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Abstract. Suppose a group G acts on a tensor category C over a ®eld k. Then we

have the tensor category C
G of G-invariant objects in C, and the semi-direct product

tensor category C�G �. We show that if G is ®nite and k�G� is semi-simple, there exists

a one-to-one correspondence between categories with action of C
G and categories with

action of C�G �.

Introduction.

If a group G acts on a ring S, we have the ring of G-invariants SG and the

skew group ring S�G�. This paper deals with analogous constructions for a tensor

category in place of a ring. Suppose that G acts on a tensor category C over a

®eld k. This means that for each s A G, a tensor functor s� : C ! C is given and

for each s; t A G, a tensor isomorphism s� � t� G �st�� is given in a coherent way.

The tensor category C
G consists of objects C of C equipped with isomorphisms

s�CGC satisfying certain coherence conditions. The tensor category C�G � is just

the product 0
s AG

C as a category, whose objects are expressed as 0
s AG

�Cs; s�

with Cs A C, and the tensor product in C�G � is de®ned by �C; s�n �D; t� �

�Cn s�D; st�.

For a tensor category A, an A-module means a category with associative

action of A. We assume here categories have direct sums and direct summands.

Our result is that if G is ®nite and k�G � is semi-simple, then C
G-modules

and C�G �-modules are in one-to-one correspondence. It is given by assigning to

a C�G �-module X the C
G-module X

G of G-invariant objects of X.

We notice that the rings SG and S�G � are not generally Morita equivalent.

They are equivalent through the functor assigning to an S�G �-module X the

SG-module X G only when S is a G-Galois extension over SG.

The above result is a simple consequence of the one-to-one correspondence

between modules over the tensor category of k�G �-modules and modules over

the tensor category of k�G ��-modules given in [T], where k�G �� is the dual of the
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group algebra. This correspondence may be thought of as a version of the

duality for cross products in [BM] and [NT].

As an application, we describe C
G-modules whose underlying categories are

the categories of k n-modules for nV 0 when C is the tensor category of k�A��-

modules with twisted associativity given by a 3-cocycle of a group A. In this

case C�G �-modules have a simple description and so we know about CG-modules

through our correspondence.

In Section 1 some de®nitions and constructions for modules over tensor

categories are reviewed. In Section 2 group actions on tensor categories are

considered and the de®nitions of CG and C�G � are given. In Section 3 we restate

the duality theorem of [T] in the case of a group algebra. In Section 4 we

deduce the correspondence between C
G-modules and C�G �-modules. In Section

5 we show that the semi-simplicity of categories are preserved under the cor-

respondence. In Section 6 we consider a tensor category of k�A��-modules with

3-cocycle twist, called a group tensor category, and describe modules over it. In

Section 7 we apply our correspondence to a group tensor category with a group

action. In Section 8 the veri®cation of the pentagon axiom for C�G � is given.

1. Modules over tensor categories.

We reproduce here some of de®nitions about tensor category modules from

[T]. See [T] for details. We make a little use of terms in 2-category theory,

whose meanings are explained in our context. See [B] for generalities on 2-

categories.

We ®x a ®eld k throughout. A k-linear category is a category in which the

hom-sets are k-vector spaces, the compositions are k-bilinear and ®nite direct

sums exist. A k-linear functor between k-linear categories is a functor which

is linear on all hom-spaces. Let Hom�X;Y� denote the category of k-linear

functors X ! Y. A tensor category is a k-linear monoidal category. Notations

for monoidal structures of a general tensor category are as follows: �A;B� 7! A:B

denotes the tensor product operation, I the unit object, aA;B;C : �A:B�:C !

A:�B:C� the associativity isomorphism, lA : I :A ! A the left unit isomorphism,

rA : A:I ! A the right unit isomorphism.

For a tensor category A, A
n op stands for the tensor category whose

underlying category is the same as A and tensor product operation is opposite

to A.

For a tensor category A, a left A-module is a k-category X equipped

with a bilinear functor A�X ! X : �A;X� 7! A:X and isomorphisms of asso-

ciativity aA;B;X : �A:B�:X ! A:�B:X � and unitality lX : I :X ! X for A;B A C,

X A X satisfying the conditions of naturality and coherence similar to the ones for

a monoidal category.
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For tensor categories A and B, an �A;B�-bimodule is a k-category X

equipped with bilinear functors A�X ! X and X�B ! X and isomorphisms

aA;A 0
;X : �A:A 0�:X ! A:�A 0

:X �, aX ;B;B 0 : �X :B�:B 0 ! X :�B:B 0�, aA;X ;B : �A:X�:B !

A:�X :B�, lX : I :X ! X , rX : X :I ! X for A;A 0
A A, B;B 0

A B, X A X satisfying

the conditions of naturality and coherence.

For left A-modules X and Y, an A-linear functor X ! Y is a pair �L; b� of

a k-linear functor L : X ! Y and a family b of isomorphisms bA;X : L�A:X� !

A:L�X� for A A A, X A X which are natural in A, X and commute with the

isomorphisms of associativity and unitality for X and Y.

For A-linear functors �L; b�; �L0
; b 0� : X ! Y, an A-linear transformation

�L; b� ! �L0
; b 0� is a natural transformation s : L ! L0 commuting with b and b 0.

Thus we have the category HomA�X;Y� whose objects are A-linear functors

X ! Y and morphisms are A-linear transformations.

For A-linear functors �L; b� : X ! Y and �M; g� : Y ! Z, their composite

�M; g� � �L; b� is de®ned to be the A-linear functor �M � L; d� : X ! Z, where

dA;X � gA;L�X � �M�bA;X �:

Thus we have the composition functors

mX;Y;Z : HomA�Y;Z� �HomA�X;Y� ! HomA�X;Z�;

which are (strictly) associative. Also we have the identity A-linear functors IdX
in HomA�X;X�, which are (strictly) unital for composition.

The collection of the categories HomA�X;Y� for all A-modules X;Y

together with the compositions m
X;Y;Z

and the identities IdX is referred as

the 2-category of A-modules and denoted by A-Mod. A-modules, A-linear

functors, A-linear transformations are also called 0-cells, 1-cells, 2-cells of the

2-category A-Mod, respectively. The composition of 1-cells and of 2-cells given

by the composition functor m
X;Y;Z

is called the horizontal composition, while

the composition of 2-cells inside the hom-category HomA�X;Y� is called the

vertical composition.

An A-linear functor L : X ! Y is called an equivalence of A-modules if

there exist an A-linear functor L0
: Y ! X and invertible A-linear transfor-

mations L � L0 ! IdX
0 and L0 � L ! IdX. It can be shown that this amounts

to requiring L to be plainly an equivalence of categories.

Let M be a �B;A�-bimodule. If Y is a left B-module, the category

HomB�M;Y� becomes a left A-module. The action is de®ned by

�A:L��M� � L�M:A�

for A A A, M A M, L A HomB�M;Y�.
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Moreover we have a functor

FY;Y
0 : HomB�Y;Y

0� ! HomA�HomB�M;Y�;HomB�M;Y
0��

F 7! �L 7! F � L�

for B-modules Y;Y
0. The functors FY;Y

0 preserve horizontal compositions and

unit 1-cells.

The 2-functor HomB�M;ÿ� : B-Mod ! A-Mod consists of the assignment

B-module Y 7! A-module HomB�M;Y�

and the collection of the functors FY;Y
0 for all B-modules Y;Y

0.

For a right A-module X and a left A-module Y, the tensor product category

XnA Y is de®ned. Its objects are ®nite direct sums of symbols �X ;Y � for

X A X, Y A Y, and morphisms are sums of compositions of symbols

� f ; g� : �X ;Y � ! �X 0
;Y 0�

for f : X ! X 0 and g : Y ! Y 0, and

aX ;A;Y : �X :A;Y � ! �X ;A:Y �

for X A X, A A A, Y A Y and the formal inverse of aX ;A;Y . These generating

morphisms are subject to the relations of functoriality, naturality and coherence.

The precise de®nition is in [T], but will not be needed in the sequel.

Let M be a �B;A�-bimodule. If X is a left A-module, MnA X becomes

a left B-module. The action is de®ned by

B:�M;X � � �B:M;X �

for B A B, M A M, X A X.

Moreover we have a functor

CX;X
0 : HomA�X;X

0� ! HomB�MnA X;MnA X
0�

G 7! ��M;X � 7! �M;G�X���

for A-modules X;X
0. The functors CX;X

0 preserve horizontal compositions and

unit 1-cells.

The 2-functor MnA ÿ : A-Mod ! B-Mod consists of the assignment

A-module X 7! B-module MnA X

and the collection of the functors CX;X
0 for all A-modules X;X

0.

We have also an A-linear functor

X ! HomB�M;MnA X�

X 7! �M 7! �M;X ��
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for an A-module X, and a B-linear functor

MnA HomB�M;Y� ! Y

�M;L� 7! L�M�

for a B-module Y. These are natural in X and Y, respectively.

Furthermore we have an equivalence

HomB�MnA X;Y� ! HomA�X;HomB�M;Y��

F 7! �X 7! �M 7! F��M;X ����:

The category of ®nite dimensional k-vector spaces is denoted by V. This is

a tensor category with the usual tensor product. We regard the natural iso-

morphisms �X nY �nZGX n �Y nZ� and knXGXGX n k for vector

spaces X ;Y ;Z as the identities.

Every k-category X may be viewed as a V-module. The action of the n-

dimensional space k n on X is given by the functor X 7! X n. We use the symbol

n rather than `dot' for this action. Thus k n nX � X n for X A X.

A k-category X is said to have direct summands if every idempotent en-

domorphism e : X ! X in X is the projection to a direct summand of X. Given

a k-category X we can embed X to a k-category X having direct summands

such that every object of X is a direct summand of an object of X. For any k-

category Y with direct summands, the induced functor

Hom�X;Y� ! Hom�X;Y�

is an equivalence. For a construction of X see [GV, p. 413].

If X is an A-module, then X becomes naturally an A-module. For a right

A-module X and a left A-module Y, XnA Y is written as X �nA Y. A-Modk

denotes the 2-category consisting of the categories HomA�X;Y� for left A-

modules X, Y with direct summands. The 2-functors

A-Mod
MnA ÿ

HomB�M;ÿ�
B-Mod�������! �������

de®ned above yield the 2-functors

A-Modk
M �nA ÿ

HomB�M;ÿ�
B-Modk:�������! �������

2. Group actions on tensor categories.

An action of a group G on a k-category X consists of data
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± functors s� : X! X for all s A G

± isomorphisms f�s; t� : �st�� ! s� � t� for all s; t A G

± an isomorphism n : 1� ! IdX
which make the following diagrams commutative for all s; t; r A G and X A X.

�str��X ������!
f�st;r�X

�st�� r�X

f�s; tr�X

?
?
?
?
y

?
?
?
?
y
f�s; t�r�X

s��tr��X ������!
s��f�t;r�X �

s�t� r�X

�1�

1�X
f�1;1�X

1��nX �
1�1�X �2����! ���

1�X
f�1;1�X

n1�X
1�1�X �3����! ���

Here commutativity of the last two diagrams means that the opposite arrows are

inverse to each other.

Let X, Y be categories with G-action. A G-linear functor X! Y consists of

± a k-linear functor L : X! Y

± isomorphisms h�s� : L � s� ! s� � L for all s A G

making the following diagram commutative for all s; t A G and X A X.

L��st��X � ���!
h�st�X

�st��L�X�

L�f�s; t�X �

?
?
?
y

?
?
?
y
f�s; t�L�X�

L�s�t�X� ���!
h�s�t�X

s�L�t�X� ���!
s�h�t�X

s�t�L�X�

�4�

Let X be a category with G-action. The category of G-invariants in X,

denoted by X
G, is a k-category de®ned as follows. An object of X

G is a pair

�X ; f �, where X is an object of X and f is a family of isomorphisms

f �s� : s�X ! X for all s A G making the following diagram commutative for all

s; t A G.

�st��X ���!
fst

X

f�s; t�X

?
?
?
y

x
?
?
?
fs

s�t�X ���!
s�� ft�

s�X

�5�
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A morphism �X ; f � ! �X 0
; f 0� in X

G is a morphism u : X ! X 0 in X such that

f 0�s� � s�u � u � f �s�

for all s A G.

Example 2.1. Let G act on the category V of vector spaces trivially. This

means that all s�, f�s; t�, n are the identities. Then V
G is the category of

k�G �-modules.

Let C be a tensor category with tensor product �A;B� 7! A:B, unit object I,

associativity isomorphisms aA;B;C : �A:B�:C ! A:�B:C�, and unit isomorphisms

lA : I :A ! A, rA : A:I ! A.

An action of G on the tensor category C means an action of G on the

k-category C preserving the tensor structure. Namely it consists of data

± tensor functors s� : C ! C for all s A G

± isomorphisms f�s; t� : �st�� ! s� � t� of tensor functors for all s; t A G

± an isomorphism n : 1� ! IdC of tensor functors

making the diagrams (1), (2), (3) commutative with obvious change of letters.

We also use the word G-tensor category for tensor category with G-action.

By the de®nition of a tensor functor, the above s� consists of

± a functor s� : C ! C

± natural isomorphisms c�s�A;B : s�A:s�B ! s��A:B� for all A;B A C

± an isomorphism i�s� : I ! s�I

making the following diagrams commutative for all A;B;C A C.

�s�A:s�B�:s�C ������!
as�A; s�B; s�C

s�A:�s�B:s�C�

c�s�A; B:s�C

?
?
?
?
y

?
?
?
?
y
s�A:c�s�B;C

s��A:B�:s�C s�A:s��B:C�

c�s�A:B;C

?
?
?
?
y

?
?
?
?
y
c�s�A; B:C

s���A:B�:C� ������!
s��aA;B;C�

s��A:�B:C��

�6�

I :I ���!
lI

I

i�s�:i�s�

?
?
?
y

?
?
?
y
i�s�

s�I :s�I ���!
c�s�I ; I

s��I :I� ���!
s��lI �

s�I

�7�
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The requirement that f�s; t� is a morphism of tensor functors means that the

following diagram is commutative for all A;B A C.

�st��A:�st��B ��������!
f�s; t�A:f�s; t�B

s�t�A:s�t�B
?
?
?
?
y
c�s�t�A; t�B

c�st�A;B

?
?
?
?
y

s��t�A:t�B�
?
?
?
?
y
s��c�t�A; B�

�st���A:B� ��������!
f�s; t�A:B

s�t��A:B�

�8�

In the presence of the commutativity of (3) and (8), n : 1� ! IdC is automatically

a morphism of tensor functors. Thus we could say that a G-action on the tensor

category C consists of the data s�, f�s; t�, n, c�s�, i�s� making the diagrams of

(1), (2), (3), (6), (7), (8) commutative.

Let C be a G-tensor category. The category C
G becomes a tensor category

as follows. The tensor product is de®ned by

�A; f �:�B; g� � �A:B; h� �9�

where

h�s� � f �s�:g�s� � c�s�ÿ1
A;B: �10�

The unit object is �I ; iÿ1�. The associativity and unit isomorphisms are inherited

from C.

We now construct another tensor category C�G � from a G-tensor category C.

We set C�G � � 0
s AG

C as categories. So an object of C�G � is expressed as

0
s AG

�As; s� with As A C, and a morphism from 0
s AG

�As; s� to 0
s AG

�Bs; s�

is expressed as 0
s AG

� fs; s� with fs : As ! Bs a morphism in C. The tensor

product operation in C�G � is de®ned by

�A; s�:�B; t� � �A:s�B; st� for objects;

� f ; s�:�g; t� � � f :s�g; st� for morphisms:

The unit object is �I ; 1�. The associativity is given by

��A; s�:�B; t��:�C; r� � �A:s�B; st�:�C; r� � ��A:s�B�:�st��C; str�

a�A; s�; �B; t�; �C; r�

?
?
?
y

?
?
?
y
�a�A;s;B; t;C�;str�

�A; s�:��B; t�:�C; r�� � �A; s�:�B:t�C; tr� � �A:s��B:t�C��; str� �11�
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where a�A; s;B; t;C� is the composite

�A:s�B�:�st��C
?
?
?
y
�A:s�B�:f�s; t�C

�A:s�B�:s�t�C
?
?
?
y
aA; s�B; s�t�C

A:�s�B:s�t�C�
?
?
?
y
A:c�s�B; t�C

A:s��B:t�C�:

�12�

The left unitality

l�A;s� : �I ; 1�:�A; s� � �I :1�A; s� ! �A; s�

is given by

I :1�A ��!
I :nA

I :A ��!
lA

A: �13�

The right unitality

r�A;s� : �A; s�:�I ; 1� � �A:s�I ; s� ! �A; s�

is given by

A:s�I ����!
A:i�s�ÿ1

A:I ����!
rA

A: �14�

These data satisfy the axiom of a tensor category. In [M ] Magid intro-

duced the double cross product of tensor categories, of which C�G � is regarded

as a special case. [M ] does not contain the proof of the axiom of a tensor

category for the double cross product. We will verify the pentagon axiom for

C�G � in Section 8.

Example 2.2. With respect to the trivial action of G on V, we have the

tensor category V�G �. Objects are of the form 0
s AG

�Vs; s� with Vs A V. The

tensor product is given by

�V ; s�:�W ; t� � �V nW ; st�:

Thus V�G � is the category of G-graded vector spaces, or the category of

k�G ��-modules when G is ®nite.
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Example 2.3. Suppose G acts on a group A. Then the action of G on the

tensor category V�A� is induced. We have obviously V�A��G � �V�AcG �.

Let C be a G-tensor category. We may view a C�G �-module as a category

having actions of C and G in a compatible way. To be precise, a C�G �-module

structure on a k-category X amounts to the data

± a C-module structure on X : �:; a; l�

± a G-action on X : �s�; f�s; t�; n�

± natural isomorphisms c�s�
C;X

: s�C:s�X ! s��C:X� for all C A C,

X A X, s A G

making the following diagrams commutative: (6), (8) with appropriate change

of letters, and in place of (7), the diagram

I :s�X ����!
i�s�:s�X

s�I :s�X

ls�X

?
?
?
y

?
?
?
y
c�s�

I ;X

s�X  ����
s��lX �

s��I :X�:

�15�

Indeed, given these data, we de®ne the action of C�G � on X by

�C; s�:X � C:s�X

and the associativity and the unitality

a�C;s�; �D; t�;X : ��C; s�:�D; t��:X ! �C; s�:��D; t�:X �

lX : �I ; 1�:X ! X

by the formulas similar to (11), (12), (13).

Example 2.4. C itself is a C�G �-module: �C; s�:C 0 � C:s�C
0.

Example 2.5. A V�G �-module is nothing but a k-category with G-action:

�k; s�:X � s�X .

Let X;Y be C�G �-modules. A structure of a C�G �-linear functor on a

k-linear functor L : X! Y amounts to the data

± isomorphisms bC;X : L�C:X� ! C:L�X� for C A C, X A X

± isomorphisms h�s�
X
: L�s�X � ! s�L�X � for s A G, X A X

satisfying the following conditions.

± �L; b� is a C-linear functor.

± �L; h� is a G-linear functor.
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± the diagram

L�s�C:s�X � ������!
L�c�s�C;X �

L�s��C:X��

bs�C; s�X

?
?
?
?
y

?
?
?
?
y
h�s�C:X

s�C:L�s�X � s�L�C:X�

s�C:h�s�X

?
?
?
?
y

?
?
?
?
y
s�bC;X

s�C:s�L�X � ������!
c�s�C; L�X �

s��C:L�X��

commutes for all C A C, s A G, X A X.

If X is a C�G �-module, XG becomes a C
G-module by a similar action to (9),

(10).

3. V
G
-modules and V�G �-modules.

Hereafter we assume G is a ®nite group and the characteristic of k does not

divide jGj. We denote the category of ®nite dimensional k�G �-modules by V
G,

and the category of ®nite dimensional k�G ��-modules by V�G � (see Example 2.1,

2.2). In this section we review the one-to-one correspondence between

V
G-modules and V�G �-modules from [T].

We make V into a �V�G �;VG�-bimodule. The action of objects are given

by

Y :V � Y nV ; V :X � V nX

for X A V
G, Y A V�G �, V A V. The associativity of actions

�Y :Y 0�:V ! Y :�Y 0
:V�; �V :X �:X 0 ! V :�X :X 0�

are the identity maps, while

�Y :V�:X ! Y :�V :X�

is the map

�y; t�n vn x 7! �y; t�n vn tÿ1x;

where x A X , v A V , t A G, and �y; t� is an element in the t-component of the G-

graded space Y.

The duality theorem of [T] in the case of a group algebra is as follows.
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Theorem 3.1. The 2-functors

V
G-Modk

V �n
VGÿ

HomV�G ��V;ÿ�
V�G �-Modk��������! ��������

are quasi-inverse to each other through the adjunction. Namely, for any V
G-

module X and V�G �-module Y with direct summands, the canonical functors

X! HomV�G ��V;V �n
V

G X�;

V �n
V

G HomV�G ��V;Y� ! Y

are equivalences of V
G-modules and of V�G �-modules, respectively.

In this situation we also say the pair �Vn
V

Gÿ;HomV�G ��V;ÿ�� is a 2-

equivalence. The 2-equivalence implies the following:

(i) For every V
G-module X with direct summands there exist a

V�G �-module Y with direct summands and an equivalence X!

HomV�G ��V;Y� of V
G-modules.

(ii) For V�G �-modules Y;Y
0 with direct summands, the functor

HomV�G ��Y;Y
0� ! Hom

V
G �HomV�G ��V;Y�;HomV�G ��V;Y

0��

is an equivalence.

Recall that V�G �-modules are just k-categories with G-action (Example 2.5).

So we may use the notations s�, f�s; t� of G-action for V�G �-modules. The

left V�G �-module structure on the bimodule V is trivial: s�V � V . The as-

sociativity �Y :V�:X ! Y :�V :X� for Y � �k; s� takes the form

bs : s�V nX ! s��V nX�

vn x 7! vn sÿ1x:

Proposition 3.2. For any V�G �-module X, we have an equivalence of

V
G-modules

X
G
FHomV�G ��V;X�:

Proof. This is [T, Proposition 3.4] adapted to our present situation. But

we give here a direct description of the equivalence. Recall that an object of

HomV�G ��V;X�, a G-linear functor V! X, is represented as a pair �F ; h� of a

k-linear functor V! X and a family h of isomorphisms

h�s�V : F�s�V� ! s�F�V�

for s A G, V A V. Let

F : X
G ! HomV�G ��V;X�
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be the functor sending �X ; f � to �F ; h�, where F is given by

F�V� � V nX

(here n denotes the canonical action of V on X, see Section 1) and h is de®ned

by

h�s�V : F �s�V� � F�V� � V nX �����!
1n f �s�ÿ1

V n s�X � s��V nX� � s�F �V�:

It is easy to see that F is an equivalence. Indeed, a quasi-inverse to F is the

functor sending �F ; h� to �X ; f � with X � F�k� and f �s� � h�s�ÿ1
k .

The proof will be completed once we show that F has a structure of a V
G-

linear functor. Let M A V
G, �X ; f � A X

G. We wish to de®ne an isomorphism

bM; �X ; f � : F�M:�X ; f �� ! M:F�X ; f �

in HomV�G ��V;X�. Let F�X ; f � � �F ; h� as above. As the left action of V
G

on HomV�G ��V;X� comes from the right action on V, we have M:�F ; h� �

�H; x�, where

H�V� � F�V :M� � V nMnX ;

and

x�s�V : H�s�V� ! s�H�V�

is the composite

F�s�V nM� ����!
F�bs�

F �s��V nM�� ����!
h�s�VnM

s�F �V nM�;

where bs was given preceding to Proposition 3.2. This is equal to

V nMnX �������!
1nsÿ1

M
n1

V nMnX �������!
1n1n f �s�ÿ1

V nMn s�X ;

that is,

V nMnX ���������!
1nsÿ1

M
n f �s�ÿ1

V nMn s�X ;

where sM : M ! M is the action of s on M. On the other hand, by the

de®nition of the action of V
G on X

G we have M:�X ; f � � �MnX ; h�, where

h�s� : s��MnX� � Mn s�X �����!
sMn f �s�

MnX :

So we have F�MnX ; h� � �H 0
; x 0�, where

H 0�V� � V nMnX

and

x 0�s�V : H 0�s�V� ! s�H
0�V�
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is the map

V nMnX �����!
1nh�s�ÿ1

V n s��MnX�:

Hence H � H 0 and x � x 0. Thus the identity H ! H 0 gives the required iso-

morphism bM; �X ; f �.

It is obvious that bM; �X ; f � is compatible with associativity of actions.

Thus �F; b� : XG ! HomV�G ��V;X� is a V
G-linear functor. r

4. C
G
-modules and C�G �-modules.

Let C be a tensor category with G-action.

Theorem 4.1. The 2-functors

C
G-Modk

C �n
CGÿ

�ÿ�G
C�G �-Modk����! ����

are quasi-inverse to each other.

Here if X is a C�G �-module, then X
G becomes a C

G-module as noted in

Section 3. Also in the tensor product C �n
C

Gÿ, C is viewed as a �C�G �;CG�-

bimodule in which the left action of C�G � on C is the standard one (Example

2.4), the right action of CG on C comes from the forgetful functor C
G ! C, and

the associativity

��X ; s�:Y�:�Z; f � ! �X ; s�:�Y :�Z; f ��

for �X ; s� A C�G �, Y A C, �Z; f � A C
G is given by

�X :s�Y�:Z ��������!
aX ; s�Y ;Z

X :�s�Y :Z� ��������!
X :�s�Y : f �s�ÿ1�

X :�s�Y :s�Z�

��������!
X :c�s�Y ;Z

X :s��Y :Z�:

That C is really a bimodule is veri®ed in the course of the proof of the theorem.

Lemma 4.2. Let B be a tensor category and M a left B-module. Set A �

�EndB M�nop
so that M becomes a �B;A�-bimodule. Suppose that the 2-functors

A-Modk
M �nAÿ

HomB�M;ÿ�
B-Modk�������! �������

are quasi-inverse to each other through the adjunction. Let j : B! E be a tensor

functor. Set N � E �nB M, D � �EndE N�
nop

so that N becomes an �E;D�-
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bimodule and a tensor functor i : A! D is induced. Then the 2-functors

D-Modk
N �nDÿ

HomE�N;ÿ�
E-Modk������! ������

are quasi-inverse to each other through the adjunction. Also the diagrams

D-Modk �������!
N �nDÿ

E-Modk
?
?
?
?
y

?
?
?
?
y

A-Modk �������!
M �nAÿ

B-Modk;

D-Modk  �������

HomE�N;ÿ�
E-Modk

?
?
?
?
y

?
?
?
?
y

A-Modk  �������
HomB�M;ÿ�

B-Modk

are commutative up to natural isomorphisms, where the vertical arrows are the

restrictions through i and j.

Proof. The commutativity of the right diagram follows readily from the

hom-tensor adjoint. For the left one, we have ®rstly

D � HomE�E �nB M;E �nB M�FHomB�M;E �nB M�:

Since M �nAÿ is quasi-inverse to HomB�M;ÿ�, we have an equivalence

M �nA DFE �nB M �16�

of B-modules. Moreover, this is an equivalence of �B;D�-bimodules.

Indeed, this factors as the composite

M �nA DFM �nA HomB�M;E �nB M�FE �nB M: �17�

For any B-module Y, the canonical functor

M �nA HomB�M;Y� ! Y

is �B; �EndB Y�nop�-linear. In particular, the second equivalence of (17) is

�B;D�-linear. Next, the equivalence

DFHomB�M;E �nB M�

is �A;D�-linear as seen from the diagram

A HomB�M;M�

i

?
?
?
y

?
?
?
y
HomB�M; j �nM�

D ���! HomB�M;E �nB M�:

Hence the ®rst equivalence of (17) is �B;D�-linear. So (16) is �B;D�-linear as

well.
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For any D-module X we now have

M �nA XF �M �nA D� �nD XF �E �nB M� �nD X �N �nD X

as B-modules. This proves the commutativity of the left diagram.

We next show that for any D-module X the canonical functor

X! HomE�N;N �nD X�

is an equivalence of D-modules. For this it is enough to show that this is just an

equivalence of categories. By the commutativity we have shown, the functor

restricted to A-Mod is isomorphic to the functor

X! HomB�M;M �nA X�:

This is an equivalence of A-modules by assumption.

Similarly we have N �nD HomE�N;ÿ�G Id. r

Proof of Theorem 4.1. The trivial tensor functor V! C induces the

tensor functor V�G � ! C�G �. We have an equivalence

C�G �nV�G �V � �CnV�G ��nV�G �VFC;

in which an object X A C corresponds to the object ��X ; 1�; k� A C�G �nV�G �V.

This is an equivalence of C�G �-modules, because

�X ; s�:��X 0; 1�; k� � ��X ; s�:�X 0; 1�; k� � ��X :s�X
0
; s�; k�

� ��X :s�X
0
; 1�:�I ; s�; k�G ��X :s�X

0
; 1�; �k; s�:k�

� ��X :s�X
0
; 1�; k�:

Let D � �EndV�G � C�
nop

. Applying the lemma to the 2-equivalence of

Theorem 3.1 with A �V
G, B �V�G �, M �V and E � C�G �, we have a

2-equivalence

D-Modk
C �nDÿ

HomC�G ��C;ÿ�
C�G �-Modk: �18��������! �������

For any C�G �-module X, by the equivalence C�G �nV�G �VFC, the

equivalence X
G ! HomV�G ��V;X� of Proposition 3.2 yields an equivalence

FX : X
G ! HomC�G ��C;X�:

We express an object of HomC�G ��C;X� as a pair �F ; h� of a C-linear functor

F : C! X and a family h of isomorphisms h�s� : F�s�C� ! s�F �C�. Then FX

maps an object �X ; f � A X
G to the object �F ; h� A HomC�G ��C;X� de®ned as

follows. F : C! X is given by

F�C� � C:X
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with the obvious C-linear structure, and h is given by

h�s�C : F�s�C� � s�C:X ����!
ÿ: f �s�ÿ1

s�C:s�X ����!
c�s�

s��C:X � � s�F�C�:

In particular, taking X � C, we have an equivalence

FC : C
G ! HomC�G ��C;C� � D:

Recall that if X is a C-module, then X
G becomes a C

G-module. And D �

�EndC�G � C�
nop acts on HomC�G ��C;X� through C. We claim that FX and FC

are compatible with respect to these actions. In particular FC : C
G ! D is an

equivalence of tensor categories. The theorem then follows from (18).

To prove the claim, let �C; g� A C
G, �X ; f � A X

G. Let F�X ; f � � �F ; h� as

above and F�C; g� � �D; d�, that is,

D�C 0� � C 0
:C;

d�s�C 0 : D�s�C
0� � s�C

0
:C ����!

ÿ:g�s�ÿ1

s�C
0
:s�C ����!

c�s�
s��C

0
:C� � s�D�C 0�:

Then, relative to the action of EndC�G � C on HomC�G ��C;X� we have

�D; d�:�F ; h� � �F ; h� � �D; d� � �H; x�, where H � F �D, so

H�C 0� � F�D�C 0�� � �C 0
:C�:X ;

and
x�s�C 0 : H�s�C

0� ! s�H�C 0�

is the composite

FD�s�C
0� ����!

F�d�s�C 0 �
F�s�D�C 0�� ����!

h�s�D�C 0 �

s�FD�C 0�;

which is expanded as

�s�C
0
:C�:X

�ÿ:g�s�ÿ1�:ÿ

?
?
?
y

�s�C
0
:s�C�:X

c�s�:ÿ

?
?
?
y

s��C
0
:C�:X

ÿ: f �s�ÿ1

?
?
?
y

s��C
0
:C�:s�X

c�s�

?
?
?
y

s���C
0
:C�:X �:
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This is equal to the left vertical composite of the diagram

�s�C
0
:C�:X G s�C

0
:�C:X�

�ÿ:g�s�ÿ1�: f �s�ÿ1

?
?
?
y

?
?
?
y
ÿ:�g�s�ÿ1

: f �s�ÿ1�

�s�C
0
:s�C�:s�X G s�C

0
:�s�C:s�X�

c�s�:ÿ

?
?
?
y

?
?
?
y
ÿ:c�s�

s��C
0
:C�:s�X s�C

0
:s��C:X�

c�s�

?
?
?
y

?
?
?
y
c�s�

s���C
0
:C�:X� G s��C

0
:�C:X��

�19�

which commutes by the naturality of a and the commutativity in (6). On the

other hand, relative to the action of C
G on X

G we have

�C; g�:�X ; f � � �C:X ; h�

with

h�s� : s��C:X � ����!
c�s�ÿ1

s�C:s�X ����!
g�s�: f �s�

C:X :

Then F�C:X ; h� � �H 0
; x 0�, where

H 0�C 0� � C 0
:�C:X�

and

x 0�s�C 0 : H
0�s�C

0� ! s�H
0�C 0�

is the composite

s�C
0
:�C:X � ����!

ÿ:h�s�ÿ1

s�C
0
:s��C:X � ����!

c�s�
s��C

0
:�C:X��:

This is equal to the right vertical composite of (19). Also we have an iso-

morphism p : H ! H 0 given by the associativity

pC 0 : H�C 0� � �C 0
:C�:XGC 0

:�C:X� � H 0�C 0�:

The diagram (19) now becomes

H�s�C
0� ���!

ps�C 0

H 0�s�C
0�

x�s�C 0

?
?
?
y

?
?
?
y
x 0�s�C 0

s�H�C 0� ���!
s�pC 0

s�H
0�C 0�:
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Thus p gives the isomorphism

�H; x�G �H 0
; x 0�;

that is,

p : F�C; g�:F�X ; f � !
@

F��C; g�:�X ; f ��

in HomC�G ��C;X�.

Finally we have to check that p is compatible with the associativity of the

actions. But this readily follows from the pentagon axiom for the action of C

on X. r

5. Semi-simple modules.

A k-linear category is said to be ®nite semi-simple if it is equivalent to the

category of ®nite dimensional modules over a ®nite dimensional semi-simple

algebra. We aim to show

Proposition 5.1. Suppose a C
G-module X corresponds to a C�G �-module Y

in the 2-equivalence of Theorem 4.1. Then X is ®nite semi-simple if and only if Y

is ®nite semi-simple.

Clearly this will follow from

Proposition 5.2. Let X be a category with G-action. Then X is ®nite semi-

simple if and only if X
G is ®nite semi-simple.

An object M of a category X is called an additive generator if every object X

of X is a direct summand of M n for some n > 0. For a k-linear category X

with direct summands, X is ®nite semi-simple if and only if X has an additive

generator M such that EndM is a ®nite dimensional semi-simple algebra.

Let X be a category with G-action. Let U : X
G ! X be the forgetful

functor �X ; f � 7! X . A left and right adjoint functor T of U is de®ned by

T�X � � 0
t AG

t�X ; g

 !

;

where g�s� for s A G is given by the commutative diagram

s� 0
t

t�X

� �

���!
g�s�

0
t

t�X

s�pt

?
?
?
y

?
?
?
y
pst

s�t�X ���!
f�s; t�ÿ1

X

�st��X
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with pt, pst the projections. We have trivially

U � T � 0
t AG

t�:

For �X ; f � A X
G, let h : 0

t AG
t�X ! X be the sum of f �t� : t�X ! X . The

diagram

s� 0
t

t�X

� �

���!
s�h

s�X

g�s�

?
?
?
y

?
?
?
y
f �s�

0
t

t�X ���!
h

X

is commutative, because it is composed of the commutative diagrams

s�t�X ���!
s� f �t�

s�X

f�s; t�ÿ1
X

?
?
?
y

?
?
?
y
f �s�

�st��X ���!
f �st�

X

for t A G. So h de®nes a morphism TU�X ; f � ! �X ; f �.

Similarly, let l : X ! 0
t AG

t�X be the sum of f �t�ÿ1
. Then l de®nes a

morphism �X ; f � ! TU�X ; f � in X
G.

The composite Id ! T �U ! Id equals jGj1. As we are assuming jGj is

invertible in k, Id ! T �U is a split injection.

The following is well-known and the proof is omitted.

Lemma 5.3. Let A be a ®nite dimensional algebra with G-action. Then the

skew group algebra A�G � is semi-simple if and only if A is semi-simple.

Proof of Proposition 5.2. If �X ; f � A X
G, then G acts on the algebra

EndX by

s:u � f �s� � s�u � f �s�
ÿ1

for u A End X . The isomorphisms

EndT�X�GHom�X ;UT�X��GHom X ;0 t�X
ÿ �

G �EndX ��G �

give the algebra isomorphism of EndT�X � to the skew group algebra

�EndX��G �. By Lemma 5.3, EndT�X� is semi-simple if and only if EndX is

semi-simple. Hence for any object Y A X
G, EndTU�Y � is semi-simple if and

only if EndU�Y � is semi-simple.
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Suppose ®rst that X is ®nite semi-simple. For any Y A X
G, EndU�Y � is

semi-simple. By the above observation, EndTU�Y � is semi-simple. Since Y is

a direct summand of TU�Y �, it follows that EndY is semi-simple. Take an

additive generator M A X. Then U�Y� is a summand of M n for some n. Then

TU�Y� is a summand of T�M�n, and so is Y. Thus T�M� is an additive

generator for X
G. This proves that X

G is ®nite semi-simple.

Suppose next that XG is ®nite semi-simple. For any X A X, EndTUT�X � is

semi-simple. Hence by the above observation EndUT�X� is semi-simple. Since

X is a summand of UT�X�, EndX is semi-simple. Let N be an additive

generator in X
G. Then T�X � is a summand of N n for some n. Then UT�X � is

a summand of U�N�n, and so is X. Thus U�N� is an additive generator for

X. This proves that X is ®nite semi-simple. r

6. Modules over group tensor categories.

In this section we describe modules over a 3-cocycle deformation of V�G �.

Most of statements here are simple translations of de®nitions.

For s A G we write the object �k; s� of V�G � simply as s. Let w : G 3 ! k�

be a 3-cocycle. We have the tensor category V�G;w� whose underlying k-

category, tensor product and unit object are the same as those of V�G �, and

whose associativity and unit isomorphisms are given by

as; t;r � w�s; t; r�1str

ls � w�1; 1; s�ÿ11s

rs � w�s; 1; 1�1s

for s; t; r A G. We call V�G;w� the group tensor category of the pair �G;w�.

Analogously to the identi®cation of a V�G �-module with a category with G-

action, a V�G;w�-module is thought of as a k-category equipped with s�, f�s; t�,

n satisfying the commutativity of the diagrams

�s�tr���X  �����

w�s; t;r�1
��st�r��X

?
?
?
?
y
f�st;r�X

f�s; tr�X

?
?
?
?
y

�st�� r�X
?
?
?
?
y
f�s; t�r�X

s��tr��X �����!
s��f�t;r�X �

s�t� r�X

�20�

(instead of (1)), (2) and (3).
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A k-category that is equivalent to a ®nite direct sum of V is called a 2-

vector space.

All V�G;w�-modules that are 2-vector spaces as categories can be obtained

as follows. Let X be a ®nite G-set and v : G � G � X ! k� a map satisfying

w�s; t; r� �
v�st; r; x�v�s; t; rx�

v�t; r; x�v�s; tr; x�

for s; t; r A G, x A X . If v is viewed as a map G � G ! Map�X ; k��, the

equations read as

i��w� � qvÿ1

in Map�G 3
;Map�X ; k���, where q is the coboundary operator for the group G

and i� is the map induced by the embedding i : k� ! Map�X ; k��. Let V�X �

denote 0
x AX

V, the category of X-graded vector spaces. We may regard an

element x A X as a simple object of V�X �. The action of V�G;w� on V�X � is

then de®ned by

s�x � sx

f�s; t�x � v�s; t; x�1stx

nx �
1

v�1; 1; x�
1x

for s; t A G, x A X . We denote by V�X ; v� the V�G;w�-module obtained in

this way. Given two pairs �X ; v�, �X 0
; v 0� as above, the V�G;w�-modules

V�X ; v� and V�X 0
; v 0� are equivalent if and only if there exists an isomorphism

f : X ! X 0 of G-sets such that f ��v 0� and v are cohomologue in the group

Map�G2
;Map�X ; k���. Thus the equivalence class of a V�G;w�-module which is

a 2-vector space bijectively corresponds to the isomorphism class of a pair �X ; �v��

of a ®nite G-set X and an element �v� in the quotient set

fv A Map�G2
;Map�X ; k��� j qv � i��w�

ÿ1g

fqt j t A Map�G;Map�X ; k���g
:

Here the group in the denominator acts on the set in the numerator by

translation. Note that the quotient is either an empty set or a regular

H 2�G;Map�X ; k���-set.

Let w � 1. Then V�G;w�-modules are just k-categories with G-action. So

we know that the equivalence class of a 2-vector space X with G-action bi-

jectively corresponds to the isomorphism class of a pair �X ; �v�� of a ®nite G-set X

and a cohomology class �v� in H 2�G;Map�X ; k���.
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The category V�X ; v�G can be described as follows. An object of V�X ; v�G

is a pair �V ; f �, where V is a family of vector spaces Vx for x A X and f is a

family of linear maps f �s; x� : Vx ! Vsx for s A G, x A X satisfying

f �st; x� � f �s; tx� � f �t; x�v�s; t; x�

for all s; t A G, x A X .

Suppose X is a transitive G-set and let K be the stabilizer of an element

x0 A X . The map v0 : K
2 ! k� de®ned by v0�s; t� � v�s; t; x0� is a 2-cocycle

on K. And we have Shapiro's isomorphism H 2�G;Map�X ; k���GH 2�K; k��

in which �v� corresponds to �v0�. The pair �V ; f � above is determined by the

pair �Vx0
; f0�, where f0 : K ! EndVx0

is de®ned by f0�s� � f �s; x0�. Such a

pair �Vx0
; f0� is just a module over the skew group algebra k�K ; v0� relative to

the 2-cocycle v0. Thus V�X ; v�G is equivalent to the category of k�K; v0�-

modules. Also V
G is the category of k�G �-modules. The action of V

G on

V�X ; v�G is given by the tensor product through the restriction to the subgroup K.

7. Group actions on group tensor categories.

In this section we apply the 2-equivalence of Theorem 4.1 to a group tensor

category with G-action.

Any G-action on a group tensor category is obtained in the following way.

Let A be a group with G-action denoted by �s; a� 7! sa. Let

t : A� A� A ! k�

u : G � A� A ! k�

v : G � G � A ! k�

be maps satisfying

1 �
t�b; c; d�t�a; bc; d�t�a; b; c�

t�ab; c; d�t�a; b; cd�
�21�

t�a; b; c�

t�sa;s b;s c�
�

u�s; b; c�u�s; a; bc�

u�s; ab; c�u�s; a; b�
�22�

u�s; ta; tb�u�t; a; b�

u�st; a; b�
�

v�s; t; ab�

v�s; t; a�v�s; t; b�
�23�

v�st; r; a�v�s; t; ra�

v�t; r; a�v�s; tr; a�
� 1 �24�
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for all s; t; r A G, a; b; c; d A A. (21) says t is a 3-cocycle of A, so we have the

group tensor category V�A; t� of Section 6. A G-action on this tensor category is

de®ned by

s��a� �
s
a

f�s; t�
a
� v�s; t; a�1sta

na �
1

v�1; 1; a�
1a

c�s�
a;b
� u�s; a; b�1s�ab�

i�s� �
1

u�s; 1; 1�
11

for s; t A G, a; b A A. Indeed, commutativity of (6), (8), (1) is assured by (22),

(23), (24), while that of (2), (3), (7) by the de®nition of n, i, respectively.

By the de®nition of C�G � in Section 2, we have V�A; t��G � �V�AcG; s�,

where s is a 3-cocycle on the semi-direct product AcG given by

s��a; s�; �b; t�; �c; r�� � t�a; sb; stc�u�s; b; tc�v�s; t; c�:

Theorem 4.1 applied to the G-tensor category V�A; t� says that the 2-functor

V�A; t�G-Modk ��

�ÿ�G
V�AcG; s�-Modk

is a 2-equivalence. Assume k is algebraically closed. Then ®nite semi-simple

categories are just 2-vector spaces. By Proposition 5.1 the property of being a

2-vector space is preserved under the above 2-equivalence. We saw in Section 6

that any V�AcG; s�-module which is a 2-vector space is of the form V�X ; r� for

a ®nite AcG-set X and a map r : �AcG�2 � X ! k� satisfying i��s� � qrÿ1.

Hence any V�A; t�G-module which is a 2-vector space is of the form V�X ; r�G.

8. Pentagon identity for C�G �.

We will show here that the associativity isomorphisms a�A;s�; �B; t�; �C;r� for

C�G � de®ned in Section 2 satisfy the pentagon axiom of a monoidal category:

�A; s�:a�B; t�; �C;r�; �D;p� � a�A;s�; �B; t�:�C;r�; �D;p� � a�A;s�; �B; t�; �C;r�:�D; p�

� a�A;s�; �B; t�; �C;r�:�D;p� � a�A;s�:�B; t�; �C;r�; �D;p�

for s; t; r; p A G, A;B;C;D A C.
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A pentagon diagram for C is

�A:�B:C��:D  ����

aA; B;C :D
��A:B�:C�:D

?
?
?
y
aA:B;C;D

aA; B:C;D

?
?
?
y

�A:B�:�C:D�
?
?
?
y
aA; B;C:D

A:��B:C�:D� ����!
A:aB;C;D

A:�B:�C:D��:

We refer this diagram as I0�A;B;C;D�, and also the diagram (6) as I1�s;A;B;C�,

(8) as I2�s; t;A;B�, (1) as I3�s; t; r;X �. The assumption is that I0�A;B;C;D�,

I1�s;A;B;C�, I2�s; t;A;B�, I3�s; t; r;A� are commutative for all A;B;C;D A C,

s; t; r A G.

To save space we write here and below sA instead of s�A.

By (11), we have the equalities in Figure 8.1 for morphisms in C�G �. Hence

what we have to prove is the equality

Figure 8.1
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A:
sa�B; t;C; r;D� � a�A; s;B:tC; tr;D� � a�A; s;B; t;C�:strD

� a�A; s;B; t;C:

r
D� � a�A:sB; st;C; r;D� �25�

in C.

By the de®nition of a�ÿ;ÿ;ÿ;ÿ;ÿ� in (12), the both sides of (25) are

expanded as in Figure 8.2, respectively. Arrows are labeled only by their types.

Now we have the commutative diagrams in Figures 8.3 and 8.4. There are

four faces induced from the diagrams of type I0; I1; I2; I3 which are commutative.

Faces labeled by �a�, �c�s�� are commutative by the naturality of a, c�s�, and

faces labeled by �n� are commutative by the functoriality of the tensor product.

Hence in either diagram, the composite along the leftmost path and the composite

along the rightmost path from ��A:sB�:stC�:strD to A:
s�B:t�C:

r
D�� are equal.

Moreover the rightmost paths in the both diagrams are literally identical.

The leftmost path in Figure 8.3 and the left path in Figure 8.2 are identical,

and the leftmost path in Figure 8.4 and the right path in Figure 8.2 are identical.

Hence the both sides of (21) are equal.

Figure 8.2
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