Boundary behavior of positive solutions of $\Delta u = Pu$ on a Riemann surface

By Takeyoshi Satō

(Received May 8, 1995) (Revised Apr. 7, 1997)

Abstract. The classical Fatou limit theorem was extended to the case of positive harmonic functions on a hyperbolic Riemann surface R by Constantinescu-Cornea. They used extensively the notions of Martin's boundary and fine limit following the filter generated by the base of the subsets of R whose complements are closed and thin at a minimal boundary point of R. We shall consider such a problem for positive solutions of the Schrödinger equation on a hyperbolic Riemann surface.

1. Introduction.

J. L. Doob [4] and Constantinescu-Cornea [3] independently investigated boundary behavior of positive harmonic functions at minimal boundary points of the Martin boundary and established Fatou-type theorems on general domains. In this paper we shall concern ourselves with the same problem for positive solutions of Schrödinger's equation on a hyperbolic Riemann surface following Constantinescu-Cornea's set-up.

Throughout this paper let R be a hyperbolic Riemann surface. The Martin boundary and the set of minimal boundary points of R are denoted by Δ and Δ_1 , respectively. Let K_b be the Martin kernel of a point $b \in \Delta_1$. For a closed subset E of R and a positive superharmonic function s on R the balayage of s over E is the infimum of the class of positive superharmonic functions on R majorizing s on E except for a polar subset of E and is denoted by $(s)_E$. The closed set E in E is said to be thin at a point E is a potential on E, that is, E is a positive superharmonic function E is a potential on E, that is, E is a positive E on some connected component of E is a point E is a point E is a filter on E whose complements are thin at the point E is denoted by E is a filter on E. The canonical measure of the constant harmonic function 1 on E is denoted by E and called the harmonic measure of E. The following result is one of Fatou-type theorems due to Constantinescu-Cornea. The details of its proof can be found in their book [3]. A positive harmonic function E on E has a limit following the filter E in the substitute E is an almost every point E of E in E in E is an analysis of E in E

We now consider Schrödinger's equation $\Delta u = Pu$ on a hyperbolic Riemann surface R, where P(z) dx dy is a non-negative Hölder continuous 2-form on R and z = x + iy is a local parameter of R. Let U be an open subset of R. A real-valued function $u \in C^2(U)$ is said to be a P-solution on the open set U if u satisfies the above equation. Most of the definitions concerning to harmonic functions are carried over to the

¹⁹⁹¹ Mathematics Subject Classification. Primary 31A35.

Key words and phrases. Fatou limit theorem, Schrödinger's equation, Martin boundary, fine limit.

present situation. The Martin boundary of R for this equation is denoted by Δ_P and the set of minimal boundary points of Δ_P by Δ_{P1} . Let K_a^P be the Martin kernel of a point a in Δ_{P1} . The terminology of "P-supersolution", "balayage", "P-thin", and "filter $\mathscr{G}^P(a)$ for $a \in \Delta_{P1}$ " can be carried over to the context of P-solutions and play the roles of "superharmonic function", "balayage", "thin", and "filter $\mathscr{G}(b)$ for $b \in \Delta_1$ " in the harmonic case, respectively. The greatest P-solution in the class of positive P-solutions on R bounded above by 1 is denoted by e^P . Its canonical measure on Δ_{P1} is denoted by χ_P and is called the P-elliptic measure of R. The P-solution e^P is either identically zero or positive on R. Throughout this paper we assume that e^P is positive on R. Thus we can show the following result in a manner quite similar to the proof of the preceding result: If e is a positive e-solution on e, then e has a limit following the filter e0 at e1 and e2 almost every point e3 of e4.

However, this result can not be regarded as a desired Fatou-type theorem for positive P-solutions, since it contains concepts depending upon the density P: that is, the boundary Δ_{P1} , the filter $\mathscr{G}^P(a)$, and the measure χ_P on Δ_{P1} . By replacing these concepts by those independent from the density P, for example, the Martin boundary Δ , the filter $\mathscr{G}(b)$, $b \in \Delta_1$, and the measure χ on Δ_1 , we shall obtain just a desired Fatou-type theorem for positive P-solutions on R.

We denote by Δ_{HP}^0 the set of points $b \in \Delta_1$ such that

$$\int_{R} P(w)G^{P}(z_{1},w)K_{b}(w)\,du\,dv < +\infty$$

and

$$K_b(z_1) > \frac{1}{2\pi} \int_R P(w) G^P(z_1, w) K_b(w) du dv$$

for some point $z_1 \in R$, where w = u + iv and $G^P(z, w)$, $(z, w) \in R \times R$, is Green's function of R relative to the equation. It will be shown in Collorary 3.5 that this subset Δ^0_{HP} of Δ_1 has positive harmonic measure. Our main result is the following (Theorem 4.2): A positive P-solution u on R has a limit following the filter $\mathcal{G}(b)$ at χ -almost every point b of Δ^0_{HP} . If the density P on R satisfies the condition

$$\int_{R} P(w)G(z_{1},w) du dv < +\infty$$

for some point $z_1 \in R$, then the set Δ_1 of minimal boundary points will be contained in the subset Δ_{HP}^0 except for a set with χ -measure zero (Corollary 3.9).

The present author would like to thank the referee for useful remarks.

2. Notations and preliminaries.

In this section we shall recall preliminary definitions and notations on the transformations t_{PH} and t_{HP} between the Martin boundaries Δ_P and Δ of the Riemann surface R. We refer to [8] for details of their definitions and related properties. And, the measurabilities of the transformations are given in this section.

Let Δ_{PH} be the set of minimal boundary points $a \in \Delta_{P1}$ such that

$$\int_{R} P(w)G(z_{1},w)K_{a}^{P}(w)\,du\,dv < +\infty$$

for some point z_1 in R, where G(z, w), $(z, w) \in R \times R$, is the harmonic Green function of R. The set Δ_{PH} is a Borel measurable subset of Δ_P . Similarly, we denote by Δ_{HP} the set of minimal boundary points $b \in \Delta_1$ such that

$$\int_{R} P(w)G^{P}(z_{1},w)K_{b}(w) du dv < +\infty$$

for some point $z_1 \in R$. This set is also Borel measurable in Δ .

In this paragraph we shall recall the definition of the measurable transformation t_{PH} on Δ_{PH} into Δ_{HP} . To do this we need the notion of pole of a minimal positive harmonic function, which was introduced by Brelot [1] on any general metrizable compactification of a Green space. The reduced function of a positive P-solution u on R over a compact subset C of Δ , which is denoted by $(u)_C$, is the infimum of the class of positive P-supersolutions s majorizing u on an intersection $U \cap R$, where U is some neighborhood of C relative to the topology of $R^* = R \cup \Delta$. Let a be any boundary point in Δ_{P1} and b a boundary point in Δ . The reduced function of the minimal function K_a^P over the set $\{b\}$ $(K_a^P)_{\{b\}}$ is either constantly zero or K_a^P . If $(K_a^P)_{\{b\}} = K_a^P$, then the point b is called a pole of K_a^P on Δ . Generally speaking, the minimal function K_a^P with $a \in \Delta_{P1}$ has at least one pole on Δ and may have many poles on the boundary Δ . However, if the point a belongs to the set Δ_{PH} , then K_a^P has a unique pole on the set Δ_{PH} , which will be contained in Δ_{HP} . Then, we can define the mapping $t_{PH}: \Delta_{PH} \to \Delta_{HP}$ by assigning the unique pole $b \in \Delta_{HP}$ of K_a^P for $a \in \Delta_{PH}$; that is, $t_{PH}(a) = b$.

Now, we shall prove that the transformation $t_{PH}: \Delta_{PH} \to \Delta_{HP}$ is measurable. To do this we need the following notation and lemma. For an open subset G of R, let

$$\Delta_P(G) = \{ a \in \Delta_{P1} : G \in \mathscr{G}^P(a) \},\,$$

The set $\Delta_P(G)$ is measurable in Δ_{P1} (see Constantinescu-Cornea [3]).

LEMMA 2.1. Let C be a compact subset of the Martin boundary Δ of R. The image $t_{PH}(a)$ of $a \in \Delta_{PH}$ by t_{PH} belongs to the set C if and only if the Martin kernel K_a^P satisfies $K_a^P = (K_a^P)_C$ on R.

PROOF. Letting $b = t_{PH}(a)$ for $a \in \Delta_{PH}$, we assume that b is contained in the compact set C. Since the point b is the pole of K_a^P on Δ , we have

$$K_a^P = (K_a^P)_{\{b\}} \le (K_a^P)_C \le K_a^P$$
 on R ,

which shows that $K_a^P = (K_a^P)_C$ on R.

Suppose that the point $b=t_{PH}(a),\ a\in \Delta_{PH}$, is not contained in the set C. Then, for each point $y\in C$ there is a closed neighborhood V_y relative to the Martin compactification R^* such that $(K_a^P)_{V_y\cap R}$ is a potential. By the compactness of C there exists a finite number of points y_1,y_2,\ldots,y_n in C such that $C\subset\bigcup_{i=1}^n V_{y_i}$ and $(K_a^P)_{V_{y_i}\cap R}$ is a potential. Therefore we have

$$(K_a^P)_C \le (K_a^P)_{\bigcup_{i=1}^n (V_{y_i} \cap R)} \le \sum_{i=1}^n (K_a^P)_{V_{y_i} \cap R},$$

from which it follows $(K_a^P)_C = 0$. That is, if $(K_a^P)_C = K_a^P$ on R, then b is contained in C.

Theorem 2.2. The transformation $t_{PH}: \Delta_{PH} \to \Delta_1$ is measurable.

PROOF. Let C be any compact subset of the Martin boundary Δ of R and $\{V_n\}$ be a decreasing sequence of closed neighborhoods of C converging to C with respect to the Martin topology of R^* . We denote by U_n the intersection $V_n \cap R$ and by G_n the complement $R - U_n$. Then, we have

$$(K_a^P)_C = \lim_{n \to +\infty} (K_a^P)_{U_n} \tag{1}$$

for $a \in \Delta_{P1}$.

If the image $t_{PH}(a)$ of a point $a \in \Delta_{PH}$ belongs to the compact subset C, then for every integer n we have, by the preceding lemma, $(K_a^P)_{U_n} = K_a^P$: that is, each closed subset U_n of R is not P-thin at the point $a \in \Delta_{PH}$.

Therefore we have

$$t_{PH}^{-1}(C\cap \Delta_1) = \bigcap_{n=1}^{+\infty} (\Delta_{PH} - \Delta_P(G_n)),$$

from which it follows that $t_{PH}^{-1}(C \cap \Delta_1)$ is a Borel measurable subset of Δ_{P1} , for $\Delta_P(G_n)$ is measurable in Δ_{P1} as noted before Lemma 2.1.

Since the class of sets $C \cap \Delta_1$ with compact subsets $C \subset \Delta$ generates the Borel measurable σ -ring on Δ_1 . For a Borel measurable subset E of Δ_1 we have $t_{PH}^{-1}(E)$ is Borel measurable in the measurable space Δ_{PH} ; that is, t_{PH} is measurable.

We denote by Δ_{HP}^0 the set of points $b \in \Delta_{HP}$ such that

$$K_b(z_1) > \frac{1}{2\pi} \int_{\mathcal{P}} P(w) G^P(z_1, w) K_b(w) du dv$$

for some point $z_1 \in R$. This set is a measurable subset of Δ . We can define the notion of pole on the boundary Δ_{P1} for each point $b \in \Delta_1$ and we can prove that for each point $b \in \Delta_{HP}^0$ there exists a unique pole a on Δ_P of b, which is contained in the set Δ_{P1} . Then, the transformation

$$t_{HP}: \Delta_{HP}^0 \to \Delta_{P1}$$

is defined by the same way as the definition of t_{PH} . In [8] we have proved that the composition $t_{HP} \cdot t_{PH}$ is the identity on Δ_{PH} . The following theorem may be proved by the same way as the preceding theorem.

THEOREM 2.3. The transformation $t_{HP}: \Delta_{HP}^0 \to \Delta_{P1}$ is measurable.

In the following sections we shall need the next two theorems whose proofs can be found in [8].

THEOREM 2.4. Let a boundary point a be in Δ_{PH} . Then, a closed subset E of R is P-thin at a if and only if E is thin at the point $t_{PH}(a)$.

THEOREM 2.5. Let a boundary point b be in Δ_{PH}^0 . If a closed subset E of R is P-thin at the point $t_{HP}(b)$, then E is thin at b.

3. Harmonic and P-elliptic measures.

In this section we shall investigate relationship between the *P*-elliptic measure χ_P and the harmonic measure χ by using the transformation

$$t_{PH}: \Delta_{PH} \rightarrow \Delta_1$$
,

where we recall that χ_P (resp. χ) is the canonical measure of e^P on Δ_{P1} (resp. 1 on Δ_1). We denote by $\Delta(P)$ the image $t_{PH}(\Delta_{PH})$ of t_{PH} . The set Δ_1 of minimal boundary points of the Martin boundary Δ is decomposed into its four disjoint subsets:

$$\Delta_1 - \Delta_{HP}$$
, $\Delta_{HP} - \Delta_{HP}^0$, $\Delta_{HP}^0 - \Delta(P)$, $\Delta(P)$.

At first we shall show that the harmonic measure χ is supported only by two sets of them:

$$(\Delta_{HP} - \Delta_{HP}^0) \cup \Delta(P).$$

For a minimal point $b \in \Delta_1$, let V be the intersection of a neighborhood of b in the Martin compactification R^* with the Riemann surface R. Then the balayage $(K_b)_{R-V}$ of the kernel K_b over the closed set R-V is potential, so that the closed set R-V is thin at the point b (Hilfssatz 13.2 in Constantinescu-Cornea [3]). From this property of neighborhoods of a minimal boundary point we have the following lemma.

LEMMA 3.1. The subsets $t_{HP}(\Delta_{HP}^0 - \Delta(P))$ and Δ_{PH} are disjoint from each other in Δ_{P1} .

PROOF. We assume that the image $t_{HP}(b)$ of some point $b \in \Delta_{HP}^0 - \Delta(P)$ by the mapping t_{HP} belongs to the set Δ_{PH} . Then, letting $b' = t_{PH} \cdot t_{HP}(b) \in \Delta(P)$, we have $t_{HP}(b) = t_{HP}(b')$. Let U and U' be neighborhoods of b and b' relative to the Martin topology, respectively. These neighborhoods may be assumed to be disjoint from each other. We denote by V and V' the intersections $U \cap R$ and $U' \cap R$, respectively. Then, the closed subsets R - V and R - V' of R are thin at the points b and b', respectively. By Theorem 2.4 and 2.5 in the preceding section the set R - V' is P-thin at $t_{HP}(b')$, and hence thin at b. Therefore, we have that $(R - V) \cup (R - V') = R$ is thin at the minimal boundary point b, which is a contradiction.

For each harmonic function v on R such that

$$\int_{R} P(w)G^{P}(z_{1},w)v(w) du dv < +\infty$$
(2)

for some point $z_1 \in R$, let $T_{HP}v$ be the *P*-solution on *R*:

$$v(z) - \frac{1}{2\pi} \int_{R} P(w) G^{P}(z, w) v(w) du dv.$$

And, for each P-solution u on R such that

$$\int_{\mathbb{R}} P(w)G(z_1, w)u(w) du dv < +\infty$$
(3)

for some point $z_1 \in R$, the harmonic function on R:

$$u(z) + \frac{1}{2\pi} \int_{R} P(w) G(z, w) u(w) du dv$$

is denoted by $T_{PH}u$. Then, for each boundary point $b \in \Delta_{HP}$ $T_{HP}K_b$ is defined and satisfies

$$T_{HP}K_b = T_{HP}K_b(z_0)K_a^P, \quad a = t_{HP}(b)$$
 (4)

provided that $b \in \Delta_{HP}^0$, where z_0 is the origin of two Martin compactifications of R. For each $a \in \Delta_{PH}$ we can also define $T_{HP}K_a^P$ and we have

$$T_{PH}K_a^P = T_{PH}K_a^P(z_0)K_b, \quad b = t_{PH}(a).$$
 (5)

For these relations (4) and (5) we refer to [8].

The following lemmas are easy consequences of Fubini's theorem.

Lemma 3.2. Let v be a harmonic function which satisfies the condition (2) for some $z_1 \in R$, and v be its canonical measure on Δ_1 . Then, we have

$$T_{HP}v = \int_{\varDelta_{HP}^0} T_{HP} K_b \, dv(b) \quad on \ R.$$

Lemma 3.3. Let u be a P-solution satisfying the condition (3) and μ be its canonical measure on Δ_{P1} . Then, we have

$$T_{PH}u = \int_{A_{PH}} T_{PH}K_a^P d\mu(a)$$
 on R .

The next theorem gives a relation between the measures χ_P and χ .

Theorem 3.4. The subset $\Delta_{HP}^0 - \Delta(P)$ of Δ_1 has harmonic measure zero:

$$\chi(\Delta_{HP}^0 - \Delta(P)) = 0. \tag{6}$$

And, we have the equality, for every measurable subset E of Δ_{PH} ,

$$\chi_P(E) = \int_E T_{HP} K_{t_{PH}(a)}(z_0) d\chi \cdot t_{PH}(a) \tag{7}$$

$$= \int_{t_{PH}(E)} T_{HP} K_b(z_0) d\chi(b). \tag{8}$$

PROOF. The constant function 1 on R is represented as the integral by χ over the subset Δ_{HP} of Δ_1 , because of the inequality

$$\int_{R} P(w)G^{P}(z, w) du dv < 2\pi, \quad z \in R.$$

Since

$$\Delta_{HP} = (\Delta_{HP} - \Delta_{HP}^0) \cup (\Delta_{HP}^0 - \Delta(P)) \cup \Delta(P),$$

we have, by Lemma 3.2 and the equality (4) in this section,

$$T_{HP}1 = \int_{\Delta_{HP}^0 - \Delta(P)} T_{HP} K_b \, d\chi(b) + \int_{\Delta(P)} T_{HP} K_b \, d\chi(b) \tag{9}$$

$$= \int_{\Delta_{HP}^{0} - \Delta(P)} K_{t_{HP}(b)}^{P} T_{HP} K_{b}(z_{0}) d\chi(b)$$
 (10)

$$+ \int_{\Delta(P)} K_{t_{HP}(b)}^{P} T_{HP} K_{b}(z_{0}) d\chi(b), \tag{11}$$

because of $T_{HP}K_b = 0$ for $b \in \Delta_{HP} - \Delta_{HP}^0$. Since the mapping $t_{HP} : \Delta_{HP}^0 \to \Delta_{P,1}$ is measurable (Theorem 2.3), we can define the three set functions v, v_1 and v_2 as follows; for every measurable subset E of Δ_{P1} we define

$$v(E) = \int_{t_{HP}^{-1}(E)} T_{HP} K_b(z_0) \, d\chi(b),$$

$$v_1(E) = \int_{t_{HP}^{-1}(E \cap (\Delta_{P1} - \Delta_{PH}))} T_{HP} K_b(z_0) \, d\chi(b),$$

$$v_2(E) = \int_{t_{HP}^{-1}(E \cap \Delta_{PH})} T_{HP} K_b(z_0) \, d\chi(b).$$

These set functions are measures on the Borel field of Δ_{P1} supported by the sets

$$t_{HP}(\Delta_{HP}^0), \quad t_{HP}(\Delta_{HP}^0) - \Delta_{PH}. \quad \Delta_{PH}$$

respectively, and $v = v_1 + v_2$. The terms (10) and (11) are written with v, v_1 and v_2 as follows:

$$T_{HP}1 = \int_{A_{P1}} K_a^P dv(a)$$

$$= \int_{A_{P1}-A_{PH}} K_a^P dv_1(a) + \int_{A_{PH}} K_a^P dv_2(a).$$

On the other hand the *P*-solution e^P is represented as the integral over the set Δ_{PH} by its canonical measure χ_P and we have $T_{HP}1 = e^P$ on *R*. The uniqueness of canonical measure in the Martin integral representation theorem implies that $v_1 = 0$ and $v_2 = \chi_P$. Then it follows that

$$\chi(\Delta_{HP}^0 - \Delta(P)) = 0,$$

since $T_{HP}K_b(z_0) > 0$ for $b \in \Delta_{HP}^0$ and, by Lemma 3.1,

$$t_{HP}^{-1}(\Delta_{P1} - \Delta_{PH}) = \Delta_{HP}^{0} - \Delta(P).$$

For a measurable subset E of Δ_{PH} we have $\chi_P(E) = v_2(E)$; that is, the second part of the theorem was proved.

Corollary 3.5. For a measurable subset E of Δ_{PH} , $\chi_P(E)=0$ if and only if $\chi(t_{PH}(E))=0$.

Let v be a positive harmonic function on R and v its canonical measure of the Martin representation:

$$v = \int_{\Delta_1} K_b \, d\nu(b).$$

For a measurable subset B of Δ_1 the reduced function of v relative to B is denoted by

 $(v)_B$. Then, we have

$$(v)_B = \int_B K_b \, dv(b)$$

by R. S. Martin [5]. Since the e^P satisfies the condition

$$\int_{R} P(w)G(z_{1},w)e^{P}(w) du dv < +\infty$$

for each $z_1 \in R$ (T. Satō [8]), we can define $T_{PH}e^P$. In the following part of this section we shall show that $T_{PH}e^P$ is the reduced function of the constant function 1 relative to the set Δ_{HP}^0 . To do this we need the next lemma.

LEMMA 3.6. For a point b in $\Delta(P)$ we have

$$T_{HP}K_b(z_0) \cdot T_{PH}K_a^P(z_0) = 1, \quad a = t_{HP}(b),$$
 (12)

where z_0 is the pole of the Martin compactifications R^* and R_p^* .

PROOF. By the definitions of transformations t_{HP} , t_{PH} we have equalities (4) and (5) for $b \in \Delta(P)$ and $a = t_{HP}(b) \in \Delta_{PH}$. Since the transformation $t_{HP} \cdot t_{PH}$ is identity on Δ_{PH} and $T_{HP}(T_{PH}u) = u$ for every *P*-solution *u* on *R* satisfying the condition (3) for some $z_1 \in R$ (T. Satō [8]), we have

$$K_a^P = T_{HP}(T_{PH}K_a^P)$$

$$= T_{PH}K_a^P(z_0) \cdot T_{HP}K_b$$

$$= T_{PH}K_a^P(z_0) \cdot T_{HP}K_b(z_0) \cdot K_a^P.$$

Since $K_a^P > 0$, the lemma follows.

From these results the next theorem follows.

THEOREM 3.7. The harmonic function $T_{PH}e^P$ is the reduced function of the constant function 1 relative to the subset Δ_{HP}^0 of Δ_1 ; that is,

$$T_{PH}e^{P}=(1)_{\Delta_{HP}^{0}}$$

PROOF. Since by Theorem 3.4 we have

$$1 = \int_{(\Delta_{HP} - \Delta_{HP}^0) \cup \Delta(P)} K_b \, d\chi(b), \tag{13}$$

Lemma 3.2 shows that

$$e^{P} = T_{HP}1$$

$$= \int_{\Delta(P)} T_{HP}K_b d\chi(b)$$

$$= \int_{\Delta(P)} K_{t_{HP}(b)}^{P} \cdot T_{HP}K_b(z_0) d\chi(b),$$

because of $T_{HP}K_b = 0$ for $b \in \Delta_{HP} - \Delta_{HP}^0$. From Lemmas 3.3, 3.6 and Theorem 3.4 it follows that

$$T_{PH}e^{P} = \int_{\Delta(P)} T_{PH} K_{t_{HP}(b)}^{P} \cdot T_{HP} K_{b}(z_{0}) \, d\chi(b)$$

$$= \int_{\Delta(P)} K_{b} \cdot T_{PH} K_{t_{HP}(b)}^{P}(z_{0}) \cdot T_{HP} K_{b}(z_{0}) \, d\chi(b)$$

$$= \int_{\Delta(P)} K_{b} \, d\chi(b) \qquad (14)$$

$$= \int_{\Delta_{HP}^{0}} K_{b} \, d\chi(b) = (1)_{\Delta_{HP}^{0}}. \qquad (15)$$

Hence the proof was completed.

Corollary 3.8. $T_{PH}e^P = 1$ if and only if $\chi(\Delta_1 - \Delta_{HP}^0) = 0$.

PROOF. By the first part of Theorem 3.4 the equalities (13) and (15) in the proof of the preceding theorem show this corollary.

COROLLARY 3.9. If the density P on R satisfies the condition

$$\int_{R} P(w)G(z_{1},w) du dv < +\infty$$
(16)

for some point z_1 in R, then

$$\chi(\Delta_1 - \Delta_{HP}^0) = 0.$$

PROOF. By the condition (16) we have $T_{PH}e^P = 1$ and hence complete the proof by Corollary 3.8.

4. Boundary behavior of positive solutions.

In the first place a few definitions of the boundary limit in Constantinescu-Cornea's sense are in order from their book. Let f be an extended real-valued continuous function defined on a hyperbolic Riemann surface R. The cluster set $f^{\wedge}(b)$ of f at each minimal boundary point $b \in \Delta_1$ is defined as the set

$$f^{\wedge}(b) = \bigcap_{G \in \mathscr{G}(b)} \overline{f(G)},$$

where $\overline{f(G)}$ is the closure of the set f(G) in the extended real line $[-\infty, +\infty]$ and the class $\mathscr{G}(b)$ is the filter appeared in Section 1. This cluster set is a non-empty closed connected subset of $[-\infty, +\infty]$. If $f^{\wedge}(b)$ reduces to a set $\{\alpha\}$ which contains only one extended real number α , then we say that the function f has a boundary limit α at $b \in \Delta_1$ and represent this fact by $\hat{f}(b) = \alpha$. The set of all those minimal boundary points $b \in \Delta_1$ at which the function f takes a boundary limit in the above sense is denoted by $\mathscr{F}(f)$. For details on the boundary limits \hat{f} and the set $\mathscr{F}(f)$ we refer to Constantinescu-Cornea [3].

Now, we consider the Martin compactification R_P^* of R relative to Schrödinger's equation $\Delta u = Pu$. For a extended real-valued continuous function f on R we can also define the cluster set $f^{\wedge}(a)$ of f at each minimal boundary point $a \in \Delta_{P1}$ by taking the filter $\mathscr{G}^P(a)$ in place of $\mathscr{G}(b)$, $b \in \Delta_1$. $\mathscr{F}^P(f)$ is the set of points $a \in \Delta_{P1}$ at which the cluster set $f^{\wedge}(a)$ reduces to a one-point set. For each point $a \in \mathscr{F}^P(f)$ we can define the boundary limit $\hat{f}(a)$.

The next lemma gives a relationship between the above two cluster sets of the function f at points $a \in \Delta_{PH}$ and $b = t_{PH}(a) \in \Delta(P)$ respectively, and hence, if a point $a \in \Delta_{PH}$ belongs to $\mathscr{F}^P(f)$, then we shall obtain a relationship between two boundary limits $\hat{f}(a)$ and $\hat{f}(b)$. Its proof is based on Theorem 2.4 and 2.5.

LEMMA 4.1. Let f be an extended real-valued continuous function on R. We have $f^{\wedge}(a) = f^{\wedge}(t_{PH}(a))$ for each point $a \in \Delta_{PH}$, and $f^{\wedge}(t_{HP}(b)) \supset f^{\wedge}(b)$ for each point $b \in \Delta_{HP}^0$.

Constantinescu and Cornea have proved the following result on existence of boundary limits of positive harmonic functions of R (Hilfssatz 14.3 in [3]): that is, let s be a positive superharmonic function on R and μ be a measure on Δ_1 such that

$$\int_{\Delta_1} K_b \, d\mu(b) \le s \quad \text{on } R.$$

Let f be an extended real-valued continuous function on R such that fs is a positive superharmonic function on R. Then, we have

$$\mu(\Delta_1 - \mathscr{F}(f)) = 0.$$

(In [3] fs was assumed to be a Wiener function on R, however we assume fs to be a positive superharmonic function on R for the sake of simplicity.) Therefore, in the particular case that s=1 and μ is the harmonic measure χ the boundary limit \hat{v} of a positive continuous superharmonic function v is defined a.e. on Δ_1 with respect to χ . And the quasi-bounded component of the greatest harmonic minorant of v is represented by the integral

$$\int_{A_1} K_b \hat{v}(b) \, d\chi(b).$$

Accordingly, the boundary limit of a continuous potential p on R is zero a.e. on Δ_1 with respect to harmonic measure χ .

By the similar way as the case of harmonic functions Constantinescu-Cornea's result may be also proved for any continuous positive P-supersolutions on R using the Martin compactification R_P^* of R and the filter $\mathcal{G}^P(a)$, $a \in \Delta_{P1}$. Let s be a positive P-supersolution on R and μ be a measure on Δ_{P1} such that

$$\int_{A_{P_1}} K_a^P d\mu(a) \le s \quad \text{on } R.$$

For an extended real-valued continuous function f on R such that fs is a positive P-supersolution on R, then we have

$$\mu(\Delta_{P1} - \mathscr{F}^P(f)) = 0.$$

In the particular case that s=1 and μ is the *P*-elliptic measure χ_P , a positive continuous *P*-supersolution u has a boundary limit \hat{u} a.e. on Δ_{P1} with respect to χ_P .

If a positive *P*-solution u on R is bounded above by a harmonic function h on R, then the boundary limit \hat{u} is defined a.e. on the set Δ_1 with respect to harmonic measure χ , for h-u is a positive continuous superharmonic function on R. For any positive continuous *P*-supersolution u on R we can say as follows.

Theorem 4.2. Let u be a positive continuous P-supersolution on R. The boundary limit \hat{u} of u exists a.e. on Δ_{HP}^0 with respect to harmonic measure χ . And we have the relation

$$\hat{u}(b) = \hat{u}(t_{HP}(b))$$

for almost every point $b \in \Delta_{HP}^0$ with respect to χ .

PROOF. There exists a subset E of Δ_{P1} with P-elliptic measure zero such that the boundary limit $\hat{u}(a)$ is defined for each point $a \in \Delta_{P1} - E$. From Lemma 4.1 it follows that the boundary limit $\hat{u}(b)$ exists and $\hat{u}(b) = \hat{u}(t_{HP}(b))$ for $b \in \Delta(P)$ except for the set $t_{PH}(E \cap \Delta_{PH})$, where Corollary 3.5 shows $\chi(t_{PH}(E \cap \Delta_{PH})) = 0$. Since the set $\Delta_{HP}^0 - \Delta(P)$ has harmonic measure zero by Theorem 3.4, we complete the proof.

COROLLARY 4.3. Let u be a positive continuous P-supersolution on R. If a density P on R satisfies the condition

$$\int_{R} P(w)G(z_{1},w) du dv < +\infty$$
(17)

for some point $z_1 \in R$, then the boundary limit \hat{u} exists a.e. on Δ_1 with respect to harmonic measure χ . And we have $\hat{u}(b) = \hat{u}(t_{HP}(b))$ for almost every point $b \in \Delta_1$ with respect to χ .

PROOF. The preceding theorem gives this corollary by Corollary 3.9.

In the remaining part of this section we shall consider boundary behavior of the P-elliptic measure e^P at minimal points $b \in \Delta_1$. Since e^P is bounded above by 1 on R, it is evident that the boundary limit of e^P is defined a.e. on the boundary Δ_1 with respect to χ . Furthermore, we can find exact values of boundary limits of e^P at minimal boundary points $b \in \Delta_1$.

Lemma 4.4. Let f and g be real-valued continuous functions on R. For each point b in $\mathcal{F}(f) \cap \mathcal{F}(g)$ we have

$$(\widehat{f} \pm \widehat{g})(b) = \widehat{f}(b) \pm \widehat{g}(b). \tag{18}$$

PROOF. Let $\hat{f}(b) = \alpha$ and $\hat{g}(b) = \beta$. We assume that α and β are finite real numbers. For any positive number ε , we take open neighborhoods $U_{\varepsilon}(\alpha)$ and $U_{\varepsilon}(\beta)$ of α and β respectively:

$$U_{\varepsilon}(\alpha) = \{ x \in R : |x - \alpha| < \varepsilon \},$$

$$U_{\varepsilon}(\beta) = \{ x \in R : |x - \beta| < \varepsilon \}.$$

For $z \in f^{-1}(U_{\varepsilon}(\alpha)) \cap g^{-1}(U_{\varepsilon}(\beta))$, we have

$$|\{f(z) \pm g(z)\} - (\alpha \pm \beta)| \le 2\varepsilon.$$

From that the open subset $f^{-1}(U_{\varepsilon}(\alpha)) \cap g^{-1}(U_{\varepsilon}(\beta))$ of R belongs to the class $\mathscr{G}(b)$ (Hilfssatz 14.1 in Constantinescu-Cornea [3]) it follows that $(f \pm g)^{\wedge}(b) = {\alpha \pm \beta}$.

THEOREM 4.5. The boundary limit of e^P takes on the values 1 a.e. on Δ^0_{HP} and 0 a.e. on $\Delta_1 - \Delta^0_{HP}$ with respect to χ , respectively.

PROOF. Let h be the positive harmonic function $T_{PH}e^P$. Then, $\chi(\Delta_1 - \mathcal{F}(h)) = 0$ and its boundary limit \hat{h} takes on the value 1 or 0 according to $b \in \Delta_{HP}^0$ or $b \in \Delta_1 - \Delta_{HP}^0$ a.e. with respect to χ , because to Theorem 3.7, the integral representation

$$h(z) = \int_{A_1} K_b(z) \hat{h}(b) \, d\chi(b)$$

and the uniqueness of the canonical measure of h. And, let p be the continuous potential

$$z \to \frac{1}{2\pi} \int_{R} P(w)G(z, w)e^{P}(w) du dv, \quad z \in R.$$

Then, $\chi(\Delta_1 - \mathcal{F}(p)) = 0$ and the boundary limit \hat{p} takes on the value 0 a.e. on Δ_1 with respect to χ .

By the preceding lemma and the equality $h = e^{P} + p$, we have

$$\widehat{e^P} = \hat{h} - \hat{p}, \text{ for } b \in \mathcal{F}(h) \cap \mathcal{F}(p).$$

These complete the proof.

Corollary 4.6. Under the condition (17) in Corollary 4.3 the boundary limit of e^P takes on the value 1 a.e. on Δ_1 with respect to χ .

Proof. This follows from Corollary 3.9.

References

- [1] M. Brelot, Le probléme de Dirichlet. Axiomatique et frontière de Martin, J. Math. Pures Appl., 35 (1956), 297-335.
- [2] M. Brelot, On topologies and boundaries in potential theory, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1971.
- [3] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [4] J. L. Doob, A non-probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier, **9** (1959), 293–300.
- [5] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137–172.
- [6] M. Nakai, The space of non-negative solutions of the equation $\Delta u = pu$ on a Riemann surface, Kôdai Math. Sem. Rep., 12 (1960), 151–175.
- [7] L. Naïm, Sur le role de la frontière de R. S. Martin dans la theorie du potentiel, Ann. Inst. Fourier, 7 (1957), 183–281.

[8] T. Satō, Martin boundaries and thin sets for $\Delta u = Pu$ on Riemann surfaces, Hokkaido Math. J., 21 (1992), 319–333.

Takeyoshi Saтō

Hokkaido University of Education Iwamizawa Branch Iwamizawa, Hokkaido, 068-8642 Japan E-mail: satobugi@atson.iwa.hokkyodai.ac.jp