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Abstract. We introduce a notion of double group construction within the category of
quasi Woronowicz algebras which are regarded as quantum groups in the von Neumann
algebra framework. We show that the quantum double in this setting is always uni-
modular. The Kac-Takesaki operator of the double group is explicitly described. It is
also proven that the dual of the quantum double has a quasitriangular structure.

Introduction.

In [Dr], Drinfeld devised a remarkable ingenious method, called the double
group construction, which generates a quasitriangular Hopf algebra out of any finite-
dimensional Hopf algebra. This method was used to find solutions to the quantum
Yang-Baxter equation in statistical mechanics. It was Podles and Woronowicz
who employed this method from the viewpoint of operator algebras in order to define a
quantum deformation of Lorentz group. Later, Baaj and Skandalis introduced a
notion of a Kac system, using (regular and irreducible) multiplicative unitaries. They
showed that one can equally define the quantum double of a Kac system, and that the
framework of Kac systems is stable under the construction of the quantum double.
Afterwards, Nakagami discussed the double group construction for Woronowicz
algebras. The category of Woronowicz algebras can be naturally regarded as a
“subcategory” of Kac systems. In [N], Nakagami was able to define the quantum
double of a compact Woronowicz algebra, and to show that the double group is again
a (noncompact, unimodular) Woronowicz algebra. It is, however, not so transparent
how Nakagami’s double construction is related to Baaj-Skandalis’.

The purpose of this note is to define (construct) the quantum double for a general
(quasi) Woronowicz algebra, and to prove that the category of (quasi) Woronowicz
algebras is stable under this construction. We exhibit an explicit relationship between
our double group construction and Baaj-Skandalis’. We also examine the dual of the
quantum double, which was left untouched in [N]. Roughly speaking, our main result
asserts that, if a Kac system “comes from” a (quasi) Woronowicz algebra, then the
Kac system obtained from the double group construction in the sense of admits a
natural Haar measure.

The organization of this note is as follows. Section 1 is concerned with notation
which will be used in the sections that follow. We also briefly recall fundamental
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facts on quasi Woronowicz algebras. The reason why we deal with quasi Woronowicz
algebras here, not with Woronowicz algebras is also discussed. In Section 2, following
[BS], we equip the tensor product of a given quasi Woronowicz algebra W and its dual
W with a structure of a coinvolutive Hopf-von Neumann algebra. This construction
turns out to be the same as the one used in [N]. In Section 3, we prove that the
coinvolutive Hopf-von Neumann algebra constructed in the previous section does
admit a Haar measure. We call the resulting quasi Woronowicz algebra D(W) the
quantum double of W. The quantum double of a (quasi) Woronowicz algebra is
always unimodular even if the original (quasi) Woronowicz algebra is not uni-
modular. The argument of this section more or less explains why Nakagami’s case
(i.e., the case of compact Woronowicz algebras) was relatively easy to handle. The last
Section is devoted to analysis on the dual of the quantum double. We give an explicit
relation between the Kac-Takesaki operator of D(W) and the mutiplicative unitary V in
[BS, Section 8]. This fully answers the problem raised in [N, Section 2.

1. Notation.

In this section, we give a quick review on quasi Woronowicz algebras, introducing
notation that will be used in our later discussion. Quasi Woronowicz algebras are
almost like Woronowicz algebras introduced in [MN]. It is not too much to say that
what 1s true for Woronowicz algebras is equally true for quasi Woronowicz algebras.
Thus, for the general theory of quasi Woronowicz algebras, we may refer readers to
[MN] and (also see [Y]). Our notation will be mainly adopted from these
literatures.

Given a von Neumann algebra .# and a faithful normal semifinite weight y on .,
we introduce subsets 1y, my and m; of .# by

ny ={xe.d Yy(x"x) < oo}, my=mnjny, mj=myN.A,.

We denote by 7y, the standard (GNS) representation associated with . Its represen-
tation space is denoted by $,. We use the symbol A, for the canonical embedding
of ny into $,. Let ay =mn,Nnj and set Ay = A,(ay), which is the full left Hilbert
algebra associated with . For a left bounded vector ¢ e $ with respect to the left
Hilbert algebra 2, we write 7,(&) for the left multiplication operator corresponding to
¢ For a right bounded vector #n, we use n,() for the corresponding right multi-
plication operator. The modular automorphism group of y is denoted by a.

A coinvolutive Hopf-von Neumann algebra is a triple (.#,0,R) in which:

(1) . is a von Neumann algebra;

(2) 0 is an injective normal x-homomorphism, called a coproduct (or a comulti-
plication), from ./ into .# ® ./ with the coassociativity condition: (6 ® id,)od =
(idy ®06) o 6;

(3) R is a x-antiautomorphism of .#, called a coinvolution or a unitary antipode,
such that R> =id, and 6o (R® R)od =60 R, where ¢ is the usual flip.

A quasi Woronowicz algebra is a family W = (.#,0,R,t,h) in which:
(1) (4,0,R) is a coinvolutive Hopf-von Neumann algebra;
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(2) 1t is a continuous one-parameter automorphism group of .#, called the de-
formation automorphism, which commutes with the coproduct 0 and the antipode R;
(3) h is a r-invariant faithful normal semifinite weight on .#, called the Haar
measure of W, satistying the following conditions:
() Quasi left invariance: For any ¢ in /4", we have (¢p® h)od(x)=
h(x)¢(1) for all x em;
(b) Strong left invariance: For any x,yen, and ¢ € .4, which is analytic
with respect to the adjoint action of the deformation automorphism 7 on
My, the following equality holds:

@@M((1® y)i(x) = (dot_ipo ROME(y")(1 ® x)).

(c) Commutativity: hog"®=h for all e R (or, equivalently, ho Ro gl =
ho R).

We say that a quasi Woronowicz algebra W = (4,0, R, t,h) is unimodular (resp.
compact) if h="ho R (resp. h is bounded).

Remark that only difference between a Woronowicz algebra and a quasi Woro-
nowicz algebra is the requirement that the weight /4 is left invariant or quasi left
invariant. In other words, in the definition of a Woronowicz algebra, one requires that
h should satisfy (¢ ® h) o 5(x) = h(x)¢(1) for all ¢ € 4 and all x e 4. At the present
stage, the author does not know whether left invariance and quasi left invariance are
distinct notions. Let us briefly tell the reason why we work with quasi Woronowicz
algebras rather than with Woronowicz algebras in this note. In the paper [MN], there
is a crucial gap at the end of the proof of Proposition 3.8. Because of this gap, we
do not yet know that the dual Woronowicz algebra in the sense of is really a
Woronowicz algebra. One can, however, easily see that the dual is a quasi Woronowicz
algebra. Moreover, most of the argument in goes through perfectly without
any change even if we start with a quasi Woronowicz algebra, not with a Woronowicz
algebra. (There are some points in which we really have to be careful, but those points
are irrelevant to our discussion that follows). This is why we stick to working with
quasi Woronowicz algebras. Besides, as shown in [Y], every matched pair of (locally
compact) groups gives rise to a quasi Woronowicz algebra. Hence there are plenty of
examples of quasi Woronowicz algebras.

Throughout the remainder of this note, we fix a quasi Woronowicz algebra W =
(M,0,R,t,h). Identifying .# with m;(#), we always think of .# as represented on
the Hilbert space © :=9,. We denote by 4 and J the modular operator and the
modular conjugation of A, respectively. By the commutativity of /4, there exists a
non-singular positive self-adjoint operator Q on $ affiliated with the centralizer .4 =
{xe . :c"(x)=x (teR)} of h such that the Connes’ Radon Nikodym derivative
(D(hoR) : Dh), satisfies (D(hoR):Dh),= Q" for teR. In the notation in [MN],
we have Q= p~'. For any positive self-adjoint operator K and &> 0, set K, :=
K(1+¢K)™'. With this notation, it follows from [PT, Theorem 5.12] that we have

ho R(x) = li?.? nQ*xQl?). (xe.y)

In this case, following the notation in [PT| we write ho R=h(Q:). Since h is z-
invariant, A,(x) — Au(7,(x)) (x €y, € R) defines a one-parameter unitary group on
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9. We write H for the analytic generator (see [SZ, p243] for this terminology) of this
one-parameter unitary group: H"Aj(x) := A,(t,(x)). An element ¢ € ./, is said to be
L?(h)-bounded if

sup{|¢(x™)| : h(x*x) < 1} < o0.

We denote by 7j(¢) the unique vector in & such that ¢(x*) = (7(4)|4x(x)) for x € ny.
For ¢, € #,, define an element ¢« in .#, by

() (x) = (B@Y)(O(x)) (xe.4).

This operation # turns .#, into a Banach algebra. Let (.Z.) be the set of analytic
elements in .#, with respect to the action ¢ — ¢ o 7, of the deformation automorphism
on ... For ¢e (M), put ¢ = ¢ o7_jpoR. This defines an involution on the
subalgebra (.#,). Thanks to quasi left invariance, the equation

WAen(x® y) = Aher@(y)(x®1)) (x,yem)

defines an isometry (in fact, a unitary) on $ ® $. This unitary W is called the Kac-
Takesaki operator of W and satisfies

W12W23 = W23 W13 le, 5()6) = W(l ®x) W* (XG %)
With W, the equation
a(¢) = (¢ @ id)(W") (pe M)

defines a homomorphism (resp. *-homomorphism) of .#. (resp. (.#.)) into the set
A(9H) of all bounded operators on . The mapping 7 is called the Fourier represen-
tation of W. Let ./ stand for the von Neumann algebra generated by 7(¢) (¢ € .4,).
By [BS, Proposition 3.5], ./ is the o-strong* closure of the subalgebra 7(.#,) (or the
x-subalgebra #((.#,)F)). Tt is possible to equip .# with a quasi Woronowicz

algebra structure as follows:
coproduct: 0(y)=WAR YW (ye.d)

unitary antipode: R(y) == Jy*J

deformation automorphism: t,:=AdH"
2 e 12 S o~
Haar measure: h(x) := ISl if x /(&) for e AT,
o0, otherwise,

where W = ZW*X and X is the flip on H R H. 9 is a left Hilbert algebra obtained
as the image of some suitable *-subalgebra in (.Z.)” under the map 7. In particular,
we have

h(7 () 7(¢)) = (7(¢) |ii())

for L?(h)-bounded functionals ¢,w. We denote this quasi Woronowicz algebra by W
and call it the quasi Woronowicz algebra dual to W. The Kac-Takesaki operator of
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W is W. The Fourier representation of W is denoted by 7. The linear mapping %
defined by

F A;(7(9)) :=7($) (¢ : L?(h)-bounded)

extends to a unitary, still denoted by #, from $; onto $. We call this unitary the
Fourier transform. Note that {%,55} is a standard representation. Thus we regard
4= 4; and J = Jj, as acting on the Hilbert space $. We have R(x) = Ix*J (xe. ).
The analytic generator of the Radon Nikodym derivative (D(h o R) : Dh), is denoted by
O:(D(hoR): Df;)t = Q"

Finally, for a linear operator 7 on a Hilbert space, let D(7) designate the domain
of T.

2. Hopf-von Neumann algebraic structure on .# ® ./.

In this section, we shall equip the tensor product 4" := .# ® .4 with a Hopf-von
Neumann algebraic structure. The method for this is exactly the same as the one set
out in Section 2 of [N]. But, here, we will reconsider it more carefully along the line of
argument given in [BS, Section §|.

Let X = (W')*, where W' stands for the Kac-Takesaki operator associated with the
commutant of the dual of the given quasi Woronowicz algebra W. Then set

Yo:=2X"2, Zy=2Xu@Qu)X (u®u)Z.

Here u is the self-adjoint unitary given by u = JJ = JJ. Then, by [BS, Théoréme 8.17],
the family {(9, X, u), (9, Yo,u),Zy} forms a matched pair of Kac systems. Hence, by
[BS, Proposition 8.14], if we set Vj := (Zy)1,X13(Z0);,(Y0)o4, then the map J, given by

0 (X) =X @I (XeSy®Sy)
defines a coproduct on the von Neumann algebra Sy ® Sy,. In our notation, we have
Sy=W, Sy =W".

Since we want to work with 4 = . #Z ® M rather than ./ ® M , we modify the above
construction in the following way. First we note that the map Adu gives a quasi
Woronowicz algebra isomorphism from W onto W'? (cf. [N, Section 4]). So, through
the isomorphism id ;, ® Adu, everything that is true for the above construction can be
translated in terms of our setting 4 = .# ® .4. Thus we put

Y =uuYy(u®u), Z:=(1QuZ)(l®u).

Then the family {(9, X, u), (9, Y,u),Z} forms a matched pair. Hence the map y given
by y := g 0 Ad Z defines an “inversion” on .# and .# (in the sense of [BS|). Namely, y
is an isomorphism from .# ® .# onto .4 @ ./ satisfying

2.1) { (y®idy)o(idy ®y)o(0®id,) = (id,; @) 07,

(id; ®y)o(y®id;) o (idy ®9) = (0 ®idy)oy.
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Then the map
0" = (idy ®y®@id;) 0 (6®9)
defines a coproduct on .4/". Moreover, with V = Z/,X3Z1,Y24, we have
)=V (x®lges)V* (xeA).

It can be verified that Z = XX* with the notation in [BS, Section 6]. Since X =
(u ® u)W*(u @ u) belongs to .4’ ® .4', the map y actually equals ¢ o AdX. Since X =
W*, the inversion y coincides with oy introduced in [N, Section 2|. Therefore, our
coproduct 0" is the same as Nakagami’s.

THEOREM 2.2. Retain the notation established above. Let

R" :=(R® R)o AdW*,

Then (N°,0",R") is a coinvolutive Hopf-von Neumann algebra. Each t," is a co-
involutive Hopf-von Neumann algebra automorphism, i.e., it satisfies

a , VA N v
(r’{’ @T'{t)oé't =0 or't/i,

R" ot/ =7 o R"
for any t € R.
Proor. This follows from a combination of Lemma 5 and Lemma 6 of
[NJ. -
3. Haar measure for (/0" RV t").

The purpose of this section is to construct a Haar measure for the coinvolutive
Hopf-von Neumann algebra (.4°,0"",R") with the deformation automorphism 7
defined in the previous section.

Let 4" be the faithful normal semifinite weight on A4 = .# @ .# defined by

W =h®hoR.

We shall show that 7" is the desired Haar measure.
For the next lemma, note that, since the Kac-Takesaki operator W is a unitary
in ./, the function 1€ R — W*af’OR@h(W) is a unitary l-cocycle (coboundary) for the

weight 1o R® h.

LemMa 3.1.  Let u; := W*a{10R®H(W) be the 1-cocycle mentioned above. Then we
have

U = W*(Qi[ ® Q—it) w.

Moreover, the faithful normal semifinite weight on N determined by this cocycle is
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(ho R® R)o AdW. Namely, we have

uy = (D((ho R®h)o Ad W) : D(ho R® h)),
for any t € R.
PrOOF. Since (D(ho R): Dh), = Q", it follows from [N, Lemma 7] that

ol REMW) = (0" ® o O (W)(Q " ® 1) = (0" ® 0 )W

This proves the first assertion. Let @ = (ho R®h)o Ad W. By [N, Lemma 7] again,

we easily find that o—l‘p:Adu,oa,hOR@;. Now let X be in n¢ﬂnZOR®fl and Y be

in ngNn, Since ng =N, o ;i W, it follows that both XW* and VI{Y belong to
o reil) nZO RG I Hence, by the KMS condition for the weight 71 o R ® h, there exists
a bounded continuous function F defined on the strip D = {ze€ C: 0 < Imz < 1}, which
1s analytic in the interior, such that

R®h

F() = (ho RQ h)(c"°RENWY)XW*) (1eR),
F(t+i)=(ho R®h)(XW* " RO (YY),
These identities can be transformed into
F(t) = ®(uc"RONY)X), F(t+i) = (ho R® h)(Xuc"ROh(Y)).

Therefore, by uniqueness of the Randon-Nikodym derivative, we conclude that the
l-cocycle u, must equal the Radon-Nikodym derivative (D@ : D(ho R® h)),. O

LEMMA 3.2, Let v, := W*a"' (W) be the unitary l-cocycle for the weight h'".
Then the faithful normal semifinite weight on A" determined uniquely by this cocycle is
hoR®h. Thus we have

(D(ho R®h) : Di"), = W* el (W)
for any t e R.
ProOF. Since (D(hoR):Dh),= Q" and (D(hoR): Dh), = Q" one has
(D(ho R®h): Di"'), = (D(ho R) : Dh),® (Dh: D(ho R)), = 0" ® 0",

Hence it suffices to show that v, = Q" ® O~". But this follows from a direct com-
putation with the help of [N, Lemma 7]. O

THEOREM 3.3.  The weight h'" is R -invariant, i.e.,
W= o RV

PrROOF. Let @ = ((ho R)® h)o AdW. As we saw in the proof of the preceding
lemma, we have

(D(ho RQh): Dh"), = Q" ® O™,
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Hence it follows from that
W(D® : D(ho R® h)),W* = (D(ho R®h) : Dk"),.
On the other hand, one has
W(D® : D(ho R® h)),W*=Ad W((D®: D(ho R® h)),)
= (DPoAdW* : D(ho R®h) o Ad W™),
= (D(hoR®h) : D(h"" o R"Y),
= (D(ho R®h) : Di") (DR : D(h" o R")),.

Therefore, we conclude that (Dh" :D(h"' o R")), =1, which implies that A" =
o RV 0

In what follows, we set ¥ = (h® h) o Ad W*.

PROPOSITION 3.4. The weight h'" is o¥-invariant. The Radon Nikodym derivative

(Dh”" : DW) of " with respect to ¥ is given by
(D" : D¥), = W(Q"® 1) W™

In particular, we have h'" = W(P-), where P is the nonsingular positive self-adjoint
operator defined by P:= W(Q® 1)W*.

ProOOF. Let P be the operator defined as above. First we claim that P is affiliated
with the centralizer of the weight ¥. Indeed, since P"= W(Q"® 1)W* and g/ =
AdW oa!"®" o Ad W*, we clearly obtain ¢ (P") = P" for any s,7¢ R.

Next note that we have

o =AdWo th@l% oAd W* = Ad W0;1®E(W*) o 0111@/;.
Thus, by [N, Lemma 7], we find that
341) oY =AdW(OQ TR NW(1® 0" oc'® = AdW(Q " @ 1)W*oa"" .

This shows that a[”/" =AdP"og?. In particular, one has ¥ o o' = ¥, which in turn

.
implies that 4" is ¢¥-invariant. Suppose that X is an arbitrary element in n;,,. For

any positive self-adjoint operator K and ¢ >0, set K, := K(l +8K)_1. With this
notation, we have

hW'(X*X) — hJV o R,M(X*X) by
=(ho RQh)(W*X*XW)

= lim(# ®N(QP@NW X XW(Q?®1))

= h?.?“’ ® h)(W*PY2x*XP2w)

= 1133 P(P2X*XP?) = Y(PX*X).
&
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Hence /" equals ¥(P-) on my.r. It follows from [PT, Proposition 5.9] that &' =
P(P.). -

Lemma 3.5. Let o/ be a von Neumann algebra and \ a faithful normal semifinite
weight on /. Suppose that X is in w,gy. Then we have

Y ®@w®h)((idy ®0)(X"X)) =w(l)( ®h)(XX)
for any we M}.

Proor. First we consider the case where w is of the form w = w,, () for some
xemny,. Since w(y)=h(x*yx) for any ye .#,, it follows that

o(y) = h(x"yx)
for any y in the extended positive part Ext,(.#) in the sense of [HI]. Thus we have
o((f ® id @ h)((ids ®9)(X"X)))

— h(x* () @ id @ h)((id.y ® 3)(X*X))x)

=W®rON(1®x ®1)(idy ®) (X X)(1®x® 1)).
Namely,
(3.5.1) W ®w® h)((id; ®3)(X*X))

=WhR/h(1®x*" ®1)(idy ) (X X)(1Rx®1)).

Now, by the density theorem for left Hilbert algebra in [H], there exists a sequence
{X,} in the algebraic tensor product n;, ® 1, such that

Xl < [[XT, - lim Ay g 4(Xn) = Ay @ n(X)-

In particular, X, strongly converges to X. With this {X,,}, it is readily checked that one
has

(3:52)  (1@WQE®DMheyeilx®X,) = Ayerei((ids ®0)(X,)(1®x®1)).
For any ne (A, ® W, @ W) = (Wygren), we have
lim (1) Ay o 1 ((idy ® O)(X,)(1® x@ 1)) = lim (idy ®)(X,)(1©x ® Dy

= (idy ®9)(X)(1 ® x® 1)n.
On the other hand, by (3.5.2), one has

lim 7 () Ay @ hen((ides @ 0)(X,)(1® x @ 1))

n—oo

= lim 7(n)(1Q@ W)(2® Ndhgyen(x ® X,)

n—oo

= lim 7,(7)(1 @ W)(Z ® 1)(An(x) ® Ay g n(Xn))

n—0o0

=) (1 Q@ W)(ZQ 1)(44(x) ® Ay g n(X)).
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This shows that the vector (1 ® W)(2® 1)(Argyer(x® X)) is left bounded with
respect to the left Hilbert algebra 2y, g;es, and

(1@ W)(Z® D) (Mhgyerx®X))) = (idys ®)(X)(1@x® 1).
Particularly, (id, ®6)(X)(1 ® x® 1) belongs to nygrer So we obtain
(353)  (1@W)(E® D Mgyeix®X) = Aygrei((ids @)X)(1@x@1)).
From [3.5.1), (3.5.2), (3.5.3) and quasi left invariance of 4, it follows that
(¥ ®@ 0@ h)((idy ®)(X*X)) = Ay gnen((idy @)(X)(1Qx® 1))

= Aoy onlx®X)|

2

= lim [0y en(x® Xl
= lim |4y g1ei((idy ®0)(X)(1@x@ 1))

= lim (Y @ ® h)((id.y ® 6)(X X;,))

n—aoo

= lim o(1)(y ® 1) (X, X,)

n— oo

= (1) lim |4y u(X,)]

= o(1)|[ 4y 01(X)* = o(1)(y @ ) (X" X).

To show that the assertion of this lemma is true for any w in .4, we proceed
as follows (cf. [S, Lemma I1.8]). Regard m = (Y ® id ® h)((id.; ® 6)(X*X)) as an
element of Ext, (.#). By [H1, Lemma 1.4], there exist a closed subspace & of § and a
densely defined positive self-adjoint operator 4 on & such that

AV2E|%, e D(AV2));
o) = {41, (€24
00, otherwise.

From the preceding paragraph, D(4'/?) contains A,(1,), so that | equals $. If e
Ap(ny), then

1A2E17 = || (b ® h)(X*X)' ¢

From the uniqueness of polar decomposition, we find that 4'/2 = (y ® h)(X*X )1/ 2.
Since {#,9} is a standard representation, it follows that

m(w) = o(1)(y & 1) (X" X)

for any we.# . This proves the assertion. In particular, m= (Y ® id ® h)
((idy ®0)(X*X)) actually belongs to /. O

COROLLARY 3.6. Let # be a von Neumann algebra and ¢ a faithful normal
semifinite weight on %. Suppose that X is in Wg,@4se@r Then we have
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(0®P@ 0@ h)((idg ® ids ®0)(X X)) =(1)(0® ¢ ®h)(X"X)
for any 0 e B and we M.

PrOOF. Let us take an w € .4 and fix it. First we treat the case where 0 € 4, is
of the form 0 = w,,(,) for some x e ny. Then, as in the previous lemma, one can show
that

(0®¢®w®h)((id®id ®)(X"X))
—($®IQ0EN(dRiId®N)(x* @1 DX X(x®1® 1))).
Applying to our situation in which o/ = #® % and ¥ = ¢ ® ¢, we obtain
(0®¢®w®h)((id®id®5)(X"X))
=o(1)(¢@¢FN(x" @I NX'X(x®1®1))
=o(1)(0® ¢ ® h)(X"X).

+

* )

To prove that the above identity holds for a general 6 € %, one may just follow the
argument set out in the last paragraph of the proof of the preceding lemma. The
details are left to readers. ]

THEOREM 3.7. The weight h”" is quasi left invariant.

Proor. Let X be any element in the algebraic tensor product w, @ n; s S 1,0
First we claim that the identity

(W @)@ (X" X)) =" (X X)(1)

holds for any y € 4.*. For simplicity, we assume that X has the form X =a® x,
where aen, and xemn; . We assume also for the moment that s is of the form
Y =0® w for some e ./ and we .#!. Then, by [Proposition 3.4, we have

W @h") 6" (X X))

=M@ w® ¥)(B)50" (a'a @ x"X)(B!);)

- liff)l(@ Quwh® hA)(Wﬁ(Pgl/Z)s@'w(a*a ® x*x)(BY/?)34 W34)

- 1%1(0@ w@h@MN((1®1® Q@)W (a'a®@ x ) Wu(1®1® 01> ®1))

—(0@w®ho R h)(Wid" (a*a® x*x)Wiy).

Here we used the notation introduced in the proof of |Proposition 3.4. Since

0" = AdZi W0 (0®9),
Wi Wy = (idy @ O)(W™),

we find that
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Ad W3, 00" (a"a ® x*x) = Ad W, Zp W3y o (idy ® id 4 ® 6)(0(a*a) ® x*x)

= Ad X W3 Wiy o (idy ® id 4 ®6)(d(a"a) ® x*x)

= Ad X0 (idy @ idy ®0)(Wss(0(a*a) ® x*x) Waz).
From this, it follows that

W) (X*X)=0@ho R®w®h)((idy ® idy ® ) (W5 (0(a*a) ® x*x) Wa)).
Meanwhile, by Theorem 3.3, we obtain
(idy ® ho RQ h)(W;5(0(a*a) ® x*x) Wa3)
idy® (hoR® fz) o Ad W*)(d(a"a) ® x*x)

= (
(idy @ " o RV)(6(a"a) ® x*x)
(idy @ h")(0(a"a) ® x"x)

= (id 4y ® h)(d(a*a))h o R(x*x)

= h(a*a)h o R(x*x) - 1.

This implies that the element (d(a) ® x)W>3 belongs to n It results from

that
(0®hoR®w® h)((idy ® id 4 ® ) (W (d(a*a) ® x"x) Wa))

ld//@hOR@/’l

= o(1)(0® ho R® h)(Ws5(5(a*a) ® x*x) Wa3)
= w(1)0(1)h(a*a)h o R(x*x)
= w(1)()h" (X*X) =y(D)h" (X*X).

Therefore our claim is valid when  has the form described above. But the argument
set out in the last paragraph of the proof of guarantees that this claim is still
valid even for a general € /7.

Now we let X be an arbitrary element in n,+. Then, by the density theorem for
left Hilbert algebras mentioned before, there exists a sequence {X,} in 1w, ® n;_; such
that

1l < X[ lim 4y (X,) = 4,0 ().

In particular, X, strongly converges to X. In the meantime, from the preceding
paragraph, it is easy to see that, for 4, Bew, ® n;_», we have

(" @1 ) (4" ®1)0" (B'B)(A® 1)) = (04, (1) @ h") (0" (BB))
— h[/(A*A)hM(B*B)

Thus the equation
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W (A (A) @ Apr(B)) = Apr g (0 (B)(A® 1y)) (A, Bem, ®n;_ z)
defines an isometry W' on $,+ ® 9. For any 4Aen, ®n;_ 5, one has

lim A g (0 (Xa)(A® 1)) = lim W (A0 (4) © A (X,))

= W (U4, (A) ® Ay (X)).
Hence, for any 7,7, € %A, we have
(7 (1) ® 7 (1)) W (A (A) ® Apr (X))

= lim (2,(11) ® (1)) Anr @i (6 (Xa)(4 ® Ly))

= lim & (X,)(4 ® Ly")(n; ®1,)

n—aoo

=" (X)(A® 1y)(n ®n,).

This proves that the vector W' (A;,+(A4) ® A, (X)) is left bounded with respect to the
left Hilbert algebra ;. g+, and we have

1 (W (A (4) ® 430 (X))) =0 (X)(A® 1)
In particular, 5" (X)(4® 1) belongs to 1+ g, and one has
W (A (A) ® Apr (X)) = Apr g (07 (X)(A® 1)).
From this, it follows that
W (A AR (XX) = || Ay (4) @ Ay (X))

= W (A (4) ® A (X))|I?

= |4y ir (0 (X)(A@ D)

= (" @ )(4"® 10" (X X)(4®1))

= (w4, () @) (X X))
Therefore, the identity

(@) &" (X" X)) =h" (X" X)(1)

holds for any y € A" of the form = @, (4) for some 4 e, ® n;_ 5. But, again, the
argument set out in the last paragraph of the proof of enables us to conclude
that this identity is still true for all € #,". This completes the proof. ]

THEOREM 3.8. The weight b’ is strongly left invariant.

Proor. We closely follow the proof of Lemma 10 in [N]. But there are minor
misprints in that proof, so that we proceed, correcting them.

Let X, Y be in n,r. We denote the set of entire analytic elements in .#, with
resepct to the adjoint action of the deformation automorphism {z,} by (.%.).. The set
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(/%A*):O is defined in the same way. We first take an element ¢ from the algebraic
tensor product (./.) ® (/%A*)i’o. For simplicity, we assume that ¢ has the form 6 ® w.

T T

Put 0:=0o7_js0R and @:=wot_;j;0R. Then we have
(potlno R @I)E" (Y*)(Lr ® X))
—(0@d@h@hoR)o Ad WH(AdZn W0 (0®0)(Y*) - (1®1® X))
—(0@Od®h@hoR)oAdZy(Ad WiW,50 (0 ®)(Y*) - AdZn(1®1Q X)).
Since W5W55 = (0®id;)(W*), it follows that
(3.8.1) (pot! o R @1")(" (Y*)(1y ® X))
—(0@h®d®hoR)((O®id; ®id;) o Ad Wy o (idy ®0)(Y)
x Ad 25 (1 ®1® X)).
Now, from [Theorem 3.3, we find that
(ho R W) (W Y YW) = (hoR®h) o AdW*(Y*Y) =h" (YY) < w0.
Hence, from [Lemma 3.3 and [Theorem 3.3 again, it results that

(h@ @ ® ho RY(Wy(idy ®6)(Y*Y)W)y)
= (h®@@®ho R)Y(WiWi(idy ®0)(Y*Y) Wi Wi3)
= (h®dQhoR)((idy @) (W*Y*YW))
= o(1)(hoRQR)(W*Y*YW)
=o' (YY) < .

This shows that Wl*z(idﬂ®5)(Y )W, belongs to o6 ®io k- Thus we may use the
strong left invariance of the weight 4 to deduce that the right-hand side of (3.8.1) equals

(3.8.2) ORh@d@hoR)(Ad W0 (idy ® idy ®0)(Y5)
X (0®id; ®id;)(Ad 21 (1 ® X))).

Let A=AdWyo(id,®idy ®9)(YS) - 0®id,; ®id;)(AdZ (1 ® X)). Using Pro-
position 3.4, we further compute (3.8.2) as follows.

(3.8.2) =lim(0 ® h ® & ® h) (W, (B'/2)34A(B!/); W)
=lim0@h®o (100" @1® )WdWu(1e 0 @181)
=m0 @h @6 ®h)((id/ ®ids @)((1® 0} @ 1) W5 Y5, W)

X AdWs5y0(0®id,; ®id;)(AdZ1(1®@ X)(1® 02 ®@1®1)).
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Let X(¢):= W50 ®id,; ®id;)(AdZ (1@ X)) Wu(1® 0> ®1®1) and Y(e) :=
( 2@ 1)W*YW. Then, by [Proposition 3.4, we have

(0@h® D@ h)(X(e)"X(e))
= (0® P2 ®®)(B?)(0 ®id; ®id;)(Ad Z1a(1® X))(R!?)y,)
<(0®hy ®0)((O®id; ®id;)(Ad (1 ® X))
=01 (h@d® ho R)(AdZ1r(1® X))
= (MDA (X*X) < .
Moreover, one has
(h@h)(Y(e) Y (e)) = V(B YY)
<YPYY)=h"(Y"Y) < .

Hence we may use the strong left invariance of the weight / to conclude that (3.8.2)
equals

im0 ®h @@ h((1®0;2 @ 1@ 1)W;, Y5, W

x (id 4 ® id s ®)(Ad W5y 0 (6 ® id ;) (X)(1® 01 ® 1))).

Since (id 4 ® id 4 ® 0)(W3) = W5, W3, we can continue to calculate the above limit as
follows.

the limit = lim(0 ® h ® & ® h) (W5 (B/2)5, Y5, - Ad Wiy 0 (6@ 0)(X)(B!/2)5, Was)
= (0@h®@w®ho R)(Y5y- Ad Wy 0 (®0)(X))
= (0@ 0@ ) (ZnYyZyn AdZnWs o (6 ®6)(X))

=(¢®n")((Lyr @ Yo" (X))

Therefore, strong left invariance holds for any normal functional in (./Z.)” ® (%A*)f :
0

Now we take any analytic element ¢ in (.45)". Then we choose a sequence {¢,}
in (M,)" ® (M,) that converges to ¢ in norm. We define entire functions f, and f

T

which is bounded on the strip D ={ze C:0 <Imz < 1/2} as follows.
fi@) = (porlpo RT @1)O" (Y1)l ® X)), (z€C),
f()i= (ot po R @R )G (V) (L @ X)),

Indeed, from the preceding paragraph, we have

L0 = (@ @B ) (1@ (Y)o" (' (X)), (reR)

A (l - 5) = (hoR" @) (" (Y)(1® 7" (X))
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(Note: the above equalities are stated wrong in [N]). From the proof of [N, Lemma
10], the functions {f,} converges uniformly to a bounded continuous function g on the
strip D, which is analytic in the interior and satisfies

g() = (@) (1@ (Y)s'" (" (X)),

o(r+3) = o R ®IE" (5 (N1 O (X)),

Hence f equals g on the line R + i/2, which implies that f must coincide with g on the
strip D. In particular, we have f(0) = ¢(0). This means that the identity

(for!no R @K )G (Y)(1r ® X)) = (@ K" )(1® ¥)6" (X))

holds. This completes the proof. O
We summarize the results obtained in this section in the theorem that follows.

TuroREM 3.9.  The system (A°,0°" RV ©V' i) is a unimodular quasi Woronowicz
algebra.

DermNiTION 3.10.  We call the unimodular quasi Woronowicz algebra constructed
above the quantum double (group) of the given quasi Woronowicz algebra W, and
denote it by D(W). The construction is referred to as the double group construction.

The next proposition states that the operation of taking the double group con-
struction is closed in the category of Kac algebras.

CorOLLARY 3.11. If a quasi Woronowicz algebra W is a Kac algebra, then so is the
quantum double D(W).

PrOOF. We retain the notation introduced so far. Note first that a quasi

Woronowicz algebra W is a Kac algebra if and only if ¢ = ¢"°® and the deformation
automorphism is trivial. By [Theorem 3.3, we certainly have ¢’ ="' °R' If Wisa
Kac algebra, then H = 1, so that ¢ is trivial. Hence the quantum double D(W) is a
Kac algebra. ]

4. The dual of D(W).

In this section, we shall study the dual of the quantum double D(W) and clarify
how the original algebra W or W etc. are related to it.

Our immediate aim is to describe the Kac-Takesaki operator W*' of the double
group D(W) in more detail in terms of W or W. Since the Haar measure of D(W) is
W =h®hoR, the algebra A" = .# ® ./ should be represented on the Hilbert space
Dpr =D ® Y, from the viewpoint of theory of (quasi) Woronowicz algebras. It,
however, seems more natural (convenient) for our purpose mentioned above to work
with the weight h®h and represent /" on H ® H; = H ® H, even though we know
that 9, 1s canonically isomorphic to $ ® $;. Thus we first study this canonical
isomorphism.
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Following [N], we define a one-paramenter transformation L, on .# by

L(x):=x0™" (xe.).
As noted in [N], all the one-parameter transformations o, ¢"°R ¢ L are mutually
commuting. Now we denote by ay the set of all entire analytic elements x € a;, with

respect to these four transformations satisfying ¢ (x), o"°®(x), 7.(x), L.(x) € a, for all

ze C. This set qp is a o-weakly dense x-subalgebra of a;. Remark that Uy := A;(ap)
is a left Hilbert algebra dense in $ such that Ay = A,.

LEmMMA 4.1. Let x€ay. Then we have
JOZJAy(x) = Ap(Lo(x))
for any z e C.

Proor. Since x € ag, the function 7€ R — A;(L,(x)) has an analytic extension to
the whole plane C. In the meantime, since QO lies in the centralizer .#; of the weight
h, we find that

Ap(Li(x)) = Ah(xQ_[t) = JQHJAh(x)-

Hence, from [PT, Lemma 3.2], it follows that the vector A,(x) belongs to
(..c D((JQJ)?). Therefore, we obtain

Ap(Lo(x)) = (JOJI) " Ap(x) = JQ=T Ap(x).
This completes the proof. O]

Lemma 4.2. Let B be the self-dual closed convex come in § associated with the
standard representation {M,9H,J = J;}. Then we have

B = {xJ4(x) : x € a,}.

ProOF. By definition (see [H]), B = {xJAu(x):x€eqa,}. Our assertion now
follows from the density theorem for left Hilbert algebras. O

PROPOSITION 4.3. The unitary conjugation J on $ is the unique canonical imple-
mentation of the antipode R in the sense of Haagerup ([H]).

Proor. By [MN, Lemma 3.9], J implements the antipode R : R(x) = Jx*J (xe./).
From [MN, Corollary 3.6.2], J commutes with J. Hence, in order to prove this
proposition, it suffices by [H, Theorem 2.3] to show that J leaves the self-dual closed
convex cone P in invariant. So let x € ap. Then, by and
[MN, Corollary 3.6.2], we have

IxJ Ay(x) = R(x*)JJ Ay(x) = R(x*)J Ap(Lij2(R(x")))
= R(x*)Q'2J A4(R(x")).

Let Q'2 = [ Jde(Z) be the spectral decomposition of Q2. Put y, :J"f/n/lde(/l).
Note that each y, belongs to the centralizer of the weight 4. Thus we have
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R(x")y,J A4(R(x")) = R(x") 3,/ 2T (T y,/2T) An(R(x"))

= R(x*)y 2T Au(R(x*) y)/?)

Since P = {xJA4;(x) : xen,} and R(x¥) yo'? is in w,, it follows that the vector
R(x*)y,JA,(R(x*)) lies in *B. Since

R(x")Q'2JA43(R(x")) = lim R(x")y,J Ay(R(x")),

n—oo

we find that JxJA,(x) still belongs to P, P being closed. From [emma 4.0, we
conclude that J leaves P invariant. ]

COROLLARY 4.4. Let 7, be the standard representation of 4 on the Hilbert space
Dior constructed from the weight ho R. Then the unique canonical implementation

Unor i : Dpor — 9 0f Tpor is given by
UnornApor(x) = JAR(R(X)*)  (x € yor).

Proor. First note that n,.g = R(n;). Thus the operator U, defined above
is clearly a unitary transformation from $,,z onto $. It can be easily verified that
Thor(X) = Uy g jXUnor s for any x e ..

Let x € ay0x. We denote the S-operator, the modular operator and the modular
conjugation associated with 2o R by Sj.r, 4508 and Jy, g, respectively. Then we have

Uno r.hSho rAno r(X) = JAL(R(x)) = JSAL(R(x)") = JST Upo g nAno r().
Since Ajor(apor) (resp. Ap(ay)) is a core for Syor (resp. S) and
b(ijUhOR,h) - U]:(OR,//ZJAQ(S)7 Uh*ORJleh(ah) - AhOR(ahOR)7

it follows that Ujo g pShor = JSJTU,. rn. From the uniqueness of polar decomposition,
it results that

Usoridhor = JUnoriy  Anor = Uy gy 47 Upo ri-
Finally, if x € n;.g, then, by the preceding paragraphs, we have

Uho R 1nTho R(X)po AR R(X) = XUpo R hho RAKe R(X)

= XJUhoR,hAhOR(x)
= fo/lh(R(X)*)

JR(x)*JA,(R(x)%).

This shows that Ujor a{yJhorAnor(y) : y € Mpor} = f{xJAh(x) :xen,}. From Pro-
position 4.3, we conclude that the unitary Uj.gj; carries the self-dual closed convex
cone B,z asscoiated with the standard representation of 4o R onto the self-dual cone
B introduced in Lemma 4.2 Therefore, by [H, Theorem 2.3], Ujor ) is the unique
canonical implementation of the isomorphism 7, g. O
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COROLLARY 4.5.  The unitary Ujor ) in the preceding corollary is characterized by
Upor n Ao r(@) = JO2 T Ay(a)  (a €y, Niyor)

ProoF. First we assert that A;,g(n, Nnyog) is dense in $H,, . Indeed, take any
x€emnyop. Let Q7' = [”Ade(Z) be the spectral decomposition of Q7'. Set e,:=
J"I';n de(1). Since e, belongs to the centralizer of 4o R, we have

o R((xey)" (xe,)) = || Anor(xen)[|* < | Apor(x)]* < 0.

Thus xe, 1s in ny,x for any n > 1. Meanwhile, we have

& &

h((xe,)™ (xen)) = hf(? ho R(Q; e, x"xe, 0;'/%)
&
= lim |44 (xe, 017
- ILIH)I ||JhoReanl/thORAlzoR(x)||2

= H‘]hORyzi/ZJhoRAhoR(x)HZ

2
< yalllldno r(¥)” < o0,

where y,:=Q7'e,. This shows that xe, lies in w,. Since lim, ... || 450 r(xe,) — Ao r(x)||
=0, it results that Aj,,g(n, Nnyog) is dense in 9.z, as asserted.
Let aen,Nnyog. One has

lim 70,27 4,(@)| = tim 14,0} )|* = lim h(Q}a"aQ}?) = ho R(a"a) < c=.
& & &
Hence, as shown in [PT, Lemma 7.9], 4,(a) belongs to the domain D(JQ'/2J) of the
positive operator JQ'/2J. Therefore, the mapping 7T given by
TA;,oR(a) = JQI/ZJAh(Cl) (a eEny N nhoR)

is well-defined and can be extended to an isometry from $,, into . Now we suppose
that @ lies in ap. Then, by Cemma 4.1, one finds that 74, r(a) = A4(L;j2(a)). In the
meantime, from [MN, Corollary 3.6.2 (iii)], it follows that

Upo radnor(a) = JAR(R(x)*) = An(Lija(a)).
Since Ajor(ap) is dense in $H,,z, Unorn equals T. O

The next corollary is irrelevant to the subject under discussion. We, however, think
it worth mentioning.

COROLLARY 4.6. Let W° = (M ,c05,R,7"' ho R) be the quasi Woronowicz algebra
co-opposite to W. (see [N, Section 4]). Under the identification of 9, g with © through
the unitary Uyor ) in the preceding corollary, the Kac-Takesaki operator W° of W° is
given by

We=UJJHWJ®J).

(Compare this result with the assertion (1) of [MN, [Proposition 4.3)).
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PrROOF. One needs to show that

(Uno kot @ Unor )W (Unor i @ Unorn) = (J Q)W (J ®J).

But this follows from a direct computation. So we leave the verification to
readers. [l

Lemma 4.7. Let x,y € ./ be in nw,, w,Nny,g, respectively. Then we have

Ahor@n(0(X)(y ® 1)) = (Uyo gy @ DWW (Uporn @ 1) Ao R n(y @ x).

Proor. The weight & being quasi left invariant, J(x)(y ® 1) is in fact in 1. g g -

Let z;en, Nyor (i=1,2). By [Corollary 4.5, we have

(Ahor@n(0(x)(y ® 1))|4poren(21 ® 22))
= (ho R®h)((zf ®z3)d(x)(y ® 1))
=1lim(h ® h)((Q,"*z} ® z3)5(x) (0> ® 1))

el0

= 12{51(W(JQ§/2J® DAhei(y ®X) [ (JO2T @ 1) Argi(z1 ® 22))

= (W(Unorh @ NAhoren(y @ X) | (Unorh ® 1) Aporen(z1 ® 22)).
Thus we are done. L]

LemmA 4.8. Let # be a von Neumann algebra and  a faithful normal
semifinite weight on %. Suppose that X, b and m are in B Q M, B, M, respectively, so
that X(b®1) € nygn and mew,og. Then (idz®0)(X (b®1))(1@MR®1) = (idz®J)(X) -
(b@m® 1) belongs to Wy gnreh and we have

Ay @nor@n((idy ®6)(X)(b@m® 1))
=1 Q@ U rn @ DWi(1® Uporn @ DAy @noren(X13(b@m @ 1)).

Proor. The claim that (idy ®J)(X)(b@m @ 1) belongs to nygurer follows
from [Lemma 3.3. The identity above can be verified by the method analogous to the
proof of [Lemma 3.3 Indeed, since X(b® 1) lies in ny g, it follows from the density
theorem for left Hilbert algebras that there exists a sequence {Y,} in the algebraic
tensor product 1, & n,, converging strongly to X (b ® 1), such that A4, g,(X(b® 1)) =
lim, ... Ay gn(Ys). From [Lemma 4.7, we easily find that

Ay @noren((idz ®0)(Y,)(1@mE 1))
= (1@ Uy gy @ DWai(1® Unorn @ 1) Ay @ or@n((Yn);3(1@m & 1)).
The right-hand side of the above identity converges to the vector

(1@ Uy @ NWas(1 ® Upor i ® DAy @ioren(Xi3(b @ m® 1)).

From this, with 7€ ), ¢, rg ONE has
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7 (n) Ay @ hor e n((idz ® 0)(X)(b@m® 1))
= (idy ®0)(X)(b@m® 1)y
= lim (idy ® 0)(Y,)(1 @ m & 1)y

n—aoo

= im 7,() Ay @ ho R 1((idz @ 0)(Yu)(1 @ m @ 1))

- ni(rl)(l ® Uh*oR,h ® I)WZS(I ® UhoR,h ® I)Axp@hoR@h(XB(b ®mE 1))
This completes the proof. O

LemMMA 4.9. The set W*w,w W is contained in W, p o, and there exists a unitary
Tw from Spv onto 9, pe i given by

Tw Ay (X) = Ay g i(WXW) (X €myr).

In particular, Ad Tw(m (X)) =7, g i (W XW).
Proor. By [Theorem 3.3, one has
(hoRQh)o AdW* =h" o RV ="

This shows that Ad W* is a weight-preserving isomorphism. Hence it follows from a
general theory that the canonical implementation Ty of Ad W* is characterized (de-
fined) by the equation in the statement of this lemma. ]

Before we state the next lemma, let us recall the unitary Z introduced in Section
2. It is the unitary given by Z=XX=W*u u)W(u ® u).

Lemma 4.10. Let & be the Fourier transform and Ty the unitary in the
preceding lemma. Then the mapping Z(1 Q@ F)1 Q@ U; 1 i) i i Dporgi = D@D is
the canonical implementation of the standard representation m, ;. In particular, we
have

A1 ® F U, 4 i) Ti 0y i X) = AdZ7(X) (X €.1).

PrROOF. By the definition of 7Ty, it is easy to see that the unitary
ITF)IQ® Ui ai)Tiv : Dporeis — H®H is the canonical implementation of the
isomorphism 7, o #(X) — Ad W(X). Thus it suffices to show that Z* is the ca-
nonical implementation of Ad W. Since W is a unitary in /", the canonical imple-
mentation of Ad W is given by W(J @ )W (J ® J). Since W* = (J Q)W ®J), it
is exactly the unitary Z*. O]

TueoreM 4.11.  Let W' be the Kac-Takesaki operator of the quantum double D(W)
and F the Fourier transform. Then we have

1®FU; i ®1®FU; )W (1®U;

* * * * =
hofz,/;’g7 ®1® U;;Ojgﬁy )= Ly W Z3y Whs.

ProOOF. Let a,b,c,d be in qp and y,z,p,q be in ay. Then, by [Proposition 3.4, we
have
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(Wl @ (@@ y®b®2) | Apr g (c® p®d ® q))
=" @h ) (c®pR®I®q)0' (h®)(a®y®1®1))

=lm(Y @ V)(B @ R)(c®@p@d®@q)'d"

x(b®z)(a®y®@1®1)(B/> @ B'/?))
=lim(h@h@h@ (0,2 ®18 0,2 ® HWLHI;,

X(®@p®I®q)'T' (h®)(e®ye1®1)

x WlWu(Q? @10 0,7 ®1)).
As we showed in the proof of [Theorem 3.7, we have
Ad W3 00" (b®z) = Ad Xy 0 (id 4 ® id 4 ® 6) (W3 (9(b) ® z) Wa).
From this and unimodularity of 4", it results that
(W' A i (a® y@bRz) | Apr i (@ p®d ® q))
=lim(h@h@h@h(Q,* ® 0, @1@ W35 (c®d® p®q) W

% (id 4 ® id 4y ® 0)(W3(0(b) ® 2) W) (a ® 1@ y ® ) Wi3(0* @ 01> @1 ®1))
—(hoR®hoR®hQh)(WiLW;,(cQd® p®q) Wa
x (id 4 ® id 4y ® ) (W550(b) @ 2)Wn) X (a®1® y ® 1)W)3)
= (hQhoRQho R® (W} (c®dQp®q)*
x Was(id 4 ® id.y @ O)(W55(0(b) ® 2)Wa3) x (a® 1@ y® 1))
= (Uygnoreiokei @) gnereiokei(Wa(c®d® p @ q)Wa)),

where 2 = (id 4 ® id 4 ® 6)(W3(0(h) ® 2)Wa3)(a® 1 ® y® 1). With the notation in
the preceding lemma, we obtain

Ah@hoR@ﬁoﬁ@fz(WZZ(CC@ Ad@pRGWu) = (Tw)yu2ndp g (c®@p®®dQ q).
From this, it follows that
(4.11.1) W'l o1 (@® y @b ®z) = Zo3(Tw )33y g 1o R o ki ()
By [Lemma 4.8, we have
Ah@hoR@fzoi{@ﬁ(%)

= (1 ® 1 ® Uﬁ*o]}ﬁ ® 1)W34(1 ® 1 ® U/;of?,/; ® 1>Ah®hoR®/;on®/:l

X (W50()® 1@ 2)Waua®1® y® 1)
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=(I1®1®U; ;i ®NWu(1®1® U ;®1)
X (Tw)udyoneiokeior(0(0)(@®1) @ y®2)
=(1@1® U} ;@ NWu(1®1® U, ®1)
X (Tw)yyWinZndprgp(a® y @b ® z).
From this and [4.1L.T}, it follows that
W' =2n(Tw)u(1@ 1@ U 1 ;@ NWu(1®1® Uy, ® D(Tw)yy WinZns
=(1® U i ® Ti)Wu(1® Uy, 1 ® Tw) Wis.
Hence we obtain
(1®FUjzi ®1®F U )W (1@ Uf 17 @LIQ U 41 F7)
= (107 @(1®F7)1® Ui ) Tiy) Was
x (1@ 7 @ Tw(l® Uj, , )(1® 7)) Wi,

The assertion of this theorem now follows from by identifying W with

(F QF)'W(F QF). O
From [Theorem 4.11, we may and do identify the Kac-Takesaki operator W*'" of the
quantum double D(W) with the unitary Z3, WssZsuWis. Hence we will think that both

D(W) and its dual D(W) “live” on the Hilbert space $ ® 9.

REMARK. [Theorem 4.11 fully answers the problem raised in Section 2 of [N, Page
532]. In other words, Theorem 4.11 gives an explicit relation between the Kac-Takesaki
operators for a general quasi Woronowicz algebra W and its quantum double D(W).

COROLLARY 4.12. The quasi Woronowicz algebra N dual to N is generated by
MR C and Z*(CQ M)Z. Indeed, it is the a-strong* closure of the linear span of the
set

{(ONZ'(1®a)Z aec.l,ye }.

Proor. Let 6, be in #(9H),. We denote the Fourier repesentation of D(W) by
# . By definition, /" is the o-strong* closure of the subalgebra T (A:). By [MN,
Lemma 2.10], we have

Ar(0®w) =(0®o®id® id) (V"))
= (#(0) @ NZ*(1 ® #(w))Z.

From this, the assertion of this corollary immediately follows. O
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PROPOSITION 4.13.  The modular conjugation Jy associated with the dual quasi
Woronowicz algebra D(W) is (JQJ)Z =Z"(J ®J).

ProoF. By [Proposition 4.3, it suffices to show that the conjugation (J ® J)Z is the
canonical implementation of the antipode R'. By definition, R = (R®@ R) o Ad W*.
From [Proposition 4.3, J ® J is the canonical implementation of R® R. As we noted
in the proof of [Lemma 4.10, the unitary Z is the canonical implementation of Ad W*.
Thus we are done. ]

COROLLARY 4.14.  The commutant N of the dual N is generated by Z*(.M' @ C)Z
and C® M'. Indeed, it is the a-strong* closure of the linear span of the set

(Z*z@DNZ(®b):beH' ze. '

ProOOF. The assertion easily follows from a combination of [Corollary 4.12] and
[Proposition 4.13. [l

In what follows, we set 217 := X|355;. In other words, 217 is the unitary on $ ®
HS®H®H given by THE® N =n @ for EneH@H.

THEOREM 4.15.  With the unitary V defined in Section 2, we have
U @I ZEVIE @ d0) = W

Therefore, V is the adjoint of the Kac-Takesaki operator W(D(W)') of the commutant of
the dual quasi Woronowicz algebra,

Proor. We employ the notation introduced in Section 2. By |[Proposition 4.13, we
have

IR @IV Uy @JIp)ZE =22 R®JQJ RN Z1nZuVZHZiH(J®J®JRJ)X.

By the remark following [BS, Proposition 8.10], one has Z,ZuVZ\,Z3;, =
Z12YuZ,X13. Thus we obtain

SR @IV @ J) 25
=R RI®IRNZuYuZHXi3(J®JI®J®J)2]
= (J®J®J ®J)Zu(E33 Y023 Z5 (25 X1323) (T © T © T ® J).
Since (J®J)Z =Z*(J®J), we have
JRIRIRNZu=Z3(JRJRJ®J).
Moreover, since
X=(JRHNZWZJ®J),
Y=UQNHW*(JR®J),

we find that
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IPXZR=(®IQJNW;3(/1J®1),
IRV =101 )Wu(1®J®1®J).
From these identities, it follows that
J®J®J®J)Zuy(ZRYuZNZ5H(ZRX 2RI J)

= Z3*4 W24Z34 Wis = w.

The last part of this theorem results from [Proposition 4.13. ]

As a direct consequence of [Theorem 4.15, we immediately obtain the proposition
that follows. It is merely a rephrase of a part of Proposition 8.14 and Proposition 8.19

n [BS|.

ProposITION 4.16. (1) For any ze.#' and be ', put n(z):=Z*(z®1)Z
n'(b) :=1Q®b. Then n:.Ml' — N and ' : M' — N are Hopf-von Neumann algebra
morphisms, i.e., we have

—

(r®m)0d'(z) = (") on(z),

(7' @ ') 00'(b) = (0" o n'(b).
(2) Set #:=Z{,X14Z15. Then R is a unitary in N One also has

(id ® (67 ))(#) = B, (67)' @ id)(R) = Ri3ns.

For any xe N, we have oo (0") (x)=R0") (x)%*. Moreover, it satisfies the
quantum Yang-Baxter equation: R12R\3 K23 = R R13R1>.

—

We now summarize the quasi Woronowicz algebraic structure of D(W). The Kac-

—_

Takesaki operator W' of D(W) is, by definition, 2w 232, From [Theorem 4.11,
it follows that

(QDI) Wy = WBZI*Z WoaZ 5.

We denote the modular operator and the modular conjugation of D( W)on$H®H by
A and J-, respectively. Since the Haar measure of D(W) is h ® o R and we need to

represent everything on $ ® 9, we have (cf. [Corollary 4.4)

Ay =AQJA, Jyr=J®J.

—_

The antipode R of D/(W ) is then given by

—

(QD2) RV(X)=Jy X"y, (Xe).

By the definition of t;", it is easy to see that the canonical implementation of 7;" on
S9RHis H' @ H". Set Hy := H® H. By [MN, Proposition 3.6], the deformation
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automorphism {r/{T } of the dual D/(W ) is given by
(QD3) oV =AdH" = Ad(H" @ H").

Let A, stand for the modular operator of W ) on H®H. From [MN, Lemma
2.14] a/l:ld Mheorem 3.3, it follows that A is nothing but H, = H® H. Thus one

has ¢"' =t,. The modular conjugation J; of D/(W ) has already been given in
[Proposition 4.13. We denote by Q,/V the analytic generator of the Radon Nikodym
derivative (D(h' o R"): Dh’"),, which is a one-parameter unitary group. Namely,
(D(h" o RV):Dh" ),=Q0".. By [MN, Lemma 2.14] again, we have A".=J, Q0 "J H".
Hence we obtain

(QD4) O =Z*(JA™"JH" ® A"H")Z.
We define two homomorphisms o : .# — A" and f: .4 — AN by

wa):=Z"1Q@a)Z, py):=yQ1 (ac.,ye.d).

By virtue of [Corollary 4.12, .4 is the g-strong* closure of the linear span of elements of
the form f(y)a(a) (ae .4,y e 4#). Recall that the unitary Z is the canonical imple-
mentation of the inner automorphism Ad W* of 4". So Z commutes with J,. From
this, one easily finds that both o and f “commute” with the antipode R, i.e.,

(QDS) ﬁooc:ocoR, ﬁoﬂ:ﬁof{

By [MN, Corollary 3.6.1], H, commutes with W. We also have [H,,u® u] =0,
where u=JJ. Consequently, Z commutes with H . It is now plain to see that

—

(QDo6) ) oo=0o0t1, TV off=fo1,.

With the notation in [Proposition 4.16 it can be verified that

a(a) = Jyn'(Jal) v, B(y) = Jyn(JyJ)y.

From this and the definition of the coproduct (9”)’, it follows that

—

(QD7) (2@%)0d=0" ox, (BRRI=0" of.

Therefore we have shown that the maps o : .# — A and f: .4/ — A" defined above are
coinvolutive Hopf-von Neumann algebra morphisms.

Finally, we examine the dual Haar measure 2. As before, we denote the Fourier
representation of D(W) by #. Let @, @ be in .4, which are L?(h")-bounded. We
use the notation 7 -(@) etc., instead of #(@), for the corresponding L>-vector in  ® 9.
Then, by definition, one has

(HMI) h' (7 (@) 7y (P)) = (7 (P) |17,4-(O)).

If ® and @ are of the form O = 0 Q w, ® = ¢ ® Y for some 0, p, w, Y € B(H),, then, as
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shown in the proof of |[Corollary 4.12] we have

7.(8) = BR(0))u(n(w)),  7i(®) = BR(4))x(7(Y)).

Moreover, if 0, ¢ are L2(h)-bounded and if w,y are L2(h o R)-bounded, then 6 @ w and
¢ @y are certainly L?(h")-bounded, and we easily find that

14 (0) = 1(0) @ flj, g(@), 74 (P) = 7(h) ® 1y, (W),

where 7; () stands for the vector in $ corresponding to the L*(h o R)-bounded
element . Under these circumstances, (HM1) can be written as

—

I ((w())" B(R(0) 7(4))u2(W))) = () 7(0)) (0 2 (V) |17 2()).

In the meantime, we have

((9)17(0)) = h(R(0)" (), (0 D)o 2(@)) = 1 (R 4 (@) Ry (W),

where /' is the Haar measure for the commutant W' of W, and 7;_ is the Fourier
representation of (W)°. (Remark that the dual of (W)° is W'). Therefore, we get

(HM2) ¥ (a7 () B(0) 7(9) (7)) = B (), () 5, 2 (0))B(R(0) " 7()).

In some sense, this identity characterizes the Haar measure 4" as we see in the next
proposition.

REMARK. In the above discussion, if @ and y are, in addition, analytic with respect
to the deformation automorphism 7, then one can easily verify that, for example,

7y, p(@) = JR(wo t )" T = Jtia(n(w))*J.

Thus we have

—

I (o)) BR(O) A)H(EW))) = (e ()72 (R(0)) Vh(R(0) 2()):

ProposITION 4.17. If the original quasi Woronowicz algebra W is compact, then
there exists a unique faithful normal conditional expectation E from N~ onto (M) such
that

/1/ h o ﬂ_

Proor. If W is compact, then 0 =1. From [MN, Lemma 2.14], it then fol-
lows that o = 7. Since o' =7, it results from [QDG6) that ¢"'off = ﬁooh This
implies that, identifying f(.#) with .4, the modular automorpshim o leaves ,%A
globally invariant and that its restriction to A equals ah. Moreover, from (HM2), w
find that the restriction of /' to B(M) = A is semifinite. Therefore, by [H2] and [T] -
there exists a unique faithful normal conditional expectation E from ./ onto f(.#) with

the desired property. O
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