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Abstract. Passing from regular variation of a function f to regular varia-

tion of its integral transform k � f of Mellin-convolution form with kernel k

is an Abelian problem; its converse, under suitable Tauberian conditions, is a

Tauberian one. In either case, one has a comparison statement that the ratio of

f and k � f tends to a constant at in®nity. Passing from a comparison statement

to a regular-variation statement is a Mercerian problem. The prototype results

here are the Drasin-Shea theorem (for non-negative k) and Jordan's theorem

(for k which may change sign). We free Jordan's theorem from its non-essential

technical conditions which reduce its applicability. Our proof is simpler than

the counter-parts of the previous results and does not even use the PoÂlya Peak

Theorem which has been so essential before. The usefulness of the extension is

highlighted by an application to Hankel transforms.

1. Introduction.

In [BI1, BI2], we proved Mercerian results for Hankel transforms. In particular,

in [BI2] we introduced a method, a type of localization, which seems useful for other

problems, too. Here we apply the method to general integral transforms, and thereby

extend the theorems of Drasin-Shea [DS ] and Jordan [J ]. As an application, we give a

Mercerian result for Hankel transforms of non-monotone functions.

We recall the setting. Given a measurable kernel k : �0;y� ! R, let

�k�z� :�

�
y

0

tÿzk�t�
dt

t

be its Mellin transform for z A C such that the integral converges absolutely. For

suitable functions f ; g : �0;y� ! R, the Mellin convolution is the function f � g given

by

� f � g��x� :�

�
y

0

f �x=t�g�t�
dt

t
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for those x > 0 for which the integral converges absolutely. For r A R, we write Rr for

the class of functions f regularly varying (at in®nity) with index r: f is measurable,

positive for large enough x, and

f �lx�= f �x� ! lr �x ! y� El > 0 ;

see [BGT ] for background. We are concerned here with comparisons between the

asymptotic behaviour of the function f and that of its transform k � f . The simplest

such results of this type are Abelian, and state that under suitable conditions

f �x�@ xr
l�x� �x ! y� �1:1�

with l A R0 implies

�k � f ��x�@ cxr
l�x� �x ! y�; �1:2�

where

c � �k�r�: �1:3�

Tauberian results supply a partial converse under suitable side-conditions (Tauberian

conditions); see e.g. [BGT, Ch. 4] for a detailed treatment. In these circumstances, one

has

�k � f ��x�= f �x� ! c �x ! y�: �1:4�

The question arises of whether one can obtain (1.1)Ðand so (1.2)Ðfrom (1.4), with r as

in (1.3). Such results are Mercerian in character; for a textbook treatment, see e.g.

[BGT, Ch. 5]. The prototypes are due to Drasin and Shea ([DS, Th. 6.2]; [BGT, Th.

5.2.1]), with k non-negative, and Jordan ([J, Th. 1, 1a]; [BGT, Th. 5.3.1]), where k can

change sign.

This area of Mercerian theorems of Drasin-Shea-Jordan type has long su¨ered

from several outstanding problems. First, the proofs are long, complicated and highly

technical, and one seeks to simplify them as much as possible. Next, until recently no

such results were available for the important case where the integrals de®ning �k and

k � f are only conditionally rather than absolutely convergent, as is the case for Fourier

and Hankel transforms, for example. In two recent works [BI1, BI2] we succeeded both

in simplifying the proofs of Drasin-Shea-Jordan theorems and in extending them to

Fourier and Hankel transforms.

Here we focus on a third long-standing problem: the need to rid Jordan's theorems

[J ] of various technical conditions which complicate their statements and reduce their
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applicability. Our approach here was suggested by the observation [BI1, §8.1] that in

the Hankel case, for r small enough to give k � f absolutely convergent, one of Jordan's

theorems [J, Th. 1] nevertheless did not apply because its conditions exclude kernels

such as the Fourier and Hankel ones, which oscillate in®nitely often in sign. (However,

Jordan's second theorem [J, Th. 1a] applies to some but not all Hankel cases; see §5 for

details.) Our results succeed in solving the problem raised there. The main speci®c

contributions are:

(i) freeing Jordan's theorem from its non-essential technical conditions;

(ii) eliminating the need to use PoÂ lya peaks (see below for details);

(iii) extending the results of [BI1, BI2] in the Hankel case with absolute con-

vergence (the motivating situation, as mentioned above) to non-monotone functions.

This last is to be expected: monotonicity was used to ensure convergence in the

conditionally convergent case.

We recall ([BGT, §2.1.2]) the Matuszewska indices of a positive function f. The

upper Matuszewska index a� f � is the in®mum of those a for which there exists a

constant C � C�a� such that for each L > 1,

f �lx�= f �x�UCf1� o�1�gla �x ! y� uniformly in l A �1;L�;

the lower Matuszewska index b� f � is the supremum of those b for which, for some

constant D � D�b� > 0 and all L > 1,

f �lx�= f �x�VDf1� o�1�glb �x ! y� uniformly in l A �1;L�:

One says f has bounded increase, f A BI , if a� f � < y, bounded decrease, f A BD, if

b� f � > ÿy.

The upper order r� f � of a positive function f is de®ned by

r� f � :� lim sup
x!y

log f �x�

log x
:

2. Results.

Theorem 1. Let k be a real kernel such that �k�z� converges absolutely for a <

Rz < b. Assume also

�k�z�0 �k�r� for Rz � r and z0 r; �2:1�

j�k 0�r�j � j�k 00�r�j > 0: �2:2�

Let f be non-negative, measurable, and locally bounded on �0;y�, vanish in a neigh-
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bourhood of zero, have ®nite upper order r A �a; b�, and f A BDUBI . If

�k � f ��x�= f �x� ! c0 0 �x ! y�; �2:3�

then c � �k�r� and f A Rr.

For non-negative k, the theorem above coincides with that of Drasin and Shea [DS ]

(see also [BGT, Th. 5.2.1]). The point of the theorem is that it dispenses with some

extra assumptions of Jordan [J ] (see also [BGT, Th. 5.3.1]). These extra conditions are

of two kinds. The ®rst one is that in an appropriate subinterval of �a; b� the Mellin

transform �k is monotone. The second one is the restriction of the behaviour of k�t� for

either large or small t. As Jordan wrote himself (in [J, p. 180]), the second one does not

seem to be so restrictive since few kernels of normal interest fail to satisfy it. On the

other hand, the ®rst one can be quite restrictive for some kernels (see §5).

The proof of Theorem 1 will be given in §3. As we indicated above, the key to the

proof is the localization technique introduced in [BI2]. The idea is simple. There are

two kinds of similar integral transforms f 7! E1 � f and f 7! E2 � f (see §3) which have

been already used in, e.g., [DS ], [J ] and [BI1]. Instead of such separate use, we apply

both transforms at the same time: f 7! E1 � E2 � f . Then this has the e¨ect of localizing

the problem completely, that is, it is enough to restrict to the narrow strip rÿ e < Rz <

r� e for e > 0 small enough instead of the intermediate strips rÿ e < Rz < b or a <

Rz < r� e used in the previous works. The usefulness of the idea is shown, for ex-

ample, by the fact that, by virtue of it, we can avoid the use of the PoÂ lya Peak Theorem

of Drasin and Shea, which has been so essential before but does not work well enough

in our problem (see [DS ], [BGT, §§2.5, 5.2.3]).

We apply Theorem 1 to Hankel transforms. There the kernel k to be considered is

kn�x� :� xÿ3=2Jn�1=x�; �2:4�

where n > ÿ1=2 and Jn is the Bessel function. Here we treat only absolutely convergent

integrals. The Mellin transform �kn�z� of kn converges absolutely for ÿnÿ �3=2� < Rz <

ÿ1 (so a � ÿnÿ �3=2�, b � ÿ1), and is given by Weber's integral:

�kn�z� � 2z��1=2� G��3=4� � �1=2�n� �1=2�z�

G��1=4� � �1=2�nÿ �1=2�z�
: �W�

We write Fn, or simply F, for the Hankel transform kn � f of f :

Fn�x� :�

�y
0

kn�x=t� f �t�
dt

t
�0 < x < y�: �2:5�
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We note that, in the usual terminology, it is not Fn but xÿ1Fn�1=x� which is called the

Hankel transform of f :

xÿ1Fn�1=x� �

�

y

0

�xt�1=2Jn�xt� f �t� dt �0 < x < y�:

Theorem 2. Let ÿ1=2 < n < y. Let tn��1=2� f �t� A L1
loc�0;y�, f be eventually

positive, have ®nite upper order r :� r� f � A �ÿnÿ �3=2�;ÿ1�, f A BDUBI , and let f have

Hankel transform Fn. If

Fn�x�= f �x� ! c0 0 �x ! y�; �2:6�

then c � �kn�r� and f A Rr.

The theorem above is an analogue of the results of [BI1, BI2]. The di¨erence is

that in Theorem 2 the monotonicity assumption of [BI1, BI2] is weakened at the cost

of absolute convergence of integrals. For example, if we consider Fourier transforms

of radial functions on R
n, then we naturally meet Hankel transforms of order n �

�1=2��nÿ 2�, by Bochner's theorem (see e.g. [BC, II.7, Th. 40]). In such a situation,

the monotonicity assumption of [BI1, BI2] will sometimes be too strong.

Since we consider only absolutely convergent integrals here, we cannot include the

case n � ÿ1=2, that is, the Fourier cosine transform. For, the Mellin transform of

the cosine kernel kÿ1=2�x� � �2=p�1=2xÿ1 cos�1=x� has no strip of absolute convergence.

To consider the cosine transform, it is indispensable to treat conditionally convergent

integrals as in [BI1, BI2]. On the other hand, the Fourier sine transform has strips of

both absolute and conditional convergence; our results here apply only to the ®rst, those

of [BI1, BI2] to both.

As we have shown in [BI1, BI2], for all n > ÿ1=2, �kn satis®es both the conditions

(2.1) and (2.2). So for f as in Theorem 1, Theorem 2 is an immediate consequence of

Theorem 1. On the other hand, the Drasin-Shea theorem (the case k���V 0) cannot be

applied to the kernel kn as it changes sign. Further, if n is large enough, then neither

Theorem 1 nor Theorem 1a of Jordan [J ] can be applied to kn (see §5).

The vanishing of f near zero as in Theorem 1 will be too restrictive, and actually is

not assumed in Theorem 2. Since this is the point of the proof of Theorem 2 in §4, we

discuss it brie¯y. Clearly, we could drop the vanishing of f near zero if we were able to

show

�1

0

f �u�kn�x=u�
du

u

�

�

�

�

�

�

�

�

� o� f �x�� �x ! y�: �2:7�
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However, it seems di½cult to prove this directly. In fact, we can show

�1

0

f �u�kn�x=u�
du

u

�

�

�

�

�

�

�

�

U c1x
ÿ�n��3=2��

for some c1 > 0, and the consequence f A Rr of Theorem 2 certainly implies xÿ�n��3=2�� �

o� f �x�� as x ! y. Unfortunately, we do not know how to prove the last assertion

directly, that is, without Theorem 2. For this reason, in the proof of Theorem 2, we

follow the line of [BI1] and use Theorem 1 to reduce its complicated arguments rather

than use the theorem directly.

3. Proof of Theorem 1.

For brevity, we will as far as possible keep, step by step, to the proof of [BGT,

Theorem 5.2.1] (the Drasin-Shea theorem). By (2.3), f is eventually positive. We note a

crude but useful bound. For g A R, G : �0;y� ! R measurable such that �G�g� converges

absolutely, and f non-negative and measurable with bound f �x�U d�g�xg �x > 0�, the

Mellin convolution G � f exists and satis®es the bound

jG � f �x�jU d�g�xg

�

y

0

tÿgjG�t�j dt=t � d�g�jGj��g�xg �0 < x < y�:

Steps 1 and 2 are exactly as those of the proof of [BGT, Theorem 5.3.1] (Jordan's

theorem), so �k�r� � c. Here we can assume f A BI instead of f A BD; see [BGT, §5.2.4].

Steps 3±5. By the Riemann-Lebesgue Lemma and Vitali's theorem in complex

analysis [T1, §5.2], we may take e > 0 so small that �rÿ 2e; r� 2e�H �a; b� and that �k�z�

takes the value �k�r� only at z � r in the strip rÿ 2eURzU r� 2e (see [BGT, §5.1.3],

Jordan [J, p. 191]). Write p1, p2 for rÿ e, r� e, and consider

E1�x� :� I�1;y��x�x
p1 ; E2�x� :� I�0;1��x�x

p2 �0 < x < y�:

The convergence strips of �E1, �E2 are fRz > p1g, fRz < p2g. Take g A �r; p2�. Then, by

de®nition of r,

f �x�U d�g�xg �0 < x < y�

for some d�g� > 0. Write

F �x� :� �k � f ��x� �0 < x < y�:

It is important to consider, instead of f and F themselves, the following regularized
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versions:

h�x� :� �E2 � E1 � f ��x�; H�x� :� �E2 � E1 � F ��x� �0 < x < y�

(since g A �p1;y�V �ÿy; p2�V �a; b�, the crude bound above shows successively that the

integrals converge absolutely, whence Fubini's theorem gives associativity of the con-

volutions). Again by Fubini's theorem,

H�x� � �E2 � E1 � �k � f ���x� � �k � h��x� �0 < x < y�: �3:1�

By the following integral representations

h�x� � xp2

�
y

x

�E1 � f ��t� dt=t1�p2 � xp1

� x

0

�E2 � f ��t� dt=t1�p1 ;

xÿp1h�x� is increasing and xÿp2h�x� is decreasing. So

�xu�ÿp1h�ux�

xÿp1h�x�
U 1 �0 < uU 1; x > 0�;

�xu�ÿp2h�ux�

xÿp2h�x�
U 1 �1U u < y; x > 0�:

Combining, we obtain the key estimate

h�ux�

h�x�
Umax�up1 ; up2� �0 < u < y; 0 < x < y�: �3:2�

As in (5.2.2 0) of [BGT ], we have

�E1 � F��x�

�E1 � f ��x�
�

� x

0 F �t� dt=t1�p1� x

0 f �t� dt=t1�p1
! �k�r� �x ! y�

(here we may use f A BI instead of f A BD to assure
�
y

0 f �t� dt=t1�p1 � y). So

H�x�

h�x�
�

�
y

x
�E1 � F��t� dt=t

1�p2�
y

x
�E1 � f ��t� dt=t1�p2

! �k�r� �x ! y�: �3:3�

We comment brie¯y on the need to introduce h. We will show by standard

Tauberian arguments (in Steps 6±10 below) that f A Rr follows from h A Rr. Therefore

(3.1) and (3.3) imply that the problem has been reduced to that of h from that of f.

The advantage here is the useful bound (3.2) on h which we cannot expect the original

function f to satisfy.

Now we can follow the standard arguments. Choose any sequence xn " y.

Consider jn�u� :� h�xnu�=h�xn�. The functions uÿp1 jn�u� are increasing on �0;y� and by
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(3.2) uniformly bounded on compact u-sets in �0;y�. By Helly selection (of the form as

in Widder [Wi, Ch. I, Theorem 16.3] on each �0;N�, then diagonalising), we can ®nd a

sequence of integers n 0 ! y such that jn 0 converges pointwise on �0;y�, to j, say. Then

uÿp1 j�u� is increasing, j�1� � 1, and by (3.2)

j�u�Umax�up1 ; up2� �0 < u < y�: �3:4�

From (3.1), for r > 0,

H�rxn 0�
h�rxn 0� � h�rxn 0�

h�xn 0� �
�

y

0

h�rxn 0=t�
h�xn 0� k�t� dt

t
:

We now have suitably dominated convergence of the integrand by (3.2) (note that

p1; p2 A �a; b�), and H�rxn 0�=h�rxn 0� ! �k�r� by (3.3). So we obtain the following integral

equation for j :

�k�r� j�r� � �k � j��r� �0 < r < y�: �3:5�

The equation (3.5) is the same type as those in [DS ], [J ].

Step 6. Write

f�x� :� j�ex�eÿrx; K�x� :� k�ex�eÿrx �ÿy < x < y�:

Choose c1, c2 such that 0 < e < c1 < c2 < 2e. Then by (3.4),

f�x�Umax�eÿex; eex� � eejxj;

whence eÿc1jxjf�x� A L2�R�. On the other hand, eÿc2jxjK�x� A L1�R� as

�

y

ÿy

eÿc2jxjjK�x�j dxU
�

y

ÿy

eÿc2xjK�x�j dx

�
�

y

0

tÿ�c2�r�jk�t�j dt
t
� jkj��c2 � r� < y

by c2 � r A �a; b�.
We write the Fourier transform as

K̂�z� :� 1
������

2p
p

�

y

ÿy

K�x�eÿixz dx:

Then

K̂�z� � 1
������

2p
p �k�r� iz� �jIzjU c2�: �3:6�
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The equation (3.5) becomes

f�x� � 1
������

2p
p

K̂�0�

�y

ÿy

K�xÿ y�f�y� dy �ÿy < x < y�:

Here we note that

������

2p
p

K̂�0� � �k�r� � c0 0:

By (3.6), the transcendental equation K̂�z� � K̂�0� has a unique root z � 0 in the strip

jIzjU c2, which is at most double by (2.2). By Theorem 146 of Titchmarsh [T2],

f�x� � a1 � a2x �x A R�

for some a1; a2 A C . That is,

j�x� � xr�a1 � a2 log x� �0 < x < y�:

Since j is real, so are a1, a2. As j�1� � 1, we have a1 � 1. Since j���V 0, a2 � 0. Thus

j�x�1 xr. Therefore the partial limit ur of h�uxn�=h�xn� does not depend on the

sequence �xn� chosen. Thus h�ux�=h�x� ! ur as x ! y, so h A Rr. Since

xÿp1�E1 � f ��x� �
� x

0

f �t� dt=t1�p1 ;

xÿp1�E1 � f ��x� is increasing. So log��E1 � f ��x�=xp1�, whence log��E1 � f ��x�=x1�p2�, is
slowly decreasing (see [BGT, §1.7.6]). By the Monotone Density Theorem (see also

[BGT, §1.7.6]), we obtain E1 � f A Rr from h A Rr.

Steps 7±10 are proved as in the proof of [BGT, Th. 5.2.1]. In them, we deduce a

su½ciently strong Tauberian condition on f to pass from E1 � f A Rr to f A Rr. We note

that the Tauberian condition f A BI UBD, which is one of the assumptions, does not

su½ce for this purpose. The main idea here is due to Drasin (see [J, p. 179]). r

4. Proof of Theorem 2.

In this section, we write, for simplicity, F rather than Fn. We write f � g if f �
O�g� and g � O� f �. We ®rst show an analogue of [BGT, Proposition 2.10.3] (an

O-version of the monotone density theorem) which we will need later.

Proposition 4.1. Let U�x� �
�y

x
u�t� dt �x > 0�, where u is measurable, eventually

positive, and satis®es the weak Tauberian condition u A BDUBI . If b�U� > ÿy and
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a�U� < 0, then

u�x� � U�x�=x �x ! y�:

The proof of Proposition 4.1 is quite similar to that of [BGT, Proposition 2.10.3],

whence we omit the details.

Before going into details, we explain the proof of Theorem 2 in rough outline.

Recall that ÿ1=2 < n < y. We write, for X large enough and 0 < x < y,

~f �x� :� I�X ;y��x� f �x�; �4:1�

~g�x� :� �C � ~f ��x�; �4:2�

~G�x� :� �D � ~f ��x�; �4:3�

where

C�x� :� xn��1=2�eÿx; �4:4�

D�x� :� dn
xn��3=2�

�1� x2�n��3=2�
; dn :�

2n�1G�n� �3=2��

p1=2
: �4:5�

We will obtain as in [BI1]

~G�x� � �kn � ~g��x�; �4:6�

~G�x�=~g�x� ! c �x ! y�; �4:7�

�
y

X

f �t�tn��1=2� dt � y: �4:8�

We will also obtain ~g A BI and r�~g� � r. By (4.8) and the monotone convergence

theorem,

xn��3=2� ~G�x� � dn

�
y

X

tn��1=2� f �t�

f1� �t=x�2gn��3=2�
dt ! y �x ! y�;

whence by (4.7) we have xÿ�n��3=2�� � o�~g�x�� as x ! y. So (2.7) holds if we replace

f by ~g. So this time, by considering I�1;y�~g, we can apply Theorem 1 to obtain ~g A Rr.

To deduce f A Rr from this, we will use Karamata's Tauberian theorem. For that, we

will need some Tauberian condition on f. Here an extra complication, absent in [BI1,

BI2], arises. For there, f was assumed to satisfy the strong Tauberian condition of

monotonicity, which is not available now. Fortunately, the desired Tauberian condition
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can be shown by the same arguments as in Steps 7±10 of the proof of [BGT, Theorem

5.2.1], whence the proof will be complete.

Now we are ready to prove Theorem 2.

Step 1. Since f A BI UBD, by [BGT, Proposition 2.2.1] there exists X > 0 such

that f and 1= f are both positive and locally bounded on �X ;y�. De®ne ~f by (4.1) with

this X. Write, for x A �0;y�,

~F �x� :� �kn � ~f ��x�;

f �x� :� I�0;X��x� f �x�;

F �x� :� �kn � f ��x�:

Pick g A �r;ÿ1�. Then there exists c1 A �0;y� such that

0U ~f �x�U c1x
g �0 < x < y�; �4:9�

whence

j ~F �x�jU c1jknj��g�x
g �0 < x < y�:

On the other hand, since

Jn�x�@ �x=2�n=G�n� 1� �x ! 0��;

Jn�x�@

������

2

px

r

cos xÿ
�2n� 1�p

4

� �

�x ! y�

(see Watson [Wa, 7.21]), there exists c2 such that

jkn�x�jU c2x
ÿ�n��3=2�� �0 < x < y�;

whence

jF �x�jU c2x
ÿ�n��3=2��

�X

0

j f �t�jtn��1=2� dt:

As a consequence, for some c3 A �0;y�,

jF�x�jU c3fx
ÿ�n��3=2�� � xgg �0 < x < y�

(recall that F or Fn is de®ned by (2.5)).

Step 2. Let C and D be as in (4.4) and (4.5). Then as in the proof of [BI1,

Lemma 2], we have

�C � F��x� � �D � f ��x� �0 < x < y�;
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the integral converging absolutely. By (4.9), ~f A L1�0;y�, while C�x�� A L1�0;y� for

any x > 0. So Parseval's formula (cf. [MO, Theorem III]) yields

�C � ~F��x� � �D � ~f ��x� �0 < x < y�:

Combining, we obtain

�D � f ��x� � �C � F��x� �0 < x < y�; �4:10�

the integral converging absolutely.

Step 3. De®ne ~g and ~G by (4.2) and (4.3). We write G�x� :� �D � f ��x� for 0 <

x < y. By (4.10),

G�x� � �C � F��x� �0 < x < y�: �4:11�

As in [BI1, §3], we have (4.8), whence

~G�x�=G�x� ! 1 �x ! y�:

On the other hand, since 1= f is locally bounded on �X ;y�, as in [BI1, §3], it follows

from (2.7) and (4.11) that

G�x�=~g�x� ! c �x ! y�;

whence (4.7) follows.

Step 4. Since jknj��g� < y and jCj��g� < y, it follows from (4.9) that

jknj � �jCj � ~f ��x�U c1jknj��g�jCj��g�xg < y:

Therefore, by Fubini's theorem,

~G�x� � �D � ~f ��x� � ��kn � C� � ~f ��x�

� �kn � �C � ~f ���x� � �kn � ~g��x�;

whence (4.6).

By the de®nition (4.2), xÿ�n��1=2��
~g�x� is decreasing, whence ~g A BI . As in [BI1,

Lemma 5], r�~g� � r.

As we saw above, (2.7) holds if we replace f by ~g:

�1

0

~g�t�kn�x=t� dt=t � o�~g�x�� �x ! y�:
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Therefore from (4.7) we have for g :� I�1;y�~g,

�kn � g��x�=g�x� ! c �x ! y�:

By [BI1, Proposition 3] and [BI2, §5], the kernel kn satis®es the conditions (2.1) and

(2.2). Therefore, by Theorem 1, c � �k�r� and g A Rr, whence ~g A Rr.

Step 5. Write

U�x� :�

�

y

x

~f �t�tÿ�n��3=2�� dt �0 < x < y�:

Since

~g�x� � xn��1=2�

�

y

0

eÿxtdfU�1=t�g;

by Karamata's Tauberian theorem (cf. [BGT, Theorem 1.7.1 0]) ~g A Rr yields U A

Rrÿnÿ�1=2�. In particular, b�U� � a�U� � rÿ nÿ �1=2� < 0. So if we write

q�x� :� xn��1=2�U�x� �0 < x < y�;

then Proposition 4.1 yields, for some M > 1 and Y > 0,

Mÿ1
U f �x�=q�x�UM �xVY �:

As a consequence, f A OR (see [BGT, §2.0.2] for the de®nition of OR).

Step 6. For any ®xed B > 1,

�B

0

f �u�kn�x=u� du=u � o�q�x�� �x ! y�:

For, as x ! y,

�B

0

f �u�kn�x=u� du=u

�

�

�

�

�

�

�

�

U c2x
ÿ�n��3=2��

�B

0

j f �t�jtn��1=2� dt � o�q�x��:

Then, as in Steps 7±9 of the proof of [BGT, Theorem 5.2.1], we obtain

lim
l#1

lim inf
x!y

inf
s A �1;l�

f �sx�= f �x� � 1;

which implies that log f is slowly decreasing. Thus, by the Monotone Density Theorem,

U A Rrÿnÿ�1=2� implies f A Rr, as desired. This completes the proof. r

Extension of the Drasin-Shea-Jordan theorem 557



5. Remarks.

In this section, we show that the kernel kn de®ned by (2.4) fails to satisfy the

conditions of Jordan [J, Theorems 1 and 1a] for some r if n is large enough. Recall

the Mellin transform �kn of our kernel kn from (W).

Write

C�x� � G 0�x�=G�x� �0 < x < y�

for the logarithmic derivative of the gamma function (digamma function). As is well

known,

C�x� � ÿgÿ
1

x
� x

X

y

n�1

1

n�x� n�
�0 < x < y�;

where g is Euler's constant. Since C 0�x� �
P

y

n�0�x� n�ÿ2, C is increasing on �0;y�.

Now

log 2�
1

2
C

1

2

� �

�
1

2
C�1� � ÿg < 0;

log 2�
1

2
C

3

4

� �

�
1

2
C

5

4

� �

� ÿgÿ 2 log 2� 2 > 0:

So we may de®ne n1 A �1=2; 1� by

log 2�
1

2
C

1

4
�
1

2
n1

� �

�
1

2
C

3

4
�
1

2
n1

� �

� 0

(n1 � 0:9616 � � � by calculation using Mathematica).

For x A �ÿnÿ �3=2�; n� 1�,

log �kn�x� � x�
1

2

� �

log 2� logG
3

4
�
1

2
n�

1

2
x

� �

ÿ logG
1

4
�
1

2
nÿ

1

2
x

� �

;

whence

�k
0
n�x�=

�kn�x� � log 2�
1

2
C

3

4
�
1

2
n�

1

2
x

� �

�
1

2
C

1

4
�
1

2
nÿ

1

2
x

� �

:

So

�k
0
n�ÿ1� � �kn�ÿ1� log 2�

1

2
C

1

4
�

n

2

� �

�
1

2
C

3

4
�
1

2
n

� �� �

:
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Since k oscillates in®nitely often near zero (and also �kn�ÿ1� is ®nite), Jordan's

Theorem 1 cannot be applied to kn at all. If nU n1, then �k 0
n
�ÿ1�U 0, whence by

[BI1, §5], �kn is decreasing on �ÿnÿ �3=2�;ÿ1�. Further, j�kn��ÿnÿ �3=2����j � y. So

Jordan's Theorem 1a applies to kn for all r A �ÿnÿ �3=2�;ÿ1� if ÿ1=2 < nU n1.

On the other hand, if n > n1, then �k 0
n
�ÿ1� < 0, whence by [BI2, §5] there exists

b1 A �ÿnÿ �3=2�;ÿ1� such that �kn is decreasing on �ÿnÿ �3=2�; b1� and increasing on

�b1;ÿ1�. So Jordan's Theorem 1a still applies to kn if n > n1 and r A �ÿnÿ �3=2�; b1�.

However, if n > n1 and r A �b1;ÿ1�, then neither of Jordan's theorems apply to kn. Our

Theorems 1 and 2 cover this last case.

References

[BGT] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, 2nd edn, Encyclopedia of

Mathematics and its Applications 27, Cambridge Univ. Press, 1989; 1st edn 1987.

[BI1] N. H. Bingham and A. Inoue, The Drasin-Shea-Jordan theorem for Fourier and Hankel trans-

forms, Quart. J. Math. Oxford Ser. (2) 48 (1997), 279±307.

[BI2] N. H. Bingham and A. Inoue, Ratio Mercerian theorems with applications to Hankel and Fourier

transforms, Proc. London Math. Soc., (3) 79 (1999), 626±648.

[BC] S. Bochner and K. Chandrasekharan, Fourier transforms, Annals of Mathematics Studies

19, Princeton Univ. Press, 1949.

[DS] D. Drasin and D. F. Shea, Convolution inequalities, regular variation and exceptional sets, J.

Analyse Math. 29 (1976), 232±293.

[J] G. S. Jordan, Regularly varying functions and convolutions of functions with real kernels, Trans.

Amer. Math. Soc. 194 (1974), 177±194.

[MO] P. Macaulay-Owen, Parseval's theorem for Hankel transforms, Proc. London Math. Soc. (2) 45

(1939), 458±474.

[T1] E. C. Titchmarsh, The theory of functions, 2nd edn, Oxford Univ. Press, 1939.

[T2] E. C. Titchmarsh, Theory of Fourier integrals, 2nd edn, Oxford Univ. Press, 1948.

[Wa] G. N. Watson, A treatise on the theory of Bessel functions, 2nd edn, Cambridge Univ. Press, 1944.

[Wi] D. V. Widder, The Laplace transform, Princeton Univ. Press, 1941.

Nicholas H. Bingham

Department of Mathematics and Statistics

Birkbeck College (University of London)

Malet Street

London WC1E 7HX, UK

E-mail: n.bingham@statistics.bbk.ac.uk

Current address:

Department of Mathematical Sciences

Brunel University

Uxbridge

Middlesex UB8 3PH, UK

E-mail: nick.bingham@brunel.ac.uk

Akihiko Inoue

Department of Mathematics

Faculty of Science

Hokkaido University

Sapporo 060-0810

Japan

E-mail: inoue@math.sci.hokudai.ac.jp

Extension of the Drasin-Shea-Jordan theorem 559


	1. Introduction.
	2. Results.
	THEOREM 1. ...
	THEOREM 2. ...

	3. Proof of Theorem 1.
	4. Proof of Theorem 2.
	5. Remarks.
	References

