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Abstract. Let S be a non-empty finite set of prime numbers, and let F be an
abelian extension over the rational field such that the Galois group of F over some
subfield of F with finite degree is topologically isomorphic to the additive group of
the direct product of the p-adic integer rings for all p in S. Let m be a positive integer
that is neither congruent to 2 modulo 4 nor divisible by any prime number outside
S but divisible by all prime numbers in S. Let Ω denote the composite of pn-th
cyclotomic fields for all p in S and all positive integers n. In our earlier paper [3],
it is shown that there exist only finitely many prime numbers l for which the l-class
group of F is nontrivial and the m-th cyclotomic field contains the decomposition
field of l in Ω. We shall prove more precise results providing us with an effective
upper bound for a prime number l such that the l-class group of F is nontrivial and
that the m-th cyclotomic field contains the decomposition field of l in Ω.

Introduction.

An abelian extension over the rational number field Q in the complex number field
C will be called an abelian number field. Let S be a non-empty finite set of prime
numbers, let Zp denote for each p ∈ S the ring of p-adic integers, and let QS denote the
abelian number field such that the Galois group Gal(QS/Q) is topologically isomorphic
to the additive group of the direct product of Zp for all p ∈ S. Let F be any abelian
number field which is a finite extension of QS . As is well known, arithmetic properties
of F have been studied with great success in virtue of Iwasawa theory (cf. Friedman [1],
Washington [6], [7], etc.). Let Ω denote the composite of the cyclotomic fields Q(e2πi/pn

)
for all p ∈ S and all positive integers n. Take a positive integer m, with m 6≡ 2 (mod 4),
which is divisible by all prime numbers in S and not divisible by any prime number
outside S. It then follows that Ω = QS(e2πi/m). For each prime number l, Ω(l) will
denote the decomposition field of l for the abelian extension Ω/Q. Given any abelian
number field M , we let CM denote the ideal class group of M and, for each prime number
l, we let CM (l) denote the l-class group of M , i.e., the l-primary component of CM .

After some initiative investigations of [2] partly based upon [6], using the algebraic
interpretation by Leopoldt [5] of the analytic class number formula, we have shown in
[3] that there exist only finitely many prime numbers l such that CF (l) is nontrivial and
such that Q(e2πi/m) contains Ω(l). Meanwhile, among others, the simplest case where
F = QS with |S| = 1 is treated effectively by [4]. In the present paper, we shall pursue
our arguments in [2], [3], [4] to prove some results actually giving us an explicit constant
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C > 0 such that CF (l) is trivial whenever

l ≥ C and Ω(l) ⊆ Q(e2πi/m).

A few additional remarks, for instance, on the cardinality |CF | will also be made in
connexion with distinguished results in [1], [6]. We shall devote the last part of the
paper to indispensable corrections to [3], [4].

Acknowledgements. The author expresses his most sincere gratitude to the
referee who read the paper in manuscript very carefully, and made very helpful comments
on it, which included kind corrections of the author’s several mistakes.

1. Statements of main results.

In this section, we shall state our main results, with giving definitions needed for
the statements.

For each prime number p, put

p̃ = p or p̃ = 4

according as p > 2 or p = 2; for each positive integer u, let [u]p denote the p-part of u,
that is, the highest power of p dividing u. We note that p̃ ≤ [m]p for each p ∈ S and that
a prime number l 6∈ S satisfies Ω(l) ⊆ Q(e2πi/m) if and only if, for each p ∈ S, either
lϕ(p̃) 6≡ 1 (mod p[m]p) or [l− 1]2 = [m]2 with p = 2, where ϕ denotes the Euler function
as usual. Naturally, there exists a unique abelian number field k of finite degree with
F = kQS such that, for each p ∈ S, the p-part of the conductor of k divides p̃. We then
find that k ∩QS = Q. Given any positive integer n, let Dn denote the absolute value of
the discriminant of Q(e2πi/n), and let

Ξ(n) = (ϕ(n)− 1)(ϕ(n)−1)/2 or Ξ(n) = 1

according as n ≥ 3 or n ≤ 2. It is well known that

Dn

∏

p|n

(
p− 1

p(p−2)/(p−1)

)ϕ(n)

= ϕ(n)ϕ(n),

p ranging over the prime divisors of n. However the inequality

x− 1
x(x−2)/(x−1)

≥ 1

holds for each real number x ≥ 2. Hence we obtain Dn ≤ ϕ(n)ϕ(n), which implies that

(ϕ(n)− 1)ϕ(n)

Dn
≥

(
1− 1

ϕ(n)

)ϕ(n)

.
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Whenever ϕ(n) ≥ 2, the right hand side of the above inequality is at least equal to 1/4
since, for a real variable ξ > 1, (1−1/ξ)ξ is an increasing function. Hence, taking account
of the fact that D2 = D1 = 1, we always have

Ξ(n)√
Dn

>
1

2
√

ϕ(n)
. (1)

Now, for any abelian number field M , we denote by M+ the maximal real subfield
of M , so that M = M+ if M is real. We see particularly that

F+ = k+QS , k+ ∩QS = Q.

Let u0 be the least common multiple of m and the exponent of Gal(k/Q); let n0 be the
least common multiple of m and the exponent of Gal(k+/Q). It is obvious that u0 = 2n0

or u0 = n0. Let d =
∏

p∈S([n0]p/p), and let Q∗ denote the unique subfield of QS with
degree d. Then k+Q∗ is the unique intermediate field of F+/k+ with degree d over k+.
We write h∗ for the class number of k+Q∗. Let λ0 be the number of distinct prime
divisors of n0, and v the product of prime numbers ramified in k+ or belonging to S. We
put

J =
2λ0−2ϕ(2v)ϕ(n0)3Ξ(n0)

∑
p∈S ϕ(p− 1)

(log 2)D(ϕ(n0)−1)/(2ϕ(n0))
n0

.

We further put

w = max
p∈S

(p− 1)ϕ(p̃)[m]1/ϕ(p−1)
p

p
, κ =

(
1
π

+
1
s

)
max
p∈S

d
∏

q∈S q̃

[d]pp̃
,

Λ = log
(
J
(
ϕ(2v)n0w(tκ)1/

P
p∈S ϕ(p−1)

)1/ϕ(n0)
)
.

Here s denotes the minimum of p̃ for all prime divisors p of v, and t the maximal divisor
of the conductor of k+ relatively prime to m. In view of (1), we easily have Λ > 1.

Theorem 1. Assume that F is real : F+ = F , k+ = k. Let l be a prime number
such that Ω(l) ⊆ Q(e2πi/m), l does not divide u0h

∗t = n0h
∗t, and

l ≥
(

JΛ

(
1 +

log Λ

Λ− 1

))ϕ(n0)

.

Then CF (l), the l-class group of F , is trivial.

Next, let Q′ be the subfield of QS with degree m2/
∏

p∈S p. We write h− for the
relative class number of kQ′, namely, the positive integer defined as the ratio of the class
number of kQ′ to that of (kQ′)+ = k+Q′. We put m′ =

∏
p∈S [u0]p, and write t′ for the
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maximal divisor of the conductor of k relatively prime to m. Denoting by r the minimum
of [m]p for all p ∈ S, we put

δ = max
p∈S

p1/ϕ([m]p)(log[m]p + c)
[m]p

, with c =
π

r sin(π/r)
− log

π

2
.

Note that c > 1− log(π/2) > 1/2. For each abelian number field M , we let NM denote
the norm map CM → CM+ , and let C−M (l) denote, for each prime number l, the l-primary
component of the kernel of the group homomorphism NM .

Theorem 2. Assume that F is imaginary. Let l be a prime number such that
Ω(l) ⊆ Q(e2πi/m), l does not divide mh−, and

l ≥
(

δt′m′∏
p∈S p̃

2π

)ϕ(u0)

.

Then C−F (l) is trivial.

As NF is surjective by class field theory (in the case where F is imaginary), it turns
out that, for each prime number l, CF (l) is trivial if and only if both CF+(l) and C−F (l)
are trivial. Thus we obtain the following result from the above two theorems.

Theorem 3. Assume that F is imaginary. Let l be a prime number such that
Ω(l) ⊆ Q(e2πi/m), l does not divide n0h

∗th−, and

l ≥ max

((
JΛ

(
1 +

log Λ

Λ− 1

))ϕ(n0)

,

(
δt′m′∏

p∈S p̃

2π

)ϕ(u0)
)

.

Then CF (l) is trivial.

2. Proofs of main results.

In this section, we shall prove the first two theorems stated in the preceding section.
Given any primitive Dirichlet character χ, we denote by gχ the order of χ, denote

by fχ the conductor of χ, put ζχ = e2πi/fχ , and define χ∗ to be the homomorphism of
Gal(Q(ζχ)/Q) into the multiplicative group C× = C \ {0} such that, for each integer u

relatively prime to fχ, χ(u) is the image under χ∗ of the automorphism in Gal(Q(ζχ)/Q)
sending ζχ to ζu

χ . Let Kχ denote the fixed field in Q(ζχ) of the kernel of χ∗:

Gal(Q(ζχ)/Kχ) = Ker(χ∗).

Then Kχ is a cyclic extension over Q of degree gχ with conductor fχ.
Next, suppose that χ(−1) = 1, namely, Kχ is real and that χ is not principal. Let

Eχ denote the group of units ε in Kχ such that, for every proper subfield L of Kχ, the
norm of ε for Kχ/L is 1 or −1. Let
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θχ =
∏
a

(
eπia/fχ − e−πia/fχ

)
,

with the product taken over the odd integers a satisfying

χ(a) = 1, 0 < a <
fχ

gcd(2, fχ)
.

Let Rχ denote the group ring of Gal(Q(eπi/fχ)/Q) over the ring Z of (rational) inte-
gers. Take an automorphism σ of Q(eπi/fχ) for which the restriction σ|Q(ζχ) satisfies
χ∗(σ|Q(ζχ)) = e2πi/gχ , and put

∆ =
∏
p

(1− σgχ/p) in Rχ,

where p ranges over all prime divisors of gχ. Considering the multiplicative group
Q(eπi/fχ)× to be an Rχ-module in the usual manner, let

η = θ∆
χ ,

and let Hχ denote the Rχ-submodule of Q(eπi/fχ)× generated by η and −1. Note here
that Hχ depends only on χ because η2, an element of Kχ, does not depend on the choice
of σ. It is known that Hχ is a subgroup of Eχ with finite index (cf. [5, Section 8]). We
denote by hχ the index of Hχ in Eχ:

hχ = (Eχ : Hχ).

Now, to prove Theorem 1, the following result is essential.

Proposition 1. Assume F to be real. Let l be a prime number not dividing n0h
∗t

such that Ω(l) ⊆ Q(e2πi/m) and that CF (l) is not trivial. Then there exists a real number
x0 > 1 for which

x
ϕ(n0)
0

ϕ(2v)n0w
< l <

(
J

(
log x0 +

log(tκ)
ϕ(n0)

∑
p∈S ϕ(p− 1)

))ϕ(n0)

.

Proof. Let X be a set of nonprincipal primitive Dirichlet characters such that
Kχ ⊂ F for each χ in X and that, for any nonprincipal primitive Dirichlet character
ψ with Kψ ⊂ F , there exists just one Dirichlet character χ in X satisfying Kχ = Kψ.
For each subfield L of F , let X(L) denote the set of Dirichlet characters χ in X with
Kχ ⊆ L. Since CF (l) is not trivial, there exists a subfield K ′ of F of finite degree with
class number divisible by l; l | |CK′ |. Since l does not divide h∗[K ′kQ∗ : Q] by the
hypothesis on l, we know from [5, Satz 21] that
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∏

χ∈X(K′)

[hχ]l = |CK′(l)| > 1

and that

∏

χ∈X(kQ∗)

[hχ]l = [h∗]l = 1. (2)

In particular, there exists a Dirichlet character ψ in X(K ′) with l | hψ.
Next, for any subset R of S, let XR denote the set of Dirichlet characters χ in X for

which

{
p ∈ S | [fχ]p = p̃[gχ]p, [gχ]p ≥ [m]p

}
= R.

Obviously, X is the disjoint union of XR for all subsets R of S. Hence there exists a
unique subset R0 of S such that ψ belongs to XR0 . We note that [fχ]q ≤ q̃[gχ]q for every
χ in X and every prime number q. Therefore, a Dirichlet character χ in X belongs to X∅

if and only if

[fχ]p < p̃[gχ]p or [fχ]p = p̃[gχ]p < p̃[m]p

for every p ∈ S. As the first inequality above implies that p[fχ]p divides the product of p̃

and the exponent of Gal(k/Q), we see that any χ ∈ X∅ satisfies p[fχ]p ≤ p̃[n0]p for every
p ∈ S. This fact gives X∅ ⊆ X(kQ∗). Hence we obtain R0 6= ∅ from (2). It further
follows that [fψ]p ≥ p̃[m]p for all p ∈ R0. Hence fψ is not a prime number. Let us define
a positive integer nψ by

nψ = gψ

∏

p∈R0

[m]p
[gψ]p

.

Clearly, nψ divides gψ and is divisible by all prime divisors of gψ. Also, nψ divides n0

since [gψ]p divides the exponent of Gal(k/Q) for every p ∈ S \ R0 with [fψ]p < p̃[gψ]p.
The hypothesis on l implies that Q(e2πi/nψ ) contains the decomposition field of l for
Q(e2πi/gψ )/Q as well as that l does not divide fψgψ. Therefore, by Proposition 2 of [3],

l <
√

Dnψ

(
2λ(ψ)−2ϕ(fψ)ϕ(nψ)2Ξ(nψ)

(log 2)gψ

√
Dnψ

log
(

fψ

π
+ 1

))ϕ(nψ)

(3)

where λ(ψ) denotes the number of distinct prime divisors of gψ; furthermore, by Propo-
sition 4 of [3],

l >
gψ

ϕ(fψ)nψ

( ∏

p∈R0

pϕ(p−1)[fψ]p
((p− 1)ϕ(p̃))ϕ(p−1)[nψ]p

)1/A

(4)
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where A =
∑

p∈R0
ϕ(p−1) (for the corrections of Propositions 3, 4 of [3], see 3 of Section

4).
Now, the relation nψ | n0 induces

λ(ψ) ≤ λ0, ϕ(nψ) | ϕ(n0). (5)

We know however that, for any integer u ≥ 3,

Ξ(u)ϕ(u)

D
(ϕ(u)−1)/2
u

=

((
1− 1

ϕ(u)

)ϕ(u) ∏

p|u

(
p− 1

p(p−2)/(p−1)

)ϕ(u)
)(ϕ(u)−1)/2

,

with p ranging over the prime divisors of u, and that the function (1 − 1/ξ)ξ of a real
variable ξ > 1 is increasing. Therefore

Ξ(nψ)ϕ(nψ)

D
(ϕ(nψ)−1)/2
nψ

≤ Ξ(n0)ϕ(n0)

D
(ϕ(n0)−1)/2
n0

. (6)

We also have

fψ

π
+ 1 ≤

(
1
π

+
1
s

)
fψ ≤ tκ

∏

p∈R0

[fψ]p, (7)

because fψ ≥ s, [fψ]p ≤ [t]p for each prime number p outside S, [fψ]p ≤ [n0]pp̃/p for each
prime p in S \R0, and R0 6=∅. Further, the integer ϕ(fψ)/gψ divides ϕ(2v):

ϕ(fψ)
gψ

∣∣∣∣ ϕ(2v). (8)

Indeed, for each prime number p, ϕ([fψ]p) divides ϕ(p̃[gψ]p) = ϕ(p̃)[gψ]p. We now let

x0 =
( ∏

p∈R0

[fψ]p

)1/(ϕ(n0)A)

,

so that

x0 > 1,
∏

p∈R0

[fψ]p ≤ x
ϕ(n0)

P
p∈S ϕ(p−1)

0 .

Since

2λ0−2ϕ(2v)ϕ(n0)2

log 2
log

(
fψ

π
+ 1

)
> 1,
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it then follows from (3), (5), (6), (7), and (8) that

l <
Ξ(nψ)ϕ(nψ)

D
(ϕ(nψ)−1)/2
nψ

(
2λ0−2ϕ(2v)ϕ(n0)2

log 2
log

(
fψ

π
+ 1

))ϕ(nψ)

≤ Ξ(n0)ϕ(n0)

D
(ϕ(n0)−1)/2
n0

(
2λ0−2ϕ(2v)ϕ(n0)2

log 2
log

(
tκx

ϕ(n0)
P

p∈S ϕ(p−1)

0

))ϕ(n0)

.

Thus

l <

(
J

(
log x0 +

log(tκ)
ϕ(n0)

∑
p∈S ϕ(p− 1)

))ϕ(n0)

.

On the other hand,

log
(( ∏

p∈R0

pϕ(p−1)

((p− 1)ϕ(p̃))ϕ(p−1)[m]p

)1/A)

=

∑
p∈R0

ϕ(p− 1) log
(
p/((p− 1)ϕ(p̃)[m]1/ϕ(p−1)

p )
)

∑
p∈R0

ϕ(p− 1)

≥ min
p∈R0

(
log

p

(p− 1)ϕ(p̃)[m]1/ϕ(p−1)
p

)
≥ log

1
w

,

whence, by the fact that [nψ]p = [m]p for every p ∈ R0, we obtain

( ∏

p∈R0

pϕ(p−1)[fψ]p
((p− 1)ϕ(p̃))ϕ(p−1)[nψ]p

)1/A

≥ x
ϕ(n0)
0

w
.

This, together with (4) and (8), yields

l >
x

ϕ(n0)
0

ϕ(2v)n0w
. ¤

Once Proposition 1 is verified, we can proceed to:

Proof of Theorem 1. For simplicity, let

α1 = (ϕ(2v)n0w)1/ϕ(n0)J, α2 =
log(tκ)

ϕ(n0)
∑

p∈S ϕ(p− 1)
,

β = Λ

(
1 +

log Λ

Λ− 1

)
.
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As is already seen, Λ > 1 so that β > 1. Since

Λ = log α1 + α2, log β < log Λ +
log Λ

Λ− 1
=

Λ log Λ

Λ− 1
,

and since the function ξ− log ξ of a real variable ξ ≥ 1 is increasing, we see that, for each
real number x with x/α1 ≥ β,

x− α1 log x− α1α2 = α1

(
x

α1
− log

x

α1
− Λ

)
≥ α1(β − log β − Λ)

> α1

(
Λ

(
1 +

log Λ

Λ− 1

)
− Λ log Λ

Λ− 1
− Λ

)
= 0.

Now, contrary to the conclusion of the theorem, suppose that CF (l) is not trivial. Then,
by Proposition 1,

(
x0J

α1

)ϕ(n0)

< (J(log x0 + α2))ϕ(n0), i.e., x0 − α1 log x0 − α1α2 < 0,

x0 being the same as in the proposition. Thus we have x0/α1 < β, i.e., x0 < α1β.
Threfore, for some real number x′,

x0 < x′ < α1β, x′ − α1 log x′ − α1α2 = 0,

so that

J(log x0 + α2) < J(log x′ + α2) =
Jx′

α1
< Jβ.

Proposition 1 implies however that l < (J(log x0 + α2))ϕ(n0). We are thus led to a
contradiction l < (Jβ)ϕ(n0). Hence the theorem is proved. ¤

Next, let us give:

Proof of Theorem 2. Note first that m divides m′ and that m′ equals m if and
only if, for each p ∈ S, the p-part of the exponent of Gal(k/Q) divides m. Since m′/m

is not divisible by any prime number outside S, we may assume that m′ = m.
For each positive integer n, let Yn denote the set of primitive Dirichlet characters

χ with χ(−1) = −1 such that Kχ is contained in the composite of k and the subfield of
QS of degree n. Let Σ be the finite set of algebraic integers in the form

(1− e2πi/u)
ϕ(ũ)/2∑

a=1

e2πiya/u

1− e2πifχ,uza/u

fχ,u∑

b=1

χ(ja,b)e2πizab/u. (9)
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Here u ranges over the integers > 1 dividing m such that gcd(u,m/u) = 1, ũ denotes the
product of p̃ for all distinct prime divisors p of u, χ runs through Ym/u, fχ,u denotes
the maximal divisor of fχ relatively prime to u, each ya runs through Z, each ja,b runs
through Z, and each za ranges over all integers relatively prime to u. Furthermore, we
then denote by gχ,u the maximal divisor of gχ relatively prime to u, whence ugχ,u is the
least common multiple of u and gχ by the assumption m = m′; we also let

γu = p1/ϕ(u) or γu = 1

according as u = [m]p for some p ∈ S or u is not a prime-power.
Now, in view of Theorem 1 of [2], it suffices to prove that every nonzero element of

Σ is relatively prime to l (cf. [4, Section 2] as well). Noting that an element of Σ in the
form (9) belongs to

Q(e2πi/u, e2πi/gχ) = Q(e2πi/(ugχ,u)),

let N be the norm for Q(e2πi/(ugχ,u))/Q of that element of Σ. Put ρ = e2πi/u for
simplicity. Let U0 be the set of positive integers < ugχ,u relatively prime to ugχ,u, U1

the set of positive integers < u relatively prime to u, and U2 the set of all positive integers
< u/2. Then

|N | ≤ γϕ(ugχ,u)
u

∏

n∈U0

( ϕ(ũ)/2∑
a=1

fχ,u

|1− ρfχ,uzan|
)

≤ γϕ(ugχ,u)
u

(
1

ϕ(ugχ,u)

∑

n∈U0

ϕ(ũ)/2∑
a=1

fχ,u

|1− ρfχ,uzan|
)ϕ(ugχ,u)

=
(

γuϕ(ũ)fχ,u

2ϕ(u)

∑

n∈U1

1
|1− ρn|

)ϕ(ugχ,u)

,

∑

n∈U1

1
|1− ρn| =

∑

n∈U1

1
2 sin(πn/u)

≤ 2
( ∑

n∈U2

1
2 sin(πn/u)

)

< 2
(

1
2 sin(π/u)

+
∑

n∈U2\{1}

u

π

∫ πn/u

π(n−1)/u

dx

2 sin x

)

<
1

sin(π/u)
+

u

π

∫ π/2

π/u

dx

sinx
=

u

π

(
π/u

sin(π/u)
+ log

1
tan(π/(2u))

)

<
u

π

(
π/r

sin(π/r)
+ log

2u

π

)
=

u(log u + c)
π

.

Hence
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|N | <
(

γufχ,uϕ(ũ)u(log u + c)
2πϕ(u)

)ϕ(ugχ,u)

=
(

fχ,uγuũ(log u + c)
2π

)ϕ(ugχ,u)

.

In addition,

ugχ,u | u0, γuũ(log u + c) > 33/2

(
log 3 +

1
2

)
> 2π,

and the ratio t′mm̃/(uũ) is an integer divisible by fχ,u. We thus obtain

|N | <
(

t′mm̃γu(log u + c)
2πu

)ϕ(u0)

.

On the other hand, the function (log ξ + c)/ξ of a real variable ξ ≥ e1−c is decreasing.
The definition of δ therefore yields

|N | <
(

t′mm̃δ

2π

)ϕ(u0)

.

Hence, by the hypothesis on l, we can deduce that all nonzero elements of Σ are relatively
prime to l. ¤

3. Additional results.

Based upon some results in Section 1 and in [1], [3], [6], we shall add below simple
remarks mainly on the cardinality of CF .

Let S̄ denote the set of positive integers 6≡ 2 (mod 4) not divisible by any prime
number outside S but divisible by all prime numbers in S:

S̄ =
{
u ∈ Z | u > 0, u 6≡ 2 (mod 4), QS(e2πi/u) = Ω

}
.

In particular, m belongs to S̄. At first, suppose F to be imaginary, so that k is also imag-
inary. Let p be any prime number in S, and let k∞ denote the basic Zp-extension over
k, namely, the intermediate field of F/k such that Gal(k∞/k) is topologically isomorphic
to the additive group of Zp. Then, by Corollary 3 of [6, Section V], there exist infinitely
many prime numbers l for which C−k∞(l) is not trivial. However, for any prime number l

outside S, the natural homomorphism Ck∞(l) → CF (l) is injective and maps C−k∞(l) into
C−F (l). Corollary 3 of [6, Section V] thus implies that there are infinitely many prime
numbers l for which C−F (l) is not trivial. Furthermore, the composite of Q(e2πi/u) for all
u ∈ S̄ coincides with Ω. Hence, from Theorem 2, we obtain the following result.

Proposition 2. If F is imaginary, then for any u ∈ S̄, there exist an example
of m and a prime number l such that Ω(l) 6⊆ Q(e2πi/u), Ω(l) ⊆ Q(e2πi/m), C−F (l) is not
trivial, and either l | h− or
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l <

(
δt′m′∏

p∈S p̃

2π

)ϕ(u0)

.

Remark. In the proposition, one can choose the example of m to be a multiple of
u; moreover, the condition Ω(l) 6⊆ Q(e2πi/u) implies that lϕ(p̃) ≡ 1 (mod p[u]p) for some
p ∈ S whence l > minq∈S(q[u]q)1/ϕ(q̃).

Certainly, as above, CF is infinite whenever F is imaginary, but we have not find
any real example of F for which the statement |CF | = ∞ is proved or disproved. Let C ′F
denote the direct sum in CF of CF (l) for all prime numbers l outside S;

CF = C ′F ⊕
( ⊕

p∈S

CF (p)
)

.

In any case, the assertion (A) in the main theorem of [1] guarantees the finiteness of
CF (l) for every prime number l outside S. Therefore, Theorem 1 of [3] or Theorem 1 of
Section 1 yields at least:

Proposition 3. Assume that F is real. Then C ′F is finite if and only if there
exists an element u′ of S̄ with the property that CF (l) is trivial for any prime number l

satisfying Ω(l) 6⊆ Q(e2πi/u′).

We conclude this section with:

Remark. If F is real, then Greenberg’s conjecture on Zl-extensions for prime
numbers l implies that CF (p) is trivial for all p ∈ S, namely, that CF = C ′F .

4. Corrections to [3], [4].

Finally, we shall correct some mistakes in [3], [4]. The first and second corrections
are due to one of the referee’s comments on the present paper. The last correction is
necessary to justify the proof of Theorem 1.

1. The clause “if and only if lϕ(p̃) 6≡ 1 (mod µpp̃) for any p ∈ S” in the 11th line
from the bottom on [3, p. 828] should be “if and only if, for each p ∈ S, either lϕ(p̃) 6≡ 1
(mod pµp) or µp ‖ l − 1 with p = 2”. Accordingly, when 2 belongs to S, the 7th line
from the bottom on [3, p. 828] should be

lim inf
x→∞

|PF (x)|
π(x)

≥ lim
x→∞

|P0(x)|
π(x)

=
(

1− 3
µ2

) ∏

p∈S\{2}

(
1− 1

µp

)
.

2. Quite similarly to the above, the condition “lϕ(q) 6≡ 1 (mod qpν)” in [4, Theorems
1, 2 and Proposition], line 11 on [4, p. 376], lines 16, 21 on [4, p. 390], and line 17 on [4,
p. 392] must be changed into the condition that “either lϕ(q) 6≡ 1 (mod pν+1) or 2ν ‖ l−1
with p = 2”. Along with this, line 15 on [4, p. 393] should be changed, for example, into
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≥ lim
x→∞

∣∣{l ∈ P (x) | lϕ(q) 6≡ 1 (mod pν+1)}∣∣
π(x)

= 1− q2

pν+2
.

3. In [3, Proposition 3], we should additionally assume that “n is divisible by all
prime divisors of gχ”. Indeed, without such a hypothesis, we can not always define bx,u,j

for (x, u, j) ∈ F and bw,u for (w, u) ∈ B × I in the proof of [3, Proposition 3] (cf. [3,
pp. 844, 850]) while the hypothesis guarantees the definitions of all bx,u,j and all bw,u.
Furthermore, the proof of [3, Proposition 4] is based upon [3, Proposition 3]. We must
therefore replace [3, Proposition 4] by the following:

Proposition 4. Let l be a prime number, n be a positive divisor of gχ divisible
by all prime divisors of gχ such that Q(ζn) contains the decomposition field of l for
Q(ζgχ

)/Q, and R be a finite subset of P such that every p in R satisfies p̃ | n and
f(p) = p̃g(p). Suppose that

l | hχ, l - fχgχ, R 6=∅.

Then

l >
gχ

ϕ(fχ)n

( ∏

p∈R

pϕ(p−1)f(p)
((p− 1)ϕ(p̃))ϕ(p−1)νp

)1/
P

p∈R ϕ(p−1)

where, for each p in R, νp denotes the p-part of n.

On the other hand, as for the proof of [3, Theorem 1], [3, Proposition 3] is used
only to prove [3, Proposition 4], and [3, Proposition 4] only to prove [3, Proposition 5].
Since nψ is divisible by all prime divisors of gψ (cf. [3, p. 854]), we can use the above
Proposition 4 instead of [3, Proposition 4] in the proof of [3, Proposition 5] (cf. [3,
p. 855]). Similarly, for our proof of Theorem 1, we can do the same in the proof of
Proposition 1 (cf. (4)). In passing, “G1 containing” in lines 12, 13 of [3, p. 849] should
be “the group generated in G1 by”.
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