.7. Let A = ⊕i∈ZAiX
i be a graded extension of V in K[X, X−1;σ]

with A1 = Wa = aσ(W ) and A−1 = J(W )α−1. Suppose that J(W ) = b−1W =
Wb−1. Then for any i ∈ Z, there is an element k ∈ Z such that Wbk−1αi ⊂ Ai ⊆
Wbkαi and WAi = Wbkαi. In particular, WAi is a right σi(W )-ideal.

Proof. First note that J(W )kαi = αiσ
i(J(W )k) for all i, k ∈ Z by Lemma

2.1.
We will first prove that Wbk−1αi ⊂ Ai ⊆ Wbkαi for any i ∈ N by induction

on i. If i = 1, then k = 0 and so we may assume that Wbk−1αi ⊂ Ai ⊆ Wbkαi
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for some k ≥ 0. Then WAi = Wbkαi by Lemma 1.2 and so A1σ(Ai) = Wbkαi+1.
Thus, from J(W )Ai+1 ⊆ A1σ(Ai) ⊆ Ai+1, we have either WAi+1 = Wbkαi+1

or b−1WAi+1 = Wbkαi+1, i.e., WAi+1 = Wbk+1αi+1. So Wbk−1αi+1 ⊂ Ai+1 ⊆
Wbkαi+1 in the former case and Wbkαi+1 ⊂ Ai+1 ⊆ Wbk+1αi+1 in the latter case.
Since A−1 = J(W )α−1, we can prove that for any i ∈ N , Wbk−1α−i ⊂ A−i ⊆
Wbkα−i and WA−i = Wbkα−i for some k < 0 in the same way. It is clear that
WAi is a right σi(W )-ideal for all i ∈ Z. ¤

In Lemma 2.7, for any i ∈ Z, WAi = Wbkαi for some k ∈ Z. More generally,
we have

Lemma 2.8. Let W be an overring of V and let γi ∈ K be nonzero elements
such that Wγi = γiσ

i(W ), γiσ
i(γj) = γi+j and γ0 = 1 for all i, j ∈ Z. Suppose

that J(W ) = b−1W = Wb−1 and that, for any i ∈ Z, there is an f(i) ∈ Z with
f(0) = 0. Set Bi = Wbf(i)γi for all i ∈ Z with i 6= 0 and B0 = V . Then

(1) For any i, j ∈ Z with j 6= −i, Biσ
i(Bj) ⊆ Bi+j if and only if f(i)+f(j) 5

f(i + j).
(2) For any i ∈ Z, Bi ∪ σi(B−

−i) = K if and only if f(i) + f(−i) ≥ −1.

Proof.

(1) Because of γiσ
i(J(W )k) = J(W )kγi as in Lemma 2.7, for any i, k ∈

Z, we have Biσ
i(Bj) = Wbf(i)γiσ

i(Wbf(j))σi(γj) = Wbf(i)+f(j)γiσ
i(γj) =

Wbf(i)+f(j)γi+j . Hence Biσ
i(Bj) ⊆ Bi+j if and only if f(i) + f(j) 5 f(i + j)

for all i, j ∈ Z with j 6= −i.
(2) Suppose that Bi ∪ σi(B−

−i) = K for all i ∈ Z. If f(i) + f(−i) 5 −2 for
some i ∈ Z, then i 6= 0 and c = bf(i)+1γi /∈ Bi. Then we have

c−1W = γ−1
i b−f(i)−1W = σi(Wb−f(i)−1)γ−1

i ⊃ σi(Wb−f(i)−2γ−i)

⊇ σi(Wbf(−i)γ−i) = σi(B−i).

Thus c 6∈ Bi ∪ σi(B−
−i) = K, a contradiction. Hence f(i) + f(−i) ≥ −1 for all

i ∈ Z.
Conversely, suppose that f(i) + f(−i) ≥ −1 for all i ∈ Z. If c ∈ K with

c 6∈ Bi, then bf(i)γic
−1 ∈ J(W ) = b−1W and so bf(i)+1γic

−1 ∈ W . Thus we have

c−1 ∈ γ−1
i b−f(i)−1W ⊆ γ−1

i bf(−i)W = σi(Wbf(−i))γ−1
i

= σi(Wbf(−i))σi(γ−i) = σi(B−i).

So c ∈ σi(B−
−i) and hence Bi ∪ (σi(B−

−i) = K follows. ¤



434 G. Xie and H. Marubayashi

From Lemma 2.8 we have the following definition:
A map f : Z −→ Z is called a graded map if f(0) = 0, f(i) + f(j) 5 f(i + j)

and f(i) + f(−i) ≥ −1 for all i, j ∈ Z.
A graded map f is called a nice map if f(1) = 0, f(−1) = −1.
If f is a graded map, then we note that either f(i) + f(−i) = −1 or f(i) +

f(−i) = 0 for any i ∈ Z, because −1 5 f(i) + f(−i) 5 f(i + (−i)) 5 f(0) = 0.
Furthermore, f(i) + f(j) = f(i + j) or f(i) + f(j) = f(i + j)− 1 for any i, j ∈ Z,
because f(i) ≥ f(i + j) + f(−j) ≥ f(i + j)− f(j)− 1.

Assume that W 6= V is an overring of V . Then, under the notation and
assumption in Lemma 2.8, we have B = ⊕i∈ZBiX

i is a graded extension of V in
K[X, X−1;σ] if and only if f is a graded map with f(i) + f(−i) = −1 for any
i 6= 0. Furthermore, B is a graded extension of V in K[X, X−1;σ] with B1 = Wγ1

and B−1 = J(W )γ−1 if and only if f is a nice map with f(i) + f(−i) = −1 for
any i 6= 0.

Now under the notation and assumption in Lemma 2.7, for any i ∈ Z, WAi =
Wbkαi for some k ∈ Z. We define f(i) = k. Then we have

Lemma 2.9.

(1) The map f defined above is a nice map.
(2) Wbf(i)−1αi ⊂ Ai ⊂ Wbf(i)αi for some i ∈ Z with |i| ≥ 2 if and only if

W 6= V and f(i) + f(−i) = 0.

Proof.

(1) It is clear that f(0) = 0 = f(1) and f(−1) = −1, since A1 = Wa, A0 = V

and A−1 = J(W )α−1 = Wb−1α−1. Now let Bi = WAi = Wbf(i)αi for any i ∈ Z

with i 6= 0 and B0 = V . Then Biσ
i(Bj) = WAiσ

i(W )σi(Aj) = WAiσ
i(Aj) ⊆

WAi+j = Bi+j if j 6= −i, since WAi is a right σi(W )-ideal. Furthermore, it is
clear that Bi ⊇ Ai and B−i ⊇ A−i for all i ∈ Z. Hence f is a nice map by Lemmas
1.1 and 2.8.

(2) Suppose that Wbf(i)−1αi ⊂ Ai ⊂ Wbf(i)αi for some i ∈ Z. Then |i| ≥ 2
since A1 = Wa and A−1 = Wb−1α−1. By Lemma 1.2, W 6= V . Assume that
f(i) + f(−i) = −1. Let β = wbf(i)αi ∈ Wbf(i)αi \ Ai, then w is a unit of W and
so

β−1W = α−1
i b−f(i)W = σi(bf(−i)W )α−1

i = σi(Wbf(−i)+1)α−1
i

= σi(Wbf(−i)+1α−i) ⊃ σi(A−i),

which shows β 6∈ σi(A−−i) ∪Ai = K, a contradiction. Hence f(i) + f(−i) = 0.
Conversely, suppose that W 6= V and f(i) + f(−i) = 0. Then it is clear that

|i| ≥ 2, because f(1) = 0 and f(−1) = −1. Assume that Ai = Wbf(i)αi. Then,
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by Lemma 1.4, we have A−i = σ−i(α−1
i b−f(i)J(W )) = α−iσ

−i(Wbf(−i)−1) =
Wbf(−i)−1α−i, a contradiction. Hence Wbf(i)−1αi ⊂ Ai ⊂ Wbf(i)αi follows. ¤

Lemma 2.10. Let f be a graded map with f(l) + f(−l) = 0 for some l ∈ N .
Then

(1) f(i + l) = f(i) + f(l) and f(i− l) = f(i) + f(−l) for all i ∈ Z.
(2) Suppose that l is the smallest natural number with f(l)+f(−l) = 0. Then

f(j) + f(−j) = 0 if and only if j ∈ lZ.

Proof.

(1) For any i ∈ Z, f(i) = f(i + l − l) ≥ f(i + l) + f(−l). So f(i + l) ≥
f(i) + f(l) ≥ f(i + l) + f(−l) + f(l) = f(i + l), which shows f(i + l) = f(i) + f(l).
Similarly, we have f(i− l) = f(i) + f(−l).

(2) If j = lq for some q ∈ Z, then f(j) + f(−j) = qf(l) + qf(−l) = 0 by (1).
Conversely, suppose that f(j) + f(−j) = 0 and let j = lp + i for some p, i ∈ Z

with 0 5 i < l. Then 0 = f(j) + f(−j) = f(i) + f(−i) by (1), which shows i = 0,
i.e., j ∈ lZ. ¤

Now we are ready to describe the case (d) with J(W ) ⊃ J(W )2.

Theorem 2.11. Let W be an overring of V and let A = ⊕i∈ZAiX
i be a

subset of K[X, X−1;σ] with A0 = V , A1 = Wa = aσ(W ) and A−1 = J(W )α−1.
Suppose that J(W ) = b−1W = Wb−1 for some b−1 ∈ J(W ). Then A is a graded
extension of V in K[X, X−1;σ] if and only if the following properties hold :

(1) There is a nice map f such that WAi = Wbf(i)αi for all i ∈ Z.
(2) (a) If either W = V or f(i) + f(−i) = −1 for all i ∈ Z with i 6= 0, then

Ai = Wbf(i)αi for all i ∈ Z with i 6= 0.
(b) If W 6= V and there is an l ∈ N (l ≥ 2) with f(l) + f(−l) = 0

(assume l is the smallest natural number for this property), then Ai =
Wbf(i)αi for all i /∈ lZ and B = ⊕j∈ZAjlX

jl is a graded extension
of V in K[X l, X−l;σl] with Wbf(jl)−1αjl ⊂ Ajl ⊂ Wbf(jl)αjl for all
j ∈ Z.

Proof. Suppose that A = ⊕i∈ZAiX
i is a graded extension of V in

K[X, X−1; σ]. Then there is a nice map f such that WAi = Wbf(i)αi for all
i ∈ Z by Lemmas 2.7 and 2.9. In the case (2) (a), it follows from Lemmas 2.7 and
2.9 that Ai = Wbf(i)αi for all i ∈ Z with i 6= 0. In the case (2) (b), the statement
follows from Lemmas 2.9 and 2.10.

Conversely, suppose that (1) and either (2) (a) or (2) (b) hold. Then A is
an additive subgroup of K[X, X−1;σ] with A0 = V . In order to prove that Ai ∪
σi(A−−i) = K for all i ∈ Z, we may assume that f(i)+f(−i) = −1, Ai = Wbf(i)αi

and A−i = Wbf(−i)α−i by the assumption. Then A−i = α−iσ
−i(Wbf(−i)) =
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α−iσ
−i(Wb−f(i)−1) = σ−i(α−1

i b−f(i)J(W )). Hence Ai ∪ σi(A−−i) = K by Lemma
1.3 (1).

Finally we will prove that A is a ring. Note that Aiσ
i(Aj) ⊆

Wbf(i)αiσ
i(Wbf(j)αj) = Wbf(i)+f(j)αiσ

i(αj) = Wbf(i)+f(j)αi+j by Lemma 2.1.
So if i + j /∈ lZ, then Aiσ

i(Aj) ⊆ Ai+j follows. In the case when i + j ∈ lZ, there
are two cases, i.e., either i, j ∈ lZ or i, j /∈ lZ. If i, j ∈ lZ, then Aiσ

i(Aj) ⊆ Ai+j ,
since B is a graded extension of V in K[X, X−1;σ].

If i, j /∈ lZ, then j = kl − i for some k ∈ Z. So we have f(i) + f(j) =
f(i) + f(−i + kl) = f(i) + f(−i) + f(kl) = −1 + f(kl) = −1 + f(i + j) by Lemma
2.10. Thus Aiσ

i(Aj) ⊆ Wbf(i)+f(j)αi+j = Wbf(i+j)−1αi+j ⊂ Ai+j by Lemma 2.7.
Hence A is a graded extension of V in K[X, X−1;σ] by Lemma 1.1. ¤

3. Description of nice maps.

As it has been seen in Section 2, nice maps are useful in the study of graded
extensions of V in K[X, X−1;σ]. In this section we will give a full description of
nice maps.

Lemma 3.1. Let f be a nice map. Then
(1) f(i) + 1 ≥ f(i + 1) ≥ f(i) for all i ∈ Z.
(2) 0 5 f(i) < i for all i ∈ N .

Proof.

(1) Since f(i+1) ≥ f(i)+f(1) = f(i) and f(i) ≥ f(i+1)+f(−1) = f(i+1)−1,
we have f(i) + 1 ≥ f(i + 1) ≥ f(i).

(2) This easily follows from (1) by induction on i. ¤

Let f be a nice map. Then 0 5 f(i)/i < 1 for all i ∈ N by Lemma 3.1. Let
γ = sup{f(i)/i | i ∈ N}. We will use this γ to describe all nice maps.

Lemma 3.2. Let f be a nice map with f(l) + f(−l) = 0 for some l ∈ N ,
then f(i)/i 5 f(l)/l for all i ∈ N .

Proof. Let γ = f(l)/l. Suppose, on the contrary, that f(k)/k > γ for
some k ∈ N . By Lemma 2.10, f(kl) = kf(l) and so f(kl)/kl = f(l)/l = γ.
On the other hand, f(kl) ≥ f(k) + f((l − 1)k) ≥ · · · ≥ lf(k), which implies
f(kl)/kl ≥ f(k)/k > γ, a contradiction. Hence f(i)/i 5 f(l)/l for all i ∈ N . ¤

Lemma 3.3. Let f be a nice map and γ = sup{f(i)/i | i ∈ N}. If f(i)/i < γ

for all i ∈ N , then iγ > f(i) ≥ iγ − 1 for all i ∈ N .

Proof. We suppose, on the contrary, that f(k) < kγ − 1 for some k ∈ N .
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Then there is a t1 ∈ N big enough with f(k) < kγ− 1− (k/t1). Similarly we take
a t2 ∈ N with f(i)/i < γ − (1/t2) for all i ∈ N (1 5 i 5 k). Set t = max{t1, t2}.
Since γ = sup{f(i)/i | i ∈ N}, there is an l ∈ N with f(l)/l > γ − (1/t) (assume
that l is smallest for this property). Note that l > k by the choice of t. f(k) <

kγ− 1−k/t implies f(k) 5 [kγ−k/t]− 1, where [β] is the Gauss’ symbol of a real
number β. Since f(−k) ≥ −f(k)− 1, we have f(−k) ≥ −[kγ−k/t]. Furthermore,
f(l)/l > γ − (1/t) implies f(l) > lγ − l/t. Thus f(l − k) ≥ f(l) + f(−k) >

l(γ− (1/t))−k[γ− (1/t)] ≥ (l−k)(γ− (1/t)), i.e., f(l−k)/(l−k) > γ− (1/t) with
l > l− k > 0, which is a contradiction to the choice of l. Hence iγ > f(i) ≥ iγ− 1
for all i ∈ N . ¤

The following Lemma is crucial for the description of all nice maps.

Lemma 3.4. Let γ be a real number with 0 5 γ 5 1. Then
(1) If 0 < γ < 1 and fγ is a map from Z to Z defined by fγ(i) = [iγ] for all

i ∈ Z, then fγ is a nice map.
(2) If 0 < γ 5 1 and f

(1)
γ is a map from Z to Z defined by f

(1)
γ (0) = 0,

iγ− 1 5 f
(1)
γ (i) < iγ and f

(1)
γ (−i) = −f

(1)
γ (i)− 1 for all i ∈ N , then f

(1)
γ is a nice

map.
(3) If 0 5 γ < 1 and f

(−1)
γ is a map from Z to Z defined by f

(−1)
γ (0) = 0,

f
(−1)
γ (i) = [iγ] and f

(−1)
γ (−i) = −f

(−1)
γ (i) − 1 for all i ∈ N , then f

(−1)
γ is a nice

map.

Proof.

(1) It is clear that fγ(0) = 0 = fγ(1) and fγ(−1) = −1. For any i, j ∈ Z, we
have [iγ] + [−iγ] = −1 and [iγ] + [jγ] 5 iγ + jγ = (i + j)γ for all i, j ∈ Z. Hence
fγ is a nice map.

(2) If γ = 1, then it is clear that f
(1)
1 (i) = i − 1 and f

(1)
1 (−i) = −i for all

i ∈ N . Hence f
(1)
1 is a nice map. For any γ with 0 < γ < 1, if γ is not a

rational number, then it is clear that f
(1)
γ = fγ . If γ is a rational number and

let l be the smallest natural number with lγ ∈ Z. Then, for any i ∈ N , we have
f

(1)
γ (i) = iγ − 1 if i ∈ lZ and f

(1)
γ (i) = [iγ] if i /∈ lZ. So it is easy to see, by

tedious calculation case by case that f
(1)
γ is a nice map.

(3) If γ = 0, then f
(−1)
0 (i) = 0 and f

(−1)
0 (−i) = −1 for all i ∈ N . So f

(−1)
0

is a nice map. For any γ with 0 < γ < 1, if γ is not a rational number, then it is
clear that f

(−1)
γ = fγ . If γ is a rational number and let l be the smallest natural

number with lγ ∈ Z. Then, for any i ∈ N , f
(−1)
γ (i) = iγ if and only if i ∈ lZ

and f
(−1)
γ (i) = [iγ] with [iγ] < iγ if and only if i /∈ lZ. Hence it is easy to see, by

tedious calculation case by case that f
(−1)
γ is a nice map. ¤
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Now we are in a position to describe all nice maps.

Theorem 3.5. {fγ , f
(1)
γ , f

(−1)
γ | 0 < γ < 1 and γ is a real number} ∪

{f (−1)
0 , f

(1)
1 } is the set of all nice maps.

Proof. By Lemma 3.4, it suffices to prove that any nice map f is one in
the theorem. Let γ = sup{f(i)/i | i ∈ N}. Then 0 5 γ 5 1 by Lemma 3.1. If
γ = 0, then it is easy to see that f = f

(−1)
0 . So we may assume that 0 < γ 5 1. If

γ = 1, then f(i)/i < γ = 1 for all i ∈ N by Lemma 3.1.
Case 1. Suppose that f(i)/i < γ for all i ∈ N . Then iγ > f(i) ≥ iγ − 1 by

Lemma 3.3 and for all i > 0, f(−i) = −f(i)− 1 by Lemma 3.2. Hence f = f
(1)
γ .

Case 2. There is an l ∈ N with γ = f(l)/l. We choose l as the smallest one for
this property and may assume that 0 < γ < 1 by the discussion above. We claim
that l is the smallest natural number with lγ ∈ Z. Let k be the smallest natural
number with kγ ∈ Z. Then l = pk for some natural number p ∈ N . If p > 1, then
f(k)/k < γ, and so f(k) 5 kγ−1. It follows that f(−k) ≥ −kγ, i.e., −f(−k) 5 kγ.
Furthermore, since f(k) ≥ f(2k)+f(−k), f(2k) 5 f(k)−f(−k) 5 2kγ−1 < 2kγ.
Inductively, we have f(pk) < pkγ, i.e., f(l) < lγ, a contradiction. Hence, l = k,
as claimed. We will prove that

f(i) = [iγ] for all i ∈ N .

For any i ∈ N , since f(il) ≥ if(l) = ilγ and f(il)/il 5 γ, we have f(il) = ilγ =
[ilγ]. We suppose, on the contrary, that f(j) 6= [jγ] for some j ∈ N . Then
f(j) 5 [jγ] − 1 and j 6∈ lZ. So [jγ] < jγ and f(−j) ≥ −[jγ] follows. Let q ∈ N

with ql > j. Then f(ql − j) ≥ f(ql) + f(−j) ≥ qlγ + (−[jγ]) > qlγ − jγ, which
implies f(ql − j)/(ql − j) > γ, a contradiction. Hence f(i) = [iγ] for all i ∈ N .
Next we will prove that

f(−i) = −f(i)− 1 and f(−i) = [−iγ] for all i /∈ lZ.

Suppose that there is an i ∈ N with i 6∈ lZ such that f(−i) + f(i) = 0. Then
f(i)/i = γ by Lemma 3.2, so that i ∈ lZ, a contradiction. Hence f(−i) = −f(i)−1
for all i ∈ N with i 6∈ lZ. In particular, f(−i) = −f(i) − 1 = −[iγ] − 1 = [−iγ]
for any i ∈ N with i 6∈ lZ. Now, f(l) = lγ implies either f(−l) = −lγ or
f(−l) = −lγ − 1. If f(−l) = −lγ, then we have f(−il) = −ilγ = [−ilγ] for all
i ∈ N by induction on i. Hence f = fγ follows. If f(−l) = −lγ − 1, then we have
f(−il) = −ilγ − 1 = −f(il) − 1 for any i ∈ N by induction on i, which shows
f = f

(−1)
γ . This completes the proof. ¤
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4. The cardinality of the set of the graded extensions.

Let A = ⊕i∈ZAiX
i be a graded extension of V in K[X, X−1;σ] with A1 =

Wa = aσ(W ), A−1 = J(W )α−1 and J(W ) = b−1W = Wb−1 for some b−1 ∈
J(W ). Set S = {B = ⊕i∈ZBiX

i | B is a graded extension of V in K[X, X−1;σ]
with B1 = Wa and B−1 = J(W )α−1}. Then it follows from Theorems 2.11 and
3.5 that |S | ≥ ℵ. In this section, we will give an example of a total valuation ring
V such that |S | > ℵ.

Lemma 4.1. Let f be a nice map with f(l) + f(−l) = 0 and l ≥ 2 (assume
that l is the smallest natural number for this property) and let W ⊃ U ⊃ V be
overrings of V with Wa = aσ(W ) and J(W ) = b−1W = Wb−1 for some b−1 ∈
J(W ). Suppose that C = ⊕j∈ZCjlX

jl is a graded extension of V in K[X l, X−l;σl]
with Cl = Ubf(l)αl. Then Wbf(jl)−1αjl ⊂ Cjl ⊂ Wbf(jl)αjl for all j ∈ Z.

Proof. Cl = Ubf(l)αl implies C−l = σ−l(α−1
l bf(−l)J(U)) =

α−lσ
−l(bf(−l)J(U)) by Lemma 1.4. So WCl = Wbf(l)αl and, by Lemma 2.1

(1), WC−l = Wbf(−l)α−l. In the case where j ∈ N , we will first prove this as-
sertion by induction on j. It is clear that Wbf(l)−1αl ⊂ Cl ⊂ Wbf(l)αl and so we
may assume that Wbf(jl)−1αjl ⊂ Cjl ⊂ Wbf(jl)αjl for some j ∈ N . Then since
f(l) + f(jl) = f(jl + l) by Lemma 2.10, we have

Wbf(jl+l)−1αjl+l = Ubf(l)Wbf(jl)−1αlσ
l(αjl)

= Ubf(l)αlσ
l(Wbf(jl)−1αjl)

⊆ Clσ
l(Cjl) ⊆ Cjl+l.

To prove Wbf(jl+l)αjl+l ⊇ Cjl+l, consider the formulas:

σl(α−l)bf(−l)WCjl+l = σl(α−lσ
−l(bf(−l)W )Cjl+l = σl(Wbf(−l)α−l)Cjl+l

= σl(WC−lσ
−l(Cjl+l)) ⊆ σl(WCjl).

Hence

Cjl+l ⊆ bf(l)σl(α−1
−l )σ

l(WCjl) = bf(l)αlσ
l(Wbf(jl)αjl)

= bf(l)Wbf(jl)αlσ
l(αjl) = Wbf(jl+l)αjl+l.

To prove Wbf(jl)−1αjl ⊂ Cjl ⊂ Wbf(jl)αjl, it suffices to prove that Cjl is not a
left W -ideal by Lemma 1.2. On the contrary, assume that Cjl is a left W -ideal.
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Then we have Cjl+l = Wbf(jl+l)αjl+l, because

Cjl+l ⊇ WClσ
l(Cjl) = Wbf(l)αlσ

l(Cjl) = αlσ
l(Wbf(l)Cjl)

= αlσ
l(Wbf(jl+l)αjl) = αlσ

l(αjlσ
jl(Wbf(jl+l)))

= αjl+lσ
jl+l(Wbf(jl+l)) = Wbf(jl+l)αjl+l.

Hence

Cjl ⊇ C−lσ
−l(Cjl+l) = α−lσ

−l(bf(−l)J(U)Wbf(jl+l)αjl+l)

= α−lσ
−l(Wbf(jl))σ−l(αjl+l) = Wbf(jl)αjl ⊃ Cjl,

which is a contradiction. Since J(U) ⊃ J(W ) = Wb−1, we have

C−l = α−lσ
−l(bf(−l)J(U)) ⊃ α−lσ

−l(bf(−l)J(W )) = Wbf(−l)−1α−l

and

C−l ⊂ α−lσ
−l(bf(−l)W ) = Wbf(−l)α−l.

So, by the similar argument above, we have Wbf(−jl)−1α−jl ⊂ C−jl ⊂
Wbf(−jl)α−jl for all j ∈ N , completing the proof. ¤

Lemma 4.2. Let f be a nice map with f(l) + f(−l) = 0 and l ≥ 2 (assume
that l is the smallest natural number for this property) and let W ⊃ U ⊃ V be
overrings of V with Wa = aσ(W ) and J(W ) = b−1W = Wb−1 for some b−1 ∈
J(W ). Set Cl = Ubf(l)αl and suppose that Cl is a right σl(V )-ideal. Then there is
a graded extension C = ⊕j∈ZCjlX

jl of V in K[X l, X−l;σl] with Wbf(jl)−1αjl ⊂
Cjl ⊂ Wbf(jl)αjl for all j ∈ Z.

Proof. Since Cl is a right σl(V )-ideal, we have the following three cases;
Cl = Ucl = clσ

l(U) or Cl = Ucl ⊃ clσ
l(U) or Cl = Ucl ⊂ clσ

l(U), where
cl = bf(l)αl, which are in the same situation as in Section 2. Hence, in all cases, we
have a graded extension C = ⊕j∈ZCjlX

jl of V in K[X l, X−l;σl] by Proposition
2.3 or Theorem 2.5, and so Wbf(jl)−1αjl ⊂ Cjl ⊂ Wbf(jl)αjl for all j ∈ Z by
Lemma 4.1. ¤

Proposition 4.3. Let f be a nice map with f(l) + f(−l) = 0 and l ≥ 2
(assume that l is the smallest natural number for this property) and let W be an
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overring of V with J(W ) = b−1W = Wb−1 for some b−1 ∈ J(W ), A1 = Wa =
aσ(W ) and A−1 = J(W )α−1. Suppose that the cardinality of {Vλ | W ⊃ Vλ ⊃ V

and Vλ are overrings of V } is larger than ℵ and that Cλl = Vλbf(l)αl is a right
σl(V )-ideal for each λ. Then the cardinality of S = {B = ⊕i∈ZBiX

i | B is a
graded extension of V in K[X, X−1;σ] with B1 = Wa and B−1 = J(W )α−1} is
larger than ℵ.

Proof. For each Vλ, by Lemma 4.2, there is a graded extension Cλ =
⊕j∈ZCλ

jlX
jl of V in K[X l, X−l;σl] with Cλ

l = Vλbf(l)αl and Wbf(jl)−1αjl ⊂
Cλ

jl ⊂ Wbf(jl)αjl for all j ∈ Z. Set Bλ
i = Wbf(i)αi for all i 6∈ lZ and Bλ

jl = Cλ
jl

for all j ∈ Z. Then Bλ = ⊕i∈ZBλ
i Xi is a graded extension of V in K[X, X−1;σ]

with Bλ
1 = Wa and Bλ

−1 = J(W )α−1 by Theorem 2.11. Hence |S | > ℵ follows.
¤

In the following we will give a concrete example of total valuation ring and a
nice map satisfying the conditions in Proposition 4.3, by using the method in [6]:

Let Λ be a totally ordered group with |Λ| > ℵ and G = Z1 ⊕Z2 ⊕ (⊕λ∈ΛZλ)
be a direct sum of Zi and Zλ (i = 1, 2, λ ∈ Λ), where Zi and Zλ are copies of Z,
which is a totally ordered abelian group by lexicographic ordering. Furthermore,
let F0 be a field and F = F0({xi, xλ}) be the rational function field over F0 in
indeterminates xi and xλ (i = 1, 2, λ ∈ Λ). We let σ be an automorphism defined
by; σ(a) = a for any a ∈ F0, σ(xλ) = xλ, σ(x1) = x2 and σ(x2) = x1 so that
σ2 = 1. We also define a valuation v of F as follows; v(a) = 0 for any a ∈ F0,
v(xi) = gi and v(xλ) = gλ, where gi and gλ are elements in G such that the i-th
component and the λ-component are 1, and the other components are all zeros,
respectively. Let V0 be the valuation ring of F determined by v. Then it is easy
to see that σ(V0) * V0 and σ2(V0) = V0. Set

℘ = ∩n∈Nxn
2V0 ∩λ∈Λ (∩n∈Nxn

λV0)

and

℘λ = ∩λ<µ(∩n∈Nxn
µV0)

for each λ ∈ Λ. Then ℘ and ℘λ are all prime ideals of V0 with ℘ ⊂ ℘λ ⊂ ℘µ if
µ > λ (see [6, example 2.5]). Let W0 = V0℘ and V0λ = V0℘λ

, the localization of V0

at ℘ and ℘λ, respectively. So we have W0 ⊃ V0λ ⊃ V0µ if µ > λ.
In order to prove that J(W0) = x1W0, let U = F0({x2, xλ})[x1], which is

contained in W0. Since U \x1U ⊆ V0\℘, it follows that W0 ⊇ Ux1U , a discrete rank
one valuation ring of F and so W0 = Ux1U follows. In particular, J(W0) = x1W0.
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Let S = F [y, σ] be the skew polynomial ring over F in the indeterminate y and
T = SyS , the localization of S at the maximal ideal yS. For any t = f(y)g(y)−1 ∈
T , where f(y) = f0 + f1y + · · · + fnyn and g(y) = g0 + g1y + · · · + gmym with
g0 6= 0, we define the map

ϕ : T −→ F

by ϕ(t) = f0g
−1
0 . Then ϕ is a ring epimorphism with kerϕ = yT (see [6, Section

1]). Set W = ϕ−1(W0) = W0+yT, Vλ = ϕ−1(V0λ) = V0λ +yT and V = ϕ−1(V0) =
V0 + yT , the complete inverse images of W0, V0λ and V0 by ϕ, respectively. Then
W,Vλ and V are all total valuation rings of K = F (y, σ), the quotient ring of S

which is a division ring, with J(W ) = x1W = Wx1 and W ⊃ Vλ ⊃ V for each
λ ∈ Λ by [6, (1.6)]. Note that σ is naturally extended to an automorphism of K

which is the conjugation by y. We denote it by the same symbol σ. It is clear
that σ2 = 1. Now we set y−1 = a and b−1 = x1. Then we have the following
properties:

(i) Wa = aσ(W ) and J(W ) = b−1W = Wb−1.
(ii) ϑ = {Vλ | W ⊃ Vλ ⊃ V, λ ∈ Λ} and |ϑ| > ℵ.
(iii) For each λ ∈ Λ, Vλbα2 is a right V -ideal.
The statements (i) and (ii) are obvious. In order to prove (iii), note that

α2 = y−2. So we have

Vλbα2 = Vλby−2 = y−2Vλb = y−2(V0λ + yT )x−1
1 = y−2(x−1V0λ + yT ),

which is a right V -ideal (note that σ2(V ) = V ). Let f = f1/2 be the nice map
defined in Lemma 3.4. Then it is clear that f(2) + f(−2) = 0. Hence, by Propo-
sition 4.3, the cardinality of S = {B = ⊕i∈ZBiX

i | B is a graded extension of V

in K[X, X−l;σ] with B1 = Wa and B−1 = J(W )α−1} is larger than ℵ.

Finally, we give some simple examples of total valuation rings satisfying the
conditions in Theorems 2.4 ∼ 2.6:

Let W0 ⊇ V0 be valuation rings of a field F with an automorphism σ and let
F [y, σ] be the skew polynomial ring over F in indeterminate y. As before, let

ϕ : T = SyS −→ F

be the ring epimorphism, W = ϕ−1(W0) and V = ϕ−1(V0), which are all total
valuation rings of K = F (y, σ). Since J(W ) = J(W0)W , it follows that J(W ) =
J(W )2 if and only if J(W0) = J(W0)2, and that σ(W ) ⊆ W if and only if σ(W0) ⊆
W0. Furthermore, for any nonzero element a ∈ F , we have aW = Wa, because a
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is a unit in T . Hence we have the following:
(i) Suppose that W0 ⊃ σ(W0) and V0 = σ(V0) ([6, (2.5)]). Let a be a nonzero

element in F . Then Wa ⊃ aσ(W ) (Theorem 2.4).
(ii) Suppose that W0 ⊂ σ(W0) and V0 = σ(V0). Let a be a nonzero element

in F . Then aσ(W ) ⊃ aW = Wa = Waσ(V ) (Theorem 2.5).
(iii) Let a = y−1 and suppose that J(W0) = J(W0)2. Then Wa = aσ(W )

and J(W0) = J(W0)2 (Theorem 2.6).
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