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Abstract. In this paper we study certain kinds of links; proper links, algebra-

ically split links and Z2-algebraically split links. These links have `algebraic'

de®nitions. In fact these are de®ned in terms of the linking number. We shall

give these links certain `geometric' de®nitions. By using the geometric de®ni-

tions, we study the Arf invariants of these links.

Introduction.

Throughout this paper, we work in the smooth category. All orientable manifolds

will be assumed to be oriented unless otherwise stated. In particular all links are

oriented. For an oriented manifold M, ÿM denotes M with the opposite orientation.

For a surface F in a 4-manifold M, �F � denotes a second homology class represented

by F.

A link L � K1 UK2 U � � � UKn is proper if the linking number lk�Ki;Lÿ Ki� is even

for any i�� 1; 2; . . . ; n�. A link L � K1 UK2 U � � � UKn is algebraically split (resp. Z2-

algebraically split) if lk�Ki;Kj� � 0 (resp. lk�Ki;Kj� is even) for any i; j �1U i < jU n�.

In section 1, we give a necessary and su½cient condition for links to be proper by

using 2-spheres in 4-manifolds representing characteristic second homology class. Here,

for a compact, connected, orientable 4-manifold M whose boundary is either empty or a

disjoint union of 3-spheres, a homology class x A H2�M; qM;Z� is characteristic if its

mod 2 reduction x 0 is dual to the second Stiefel-Whitney class. An equivalent condition

is that the mod 2 intersection number x 0 � x is equal to the mod 2 self intersection

number x � x for every x A H2�M; qM;Z2�. In [18], R. A. Robertello de®ned the Arf

invariants for proper links. We give an alternative de®nition of the Arf invariants for

proper links by using planar surfaces in 4-manifolds representing characteristic homology

classes. Our de®nition is similar to but di¨erent from Robertello's de®nition.

Let Fi �i � 1; 2; . . . ; n� be compact (not necessarily orientable) surfaces in S3 with

qFi GS1. The union F1 UF2 U � � � UFn is an R-complex if the following conditions hold

[5];
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(1) F1;F2; . . . ;Fn are in general position,

(2) F1 UF2 U � � � UFn has no triple singularities, and

(3) the set of singularities of F1 UF2 U � � � UFn are all ribbon, see Figure 0.

An R-complex F1 UF2 U � � � UFn is orientable if Fi �i � 1; 2; . . . ; n� are orientable.

In section 2, we show that a link is algebraically split if and only if it bounds an

orientable R-complex. For an orientable R-complex R � F1 UF2 U � � � UFn, we de®ne a

certain quadratic function on each H1�Fi;Z2�, and denote by Arf�Fi;R� the Arf in-

variant [1] of this quadratic function. From our de®nition, we note that Arf�Fi;R� is

an invariant of R but not an invariant of a knot qFi. However, we ®nd that the

Arf invariant of a link L � qF1 U qF2 U � � � U qFn is mod 2 congruent to the sum of

Arf�Fi;R� �i � 1; 2; . . . ; n�, that is,
Pn

i�1 Arf�Fi;R� �mod 2� is an invariant of L.

For a proper link L, suppose that a sublink L 0 of L is proper and that L 0 bounds

an orientable surface F in S3 with F VL � qF � L 0, then we can also de®ne Arf�F ;L�

to be the Arf invariant of a certain proper quadratic function on H1�F ;Z2�. We

show that Arf�F ;L� is an invariant of L. In general, Arf�F ;L� is not equal to the

Arf invariant of L 0�� qF�. When L is a 2-component, algebraically split link, each

component K of L bounds an orientable surface F in S3 with F VL � qF � K and the

di¨erence between Arf�F ;L� and the Arf invariant of K is mod 2 congruent to the Sato-

Levine invariant [20] of L. When L � K1 UK2 UK3 is a 3-component, algebraically split

link, each component Ki of L bounds an orientable surface Fi in S3 with Fi VL �

qFi � Ki �i � 1; 2; 3� and each 2-component sublink Ki UKj of L bounds an orientable

surface Fij in S3 with Fij VL � qFij � Ki UKj �1U i < jU 3�. Then we have that both
P3

i�1�Arf�Fi;L� ÿArf�Ki;L�� and
P

i<j�Arf�Fij;L� ÿArf�Ki UKj�� are mod 2 congruent

to the Sato-Levine invariant of L de®ned by T. Cochran [4].

In section 3, we show that a link is Z2-algebraically split if and only if it bounds

an unoriented R-complex. For an unoriented R-complex R � F1 UF2 U � � � UFn, we

de®ne a certain Z4-quadratic function on each H1�Fi;Z2� and denote by B�Fi;R� the

Brown invariant [3] of this quadratic function. The Arf invariant of a link L � qF1 U

qF2 U � � � U qFn is represented by B�Fi;R�, the linking numbers lk�qFi;
cqFi� �i � 1; 2; . . . ;

ribbon singularity

Figure 0.
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n� and the total linking number
P

i<j lk�qFi; qFj� of L, where cqFi is a parallel copy of

qFi on Fi oriented in the same direction as Ki.

For a proper link L, suppose that a sublink L 0 of L bounds an unoriented surface F

in S3 with F VL � qF � L 0, then we can also de®ne B�F ;L� to be the Brown invariant

[10] of a certain proper Z4-quadratic function on H1�F ;Z2�. We ®nd that the di¨erence

between B�F ;L� and lk�L 0; L̂ 0�=2 is an invariant of L. When L is a 2-component link,

each component K bounds an unoriented surface F with F VL � qF � K and the

unoriented Sato-Levine invariant [19] of L is represented by B�F ;L�, lk�K ; K̂�, the

linking number of L and the Arf invariant of K�� qF �.

In the last section, we study connections between the Arf invariant of proper links

and certain local moves on links, and show some useful results to computing the Arf

invariants of links.

1. Proper links.

The following theorem gives us a geometric characterization of a proper link.

Theorem 1.1. The following conditions are mutually equivalent.

(1) L is a proper link.

(2) There exist a closed, simply connected 4-manifold M, a 2-sphere S
2 in M and a

3-sphere S
3 in M such that S

2 represents a characteristic homology class in H2�M;Z�

and �S3;S2 VS
3�G �S3;L�.

(3) There exist a compact, simply connected 4-manifold M with qMGS3, and a

disjoint union D of 2-disks in M such that D represents a characteristic homology class in

H2�M; qM;Z� and �qM; qD�G �S3;L�.

Proof. In the theorem above `�3� ) �2�' is clear, and `�1� ) �3�' follows from [18,

proof of Theorem 2]. We shall prove `�2� ) �1�'.

Let M1 and M2 be the closures of the components M ÿ S
3. Suppose �qM1;

q�S2 VM1��G �S3;L�. Then we note that �qM2; q�S
2 VM2�� � �ÿS3;ÿL�. For a

component K of L, let D and D 0 be the closures of the components of S
2 ÿ K. Let

Fi � DVMi and F 0
i � D 0 VMi �i � 1; 2�. We may assume that F1 contains K. Then F 0

2

contains K. Since D � F1 UF2 and D 0 � F 0
1 UF 0

2, qF1 ÿ K � qF2 and qF 0
1 � qF 0

2 ÿ K .

Set �S3; qF1 ÿ K� � �S3;L1� and �S3; qF 0
1� � �S3;L2�. Note that since qMi GS3, by

using the isomorphism H2�Mi; qMi;Z�GH2�Mi;Z�, we have a well-de®ned inter-

section pairing on H2�Mi; qMi;Z�. Then we see lk�K UL1;L2� � ÿ�F1� � �F
0
1� and

lk�K UL2;L1� � �F 0
2� � �F2� since F1 VF 0

1 � F2 VF 0
2 � q. Hence we have
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lk�K ;Lÿ K� � lk�K ;L1 UL2� � ÿ�F1� � �F
0
1� � �F 0

2� � �F2� ÿ 2lk�L1;L2�:

The fact that �S2� is characteristic implies �Fi� � �F 0
i � �i � 1; 2� are characteristic in

H2�Mi; qMi;Z�. Thus we have

��Fi� � �F 0
i �� � �Fi� � �Fi� � �Fi� � �F 0

i � � �Fi�1 �Fi� � �Fi� �mod2�:

Hence we have �F 0
i � � �Fi�1 0 �mod2�. This completes the proof. r

For any proper link L, by Theorem 1.1, there exist a simply connected 4-manifold

M with qMGS3, and a planar surface F in M such that �qM; qF�G �S3
;L� and �F � is

a characteristic homology class in H2�M; qM;Z�. Thus, the following proposition gives

us an alternate de®nition of Arf invariants for proper links (cf. [18]).

Proposition 1.2. Let M be a compact, simply connected 4-manifold with qMGS3

and L a proper link in qM. If L bounds a planar surface F in M that represents

characteristic homology class in H2�M; qM;Z�, then

Arf�L�1
�F � � �F � ÿ s�M�

8
�mod 2�:

Proof. Since L is a proper link, by Theorem 1.1, there exist a compact, simply

connected 4-manifold M 0 with qM 0
GS3, and a disjoint union D of 2-disks in M 0 such

that �qM 0
; qD�G �S3

;L� and �D� is a characteristic homology class in H2�M
0
; qM 0

;Z�

with �D� � �D� � l. Set M 00 � M Uf �ÿM 0� and S � F Uf �ÿD�, where f is an orientation

reversing di¨eomorphism from �ÿqM 0
;ÿqD� to �qM; qF�. Since S is a 2-sphere and S

represents a characteristic homology class in H2�M
00
;Z�, by [9, Theorem 1], �S� � �S�1

s�M 00� �mod 16�. Hence we have

�F � � �F � ÿ l1 s�M� ÿ s�M 0� �mod 16�:

From [18, proof of Theorem 2], we have

Arf�L�1
l ÿ s�M 0�

8
�mod 2�:

It follows that

Arf�L�1
l ÿ s�M 0�

8
1

�F � � �F � ÿ s�M�

8
�mod2�: r

From Proposition 1.2, we have the following well known result [18].
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Corollary 1.3 ([18]). Let L be a proper link in the boundary of a 4-ball. If L

bounds a planar surface in the 4-ball, then Arf�L� � 0. r

Combining Theorem 1.1 and Proposition 1.2, we have the following two propo-

sitions.

Proposition 1.4. Let L1 and L2 be proper links ( possibly the numbers of the com-

ponents of L1 and L2 are not same). Let M be a compact, simply connected 4-manifold

with qMG �ÿS3�US3. If there is a planar surface F in M such that �qM; qF�G

�ÿS3
;ÿL1�U �S3

;L2� and F represents a characteristic homology class in H2�M; qM;Z�,

then

Arf�L2� ÿArf�L1�1
�F � � �F � ÿ s�M�

8
�mod2�:

Proof. Since L1 is a proper link, by Theorem 1.1, there exist a compact, simply

connected 4-manifold M 0 with qM 0
GS3, and a disjoint union D of 2-disks in M 0 such

that D represents a characteristic homology class in H2�M
0
; qM 0

;Z� and �qM 0
; qD�G

�S3
;L1�. Set M 00 � M Uf M

0 and F 0 � F Uf D, where f is an orientation reversing

di¨eomorphism from �qM 0
; qD� to �ÿS3

;ÿL1�. By Proposition 1.2,

Arf�L2�1
�F 0� � �F 0� ÿ s�M 00�

8
�mod 2�;

and

Arf�L1�1
�D� � �D� ÿ s�M 0�

8
�mod 2�:

Since s�M 00� � s�M� � s�M 0� and �F 0� � �F 0� � �F � � �F � � �D� � �D�, we obtain the desired

formula. r

The following proposition extends a result given by E. Ogasa [17] and S. Satoh [21]

in the case when M is a 4-sphere.

Proposition 1.5. Let M be a closed, simply connected 4-manifold, S2 a 2-sphere in

M and S
3 a 3-sphere in M such that S

2 represents a characteristic homology class in

H2�M;Z�. Let M1 and M2 be the closures of the components of M ÿ S
3, and Fi � S

2 V

Mi �i � 1; 2�. If �S3
;S

2 VS
3�G �S3

;L�, then L is a proper link and

Arf�L�1
�Fi� � �Fi� ÿ s�Mi�

8
�mod 2� �i � 1; 2�:

Furthermore, if M is prime, then Arf�L� � 0. r
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2. Algebraically split links.

The following proposition gives us a geometric characterization of an algebraically

split link.

Proposition 2.1. The following conditions are mutually equivalent.

(1) L � K1 UK2 U � � � UKn is an algebraically split link.

(2) There is an orientable R-complex F1 UF2 U � � � UFn such that qFi � Ki �i �

1; 2; . . . ; n�.

(3) There is a disjoint union L of once punctured, orientable surfaces in a 4-ball B4

such that �qB4
; qL�G �S3

;L�.

Proof. Since `�3� ) �1�' is clear, we shall prove `�1� ) �2�' and `�2� ) �3�'.

�1� ) �2�. Let L � K1 UK2 U � � � UKn be an algebraically split link. Since

lk�K1;Ki� � 0 �i � 2; 3; . . . ; n�, there is an orientable surface F1 of K1 without inter-

secting to Lÿ K1. By deforming F1 into a small neighborhood of a spine of F1, we can

choose an orientable surface F2 of K2 so that F2 V �Lÿ K1 UK2� � q and that F1 VF2

has only ribbon singularities. Repeating the process above, we have a desired orientable

R-complex.

�2� ) �3�. Let R � F1 UF2 U � � � UFn be an orientable R-complex in the boundary

of a 4-ball B4, and s1; s2; . . . ; sm the ribbon singularities of R. For each sj � j � 1; 2; . . . ;

m�, we may assume that a small neighborhood of sj in R is a union of 2-disks Dj1 and

Dj2 such that Dj1 VDj2 � sj and Dj1 H int�F1�U int�F2�U � � � U int�Fn�. By pushing each

Dj1 into B4, we obtain from R a desired orientable surface in B4. r

Let R � F1 UF2 U � � � UFn be an orientable R-complex. For each Fi �i � 1; 2; . . . ;

n�, we can de®ne a quadratic function q : H1�Fi;Z2� ! Z2 as follows. Let L � K1 U

K2 U � � � UKn be a link such that Ki � qFi �i � 1; 2; . . . ; n�. Suppose a A H1�Fi;Z2� is

represented by a simple closed curve a in Fi without intersecting the singularities

contained in int�Fi�. De®ne q�a� A Z2 by

q�a�1 lk�a; a�� � lk�a;Lÿ Ki� �mod 2�;

where a� denotes the result of pushing a a very small amount into S3 ÿ Fi along the

positive normal direction to Fi. This gives a well-de®ned function q : H1�Fi;Z2� ! Z2

that is a quadratic function with respect to the intersection pairing � : H1�Fi;Z2�n

H1�Fi;Z2� ! Z2. Choose a symplectic basis a1; a2; . . . ; ag; b1; b2; . . . ; bg of H1�Fi;Z2�

satisfying ak � al � bk � bl � 0 and ak � bl � dkl (Kronecker's delta). We de®ne the Arf

invariant Arf�Fi;R� of Fi to be
Pg

k�1 q�ak�q�bk� �mod 2�. Note that Arf�Fi;R� is an
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invariant of R in S3. Though Arf�Fi;R� is not an invariant of a knot Ki � qFi, the

following theorem holds.

Theorem 2.2. Let R � F1 UF2 U � � � UFn be an orientable R-complex and L �

qF1 U qF2 U � � � U qFn a link. Then the following formula holds.

Arf�L�1
Xn

i�1

Arf�Fi;R� �mod 2�:

Hence
Pn

i�1 Arf�Fi;R� �mod 2� is an invariant of L.

Let L be a proper link and L 0 a sublink of L. Suppose that there is an orientable,

possibly disconnected surface F such that qF � L 0 and F V �Lÿ L 0� � q. (Note that

Lÿ L 0 is also a proper link.) For this surface F, if L 0 is a proper link, then we can

de®ne a quadratic function q : H1�F ;Z2� ! Z2 as follows. Suppose a A H1�F ;Z2� is

represented by a simple closed curve a in F. De®ne q�a� A Z2 by

q�a�1 lk�a; a�� � lk�a;Lÿ L 0� �mod 2�:

Let V � fa A H1�F ;Z2� j a � x � 0 for any x A H1�F ;Z2�g. Then by Claim 3.4, q

vanishes on V. In this case, � and q induce well-de®ned nonsingular bilinear and

quadratic forms on H1�F ;Z2�=V . Choose a symplectic basis a1; a2; . . . ; ag; b1; b2; . . . ; bg

of H1�F ;Z2�=V. We de®ne the Arf invariant Arf�F ;L� of F to be
Pg

k�1 q�ak�q�bk�

�mod 2�.

Theorem 2.3. Let L be a proper link and L 0 a sublink of L. Suppose that L 0 is

proper and it bounds an orientable, possibly disconnected surface F with F V �Lÿ L 0� �

q. Then we have Arf�L�1Arf�Lÿ L 0� �Arf�F ;L� �mod 2�. Hence Arf�F ;L� is an

invariant of L.

Note that if L is an algebraically split link, then any sublink L 0 of L is proper and

L 0 bounds an orientable surface F with F V �Lÿ L 0� � q.

Theorems 2.2 and 2.3 will be proved in the last section. Theorem 2.3 implies the

following.

Corollary 2.4. Let L be a proper link and K a component of L. Suppose that

lk�K ;K 0� � 0 for any component K 0�0K�. Then for any orientable surface F with F V

L � qF � K , Arf�L�1Arf�Lÿ K� �Arf�F ;L� �mod 2�. r

Remark 2.5. For a non-proper link L, if there is a component K of L with

lk�K ;K 0� � 0 for any K 0�0K�, then there is an orientable surface F with F VL � qF �
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K and then we can de®ne Arf�F ;L�. Though Arf�F ;L� is an invariant of F U �Lÿ K�

in S3, it is not always an invariant of L. For example, the links as in Figure 1, (a) and

(b) are ambient isotopic but Arf�F ;L�0Arf�F 0;L�. Thus in Corollary 2.4 (Theorem

2.3), the condition that L is proper is essential.

R. S. Beiss [2] has shown that the Sato-Levine invariant [20] b�L� A Z of a 2-

component algebraically split link L � K UK 0 is mod 2 congruent to the sum of Arf�L�,

Arf�K� and Arf�K 0�. Combining this and Corollary 2.4, we have

Proposition 2.6. Let L � K UK 0 be a 2-component algebraically split link. For any

orientable surface F with F VL � qF � K , Arf�F ;L� ÿArf�K�1 b�L� �mod 2�. r

T. D. Cochran [4] de®ned the Sato-Levine invariant b�L� A Z for a 3-component,

algebraically split link L � K1 UK2 UK3 and showed that a4�L� � �b�L��2 � �mL�123��
2,

where a4�L� is the fourth coe½cient of the Conway polynomial of L and mL�123� is

Milnor's m-invariant [11] of L. H. Murakami [13] and J. Hoste [8] showed that the sum

Arf�L� �
P3

i�1�Arf�Lÿ Ki� �Arf�Ki�� is mod 2 congruent to a4�L�. Thus
P3

i�1

�Arf�L� �Arf�Lÿ Ki� �Arf�Ki�� is mod 2 congruent to b�L��� mL�123��. Combining

this and Theorem 2.3, we get

Proposition 2.7. Let L � K1 UK2 UK3 be a 3-component, algebraically split link.

For any orientable surfaces Fi �i � 1; 2; 3� with Fi VL � qFi � Ki, and for any orientable

surfaces Fij �1U i < jU 3� with Fij VL � qFij � Ki UKj,

X3

i�1

�Arf�Fi;L� ÿArf�Ki��1
X

i< j

�Arf�Fij ;L� ÿArf�Ki UKj��

1 b�L�1 mL�123� �mod 2�: r

Figure 1.
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3. Z2-algebraically split links.

By the arguments similar to that in the proof of Proposition 2.1, we have the

following proposition. This proposition gives us a geometric de®nition of a Z2-

algebraically split link.

Proposition 3.1. The following conditions are mutually equivalent.

(1) L � K1 UK2 U � � � UKn is a Z2-algebraically split link.

(2) There is an unoriented, possibly non-orientable R-complex F1 UF2 U � � � UFn such

that qFi � Ki �i � 1; 2; . . . ; n�.
(3) There is a disjoint union L of once punctured, unoriented, possibly non-orientable

surfaces in a 4-ball B4 such that �qB4; qL�G �S3;L�. r

Let R � F1 UF2 U � � � UFn be an unoriented, possibly non-orientable R-complex.

For each Fi �i � 1; 2; . . . ; n�, we can de®ne a Z4-quadratic function j : H1�Fi;Z2� ! Z4

as follows. Let L � K1 UK2 U � � � UKn be a link such that Ki � qFi �i � 1; 2; . . . ; n�.
Suppose a A H1�Fi;Z2� is represented by a simple closed curve a in Fi without in-

tersecting the singularities contained in int�Fi�. De®ne j�a� A Z4 by

j�a�1 lk�a; ta� � 2 lk�a;Lÿ Ki� �mod 4�;

where ta denotes the result of pushing 2a a very small amount into S3 ÿ Fi. This gives

a well-de®ned function j : H1�Fi;Z2� ! Z4 that is a Z4-quadratic function with respect

to the intersection pairing � : H1�Fi;Z2�nH1�Fi;Z2� ! Z2. That is, j�x� y�1 j�x� �
j�y� � 2�x � y� �mod4� for all x; y A H1�Fi;Z2�. We de®ne the Brown invariant B�Fi;R�
A Z8 to be the Brown invariant [3] of the Z4-quadratic function j. That is, B�Fi;R� is

de®ned by

���

2
p dimH1�Fi ;Z2�

exp�p
�������

ÿ1
p

B�Fi;R�=4� �
X

x AH1�Fi ;Z2�

�������

ÿ1
p j�x�

:

Let K̂i be a parallel copy of Ki on Fi oriented in the same direction as Ki, and set

A�Fi;R�1B�Fi;R� ÿ
1

2
lk�Ki; K̂i� �mod 8�:

Since B�Fi;R� is an invariant, A�Fi;R� is also an invariant of R in S3. Though A�Fi;R�
is not an invariant of a knot Ki � qFi, we have

Theorem 3.2. Let R � F1 UF2 U � � � UFn be an unoriented, possibly non-orientable

R-complex and L � qF1 U qF2 U � � � U qFn a link. Then the following formula holds.
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4Arf�L�1
X

n

i�1

A�Fi;R� ÿ
X

i<j

lk�qFi; qFj� �mod 8�:

Hence
Pn

i�1 A�Fi;R� is an invariant of L.

Remark 3.3. For an R-complex R � F1 UF2 U � � � UFn, if F1;F2; . . . ;Fn are mu-

tually disjoint, then j�a�1 lk�a; ta� �mod4� for any a. This implies that A�Fi;R� is

the same as an invariant of a knot qFi, de®ned by P. Gilmer [6 ], [7]. Hence we have

A�Fi;R� � 4Arf�qFi� [6].

Let L be a proper link and L 0 a sublink of L. Suppose that L 0 is proper and it

bounds an unoriented, possibly disconnected surface F with F V �Lÿ L 0� � q. (Note

that Lÿ L 0 is also a proper link.) For this surface F, we can de®ne a Z4-quadratic

function j : H1�F ;Z2� ! Z4 as follows. Suppose a A H1�F ;Z2� is represented by a

simple closed curve a in F. De®ne j�a� A Z4 by

j�a�1 lk�a; ta� � 2 lk�a;Lÿ L 0� �mod 4�:

Claim 3.4. Let V � fa A H1�F ;Z2� j a � x � 0 for any x A H1�F ;Z2�g. The Z4-

quadratic function j : H1�F ;Z2� ! Z4 above vanishes on V.

We call a Z4-quadratic function on H1�F ;Z2� proper [6] (or informative [10]) if it

vanishes on V.

Proof. Set qF � L 0 � K1 UK2 U � � � UKm and let ai A H1�F ;Z2� be 1-cycle that

represented by Ki �i � 1; 2; . . . ;m�. Let a A V and a a simple closed curve in F rep-

resenting a. Since a � x � 0 for any x A H1�F ;Z2�, we may assume that a separates F.

This implies that V is generated by a1; a2; . . . ; am. Hence it is su½cient to show that

j�ai� � 0 A Z4 for any i�� 1; 2; . . . ;m�. By the assumption that L 0 is proper and the fact

that Ki and L 0 ÿ Ki cobound F, we have lk�Ki; tKi� � 2lk�Ki; K̂i�1 2lk�Ki;L
0 ÿ Ki�1 0

�mod 4�, for any Ki. Thus we have

j�ai�1 lk�Ki; tKi� � 2lk�Ki;Lÿ L 0�1 2lk�Ki;Lÿ Ki� �mod 4�:

Since L is a proper link, we have 2lk�Ki;Lÿ Ki�1 0 �mod 4�. r

We de®ne the Brown invariant B�F� A Z8 to be the Brown invariant of the proper

Z4-quadratic function j. That is, B�F� is de®ned by

���

2
p dimH1�F ;Z2��dimV

exp�p
�������

ÿ1
p

B�F ;L�=4� �
X

x AH1�F ;Z2�

�������

ÿ1
p j�x�

:
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This formula is due to E. H. Brown [3] in the case that V � f0g. Its extension to proper

forms is due to V. M. Kharlamov and O. Ya. Viro [10]. Let L̂ 0 be a parallel copy of L 0

on F oriented in the same direction as L 0, and set

A�F ;L�1B�F ;L� ÿ
1

2
lk�L 0; L̂ 0� �mod 8�:

Theorem 3.5. Let L be a proper link and L 0 a sublink of L. Suppose that L 0 is

proper and it bounds an unoriented, possibly disconnected surface F with F V �Lÿ L 0� �

q. Then we have

4Arf�L�1 4Arf�Lÿ L 0� �A�F ;L� ÿ lk�L 0;Lÿ L 0� �mod 8�:

Hence A�F ;L� is an invariant of L.

Remark 3.6. Let L, L 0 and F be as in the theorem above.

(1) Since lk�L 0;Lÿ L 0��� lk�qF ;Lÿ qF �� is even, by Theorem 3.5, A�F ;L�=2 is

a Z4-valued link invariant. Let L0, L1, Lÿ1, and L2 be the 2-component trivial link,

�2; 4�-torus link, its mirror image, and the Whitehead link, respectively. Let Fi be

an unoriented surface bounding one component of Li without intersecting the other

component �i � 0;G1; 2�. It follows from Theorem 3.5 that A�Fi;L�1 i �mod4�. This

implies A���=2 can take any value in Z4.

(2) If Lÿ L 0 and F are separated by a 2-sphere, then by j�a�1 lk�a; ta� �mod 4�

for any a. This implies that A�F ;L� is the same as an invariant of a link qF � L 0,

de®ned by P. Gilmer [6 ], [7]. Hence we have A�F ;L� � 4Arf�L 0� [6 ].

We shall prove Theorems 3.2 and 3.5 in the last section. Theorem 3.5 implies the

following.

Corollary 3.7. Let L be a proper link and K a component of L. Suppose that

lk�K ;K 0� is even for any component K 0�0K�. Then for any unoriented surface F with

F VL � qF � K ,

4Arf�L�1 4Arf�Lÿ K� �A�F ;L� ÿ lk�K ;Lÿ K� �mod8�: r

In [19], M. Saito de®ned the unoriented Sato-Levine invariant b��L� A Z4 for a

2-component proper link L. Note that when L is a 2-component link, L is proper if

and only if L is Z2-algebraically split. By using Corollary 3.7, we have the following

proposition.

Proposition 3.8. Let L � K UK 0 be a 2-component proper link. For any unoriented

surface F with F VL � qF � K , A�F ;L� ÿ 4Arf�K� ÿ 2 lk�K ;K 0�1 2b��L� �mod8�.
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Since b��L� is in Z4, by the proposition above, we can identify A�F ;L�=2ÿ

2Arf�K� ÿ lk�K ;K 0� A Z4 with b ��L�.

Proof. It follows from [19, Theorem 4.1] that 2b ��L�1 4a3�L� ÿ lk�K ;K 0�

�mod 8�, where a3�L� is the third coe½cient of the Conway polynomial of L. K.

Murasugi [16 ], H. Murakami [13] and J. Hoste [8] have shown that the sum of Arf�L�,

Arf�K� and Arf�K 0� is mod 2 congruent to a3�L�. Combining these and Corollary 3.7,

we get

4a3�L�1 4Arf�L� � 4Arf�K� � 4Arf�K 0�1A�F ;L� ÿ 4Arf�K� ÿ lk�K ;K 0� �mod8�:

This completes the proof. r

Remark 3.9. If F is an orientable surface, then A�F ;L� � B�F ;L� and then by

[3, Theorem 1.20, (vii)], B�F ;L� � 4Arf�F ;L�. By [19, Remark 2.3], 2b�L�1 b ��L�

�mod 4�. It follows from Proposition 3.8 that 4Arf�F ;L� ÿ 4Arf�K�1 4b�L� �mod 8�.

This gives us an alternate proof of Proposition 2.6.

4. Local moves.

Let L be a link in S3, and D2 a disk intersecting L in its interior. Let l �

jlk�qD2;L�j, and e � 1 or � ÿ1. An e-Dehn surgery along qD2 changes L into a new

link L 0 in S3 (Figure 2). We say that L 0 is obtain from L by �e; l�-twisting.

Proposition 4.1. Let L1 and L2 be links such that L2 is obtained from L1 by a

single �e; l�-twisting. If L1 is a proper link and l is odd, then L2 is proper and

Arf�L2� ÿArf�L1�1
l 2 ÿ 1

8
�mod 2�:

A local move on a link diagram as shown in Figure 3 is called a ]�l;m�-move. If

both l and m are multiples of a prime p, then a ]�l;m�-move is called a ]p-move [12]. A

Figure 2.
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]p-move is a generalized ]-move, where the ]-move is a local move, de®ned by H.

Murakami [14], as in Figure 4.

Proposition 4.2. Let L1 and L2 be links such that L2 is obtained from L1 by a

single ]�l;m�-move. If L1 is a proper link and l;m are even, then L2 is proper and

Arf�L2� ÿArf�L1�1
lm

4
�mod2�:

If a link L is proper, then by [15, Theorem A.2], L is deformed into a trivial link by

]-moves. Since the ]-move is an example of ]�2; 2�-move and Arf invariant of a trivial

link is equal to 0 (Corollary 1.3), Proposition 4.2 gives the following proposition.

Proposition 4.3 ([14, Theorem 3.5]). Let L be a proper link and m a number of

]-moves needed to deform L into a trivial link. Then Arf�L�1m �mod2�. r

To prove Proposition 4.1, we need the following lemma.

Lemma 4.4. Let L1 and L2 be links. Let M be a twice punctured eCP2. If L2 is

obtained from L1 by a single �e; l�-twisting, then there exists a disjoint union F of annuli in

M such that �qM; qF �G �ÿS3;ÿL1�U �S3;L2� and F represents a homology class lg,

where g is a standard generator of H2�M; qM;Z� with g � g � e.

Figure 3.

Figure 4.
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Proof. Set �M0;F � � �S3;L1� � I . We may assume that �qM0; qF� � �ÿS3 � f0g;

ÿL1�U �S3 � f1g;L1�. Let D2 be a disk in S3 � f1g such that jlk�qD2;L1�j � l and an

e-Dehn surgery along qD2 changes L1 into L2. Attach 2-handle H to M0 along qD2

with framing e. The resulting 4-manifold M � M0 UH is a twice punctured eCP2. It is

not hard to see that �qM; qF �G �ÿS3;ÿL1�U �S3;L2� and F represents a homology

class lg. r

Proof of Proposition 4.1. By Lemma 4.4, there exists a disjoint union F of annuli

in a twice punctured eCP2, say M, such that �qM; qF �G �ÿS3;ÿL1�U �S3;L2� and

�F � � lg. Note that lg is characteristic because l is odd. If L2 is a proper link, then the

proposition follows from Proposition 1.4. We shall prove that L2 is proper.

Since L1 is a proper link, by Theorem 1.1, there exist a compact, simply connected

4-manifold M 0 with qM 0
GS3, and a disjoint union D of 2-disks in M 0 such that D

represents a characteristic homology class in H2�M
0; qM 0

;Z� and �qM 0; qD�G �S3;L1�.

Set M 00 � M Uf M
0 and D 0 � F Uf D, where f is an orientation reversing di¨eomorphism

from �qM 0; qD� to �ÿS3;ÿL1�. Then we note that �qM 00; qD 0�G �S3;L2�, D 0 is a

disjoint union of 2-disks in M 00 and �D 0� is characteristic. It follows from Theorem 1.1

that L2 is proper. We have completed the proof. r

To prove Proposition 4.2, we use the following lemma.

Lemma 4.5. Let L1 and L2 be links. Let M be a twice punctured S2 � S2. If L2 is

obtained from L1 by a single ]�l;m�-move, then there exists a disjoint union F of annuli in

M such that �qM; qF�G �ÿS3;ÿL1�U �S3;L2� and F represents a homology class either

la�mb or laÿmb, where a; b are standard generators of H2�M; qM;Z� with a � a �

b � b � 0 and a � b � 1.

Proof. Set �M0;F � � �S3;L1� � I . We may assume that �qM0; qF� � �ÿS3 � f0g;

ÿL1�U �S3 � f1g;L1�. Figure 5 shows that doing 0-surgeries along l1 and l2 have the

same e¨ect on L1 as ]�l;m�-move. Attach 2-handles H1 and H2 to M0 with framing

0 along l1 and l2 respectively. The resulting 4-manifold M � M0 UH1 UH2 is a twice

Figure 5.
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punctured S2 � S2. It is not hard to see that �qM; qF �G �ÿS3;ÿL1�U �S3;L2� and

F represents a homology class either la�mb or laÿmb. r

Proof of Proposition 4.2. By Lemma 4.5 and the arguments similar to that in

Proof of Proposition 4.1, we obtain the proposition. r

A link is a Z2-boundary link if the components bounds mutually disjoint (not

necessarily orientable) surface in S3.

T. Shibuya [22] and M. Saito [19] proved the following proposition. T. Shibuya

showed that the proposition below holds in more general situation. Here we give a

proof by using Proposition 4.3.

Proposition 4.6. ([22, Theorem], [19, Proposition 5.3]). If L � K1 UK2 U � � � UKn

is a Z2-boundary link, then the following formula holds.

Arf�L�1
Xn

i�1

Arf�Ki� ÿ
1

4

X

i< j

lk�Ki;Kj� �mod 2�:

Proof. Let F1;F2; . . . ;Fn be mutually disjoint surfaces with qFi � Ki �i � 1; 2; . . . ;

n�. We may assume that each Fi is non-orientable and that each Fi is an image of

embedding of a surface as in Figure 6. (When a surface Fi is orientable, attach a 1-

handle H 1 to Fi so that Fi UH 1 is non-orientable and H 1 V �F1 UF2 U � � � UFn ÿ Fi� �

q.) By ]-move as in Figure 7, we can deform F1 UF2 U � � � UFn into a split sum without

Figure 6.

Fj

Fi

Fj

Fi

Figure 7.

Links and Arf invariant 605



changing each Fi. Let p be a number of ]-moves needed in this deformations. Note that

p1
1

4

X

i< j

lk�Ki;Kj� �mod 2�:

Let qi be a number of ]-moves needed to deform Ki into a trivial knot �i � 1; 2; . . . ; n�.

Hence, a number of ]-moves needed to deform L into a trivial link is equal to
Pn

i�1 qi �

p. By Proposition 4.3, we have

Arf�L�1
Xn

i�1

qi ÿ p1
Xn

i�1

Arf�Ki� ÿ
1

4

X

i< j

lk�Ki;Kj� �mod 2�: r

Proof of Theorem 3.2. Deform R-complex R � F1 UF2 U � � � UFn into a disjoint

union R 0 � F 0
1 UF 0

2 U � � � UF 0
n of surfaces by �G1; 1�-twistings as in Figure 8. Set qF 0

i �

K 0
i �i � 1; 2; . . . ; n�. It is not hard to see that neither the Z4-quadratic functions on

H1�Fi;Z2� �i � 1; 2; . . . ; n� nor the value of
Pn

i�1 lk�Ki; K̂i�=2�
P

i<j lk�Ki;Kj� changes

(a)

(b)

(c)

-1
(-1,1)-twisting

(1,1)-twisting

(1,1)-twisting

1

1

Figure 8.
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under �G1; 1�-twistings. Hence we have

Xn

i�1

A�Fi;R� ÿ
X

i<j

lk�Ki;Kj�1
Xn

i�1

A�F 0
i ;R

0� ÿ
X

i<j

lk�K 0
i ;K

0
j � �mod 8�:

By Proposition 4.1, Arf�L� � Arf�qR 0�. Since qR 0 is a Z2-boundary link, by Remark

3.3, A�F 0
i ;R

0� � 4Arf�qF 0
i �, and by Proposition 4.6,

Arf�qR 0�1
Xn

i�1

Arf�qF 0
i � ÿ

1

4

X

i<j

lk�K 0
i ;K

0
j � �mod 2�:

Thus we have the desired formula. r

Proof of Theorem 3.5. By �G1; 1�-twistings as in Figure 8, deform F into F 0 so

that Lÿ L 0 and F 0 are separated by a 2-sphere. Since �G1; 1�-twistings preserve both the

Z4-quadratic function on H1�F ;Z2� and the value of lk�L 0; L̂ 0�=2� lk�L 0;Lÿ L 0�, we

have

A�F ;L� ÿ lk�L 0;Lÿ L 0�1A�F 0; �Lÿ L 0�U qF 0� �mod8�:

By Proposition 4.1, Arf�L� � Arf��Lÿ L 0�U qF 0�. Since Lÿ L 0 and F 0 are separated,

by Remark 3.6, (2), A�F 0; �Lÿ L 0�U qF 0� � 4Arf�qF 0�, and by Proposition 4.3,

Arf��Lÿ L 0�U qF 0�1 p� q1Arf�Lÿ L 0� �Arf�qF 0� �mod 2�;

where p (resp. q) is a number of ]-moves needed to deform Lÿ L 0 (resp. qF 0) to be

trivial. Hence we have the desired formula. r

Proof of Theorem 2.2. If an R-complex R � F1 UF2 U � � � UFn is orientable,

then lk�Ki; K̂i� � 0, and then by [3, Theorem 1.20, (vii)], B�Fi;R� � 4Arf�Fi;R� �i � 1;

2; . . . ; n�. Hence we have A�Fi;R� � 4Arf�Fi;R�. Theorem 2.2 follows from Theorem

3.2. r

Proof of Theorem 2.3. If F is orientable, then lk�L 0; L̂ 0� � 0, and then by [3,

Theorem 1.20, (vii)], B�F ;L� � 4Arf�F ;L�. Hence we have A�F ;L� � 4Arf�F ;L�.

Theorem 2.3 follows from Theorem 3.5. r
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