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Abstract. The classical Fatou limit theorem was extended to the case of positive har-
monic functions on a hyperbolic Riemann surface R by Constantinescu-Cornea. They
used extensively the notions of Martin’s boundary and fine limit following the filter
generated by the base of the subsets of R whose complements are closed and thin at a
minimal boundary point of R. We shall consider such a problem for positive solutions of
the Schrodinger equation on a hyperbolic Riemann surface.

1. Introduction.

J. L. Doob [4] and Constantinescu-Cornea independently investigated boundary
behavior of positive harmonic functions at minimal boundary points of the Martin
boundary and established Fatou-type theorems on general domains. In this paper we
shall concern ourselves with the same problem for positive solutions of Schrodinger’s
equation on a hyperbolic Riemann surface following Constantinescu-Cornea’s set-up.

Throughout this paper let R be a hyperbolic Riemann surface. The Martin
boundary and the set of minimal boundary points of R are denoted by A and 4,
respectively. Let K, be the Martin kernel of a point b € 4;. For a closed subset E of
R and a positive superharmonic function s on R the balayage of s over E is the infimum
of the class of positive superharmonic functions on R majorizing s on E except for a
polar subset of E and is denoted by (s),. The closed set E in R is said to be thin at a
point b € 4, provided that (Kj,). is a potential on R; that is, (K,)p < K, on some
connected component of R — E. For a point b € 4; the class of open subsets G of R
whose complements are thin at the point b is denoted by %(b), which is a filter on
R. The canonical measure of the constant harmonic function 1 on R is denoted by y
and called the harmonic measure of R. The following result is one of Fatou-type
theorems due to Constantinescu-Cornea. The details of its proof can be found in their
book [3]. A4 positive harmonic function v on R has a limit following the filter %(b) at x-
almost every point b of A;.

We now consider Schrodinger’s equation Au = Pu on a hyperbolic Riemann surface
R, where P(z)dxdy is a non-negative Holder continuous 2-form on R and z = x+iy is
a local parameter of R. Let U be an open subset of R. A real-valued function u €
C?(U) is said to be a P-solution on the open set U if u satisfies the above equa-
tion. Most of the definitions concerning to harmonic functions are carried over to the
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present situation. The Martin boundary of R for this equation is denoted by A4p and
the set of minimal boundary points of 4p by 4p;. Let K be the Martin kernel of a
point a in Ap;. The terminology of ‘P-supersolution”, “balayage”, ‘“P-thin”, and
“filter 47 (a) for a € Ap;” can be carried over to the context of P-solutions and play the
roles of “‘superharmonic function”, “balayage”, “thin”, and “filter %(b) for b e 4,” in
the harmonic case, respectively. The greatest P-solution in the class of positive P-
solutions on R bounded above by 1 is denoted by e”. Its canonical measure on Ap is
denoted by y, and is called the P-elliptic measure of R. The P-solution e’ is either
identically zero or positive on R. Throughout this paper we assume that e’ is positive
on R. Thus we can show the following result in a manner quite similar to the proof of
the preceding result: If u is a positive P-solution on R, then u has a limit following the
filter 47 (a) at yp-almost every point a of Ap.

However, this result can not be regarded as a desired Fatou-type theorem for
positive P-solutions, since it contains concepts depending upon the density P: that is,
the boundary Ap, the filter ¥¥(a), and the measure y, on Ap;. By replacing these
concepts by those independent from the density P, for example, the Martin boundary 4,
the filter 4(b), b € 4,, and the measure y on 4;, we shall obtain just a desired Fatou-
type theorem for positive P-solutions on R.

We denote by 49, the set of points b e 4; such that

J P(w)GF (z1,w)Ky(W) dudv < +o0
R

and
Ki(z1) > LJ P(w)G® (z1, w)Ky(w) du dv
27 R

for some point z; € R, where w = u + iv and G¥(z,w), (z,w) € R x R, is Green’s function
of R relative to the equation. It will be shown in Collorary 3.5 that this subset 4%, of
Ay has positive harmonic measure. Our main result is the following (Theorem 4.2)): 4
positive P-solution u on R has a limit following the filter 4(b) at y-almost every point b of
A%,. 1If the density P on R satisfies the condition

J Pw)G(z1,w)dudv < 400
R

for some point z; € R, then the set 4, of minimal boundary points will be contained in
the subset A%, except for a set with y-measure zero (Corollary 3.9).
The present author would like to thank the referee for useful remarks.

2. Notations and preliminaries.

In this section we shall recall preliminary definitions and notations on the trans-
formations tpy and typ between the Martin boundaries 4p and 4 of the Riemann
surface R. We refer to [8] for details of their definitions and related properties. And,
the measurabilities of the transformations are given in this section.

Let Apy be the set of minimal boundary points a € Ap; such that

J PW)G(z1, w)KE (W) dudv < +o0
R
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for some point z; in R, where G(z,w), (z,w) € R X R, is the harmonic Green function of
R. The set Apy is a Borel measurable subset of Ap. Similarly, we denote by 4yp the
set of minimal boundary points b € 4; such that

JR P(w)G? (21, w)Ky(w) dudv < 40

for some point z; € R. This set is also Borel measurable in 4.

In this paragraph we shall recall the definition of the measurable transformation
tpg on Apy into Ayp. To do this we need the notion of pole of a minimal positive
harmonic function, which was introduced by Brelot on any general metrizable
compactification of a Green space. The reduced function of a positive P-solution u on
R over a compact subset C of 4, which is denoted by (u), is the infimum of the class of
positive P-supersolutions s majorizing u on an intersection U N R, where U is some
neighborhood of C relative to the topology of R* = RUA. Let a be any boundary
point in Ap; and b a boundary point in 4. The reduced function of the minimal
function K over the set {b} (K),, is either constantly zero or K. 1If (K)),, = K,
then the point b is called a pole of K on 4. Generally speaking, the m1n1ma1 funct1on
K? with a € 4p; has at least one pole on 4 and may have many poles on the boundary
A. However, if the point a belongs to the set 4py, then K has a unique pole on the set
Ay, which will be contained in 4yp. Then, we can define the mapping tpy : Apy — App
by assigning the unique pole b e Ayp of KI' for a e Apy; that is, tpy(a) = b.

Now, we shall prove that the transformation tpy : Apy — Agp is measurable. To
do this we need the following notation and lemma. For an open subset G of R, let

Ap(G) ={aedp : Ge 4" (a)},

The set 4p(G) is measurable in 4p; (see Constantinescu-Cornea [3]).

LemMma 2.1. Let C be a compact subset of the Martin boundary A of R. The image
tpn(a) of a€ Apy by tpy belongs to the set C if and only if the Martin kernel K' satisfies
KF = (KF). on R.

ProOOF. Letting b = tpy(a) for ae Apy, we assume that b is contained in the
compact set C. Since the point b is the pole of K on 4, we have

K = (KP){b} <(K)c <K, onR,

a

which shows that K = (Kf). on R.

Suppose that the point b = tpy(a), a € Apy, is not contained in the set C. Then,
for each point y e C there is a closed neighborhood V, relative to the Martin com-
pactification R* such that (K )V ng 18 a potential. By the compactness of C there exists
a finite number of points y;, y,,...,», in C such that C = (), V), and (K )V R is a
potential. Therefore we have

(K))e < (K[ Jur, (v, nR) = Z (K)) )y, R

from which it follows (Kf),=0. That is, if (K”). = K" on R, then b is contained

a

in C. ]
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THEOREM 2.2. The transformation tpy : Apy — Ay is measurable.

ProoF. Let C be any compact subset of the Martin boundary 4 of R and {V,} be
a decreasing sequence of closed neighborhoods of C converging to C with respect to the
Martin topology of R*. We denote by U, the intersection V, N R and by G, the
complement R — U,. Then, we have

(Kf)c = lim (Kf)U

n—+00 n (1)
for a e Ap.
If the image 7py(a) of a point a € Apy belongs to the compact subset C, then for
every integer n we have, by the preceding lemma, (K?” )Un = KP: that is, each closed
subset U, of R is not P-thin at the point a € Apy.

Therefore we have

+00
tpy (CNA) = ﬂl(APH — 4p(Gy)),
from which it follows that 75}, (C N 4;) is a Borel measurable subset of 4p;, for 4p(G,)
is measurable in Ap; as noted before [Lemma 2.1.
Since the class of sets CNA4; with compact subsets C — 4 generates the Borel
measurable o-ring on 4;. For a Borel measurable subset E of 4; we have 15}(E) is
Borel measurable in the measurable space Apy; that is, tpy is measurable. O

We denote by 49, the set of points b€ Ayp such that

1

K _
p(z1) > >

J P(W)G® (z1, w)Ky(w) du dv

R

for some point z; € R. This set is a measurable subset of 4. We can define the notion
of pole on the boundary 4p; for each point b € 4; and we can prove that for each point
b eA%P there exists a unique pole @ on Ap of b, which is contained in the set Ap;.
Then, the transformation

0

is defined by the same way as the definition of 7py. In [8] we have proved that the
composition tgp - tpy 1s the identity on Apy. The following theorem may be proved by
the same way as the preceding theorem.

THEOREM 2.3. The transformation typ : A?{P — Apy is measurable.

In the following sections we shall need the next two theorems whose proofs can be
found in [8].

THEOREM 2.4. Let a boundary point a be in Apy. Then, a closed subset E of R is
P-thin at a if and only if E is thin at the point tpy(a).

THEOREM 2.5. Let a boundary point b be in AgH. If a closed subset E of R is P-thin
at the point typ(b), then E is thin at b.
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3. Harmonic and P-elliptic measures.

In this section we shall investigate relationship between the P-elliptic measure yp
and the harmonic measure y by using the transformation

tpy : dpy — 41,

where we recall that yp (resp. ) is the canonical measure of e’ on Ap; (resp. 1 on
A41). We denote by A(P) the image tpy(4py) of tpy. The set A; of minimal boundary
points of the Martin boundary 4 is decomposed into its four disjoint subsets:

Ay — Agp,  App— AYyp,  AYp — A(P),  A(P).

At first we shall show that the harmonic measure y is supported only by two sets of
them:

(Agp — A%p) U A(P).

For a minimal point b € 4;, let V" be the intersection of a neighborhood of b in the
Martin compactification R* with the Riemann surface R. Then the balayage (Kj)g_;
of the kernel K, over the closed set R — V' is potential, so that the closed set R — V is
thin at the point b (Hilfssatz 13.2 in Constantinescu-Cornea (3]). From this property of
neighborhoods of a minimal boundary point we have the following lemma.

LemMMmA 3.1. The subsets th(A?{P — A(P)) and Apy are disjoint from each other in
Apy.

ProOoF. We assume that the image typ(b) of some point b e A%, — A(P) by the
mapping typ belongs to the set Apy. Then, letting b’ = tpy - typ(b) € A(P), we have
typ(b) = typ(b'). Let U and U’ be neighborhoods of b and b’ relative to the Martin
topology, respectively. These neighborhoods may be assumed to be disjoint from each
other. We denote by V and V' the intersections U N R and U’ N R, respectively. Then,
the closed subsets R— V and R— V' of R are thin at the points b and b’, respec-
tively. By and 2.5 in the preceding section the set R — V' is P-thin at
tgp(b’), and hence thin at b. Therefore, we have that (R — V)U (R — V') = R is thin at
the minimal boundary point b, which is a contradiction. ]

For each harmonic function v on R such that
J P(w)GF (zy, w)v(w) dudv < +o0 (2)
R

for some point z; € R, let Typv be the P-solution on R:

v(z) — %JR P(w)G® (z, w)v(w) du dv.

And, for each P-solution u on R such that

JR P(9)G (=1, w)u(w) dudo < +o0 3)
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for some point z; € R, the harmonic function on R:

1

u(z) + 7 JR P(w)G(z,w)u(w) du dv

is denoted by Tpyu. Then, for each boundary point b e Ayp TypK, is defined and
satisfies
TupKy, = THPK],(Z())KaP, a= ZHP(b) (4)

provided that be 4}, where z, is the origin of two Martin compactifications of
R. For each a € Apyg we can also define T, HpKf and we have

TpyK' = TpuKE(20)Ky, b= tpy(a). (5)

For these relations (4) and (5) we refer to [8].
The following lemmas are easy consequences of Fubini’s theorem.

LEmMA 3.2. Let v be a harmonic function which satisfies the condition (2) for some
z1 € R, and v be its canonical measure on A,. Then, we have

THPU = J THPKb dV(b) on R.
0

AIIP

LEMMA 3.3.  Let u be a P-solution satisfying the condition (3) and p be its canonical
measure on Api. Then, we have

TPHM = J TPHKaP d,u(a) on R.

Apy

The next theorem gives a relation between the measures y, and y.
THEOREM 3.4. The subset A%, — A(P) of Ay has harmonic measure zero:

2(App — A(P)) = 0. (6)

And, we have the equality, for every measurable subset E of Apy,

1o(E) = j TypKopy oy (20)d - tp11(a) )
=j TypKi(z0)dz (b). (8)
tpr (E)

Proor. The constant function 1 on R is represented as the integral by y over the
subset Ayp of Ay, because of the inequality

J PW)G*(z,w)dudv < 2, zeR.
R

Since
Aup = (Aup — Ayp) U (dgp — A(P)) U A(P),
we have, by and the equality (4) in this section,

THPIZJ

TyrKy dy(b) + J TypKy dy (D) 9)
Ay A(P)

A(P)
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= KD iy TrrKy(20) dx(b) (10)

JA,‘;P—A(P)
n L(P) K2 TurKs(z0) dy(b), (11)

because of TypK, =0 for be Ayp — A?,P. Since the mapping tgyp : A?IP — Ap1 15
measurable ((Theorem 2.3), we can define the three set functions v, v; and v, as follows;
for every measurable subset E of Ap; we define

V(E) = TypKy(zo) dy(b),
tp(E)
vi(E) = TupKp(zo) dx(b),
t;{},(Eﬂ (Apl—ApH))
n(E) = TupKy(zo) dy(b).
t;I},(EﬂAPH)

These set functions are measures on the Borel field of 4p; supported by the sets

ZHP(A?{P)a IHP(AQIP) —Apy. Apy
respectively, and v =v; +v,. The terms [10) and are written with v, v; and v, as
follows:

Tle = J KaP dV(d)
Ap

= J K dvi(a) +J KT dvs(a).
Ap1—Apn Apn

On the other hand the P-solution e’ is represented as the integral over the set
Apy by its canonical measure yp, and we have Tpypl = ef on R. The uniqueness of
canonical measure in the Martin integral representation theorem implies that v; = 0 and
vy = xp. Then it follows that

2 (Apyp — A(P) =0,
since TypKp(z9) > 0 for be 4%, and, by [Lemma 3.1,
tap(Ap — Aprr) = App — A(P).

For a measurable subset E of 4py we have yp(E) = vo(E); that is, the second part
of the theorem was proved. L]

COROLLARY 3.5. For a measurable subset E of Apy, yp(E) =0 if and only if
x(tpu(E)) = 0.

Let v be a positive harmonic function on R and v its canonical measure of the
Martin representation:

v= Ll K, dv(b).

For a measurable subset B of 4; the reduced function of v relative to B is denoted by
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(v)g. Then, we have
s = | Ko
B
by R. S. Martin [5]. Since the e’ satisfies the condition

J P(w)G(z1,w)e” (w) dudv < +o0

for each z; € R (T. Satd [8]), we can define Tpye”. In the following part of this section

we shall show that Tppye’ is the reduced function of the constant function 1 relative to
the set A%,. To do this we need the next lemma.

LEmMMA 3.6.  For a point b in A(P) we have
TupKp(z0) - TpuK} (z0) =1, a= tgp(b), (12)
where zq is the pole of the Martin compactifications R* and Rj.

ProOOF. By the definitions of transformations z5p, tpy We have equalities (4) and (5)
for be A(P) and a = typ(b) € Apy. Since the transformation fyp - tpy is identity on
Apy and Typ(Tpyu) = u for every P-solution u on R satisfying the condition (3) for
some z; € R (T. Sato [8]),

we have
KP = Tup(TpuKr)
= TpuK} (z0) - TurKp
= TpuK L (20) - TupKs(z0) - KF.
Since KF >0, the lemma follows. O

From these results the next theorem follows.

THEOREM 3.7. The harmonic function Tppe® is the reduced function of the constant
function 1 relative to the subset A%P of Ay; that is,

Tpue” = (1) 4
PROOF. Since by we have

= j Ky dy(b), (13)
(Aup—A}p) U A(P)
Lemma 3.2 shows that

€P = Tle

= J THPKb d){(b)
A(P)

= J K;i,,(b) - TrpKy(z0) dy(b),
A(P)
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because of TypK, =0 for b e Agp — A%P. From Lemmas 3.3, and Theorem 3.4 it
follows that

nwgz:AwfnﬂK;@'meﬂmﬂ”w)

= K} - TPHKtip(b) (ZO) : THPKb(ZO) dX(b)

A(P)
:AmmW@ (14)
=| | Kodeth) = (1), (15)
Hence the proof was completed. O

COROLLARY 3.8. Tppef =1 if and only if y(4; — A%p) = 0.

PrROOF. By the first part of [Theorem 3.4 the equalities and (15) in the proof of
the preceding theorem show this corollary. ]

COROLLARY 3.9. If the density P on R satisfies the condition
JR P(#)G(z1, w) dudy < +o0 (16)
for some point zy in R, then
2(41 = App) = 0.

ProOF. By the condition (16) we have Tpyef = 1 and hence complete the proof by
Corollary 3.8. U

4. Boundary behavior of positive solutions.

In the first place a few definitions of the boundary limit in Constantinescu-Cornea’s
sense are in order from their book. Let f be an extended real-valued continuous
function defined on a hyperbolic Riemann surface R. The cluster set /" (b) of f at each
minimal boundary point b € 4; is defined as the set

frey= ) £(G),
(b)

GeY

where f(G) is the closure of the set f(G) in the extended real line [—oo,+o0] and the
class %(b) is the filter appeared in Section 1. This cluster set is a non-empty closed
connected subset of [—oo,+o0]. If £ (b) reduces to a set {«} which contains only one
extended real number «, then we say that the function f has a boundary limit o at b € 4,
and represent this fact by f(b) =« The set of all those minimal boundary points
b e 4, at which the function f takes a boundary limit in the above sense is denoted

by Z(f). For details on the boundary limits / and the set Z(f) we refer to
Constantinescu-Cornea [3].
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Now, we consider the Martin compactification R; of R relative to Schrodinger’s
equation Au = Pu. For a extended real-valued continuous function f on R we can also
define the cluster set f " (a) of f at each minimal boundary point a € 4p; by taking the
filter 4% (a) in place of 4(b), be 4,. FT(f) is the set of points a € 4p; at which the
cluster set f " (a) reduces to a one-point set. For each point a € #(f) we can define
the boundary limit f(a).

The next lemma gives a relationship between the above two cluster sets of the
function f at points a € Apy and b = tpy(a) € A(P) respectively, and hence, if a point
a e Apy belongs to ZF(f), then we shall obtain a relationship between two boundary

limits f(a) and f(b). Its proof is based on and 2.5.

LeMMA 4.1. Let f be an extended real-valued continuous function on R. We have
S (a) = f"(tpy(a)) for each point a€ Apy, and [ (typ(b)) = f"(b) for each point
bedl,.

Constantinescu and Cornea have proved the following result on existence of
boundary limits of positive harmonic functions of R (Hilfssatz 14.3 in [3]): that is, let s
be a positive superharmonic function on R and u be a measure on 4; such that

J Kydu(b) <s onR.
iR

Let f be an extended real-valued continuous function on R such that fs is a positive
superharmonic function on R. Then, we have

u(dr = 7(f)) =0.

(In f's was assumed to be a Wiener function on R, however we assume fs to be a
positive superharmonic function on R for the sake of simplicity.) Therefore, in the
particular case that s =1 and u is the harmonic measure y the boundary limit v of
a positive continuous superharmonic function v is defined a.e. on 4; with respect to y.
And the quasi-bounded component of the greatest harmonic minorant of v is represented
by the integral

L Ko (b) d(b).

Accordingly, the boundary limit of a continuous potential p on R is zero a.e. on 4; with
respect to harmonic measure .

By the similar way as the case of harmonic functions Constantinescu-Cornea’s result
may be also proved for any continuous positive P-supersolutions on R using the Martin
compactification R; of R and the filter 4”(a), ae dp;. Let s be a positive P-
supersolution on R and x4 be a measure on Ap; such that

J KPdu(a) <s on R
4pi

For an extended real-valued continuous function f on R such that fs is a positive P-
supersolution on R, then we have

udp = 7(f)) =0.
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In the particular case that s = 1 and u is the P-elliptic measure yp, a positive continuous
P-supersolution u has a boundary limit # a.e. on 4p; with respect to yp.

If a positive P-solution # on R is bounded above by a harmonic function % on R,
then the boundary limit # is defined a.e. on the set 4; with respect to harmonic measure
x, for h—u is a positive continuous superharmonic function on R. For any positive
continuous P-supersolution # on R we can say as follows.

THEOREM 4.2. Let u be a positive continuous P-supersolution on R. The boundary
limit & of u exists a.e. on A%P with respect to harmonic measure y. And we have the
relation

u(b) = u(tup(b))

for almost every point b e AQH, with respect to y.

Proor. There exists a subset £ of A4p; with P-elliptic measure zero such that the
boundary limit #(a) is defined for each point a € Ap; — E. From it follows
that the boundary limit @(b) exists and w(b) = u(typ(b)) for b € A(P) except for the set
tp(ENApy), where [Corollary 3.5 shows y(tpy(ENApy)) =0. Since the set A%P—
A(P) has harmonic measure zero by [Theorem 3.4, we complete the proof. O

COROLLARY 4.3. Let u be a positive continuous P-supersolution on R. If a density P
on R satisfies the condition

J P(#)G (21, w) dud < +o0 (17)

for some point zy € R, then the boundary limit u exists a.e. on Ay with respect to
harmonic measure y. And we have u(b) = u(typ(b)) for almost every point b e Ay with
respect to .

Proor. The preceding theorem gives this corollary by [Corollary 3.9. ]

In the remaining part of this section we shall consider boundary behavior of the P-
elliptic measure e? at minimal points b € 4;. Since e’ is bounded above by 1 on R, it
is evident that the boundary limit of e is defined a.e. on the boundary A; with respect
to y. Furthermore, we can find exact values of boundary limits of e at minimal
boundary points b € 4.

LemMa 4.4. Let f and g be real-valued continuous functions on R. For each point b
in F(f)NF(g) we have

(f £ 9)(b) =1 (b) £ §(b). (18)

ProOF. Let f(h) =o and §(b)=p. We assume that o and f are finite real
numbers. For any positive number &, we take open neighborhoods U,(x) and U,(f) of
o and f respectively:

Ufa) ={xeR:|x—uaf <e&},
Up) ={xeR:|x—p| <e}.
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For ze f (U, (x))Ng~"(Ue(p)), we have

{f(z) £ 9(2)} = (2 £ p)| < 2.

From that the open subset f~'(U,(2))Ng ' (Ue(B)) of R belongs to the class %(b)
(Hilfssatz 14.1 in Constantinescu-Cornea [3]) it follows that (f +¢g)” (b) = {o £ B}.
O

THEOREM 4.5.  The boundary limit of e takes on the values 1 a.e. on A%, and 0 a.e.
on Ay — A?{P with respect to y, respectively.

PrOOF. Let / be the positive harmonic function Tpyef. Then, y(4, — Z(h)) =0

and its boundary limit & takes on the value 1 or 0 according to b e A%, or be A4y — 4%,
a.e. with respect to y, because to [Theorem 3.7, the integral representation

he) = | K@hib) dt)
i

and the uniqueness of the canonical measure of 4. And, let p be the continuous
potential

z— 1 J P(w)G(z,w)ef (w)dudv, zeR.
2n R

Then, y(4; — #(p)) = 0 and the boundary limit p takes on the value 0 a.e. on 4; with
respect to .
By the preceding lemma and the equality # = e” + p, we have

—

eP=h—p, forbeZ(h)NF(p).
These complete the proof. |

COROLLARY 4.6. Under the condition (17) in Corollary 4.3 the boundary limit of e®
takes on the value 1 a.e. on Ay with respect to y.

Proor. This follows from [Corollary 3.9. ]
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