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Abstract. In this article the nonlinear equation of motion of vibrating membrane

utt ÿ divf

�������������������

1� j`uj2
q ÿ1

`ug � 0 is discussed in the space of functions having bounded

variation. Approximate solutions are constructed in Rothe's method. It is proved that

a subsequence of them converges to a function u and that, if u satis®es the energy

conservation law, then it is a weak solution in the space of functions having bounded

variation. The main tool is varifold convergence.

1. Introduction.

Let W be a bounded domain in R
n with Lipschitz continuous boundary qW. Given

a function u in W, we regard its graph as a membrane in W� R. Longitudinal vibra-

tions of this membrane is described by the following equation:

q2u

qt2
�t; x� ÿ

X

n

j�1

q

qxj
�1� j`u�t; x�j2�ÿ1=2 qu

qxj

� �

� 0; x A W;�1:1�

u�0; x� � u0�x�;
qu

qt
�0; x� � v0�x�; x A W;�1:2�

u�t; x� � 0; x A qW:�1:3�

In [4] D. Fujiwara and S. Takakuwa have investigated this equation in the class of

functions having bounded variation. A function u A L1�W� is said to have bounded

variation in W if

sup

�

W

u div g dx; g � �g1; . . . ; gn� A C1
0 �W;R

n�; jgjU 1

� �

< y

(see [2], [5], [12]). The set of all functions in L1�W� having bounded variation is

denoted by BV�W�, and a member of BV�W� is often called a BV function. For each

u A BV�W� there are a Radon measure m and a m-measurable function n � �n1; . . . ; nn�

with jnj � 1; m-a.e., such that

�

W

u div g dx � ÿ

�

W

g � n dm:�1:4�
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We usually use such notations as m � jDuj and mLn � Du. BV�W� is a Banach space

equipped with the norm kukBV � kukL1�W� � jDuj�W�. Equation (1.1) does not always

have a classical solution globally in time (in [6 ] it is proved that in the two dimensional

case (1.1) does not always have a classical solution globally in time even though

the initial data is smooth and small). Thus a time global solution should be found in

a weak sense. When a C2 class function u satis®es (1.1), multiplying ut to (1.1) and

integrating with respect to x, we obtain the energy conservation law

�

W

jut�t; x�j
2
dx� J�u�t; ��� � const:;

where J is the area functional J�u� �
�

W

�������������������

1� j`uj2
q

dx. J is ®nite for u A W 1;1�W�, and

thus this space is expected to be the appropriate function space for weak solutions to

(1.1). But it is not re¯exive and thus does not guarantee the weak compactness of

bounded sets. While, for a bounded set B in BV�W�, there exist a subsequence fujgH

B and a function u A BV�W� such that uj ! u strongly in L1�W� and Duj * Du in the

sense of distributions. Thus BV�W� satis®es a kind of compactness for bounded sets.

These facts suggest that this equation should be treated in the class of BV functions.

The graph of a BV function is possibly broken. Thus the area functional should

measure not only the graph but the broken part. It is extended to BV�W� in the

following manner:

J�u� � sup

�

W

�g0 � u div g� dx; �g0; g� A C1�W;R
n�1�; jg0j

2 � jgj2 U 1

� �

:

It is still convex in BV�W� and satis®es that, if fujg converges strongly in L1
loc�W�, then

lim inf j!y J�uj�V J�u� ([5] Theorem 14.2). We set U � W� R. For u A BV�W�, we

de®ne Eu HU by

Eu � f�x; y�; x A W; y > u�x�g:

It is a set of ®nite perimeter in U, that is, wEu
A BV�U�. Hence, for wEu

, there exist m

and n as in (1.4), which are in this article denoted by mEu
and nEu

, respectively. It holds

that

J�u� � mEu
�U��1:5�

([5] Theorem 14.6). The measure mEu
is characterized by the reduced boundary q�Eu,

which is de®ned by

q�Eu �

�

z A U ; mEu
�Br�z�� > 0 for all r > 0;

nEu
�z� � lim

r&0

�

Br�z�
nEu

dmEu

mEu
�Br�z��

; and jnEu
�z�j � 1

�

;

where Br�z� denotes the closed ball with center z, radius r, ([2], [5], [12]). It is

countably n-recti®able and satis®es

mEu
� H

n
Lq�Eu;�1:6�

K. Kikuchi742



where H
n denotes the n-dimensional Hausdor¨ measure. In fact, for mEu

-a.e. z A q�Eu,

the approximate tangent space Tz�q
�Eu� exists and is given by

Tz�q
�Eu� � fz A R

n�1
; z � nEu

� 0g:�1:7�

Moreover nEu
is the inward pointing unit normal for Eu in a generalized sense ([12]

Theorem 14.3, [2] Theorem 2 of Section 5.7.3).

Each BV function u has its trace gu (see [2] or [5]). g is a bounded operator from

BV�W� to L1�qW� such that, for each g A C1�W;R
n�,

�
W

u div g dx � ÿ

�
W

g �Du�

�
qW

gug �~n dHnÿ1;�1:8�

where ~n is the outer unit normal to qW. Boundary condition (1.3) is regarded as gu � 0.

In this article we call a weak solution in the class of functions having bounded

variation a BV solution. In [4] it is asserted that a sequence of approximate solutions to

(1.1)±(1.3) constructed by Ritz-Galerkin method converges to a function u A Ly

loc��ÿy;y�;

L2�W�VBV�W��, and that, if u satis®es the energy conservation law and one more

condition holds, it is a ``BV solution'' to (1.1). However there are several problems

in their theory. First they require high regularity for u0. Second there is a technical

condition which is closely related to their tool ``varifold''. The last and the most serious

problem is that their formulation of a BV solution is not appropriate. Their BV solu-

tion is not suitable for calling a solution. The purpose of this article is to dissolve these

problems and reestablish their result (Theorem 4.1). The ®rst problem is caused by

the way of approximation. Ritz-Galerkin method does not seem to be appropriate in

treating BV functions. In this article we employ the method of semidiscretization in

time variable. This approximating method is often called Rothe's method and at ®rst

introduced to construct weak solutions to parabolic equations ([11]). However many

hyperbolic equations are also solved by this method (see [10] and references cited there).

Thanks to this method we can treat our problem for u0�x� A L2�W�VBV�W� with

gu0 � 0 and v0�x� A L2�W�. The technical condition mentioned in the second problem is

needed for controlling BV functions in terms of varifolds. Varifolds are regarded as a

kind of generalized surfaces (the theory of general varifold is precisely discussed in [12]

Chapter 8). In [4] each BV function u is identi®ed with its graph (or q�Eu, more

precisely) and regarded as a varifold in U � W� R. It is proved that a subsequence of

varifolds corresponding to approximate solutions converges under the topology of the

space of varifolds. The above condition is imposed on this limit varifold. In this article

we follow their strategy, but we can remove this condition by introducing ``orientations''

for varifolds. Let G0 be the collection of all oriented n-dimensional vector subspaces of

R
n�1. Each element of G0 is characterized by an n-vector x which is represented as

x � t1 5 � � � 5 tn, where ft1; . . . ; tng is an orthonormal basis of this element. Thus G0

is often identi®ed with the set of all simple n-vectors having unit norm ([3] 1.6.2). We

say V an oriented n-varifold in U if V is a Radon measure on U � G0. We associate

each BV function u with an oriented varifold V in the following way. Let x�z� be the

orientation of q�Eu which agrees with the inward pointing unit normal nEu
�z�. More

precisely x�z� is an n-vector valued H
n-measurable function on q�Eu such that, for mEu

-
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a.e. z A q�
Eu, x�z� � t1 5 � � �5 tn and x�z�5 nEu

�z� � e1 5 � � �5 en�1, where ft1; . . . ; tng

is an orthonormal basis of the approximate tangent space Tz�q
�
Eu� and fe1; . . . ; en�1g

is the standard basis of R
n�1. Now we de®ne a continuous linear functional on

C 0
0 �U � G0� by

L�b� �

�

q �
Eu

b�z; x�z�� dHn �b A C
0
0 �U � G0��:

It follows from the Riesz representation theorem (see, for example, [12] Theorem 4.1)

that there exists a Radon measure V on U � G0 (thus an oriented varifold V in U ) such

that

L�b� �

�

U�G0

b�z; x� dV�z; x�:

In this article we write

V � v��u�:

For each oriented n-varifold V in U a Radon measure mV on U is de®ned by

mV �A� � V�A� G0� for a Borel set AHU :

When V � v��u�, it immediately follows from the de®nition of v��u� that

mV � mEu
:�1:9�

Now we can associate each BV function u with an oriented varifold v��u�. It is the

same as in [4] that a subsequence of varifolds corresponding to approximate solutions

converges in the space of varifolds. We achieve our purpose by investigating the

structure of the limit varifold. The key point is whether it satis®es a relation such as

(1.9). This varifold convergence method is very useful. There is another application of

this method to a theory of parabolic equations ([7]).

In Section 2 we present a suitable formulation of a BV solution. Readers possibly

feel our de®nition fairly weak. Since the area functional J is convex, we can regard

(1.1) as an evolution equation utt � qJ�u� C 0. In the appendix we show that, if qW is

of C2 class, our de®nition of a BV solution is equivalent to the de®nition of a weak

solution to utt � qJ�u� C 0. Abstract theories of hyperbolic evolution equations are

discussed by several authors (for example [8]). However it seems that there are few

works on abstract hyperbolic evolution equations in the space of functions having

bounded variations.

2. De®nition of a BV solution.

In the original physical meaning Equation (1.1) is derived as the Euler-Lagrange

equation of the action integral

�

T

0

�

W

jut�t; x�j
2
dxÿ J�u�

� �

dt �J is the area functional; T > 0�:

However the area functional J is not always GaÃteaux di¨erentiable on BV�W�. Thus
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we cannot calculate �d=de�J�u� ej�je�0 directly. This is a variation of the area of the

graph of u (or q�Eu, more precisely). Usually variations of areas of surfaces in a

domain U are calculated by the use of a one parameter family of di¨eomorphisms of U

(see, for example, [12] Section 9). In our case the domain U is W� R, and, since the

equation describes the longitudinal vibration, we may suppose that each di¨eomorphism

of the one parameter family is written as U C �x; y� 7! �x; y� ej�x; y�� A U , where e is

the parameter and j is a given function on U.

Taking account of these facts, we present a de®nition of a BV solution to (1.1)±(1.3)

in the following way. Let T be any positive number.

Definition 1. A function u is said to be a BV solution to (1.1)±(1.3) in �0;T� �W

if and only if

i) u A Ly��0;T�;BV�W��, ut A L2��0;T� �W�

ii) u�0; x� � u0�x�

iii) gu � 0 for L
1-a.e. t A �0;T�

iv) for any j A C 1
0 ��0;T� �U�,

�T

0

�

ÿ

�

W

ut�jt�t; x; u� � jy�t; x; u�ut� dx�
d

de
J�u� ej�t; x; u��je�0

�

dt

�

�

W

v0�x�j�0; x; u0�x�� dx:

Remark. The second relation of i) implies u A C0;1=2��0;T�;L1�W��. Hence

s-limt&0 u�t; �� exists in L1�W� and then we de®ne u�0; �� by this limit. Further, if

u�0; �� A L2�W�, then u A C0;1=2��0;T�;L2�W��.

First of all we should justify De®nition 1. We should show that d=de �

J�u� ej�x; u��je�0 describes the variation of the area of q�Eu and that it exists

when j A C1
0 �U�.

Let u be a function in BV�W� and let j be a function in C1�U�. Suppose that all

®rst derivatives of j are bounded. Here we do not assume the boundedness of j itself.

Let Fe;j
: U ! U denote the one parameter family of di¨eomorphisms de®ned by

Fe;j�x; y� � �x; y� ej�x; y��. Then the variation of the area is given by

d

de
H

n�Fe;j�q�Eu��je�0:

Note that the area formula (see [2], [12]) implies, for each n-recti®able set M with

H
n�M� < y,

H
n�Fe;j�M�� �

�

M

JSF
e;j dHn;�2:1�

where S � TzM and

JSF
e;j�x� �

�������������������������������������������������������

det��dFe;j
z jS�

� � �dFe;j
z jS��

q

:

It immediately follows from (2.1) that, if Hn�M� � 0, then H
n�Fe;j�M�� � 0. It also
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follows from (2.1) that, when M � M1 UM2 with M1 VM2 � q, then

H
n�Fe;j�M1 UM2�� � H

n�Fe;j�M1�� �H
n�Fe;j�M2��:�2:2�

First we claim

Theorem 2.1. If e is su½ciently small, then J�u� ej�x; u�� � H
n�Fe;j�q�Eu��.

Proof. By (1.5) and (1.6) we have

J�u� ej�x; u�� � H
n�q�Eu�ej�x;u��:

When e is su½ciently small, y� ej�x; y� is monotone increasing with respect to y.

Thus y� ej�x; y� > u�x� � ej�x; u�x�� if and only if y > u�x�. This implies Eu�ej�x;u� �

F e;j�Eu�. In particular, we obtain

H
n�q�Eu�ej�x;u�� � H

n�q�Fe;j�Eu��:

Let q� denote the measure theoretic boundary (for the de®nition, refer to [2] Section

5.8). In [2] Lemma 1 of Section 5.8 it is proved that, for each set E of locally ®nite

perimeter, q�EH q�E and

H
n�q�Enq

�E� � 0:�2:3�

Thus we have

H
n�q�Fe;j�Eu�� � H

n�q�F
e;j�Eu��:

Generally, for a set E of locally ®nite perimeter in U and a di¨eomorphism F : U ! U

which satis®es

C0 U det
qF

qz

�

�

�

�

�

�

�

�

UC1

C2jzÿ z 0jU jF�z� ÿF�z 0�jUC3jzÿ z 0j

8

>

<

>

:

�2:4�

with positive constants Cj � j � 0; 1; 2; 3�, it holds that q�F�E� � F�q�E�. When e is

su½ciently small, Fe;j satis®es (2.4) since ®rst derivatives of j are bounded. Hence we

have

H
n�q�F

e;j�Eu�� � H
n�Fe;j�q�Eu��:

By (2.2) and (2.3) we have

H
n�Fe;j�q�Eu�� � H

n�Fe;j�q�Eu�� �H
n�Fe;j�q�Eunq

�Eu�� � H
n�Fe;j�q�Eu��:

Thus the assertion is veri®ed. r

Let z be the point at which the approximate tangent space for q�Eu exists. Let

ft1; . . . ; tng be an orthonormal basis of S � Tz�q
�Eu�. Put C 0 � �t1; . . . ; tn� and C �

�t1; . . . ; tn; nEu
�z��. By (1.7) we have detC � 1. Then dFe;j

z jS � �dFe;j
z �C 0 and thus

JSF
e;j�z� �

������������������������������������������������������������

det� tC 0�dFe;j
z �� � �dFe;j

z �C 0�
q

:
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Since dFe;j
z �

I 0

e t`xj 1� ejy

� �

, the �i; j�-element of tC 0�dFe;j
z �� � �dFe;j

z �C 0 is

tti
t�dFe;j

z ��dFe;j
z �tj � ti � tj � e�tn�1

i `xj � �tj� 0

� tn�1
j `xj � �ti� 0 � tn�1

i tn�1
j � 2tn�1

i tn�1
j jy� �O�e2�:

Noting ti � tj � dij, we have by the use of relations det�I � eA� � 1� etrA�O�e2� and
�����������

1� x
p

� 1� x=2�O�x2�

JSF
e;j � 1� efjn 0Eu

j2jy ÿ �`xj � n 0Eu
�nn�1

Eu
g �O�e2�:

Thereby we obtain the following theorem by Theorem 2.1 and (2.1).

Theorem 2.2. Let u A BV�W� and j A C 1�U�. Suppose that all ®rst derivatives of

j are bounded. Then �d=de�J�u� ej�x; u��je�0 exists and it holds that

d

de
J�u� ej�x; u��je�0 �

�

q �Eu

�ÿ�`xj � n 0Eu
�nn�1

Eu
� jn 0Eu

j2jy� dHn:

In [4] test functions j depend only on x variables. Hence in their de®nition of a

BV solution the second term of the right hand side of the above disappears. This is not

appropriate because this term describes the variation of the area of the broken part of

the graph.

3. Approximate solutions and their limit.

In this section we construct approximate solutions with Rothe's method, prove that

this approximating sequence converges to a function u, and investigate its properties in

terms of varifolds. In Rothe's method we should solve elliptic equations with respect to

space variables. Here we solve them by a direct variational method.

Suppose that u0 A L2�W�VBV�W� with gu0 � 0 and v0 A L2�W�. For a positive

number h we construct a sequence fulgyl�ÿ1 in the following way. For l � 0 we let u0
be as above and for l � ÿ1 we set uÿ1 � u0 ÿ hv0. For lV 1 it is usual to de®ne ul as

the minimizer of the functional

Fl�v� �
1

2

�

W

jvÿ 2ulÿ1 � ulÿ2j2
h2

dx� J�v� �J is the area functional�

in the class fv A L2�W�VBV�W�; gv � 0g. However the existence of the minimizer of

Fl in this class is not assured. Then we introduce another sequence of functionals in

L2�W�VBV�W�:

Gl�v� �
1

2

�

W

jvÿ 2ulÿ1 � ulÿ2j2
h2

dx� J�v� � kgvkL1�qW� �v A L2�W�VBV�W��:

First we remark the following fact.

Proposition 3.1. Suppose that qW is of C 1 class. Then it holds that

inffFl�v�; v A L2�W�VBV�W�; gv � 0g � inffGl�v�; v A L2�W�VBV�W�g:
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Proof. It is su½cient to show that the left hand side is not greater than the right

hand side.

Let v be a function in L2�W�VBV�W�. First we suppose that gv A L2�qW�. In the

same way as in the proof of [5] Theorem 2.16 (refer also to Remark 2.17) we can obtain

the following: for any e > 0, there exists a function we A L2�W�VW 1;1�W� such that

gwe � gv;�3:1�

kwekL2�W� U ekgvk
L2�qW�;�3:2�

and
�

W

j`wej dxU �1� e�kgvk
L1�qW�:�3:3�

Then we put ve � vÿ we. By (3.1) gve � gvÿ gwe � 0. By (3.3) we have

J�ve�U J�v� �

�

W

j`wej dxU J�v� � �1� e�kgvk
L1�qW�:

Thus, using (3.2), we have

Fl�ve�U
1

2

�

W

jvÿ 2ulÿ1 � ulÿ2j
2

h2
dx�

e

2

�

W

jvÿ 2ulÿ1 � ulÿ2j
2

h2
dx�3:4�

�
1

2h2
1�

1

e

� �
�

W

jwej
2
dx� J�v� � �1� e�kgvk

L1�qW�

UGl�v� �
e

2

�

W

jvÿ 2ulÿ1 � ulÿ2j
2

h2
dx

�
e�1� e�

2h2
kgvk2

L2�qW� � ekgvk
L1�qW�:

When v is an arbitrary function in L2�W�VBV�W�, we set vR�x� � R for v�x�VR,

� v�x� for jv�x�j < R, � ÿR for v�x�UÿR, where R is a positive number. Then vR is

a function of L2�W�VBV�W� with gvR A L2�qW� and satis®es Gl�vR� ! Gl�v� as R ! y.

Applying (3.4) for vR, we obtain

Fl��vR�e�UGl�v� � �Gl�vR� ÿ Gl�v�� �
e

2

�

W

jvR ÿ 2ulÿ1 � ulÿ2j
2

h2
dx

�
e�1� e�

2h2
kgvRk

2
L2�qW� � ekgvRkL1�qW�:

Since e and R are arbitrary, we have the conclusion. r

Remark. The assumption that qW is of C 1 class is needed for the proof of (3.3).

The existence of the minimizer of Gl can be obtained in the same way as in the

proof of [5] Theorem 14.5. Note that in the proof of this fact qW is assumed to be only

Lipschitz continuous. Taking account of Proposition 3.1, we de®ne ul as the minimizer

of Gl.
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The next lemma follows from the convexity of the functional J�v� � kgvkL1�qW� and

the minimality of each ul ([9] Lemma 4.1).

Lemma 3.2 (Energy inequality).

1

2

�
W

jul ÿ ulÿ1j
2

h2
dx� J�ul� � kgulkL1�qW� U

1

2

�
W

jv0j
2
dx� J�u0�:

Next we de®ne approximate solutions uh�t; x� and uh�t; x� for �t; x� A �ÿh;y� �W

as follows: for �lÿ 1�h < tU lh

uh�t; x� �
tÿ �lÿ 1�h

h
ul�x� �

lhÿ t

h
ulÿ1�x�

and

uh�t; x� � ul�x�:

Then Lemma 3.2 shows

1

2

�
W

juh
t �t; x�j

2
dx� J�uh�t; ��� � kguh�t; ��kL1�qW� U

1

2

�
W

jv0j
2
dx� J�u0��3:5�

for each t A 6y

l�0
��lÿ 1�h; lh�.

Theorem 3.3. It holds that

1) fkuh
t kLy��0;y�;L2�W��g is uniformly bounded with respect to h

2) for any T > 0, fkuhkLy��0;T�;L2�W�VBV�W��g is uniformly bounded with respect to h

3) for any T > 0, fkuhkLy��0;T�;L2�W�VBV�W��g is uniformly bounded with respect to h.

Then there exist a sequence fhjg with hj ! 0 as j ! y and a function u such that

4) for any T > 0, uhj converges to u as j ! y weakly star in Ly��0;T�;L2�W��

5) u
hj
t converges to ut as j ! y weakly star in Ly��0;y�;L2�W��

6) for any T > 0, uhj converges to u as j ! y strongly in L p��0;T� �W� for each

1U p < 1�

7) for any T > 0, uhj converges to u as j ! y strongly in L p��0;T� �W� for each

1U p < 1�

8) u A Ly��0;y�;BV�W��

9) for L
1-a.e. t A �0;y�, Duhj �t; �� converges to Du�t; �� as j ! y in the sense of

distributions

10) s-limt&0 u�t� � u0 in L2�W�.

Proof. Assertion 1) immediately follows from (3.5). Moreover it also follows

that fkJ�uh�t; ���kLy�ÿh;y�g is uniformly bounded with respect to h. Since J is convex,

we have

J�uh�t; ���U
tÿ �lÿ 1�h

h
J�uh�t; ��� �

lhÿ t

h
J�uh�tÿ h; ���:

Thus fkJ�uh�t; ���kLy�0;y�g is also uniformly bounded with respect to h. Then Assertion

2) follows from Assertion 1) because
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uh�t; x� � u0�x� �

� t

0

uh
t �s; x� ds:

In the same way as in the proof of [9] Lemma 4.2 we can obtain

kuh ÿ uhk2Ly��0;T�;L2�W�� ! 0 as h ! 0:�3:6�

Using this fact, we obtain Assertion 3) by Assertion 2). Assertions 4) and 5) are direct

consequences of Assertions 3) and 1), respectively. By Sobolev's theorem BV�W�H

L p�W� compactly for each 1U p < 1�. Then in the same way as in the proof of [4]

Proposition 5.1 we obtain Assertions 6) and 7). The limits in 6) and 7) are the same

because of (3.6). Assertion 8) immediately follows from 3), 4), and 7). Assertion 9)

follows from (1.8) and 7). Assertion 10) is obtained in the same way as in the proof of

[9] Theorem 4.1. r

Remark. In the sequel fuhjg and fuhjg are often denoted by fuhg and fuhg for

simplicity.

Theorem 3.3, 5) and 8) imply i) of De®nition 1 and 10) implies ii). Thus, if we

show iii) and iv) of De®nition 1, then u is a BV solution. In the next section we prove

them with the assumption that u satis®es the energy conservation law. In this section we

investigate the properties of u which hold without assuming the energy conservation law.

Since ul is the minimizer of Gl�v�, we have, for any j A C1
0 �U�,

0 �
d

de
Gl�ul � ej�x; ul��je�0

�

�

W

ul�x� ÿ 2ulÿ1�x� � ulÿ2�x�

h2
j�x; ul� dx�

d

de
J�ul � ej�x; ul��je�0:

By Theorem 2.2 we have

d

de
J�ul � ej�x; ul��je�0 �

�

q �El

�ÿ�`xj � n 0El
�nn�1

El
� jn 0El

j2jy� dH
n;

where El � Eul . Then, noting that, for �lÿ 1�h < t < lh, uh
t �t; x� � �ul�x� ÿ ulÿ1�x��=h,

we have for any T > 0 and for any j A C 1
0 ��0;T� �U�

�T

0

�
�

W

uh
t �t; x� ÿ uh

t �tÿ h; x�

h
j�t; x; uh�t; x�� dx�3:7�

�

�

q �E h
t

�ÿ�`xj � n 0
E h
t
�nn�1

E h
t

� jn 0
E h
t
j2jy� dH

n

�

dt � 0;

where E h
t � Eu h�t; ��. In the sequel notation Et � Eu�t; �� is also used. By the use of this

notation and by Theorem 2.2 the equality of iv) of De®nition 1 is rewritten as

�T

0

�

ÿ

�

W

ut�jt�t; x; u� � jy�t; x; u�ut� dx�

�

q �Et

�ÿ�`xj � n 0Et
�nn�1

Et
�3:8�

� jn 0Et
j2jy� dH

n

�

dt �

�

W

v0�x�j�0; x; u0�x�� dx:
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Now, for L
1-a.e. t, we associate uh�t; �� with oriented varifolds and write V h

t �

v��u
h�t; ���. For each x A G0 there exists a unique vector n such that x5 n � e1 5 � � �

5 en�1. This map x 7! n � n�x� is a homeomorphism from G0 to the n-dimensional

unit sphere S n. For each v A BV�W� we have by the de®nition of v��v� that, for any

b A C 0
0 �U � G0�,

�

U�G0

b�z; x� dv��v� �

�

q �Ev

b�z; nÿ1�nEv
�z��� dHn

:�3:9�

Note that n�x� is the unit normal to the vector subspace associated with x and then

spt v��v�HU � fx A G0; n
n�1�x�V 0g. Let j�z� � j�x; y� be an arbitrary function in

C 1
0 �U�. Applying (3.9) to uh and ÿ�`xj � n 0�x��nn�1�x� � jn 0�x�j2jy for v and b�z; x�,

respectively, we obtain

�

q �E h
t

�ÿ�`xj � n 0
E h
t
�nn�1

E h
t

� jn 0
E h
t
j2jy� dH

n�3:10�

�

�

U�G0

�ÿ�`xj � n 0�x��nn�1�x� � jn 0�x�j2jy� dV
h
t �z; x�:

By Theorem 3.3 3) there exists a constant M which is independent of h such that

ess: sup
t>0

�

W

��������������������������������

1� jDuh�t; x�j2
q

UM:�3:11�

It follows from (1.5) and (1.9) that V h
t �U � G0��� mV h

t
�U�� � J�uh�. Then (3.11)

implies

ess: sup
t>0

�

U�G0

b�z; x� dV h
t �z; x�

�

�

�

�

�

�

�

�

UM supjbj�3:12�

for any b A C0
0 �U � G0�. By the use of (3.12) we obtain the following theorem in the

same way as in the proof of [4] Proposition 4.3.

Theorem 3.4. There exists a subsequence of fV h
t g (still denoted by fV h

t g) and a one

parameter family of oriented varifolds Vt in U � W� R, t A �0;y�, such that, for each

c�t� A L1�0;y� and b A C0
0 �U � G0�,

lim
h!0

�

y

0

c�t�

�

U�G0

b�z; x� dV h
t �z; x� dt �

�

y

0

c�t�

�

U�G0

b�z; x� dVt�z; x� dt:

The following lemma corresponds to [4] Proposition 6.2. Proof is the same as that

of this proposition.

Lemma 3.5. For L
1-a.e. t A �0;y�,

1) lim suph!0 mV h
t
�o�V mVt

�o� for each open set o in U

2) lim infh!0 mV h
t
�K�U mVt

�K� for each compact set K in U.

From [1] Theorem 10 of page 14 there exists a probability Radon measure h
�z�
Vt

on

G0 for mVt
-a.e. z A U such that
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�

U�G0

b�z; x� dVt �

�

U

�

G0

b�z; x� dh
�z�
Vt

� �

dmVt
�b A C0

0 �U � G0��:�3:13�

The following lemma corresponds to [4] Propositions 6.4 and 6.5. However, owing to

introducing orientations in varifolds, we can simplify the proof and re®ne the result.

Lemma 3.6.
�

U
g�z�nEt

�z� dmEt
�
�

U
g�z�

�

G0
n�x� dh

�z�
Vt

� �

dmVt
for any g A C0

0 �U ;R
n�1�,

for L
1-a.e. t A �0;y�.

Proof. For any j A C 0
0 �U�

�

U

�wE h
t
�z� ÿ wEt

�z��j�z� dz

�

�

�

�

�

�

�

�

U

�

W

�u h�t;x�

u�t;x�

j�x; y� dy

 !

dx

�

�

�

�

�

�

�

�

�

�

U supjjj

�

W

juh�t; x� ÿ u�t; x�j dx:

Since by Theorem 3.3 7) uh converges to u strongly in L1�W� for L1-a.e. t, we have wE h
t

converges to wEt
�z� in the sense of distributions in U for L

1-a.e. t.

For any g A C 1
0 �U ;R

n�1�

�

U

g�z�nEt
�z� dmEt

�

�

U

wEt
�z� div g�z� dz � lim

h!0

�

U

wE h
t
�z� div g�z� dz

� lim
h!0

�

U

g�z�nE h
t
�z� dmE h

t
� lim

h!0

�

U�G0

g�z�n�x� dV h
t �z; x�

�

�

U�G0

g�z�n�x� dVt�z; x�:

Since C1
0 �U ;R

n�1� is dense in C0
0 �U ;R

n�1�, the conclusion follows. r

Now we sum up the properties of the limit varifold Vt. This theorem is closely

related to [4] Proposition 6.3 and Theorem 2.

Theorem 3.7. For L
1-a.e. t A �0;y�,

1) mVt
�A�V mEt

�A� for each Borel set AHU

2) mVt
�A� �

�

A
DmEt

mVt
�z� dmEt

� �mVt
LZ��A� for AHU , where DmEt

mVt
is the

derivative of mVt
with respect to mEt

and Z is the mEt
-null set de®ned by Z �

fz;DmEt
mVt

�z� � yg

3)
�

G0
n�x� dh

�z�
Vt

� 0 for mVt
LZ-a.e. z

4) spt h
�z�
Vt

H irr�G0� for mVt
LZ-a.e. z, where irr�G0� � fS; nn�1�x� � 0g.

Proof. 1) First we consider the case that A is an open set. By Lemma 3.6 we

have, for any g A C0
0 �A;R

n�1�,
�

A

g�z�nEt
�z� dmEt

�

�

�

�

�

�

�

�

U

�

A

jg�z�j dmVt
U supjgjmVt

�A�:

Taking supremum with respect to g A C0
0 �A;R

n�1� with jgjU 1, we obtain mEt
�A�U

mVt
�A�.
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Let A be any Borel set. For each open set o with AHo, mEt
�A�U mEt

�o�U

mVt
�o�. Thus, since infAHo mVt

�o� � mVt
�A�, we have mEt

�A�U mVt
�A�.

2) It is the direct consequence of the di¨erentiation theory for Radon measures

(see, for example, [12] Theorem 4.7).

3) By Lemma 3.6 and Assertion 2) we have, for any g�z� A C 0
0 �U ;R

n�1�,

0 �

�

Z

g�z�nEt
�z� dmEt

�

�

Z

g�z�

�

G0

n�x� dh
�z�
Vt

� �

dmVt
:

This shows Assertion 3).

4) By 3), in particular, we have
�

G0
nn�1�x� dh

�z�
Vt

� 0 for mVt
LZ-a.e. z. For each h,

sptV h
t is contained in U � fx A G0; n

n�1�x�V 0g. Then sptVt is also contained in this

set. Thus Assertion 4) immediately follows. r

4. Main Theorem.

Theorem 4.1. Let T be a positive number. Suppose that u0 A L2�W�VBV�W� with

gu0 � 0 and v0 A L2�W�. If u as in Theorem 3.3 satis®es the energy conservation law

1

2

�

W

jut�t; x�j
2
dx� J�u�t; ��� �

1

2

�

W

jv0�x�j
2
dx� J�u0��4:1�

for L
1-a.e. t A �0;T�, then u is a BV solution to (1.1)±(1.3) in �0;T� �W.

Proof. 1st step. By Theorem 3.3 5) and 7) we have, for L
1-a.e. t A �0;T�,

lim inf
h&0

�

W

juh
t �t; x�j

2
dxV

�

W

jut�t; x�j
2
dx

and

lim inf
h&0

J�uh�t; ���V J�u�t; ���:

Thus energy inequality (3.5) and energy conservation law (4.1) imply, for L
1-a.e. t A

�0;T�,

lim
h&0

�

W

juh
t �t; x�j

2
dx �

�

W

jut�t; x�j
2
dx;�4:2�

lim
h&0

J�uh�t; ��� � J�u�t; ���;�4:3�

and

lim
h&0

kguh�t; ��kL1�qW� � 0:�4:4�

Writing (1.8) for u � uh and letting h ! 0, we obtain iii) of De®nition 1 by

Theorem 3.3 9) and (4.4).

By (3.7) and (3.8) we obtain iv) of De®nition 1 if we show, as h ! 0, passing to a

subsequence if necessary,
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�T

0

�

W

uh
t �t; x� ÿ uh

t �tÿ h; x�

h
j�t; x; uh�t; x�� dxdt�4:5�

!

�T

0

ÿ

�

W

ut�jt�t; x; u� � jy�t; x; u�ut� dx

� �

dtÿ

�

W

v0�x�j�0; x; u0�x�� dx

and

�T

0

�

q �E h
t

�ÿ�`xj � n 0
E h
t
�nn�1

E h
t

� jn 0
E h
t
j2jy� dH

n dt�4:6�

!

�T

0

�

q �Et

�ÿ�`xj � n 0Et
�nn�1

Et
� jn 0Et

j2jy� dH
n dt:

2nd step (Proof of (4.5)). First we rewrite

�T

0

�

W

uh
t �t; x� ÿ uh

t �tÿ h; x�

h
j�t; x; uh�t; x�� dxdt�4:7�

�

�

y

0

�

W

uh
t �t; x� ÿ uh

t �tÿ h; x�

h
j�t; x; uh�t; x�� dxdt

�

�

y

0

�

W

uh
t �t; x�

h
j�t; x; uh�t; x�� dxdt

ÿ

�

y

ÿh

�

W

uh
t �s; x�

h
j�s� h; x; uh�s� h; x�� dxds

� ÿ

�
�

y

0

�

W

uh
t �t; x�

j�t� h; x; uh�t� h; x�� ÿ j�t; x; uh�t; x��

h
dxdt

�
1

h

� 0

ÿh

�

W

uh
t �s; x�j�s� h; x; uh�s� h; x�� dxds

�

�: ÿ�I � II�:

Noting that, for ÿh < sU 0, uh
t �s; x� � v0�x� and uh�s� h; x� � u1�x�, we have

II �
1

h

�0

ÿh

�

W

v0�x�j�s� h; x; u1�x�� dxds �
1

h

� h

0

�

W

v0�x�j�t; x; u1�x�� dxdt:

Since, for 0 < t < h,

j�t; x; u1�x�� � j�t; x; u0�x�� �

� 1

0

jy�t; x; y�u1�x� ÿ u0�x����u1�x� ÿ u0�x�� dy

� j�t; x; u0�x�� �

� 1

0

jy�t; x; u0�x� � hyuh
t �t; x��hu

h
t �t; x� dy;

it holds that
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II �
1

h

� h

0

�

W

v0�x�j�t; x; u0�x�� dxdt

�

� h

0

�

W

v0�x�

�1

0

jy�t; x; u0�x� � hyuh
t �t; x��u

h
t �t; x� dydxdt:

Thus, noting Theorem 3.3 1), we have

lim
h&0

II �

�

W

v0�x�j�0; x; u0�x�� dx:�4:8�

On the other hand, since

j�t� h; x; uh�t� h; x�� ÿ j�t; x; uh�t; x��

h

�

�1

0

�

jt�t� yh; x; uh�t� h; x��

� jy�t; x; u
h�t; x� � y�uh�t� h; x� ÿ uh�t; x���

uh�t� h; x� ÿ uh�t; x�

h

�

dy

�

�1

0

�jt�t� yh; x; uh�t� h; x�� � jy�t; x; u
h�t; x� � yhuh

t �t� h; x��uh
t �t� h; x�� dy;

we have

I �

�T

0

�

W

uh
t �t; x�

�1

0

�jt�t� yh; x; uh�t� h; x��

� jy�t; x; u
h�t; x� � yhuh

t �t� h; x��uh
t �t� h; x�� dy dxdt:

By (4.2) fuh
t �t; ��g converges to ut�t; �� strongly in L2�W� for L1-a.e. t A �0;T�. By (3.5)

and (4.1) kuh
t �t; ��kL2�W� and kut�t; ��kL2�W� are uniformly bounded with respect to t and h.

Thus the dominated convergence theorem implies fuh
t g converges to ut strongly in

L2��0;T� �W�. Let T 0 be any number with 0 < T 0 < T . If 0 < h < T ÿ T 0, we have

kuh
t �� � h� ÿ ut�� � h�kL2��0;T 0��W� � kuh

t ÿ utkL2��h;T 0�h��W� U kuh
t ÿ utkL2��0;T��W�;

the right hand side of which converges to 0 as h ! 0. It follows from Lusin's theorem

that, as h ! 0,

kut�� � h� ÿ utkL2��0;T 0��W� ! 0:

Thus, writing

kuh
t �� � h� ÿ utkL2��0;T 0��W�

U kuh
t �� � h� ÿ ut�� � h�kL2��0;T 0��W� � kut�� � h� ÿ utkL2��0;T 0��W�;

we obtain that uh
t �� � h� ! ut strongly in L2��0;T 0� �W�. By Theorem 3.3 7) we also

obtain that uh�� � h� ! u strongly in L1��0;T 0� �W�. Noting that the support of j
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with respect to the t variable is a compact subset of �0;T�, we further see that

jt�t� yh; x; uh�t� h; x�� ! jt�t; x; u�t; x��

and

jy�t; x; u
h�t; x� � yhuh

t �t� h; x�� ! jy�t; x; u�t; x��

strongly in L1��0;T� �W� �0; 1��. Hence there exist subsequences of fjt�t� yh; x;

uh�t�h; x��g and fjy�t; x; u
h�t; x��yhuh

t �t�h; x��g which converge at Ln�2-a.e. �t; x; y� A

�0;T� �W� �0; 1�. Generally we can prove that, when fcjg converges to c a.e.,

fkcjkLyg is uniformly bounded, and fvjg converges to v strongly in L1, then fcjvjg

converges to fcvg strongly in L1. Thus, passing to the subsequence, we have

lim
h&0

I �

�
y

0

�
W

ut�jt�t; x; u� � jy�t; x; u�ut� dxdt:�4:9�

Now (4.5) follows from (4.7), (4.8), and (4.9).

3rd step (Proof of (4.6)). If we obtain, for L
1-a.e. t,

Vt � v��u�t; ���;�4:10�

then (4.6) follows from (3.10) and Theorem 3.4. Thus we have only to show (4.10).

Proof of (4.10) is essentially the same as that of [4] (6.57). However by introducing

oriented varifolds we can make it clearer.

It follows from Lemma 3.5 1) and Theorem 3.7 1) that, for L
1-a.e. t,

lim sup
h!0

mV h
t
�U�V mVt

�U�V mEt
�U�:�4:11�

On the other hand (4.3) means

lim
h!0

mV h
t
�U� � mEt

�U�:�4:12�

Thus, for each t at which both (4.11) and (4.12) hold, we have mVt
�U� �

mEt
�U�. Further Theorem 3.7 1) implies

mVt
� mEt

:�4:13�

It follows from Lemma 3.6 and (4.13) that

nEt
�z� �

�
G0

n�x� dh
�z�
Vt

�4:14�

for mVt
-a.e. z A U . By [4] Lemma 6.8 we have, for mVt

-a.e. z A U , for h
�z�
Vt
-a.e. x A G0,

n�x� � nEt
�z�:

Thus, for mVt
-a.e. z A U ,

spt h
�z�
Vt

� one point � fnÿ1�nEt
�z��g:

By the de®nition of n we see that x�z�1 nÿ1�nEt
�z�� is the orientation of q�Et which
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agrees with nEt
�z�. By (3.13) and (4.13) we obtain

�

U�G0

b�z; x� dVt �

�

U

b�z; x�z�� dmEt
�b A C 0

0 �U � G0��:

Now (4.10) is veri®ed. r

Appendix.

In this appendix we suppose that qW is of C2 class. This fact is used in the proof

of Lemma A.4.

The purpose of this appendix is to show the following theorem.

Theorem A.1. A function u is a BV solution to (1.1)±(1.3) in �0;T� �W if and only

if u satis®es i)±iii) of De®nition 1 and

iv)' for any f A C1
0 ��0;T�;L2�W��VLy��0;T�;BV�W�� with gf � 0 for L

1-a.e.

t A �0;T�,

�T

0

fJ�u� f� ÿ J�u�g dtV

�T

0

�

W

utft�t; x� dxdt�

�

W

v0�x�f�0; x� dx:

Proof of `if ' part. Suppose that u satis®es i)±iii) of De®nition 1 and iv)'.

For each j A C1
0 ��0;T� �U� we have j�t; x; u� A C1

0 ��0;T�;L2�W��VLy��0;T�;BV�W��.

Thus, since J is convex and by Theorem 2.2 di¨erentiable to the direction j�t; x; u�

for each t, iv)' yields

�T

0

d

de
J�u� ej�x; u��je�0 dt �

�T

0

�

W

ut�j�t; x; u��t dxdt�

�

W

v0�x�j�0; x; u0�x�� dx;

which shows iv) of De®nition 1. r

Before the proof of `only if ' part we prepare several lemmas.

Lemma A.2. Suppose that u is a BV solution in �0;T� �W and ut�T ; ��1

ap limt%T ut�t; �� exists in L2�W�. Then, for any j A C1
0 ��0;T � �U�, it holds that

�T

0

ÿ

�

W

ut�jt�t; x; u� � jy�t; x; u�ut� dx�
d

de
J�u� ej�t; x; u��je�0

� �

dt�A:1�

�

�

W

v0�x�j�0; x; u0�x�� dxÿ

�

W

ut�T ; x�j�T ; x; u�T ; x�� dx;

where u�T ; �� � s- limt%T u�t; �� in L2�W�.

Proof. Let h be a one dimensional molli®er, that is, h A Cy
0 �R�, spt hH �ÿ1; 1�,

0U hU 1, and
�y

ÿy
h�t� dt � 1. For s > 0 we put rs�t� � 1ÿ Ys�tÿ T � 2s�, where

Ys�t� �

� t

ÿy

sÿ1h�sÿ1s� ds:

Then rs�t�j�t; x; y� belongs to C1
0 ��0;T� �U� and rs�0� � 1 when sUT=3. Thus iv)
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of De®nition 1 yields

�T

0

�

ÿ

�

W

ut�rs�t�jt�t; x; u� � r 0
s�t�j�t; x; u� � rs�t�jy�t; x; u�ut� dx�A:2�

�
d

de
J�u� ers�t�j�t; x; u��je�0

�

dt �

�

W

v0�x�j�0; x; u0�x�� dx:

Since rs�t� ! 1 as s ! 0 on �0;T�, we obtain by Theorem 2.2 that, as s ! 0,

�T

0

d

de
J�u� ers�t�j�t; x; u��je�0 dt !

�T

0

d

de
J�u� ej�t; x; u��je�0 dt:

The ®rst and third terms of the left hand side of (A.2) also converge to corresponding

terms of iv) of De®nition 1.

Now we mention about the second term. Note that

r 0
s�t� � ÿ�Ys�tÿ T � 2s�� 0 � ÿsÿ1h�sÿ1�tÿ T � 2s��:

We put

f �t� �

�

W

ut�t; x�j�t; x; u�t; x�� dx for t A �0;T �

0 otherwise.

8

<

:

Then the second term of the left hand side of (A.2) coincides with
� T

0 sÿ1h�sÿ1�tÿ

T � 2s�� f �t� dt. Since f A Ly�0;T� by i) of De®nition 1, we have, for any d > 0,

�T

0

sÿ1h�sÿ1�tÿ T � 2s�� f �t� dtÿ f �T�

�

�

�

�

�

�

�

�

�

�

y

ÿy

sÿ1h�sÿ1s�� f �s� T ÿ 2s� ÿ f �T�� ds

�

�

�

�

�

�

�

�

U d

�

y

ÿy

sÿ1h�sÿ1s� ds� 2k f kLy�0;T�

�

Ad; s

sÿ1h�sÿ1s� ds;

where Ad;s � ft; j f �t�Tÿ2s�ÿ f �T�jV dgV ft;ÿsU tU sg. Since 0U hU 1, we have

�T

0

sÿ1h�sÿ1�tÿ T � 2s�� f �t� dtÿ f �T�

�

�

�

�

�

�

�

�

U d� sÿ1
L

1�Ad;s�:�A:3�

Note that

L
1�Ad;s� � L

1�ft; j f �t� ÿ f �T�jV dgV ft;T ÿ 3sU tUT ÿ sg�:�A:4�

By the de®nition of f there exists a constant C � C�W; j; kutkLy��0;T�;L2�W��� such that

j f �t� ÿ f �T�jUC�kut�t; �� ÿ ut�T ; ��kL2�W� � ku�t; �� ÿ u�T ; ��kL2�W��:

Hence we obtain
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ft; j f �t� ÿ f �T�jV dgH ft; kut�t; �� ÿ ut�T ; ��kL2�W� V �2C�ÿ1
dg�A:5�

U ft; ku�t; �� ÿ u�T ; ��kL2�W� V �2C�ÿ1
dg:

Since u�T ; �� � s- limt%T u�t; �� in L2�W�, we have, if s is su½ciently small,

L
1�ft; ku�t; �� ÿ u�T ; ��kL2�W� V �2C�ÿ1

dgV ft;T ÿ 3sU tUT ÿ sg� � 0:

Further, since ut�T ; �� � ap limt%T ut�t; ��, we have

lim
s!0

sÿ1
L

1�ft; kut�t; �� ÿ ut�T ; ��kL2�W� V �2C�ÿ1
dgV ft;T ÿ 3sU tUT ÿ sg� � 0:

Now by (A.4) and (A.5) we obtain lims!0 sÿ1
L

1�Ad;s� � 0. Thus, since d is arbitrary,

(A.3) yields

lim
s!0

�T

0

sÿ1h�sÿ1�tÿ T � 2s�� f �t� dt � f �T�:

This shows the conclusion. r

Lemma A.3. If u satis®es the same conditions as in Lemma A.2, then (A.1) holds for

each function j having the form j�t; x; y� � ~j�t; x� � ay, where ~j A C1
0 ��0;T � �W� and a

is a real constant.

Proof. Note that the function j as in the statement of lemma satis®es the

assumption of Theorem 2.2. Then by Theorem 2.2 it is su½cient to show that
�T

0

�

ÿ

�

W

ut�jt�t; x; u� � jy�t; x; u�ut� dx�A:6�

�

�

q �Et

�ÿ�`xj � n 0Et
�nn�1

Et
� jn 0Et

j2jy� dH
n

�

dt

�

�

W

v0�x�j�0; x; u0�x�� dxÿ

�

W

ut�T ; x�j�T ; x; u�T ; x�� dx:

Let C denote the set fj A C 1��0;T � �U�; j, jt, `xj, jy are all bounded, spt jH

�0;T � � K � R, where K is a compact subsets of Wg. First we show that (A.6) holds

for each j A C. Let z be a Cy function on R such that z�r� � 1 for rU 0, � 0 for

rV 1, and 0U z�r�U 1 for r A R. Now we put zR�r� � z�rÿ R� �R > 0�. Suppose

that j A C. Then, since zR�jyj�j�t; x; y� A C1
0 ��0;T � �U� and u is a BV solution, we

have by Lemma A.2
�T

0

�

ÿ

�

W

ut�zR�juj�jt�t; x; u� � z 0R�juj�j�t; x; u�ut � zR�juj�jy�t; x; u�ut� dx�A:7�

�

�

q �Et

�ÿ�zR�jyj�`xj � n 0Et
�nn�1

Et
� jn 0Et

j2�z 0R�jyj�j� zR�jyj�jy�� dH
n

�

dt

�

�

W

v0�x�zR�ju0�x�j�j�0; x; u0�x�� dx

ÿ

�

W

ut�T ; x�zR�ju�T ; x�j�j�T ; x; u�T ; x�� dx:
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Since ut A L2��0;T� �W� and j, jt, `xj, and jy are bounded and H
n�q�Et� < y, the

both side of (A.7) converges to the both side of (A.6), respectively, as R ! y.

Next we prove (A.6) for a function j�t; x; y� � ~j�t; x� � ay, where ~j A C1
0 ��0;T � �

W� and a is a real constant. We de®ne a nondecreasing function hL A C1�R� �L > 0�

as hL�y� � y for 0U yUL, � sin�yÿ L� � L for L < y < L� p=2, � L� 1 for yV

L� p=2, and hL�y� � ÿhL�ÿy� for y < 0. Putting jL�t; x; y� � ~j�t; x� � ahL�y�, we

have jL A C and thus

�T

0

�

ÿ

�

W

ut��jL�t�t; x; u� � �jL�y�t; x; u�ut� dx�A:8�

�

�

q �Et

�ÿ�`xjL � n 0Et
�nn�1

Et
� jn 0Et

j2�jL�y� dH
n

�

dt

�

�

W

v0�x�jL�0; x; u0�x�� dxÿ

�

W

ut�T ; x�jL�T ; x; u�T ; x�� dx:

By the de®nition of jL we have `xjL � `xj, �jL�t � jt, and �jL�y � �hL�y � 1 for jyjU

L, � 0 for jyj > L� p=2. Thus, since �jL�y % 1 as L ! y, (A.6) holds for this j by

the dominated convergence theorem. r

For d > 0 we set

Wd � fx A W; dist�x; qW� > dg:�A:9�

Let g�d and gÿd denote the trace operators in BV�Wd� and BV�RnnWd�, respectively.

Lemma A.4. There exists a constant d0 � d0�W� such that, if d < d0, then qWd is of

C 1 class. In addition there exists a constant C � C�W� such that

kgÿd vkL1�qWd�
UC�kvk

L1�WnWd�
� jDvj�WnWd� � kgvkL1�qW���A:10�

for any v A BV�W� and any d with 0 < d < d0.

Proof. 1st step. Given x � �x1; . . . ; xn�, let us write x � �x 0; xn� for x 0 � �x1; . . . ;

xnÿ1� A R
nÿ1; xn A R. Similar notations are used for other points. Given x A R

n and r,

h > 0, we de®ne the open cylinder

C�x; r; h� � fy A R
n; jy 0 ÿ x 0j < r; jyn ÿ xnj < hg

and the �nÿ 1�-dimensional open ball

B�x 0; r� � fy 0 A R
nÿ1; jy 0 ÿ x 0j < rg:

Since qW is of C2 class, for each point x A qW there exist r, h > 0 and a C2 function f

such that, upon rotating and relabeling the coordinate axis if necessary,

WVC�x; 2r; h� � fy A R
n; jy 0 ÿ x 0j < 2r; xn ÿ h < yn < f �y 0�g�A:11�

and

max
jx 0ÿy 0jUr

j f �y 0� ÿ xnjU
h

2
:�A:12�
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Suppose that

d < min
h

2
; r

� �

:�A:13�

For y A qW we de®ne a point z by

z � yÿ d~ny;

where ~ny is the outer unit normal to qW at y. If y A qWVC�x; 2r; h�, then

~ny �

t

ÿ
` f �y 0�

����������������������������

1� j` f �y 0�j2
q ;

1
����������������������������

1� j` f �y 0�j2
q

0

B

@

1

C

A
:

Now we set z 0 � t�y 0�. It is a C1 map from B�x 0; 2r� into R
nÿ1 and given by

t�y 0� � y 0 �
d` f �y 0�

����������������������������

1� j` f �y 0�j2
q :

Since f is of C2 class, det�qt=qy 0�0 0 if d is su½ciently small. Thus, noting that

t�B�x 0; 2r��IB�x 0; 2rÿ d�, we ®nd by (A.13) that the inverse tÿ1 can be de®ned at

least for z 0 A B�x 0; r�. It is also a C1 map, and we de®ne another C1 function fd :

B�x 0; r� ! R by

fd�z
0� � f �tÿ1�z 0�� ÿ

d
�������������������������������������

1� j` f �tÿ1�z 0��j2
q :�A:14�

It is clear by (A.12) and (A.13) that xn ÿ h < fd�z
0�. For z 0 A B�x 0; r�, putting y 0 �

tÿ1�z 0� and y � �y 0; f �y 0��, we have z1 �z 0; fd�z
0�� � yÿ d~ny. Moreover we can show

that there exists a positive number d
� < minfh=2; rg which depends on f such that, if

d < d
�,

Wd VC�x; r; h� � fy A R
n
; jy 0 ÿ x 0j < r; xn ÿ h < yn < fd�y

0�g:�A:15�

Note that f is determined by x and qW. Hence d
� is determined by x and qW.

2nd step. For each x A qW there exist rx, hx such that (A.11) holds and d
�
x as

above. Since qW is compact, there are ®nitely many points fxjg
N
j�1 H qW such that

qWH 6
N

j�1

C�xj; rj ÿ d
�
j ; hj�;

where rj � rxj , hj � hxj , and d
�
j � d

�
xj
.

Now we put

d0 � minfd�j ; j � 1; . . . ;Ng:

Let d be a number with 0 < d < d0. For each x A qWd there exists a point y A qW

such that dist�x; y� � d. Then y belongs to one of cylinders fC�xj; rj ÿ d
�
j ; hj�g and
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hence x, which coincides with yÿ d~ny, belongs to C�xj; rj; hj�. Since (A.15) holds for

each xj, we see that qWd is of C1 class.

3rd step (Proof of (A.10)). Let v be a function in BV�W�. By the use of a par-

tition of unity subordinate to the fC�xj; rj; hj�g we may suppose that spt v is contained

in one of these cylinders. Omitting the index j, we write C�x; r; h� for this cylinder. By

(A.11) and (A.15), for each d with 0 < d < d0,

�WnWd�VC�x; r; h� � fy A R
n
; jy 0 ÿ x 0j < r; fd�y

0� < yn < f �y 0�g:

For the time we assume that v A BV�W�VCy�WnWd�. When e is a su½ciently small

positive number, then

v�y 0; f �y 0� ÿ e� ÿ v�y 0; fd�y
0� � e� �

� f �y 0�ÿe

fd�y 0��e

qv

qxn
�y 0; s� ds:

It is easy to prove that v�y 0; f �y 0� ÿ e� ! gv�y 0; f �y 0�� and v�y 0; fd�y
0� � e� !

gÿd v�y
0; fd�y

0�� in L1�B�x 0; r�� (refer to the 2nd step of the proof of [2] Theorem 1 of

Section 5.3). Integrating over B�x 0; r� and letting e ! 0, we have

�

B�x 0; r�

jgÿd v�y
0; fd�y

0��j dy 0
U

�

B�x 0; r�

� f �y 0�

fd�y 0�

qv

qxn
�y 0; s�

�

�

�

�

�

�

�

�

dy 0ds�

�

B�x 0; r�

jgv�y 0; f �y 0��j dy 0:

Now note that
�

qWd VC�x; r;h�

jgÿd v�y�j dH
nÿ1 �

�

B�x 0; r�

jgÿd v�y
0; fd�y

0��j

�����������������������������

1� j` fd�y
0�j2

q

dy 0:

Since f is of C2 class, we ®nd by (A.14) that there exists a constant C which depends

only on x and W such that

�����������������������������

1� j` fd�y
0�j2

q

UC. Then

�

qWdVC�x; r;h�

jgÿd v�y�j dH
nÿ1

UC

�

B�x 0; r�

jgÿd v�y
0; fd�y

0��j dy 0

UC

�

B�x 0; r�

� f �y 0�

fd�y 0�

qv

qxn
�y 0; s�

�

�

�

�

�

�

�

�

dsdy 0 �

�

B�x 0; r�

jgv�y 0; f �y 0��j dy 0

 !

UC

�

�WnWd�VC�x; r;h�

j`v�y�j dy�

�

B�x 0; r�

jgv�y 0; f �y 0��j

����������������������������

1� j` f �y 0�j2
q

dy 0

 !

UC jDvj��WnWd�VC�x; r; h�� �

�

qWVC�x; r;h�

jgv�y�j dHnÿ1

 !

:

Thus (A.10) holds for v A BV�W�VCy�WnWd�.

Now we assume only v A BV�W�. For each ®xed d with 0 < d < d0 there exists a

sequence fvkgHBV�W�VCy�WnWd� such that vk ! v in L1�WnWd� and jDvkj�WnWd� !

jDvj�WnWd� ([5] Theorem 1.17 or [2] Theorem 2 of Section 5.2). Furthermore we have

gvk ! gv in L1�qW� and gÿd vk ! gÿd v in L1�qWd� (see the proof of [2] Theorem 1 of Sec-

tion 5.3). Since (A.10) holds for each vk, our passing to the limit as k ! y yields the

conclusion. r
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Lemma A.5. Let T be a positive number and v be a function on �0;T� �W.

Suppose that v A Ly��0;T�;L2�W�VBV�W��, vt A L2��0;T� �W�, and gv � 0 for L
1-a.e.

t A �0;T�. Then there exists a sequence fvjg
y

j�1 HC1
0 ��0;T � �W� such that, as j ! y,

vj ! v, �vj�t ! vt strongly in L2��0;T� �W�, and J�vj� ! J�v� strongly in L1�0;T�.

Proof. 1st step. For the time we suppose that the support of v is contained in a

compact subset of �0;T � �W.

Let h�t� and h�x� be positive symmetric molli®ers ([5] 1.14) with respect to t and x

variables, respectively, and put h�t; x� � h�t��t�h�x��x�. Now we de®ne

vs � hs � v:

Then vs A C1
0 ��0;T � �W� if s is su½ciently small. Further it holds that, as s ! 0,

vs ! v and �vs�t ! vt strongly in L2��0;T� �W�.

Let �g0; g� A C1
0 �W;R

n�1� be a vector valued function with g20 � jgj2 U 1. Since

v�t; �� A BV�W� for L
1-a.e. t, we have

�

W

�g0 � vs div g� dx �

�

W

�g0 � hs � v div g� dx �

�

y

ÿy

h�t�s �tÿ s�

�

W

�g0 � h�x�s � v div g� dxds

�

�

y

ÿy

h�t�s �tÿ s�

�

W

�g0 � v div�h�x�s � g�� dxdsU h�t�s � J�v�:

This means

J�vs�U h�t�s � J�v��A:16�

for t A �0;T�. On the other hand, since vs ! v strongly in L2�W� for L1-a.e. t A �0;T�,

we have lim infs!0 J�vs�V J�v�. By Fatou's lemma

lim inf
s!0

�T

0

J�vs� dtV

�T

0

lim inf
s!0

J�vs� dtV

�T

0

J�v� dt:�A:17�

It follows from (A.16) and (A.17) that

lim sup
s!0

�T

0

jJ�v� ÿ J�vs�j dtU lim sup
s!0

�T

0

jh�t�s � J�v� ÿ J�vs�j dt

� lim sup
s!0

�T

0

�h�t�s � J�v� ÿ J�vs�� dt

�

�T

0

J�v� dtÿ lim inf
s!0

�T

0

J�vs� dtU 0:

Thus J�vs� ! J�v� strongly in L1�0;T� as s ! 0.

2nd step. Now we do not assume the compactness of the support of v. Let Wd be

as in (A.9) and put wd � wdv, where wd denotes the characteristic function of Wd. It is

clear that, as d ! 0, wd ! v and �wd�t ! vt strongly in L2��0;T� �W�. Since

J�wd� �

�

Wd

�������������������

1� jDvj2
q

�L
n�WnWd� �

�

qWd

jg�d vj dH
nÿ1
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and

L
n�WnWd�U

�

WnWd

�������������������

1� jDvj2
q

UL
n�WnWd� � jDvj�WnWd�;

we have

ÿjDvj�WnWd� �

�

qWd

jg�d vj dH
nÿ1 ÿ jDvj�qWd��A:18�

U J�wd� ÿ J�v�U

�

qWd

jg�d vj dH
nÿ1 ÿ jDvj�qWd�:

It is easy to ®nd that jDvj�qWd� �
�

qWd
jg�d v�x� ÿ gÿd v�x�j dH

nÿ1. Thus, since gv � 0 on

qW, it follows from Lemma A.4 that, for any d < d0 and for L
1-a.e. t A �0;T�,

�

qWd

jg�d vj dH
nÿ1 ÿ jDvj�qWd�

�

�

�

�

�

�

�

�

U

�

qWd

jgÿd vj dH
nÿ1

UC�kvk
L1�WnWd�

� jDvj�WnWd��;

where d0 and C are as in the statement of Lemma A.4. This and (A.18) imply

�T

0

jJ�wd� ÿ J�v�j dtUCkvk
L1��0;T���WnWd��

� �C � 1�

�T

0

jDvj�WnWd� dt:

Hence we obtain J�wd� ! J�v� strongly in L1�0;T� as d ! 0.

3rd step. Since sptwd is a compact subset of �0;T � �W, we have by the result of

the 1st step that, as s ! 0, hs � wd ! wd, �hs � wd�t ! �wd�t strongly in L2��0;T� �W�,

and J�hs � wd� ! J�wd� strongly in L1�0;T�. Then, combining the result of the 2nd

step, we can select a subsequence fsj; djg by the use of the diagonal argument such

that vj 1 hsj � wdj satis®es, as j ! y, vj ! v, �vj�t ! vt strongly in L2��0;T� �W�, and

J�vj� ! J�v� strongly in L1�0;T�. r

Proof of `only if ' part of Theorem A.1. Suppose that u A Ly��0;T�;L2�W�V

BV�W�� is a BV solution to (1.1)±(1.3) in �0;T� �W. Let f A C1
0 ��0;T�;L2�W��V

Ly��0;T�;BV�W�� with gf � 0 forL1-a.e. t A �0;T�. Put Tf � supft; kf�t; ��kL2�W� 0 0g.

In the inequality of iv)', T can be replaced with any of �Tf;T �. We choose T 0 A �Tf;T �

such that the L2�W� valued function ut : �0;T� ! L2�W� is approximately continuous at

T 0. Such points exist L1 almost everywhere in �0;T �. Then, u satis®es all assumptions

of Lemmas A.2 and A.3 in �0;T 0� �W.

Since T 0 and u� f satisfy the all assumptions for T and v in Lemma A.5, there is a

sequence fvjg in C1
0 ��0;T

0� �W� such that, as j ! y, vj ! u� f, �vj�t ! �u� f�t strongly

in L2��0;T 0� �W�, and J�vj� ! J�u� f� strongly in L1�0;T 0�. Now we put

jj�t; x; y� � ÿy� vj�t; x�:�A:19�

Then jj satis®es the assumption of Lemma A.3 in �0;T 0� �W� R. Thus we have

�T 0

0

ÿ

�

W

ut��jj�t�t; x; u� � �jj�y�t; x; u�ut� dx�
d

de
J�u� ejj�t; x; u��je�0

� �

dt

�

�

W

v0�x�jj�0; x; u0�x�� dxÿ

�

W

ut�T
0
; x�jj�T

0
; x; u�T 0

; x�� dx:
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On the other hand, since J is convex,

J�u� jj�t; x; u�� ÿ J�u�V
d

de
J�u� ejj�t; x; u��je�0:

Hence

�T 0

0

fJ�u� jj�t; x; u�� ÿ J�u�g dt�A:20�

V

�T 0

0

�
W

ut��jj�t�t; x; u� � �jj�y�t; x; u�ut� dxdt

�

�
W

v0�x�jj�0; x; u0�x�� dxÿ

�
W

ut�T
0
; x�jj�T

0
; x; u�T 0

; x�� dx:

By (A.19) and Lemma A.5 we have, as j ! y,

�T 0

0

J�u� jj�t; x; u�� dt �

�T 0

0

J�vj� dt !

�T 0

0

J�u� f� dt:�A:21�

Lemma A.5 also implies

�jj�t�t; x; u� � �jj�y�t; x; u�ut�� �jj�t; x; u��t��A:22�

� ÿut � �vj�t ! ÿut � �u� f�t � ft in L2��0;T 0� �W�:

Further, integrating over �0; t� for each t A �0;T 0�, we have

� t

0

�jj�s; x; u��t ds !

� t

0

ft�s; x� ds � f�t; x� ÿ f�0; x� in L2�W�;

while

� t

0

�jj�s; x; u��t ds � jj�t; x; u�t; x�� ÿ jj�0; x; u0�x�� � ÿu�t; x� � vj�t; x� ÿ jj�0; x; u0�x��:

Since vj ! u� f in L2��0;T 0� �W�, we have

jj�0; x; u0�x�� ! f�0; x� in L2�W�:�A:23�

In the same way we see that

jj�T
0
; x; u�T 0

; x�� ! f�T 0
; x� � 0 in L2�W�:�A:24�

By (A.20), (A.21), (A.22), (A.23), and (A.24) we obtain iv)'. r
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