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1. Introduction.

Let $R$ be a finite bordered Riemann surface which is a regular subregion of a Rie-
mann surface. The genus of $R$ is finite and the boundary $\partial R$ of $R$ consists of a finite
number of contours. Let $\mathfrak{F}$ be the class of holomorphic functions $h$ on $R$ satisfying
$|h|<1$ on $R$ . Let $P$ be a point on $R$ . If $f\in \mathfrak{F}$ satisfies

$|(f o\varphi^{-1})’(\varphi(P))|=\sup\{|(h\circ\varphi^{-1})’(\varphi(P))| : h\in \mathfrak{F}\}$

for a fixed local parameter $\varphi$, then we call $f$ the Ahlfors function at $P$ on $R$ . It is
known, by Ahlfors [1], that the Ahlfors function exists at each point of $R$ and is uniquely
determined up to a constant multiple of absolute value 1. We note that the Ahlfors
function does not depend on a choice of a local parameter $\varphi$ .

We summarize some basic properties of Ahlfors functions. We define the subclass
$\mathfrak{F}_{1}$ of $\mathfrak{F}$ as $\mathfrak{F}_{1}=$ { $h\in \mathfrak{F}$ : $|h|=1$ on $\partial R$ }. Then each Ahlfors function is an element of
$\mathfrak{F}_{1}$ , and gives a complete covering on the unit disk, that is, it covers each point of the
unit disk the same number of times, provided that the branch points are counted as many
times as their multiplicity indicates. The number will be called the degree of the Ahlfors
function. Each Ahlfors function $f$ is prime in $\mathfrak{F}_{1}$ , that is, if $f=ab(a, b\in \mathfrak{F}_{1})$ , then
either $a$ or $b$ is a constant of absolute value 1. The Ahlfors function at $P$ vanishes to
order 1 at $P$ .

Let $p$ be the genus of $R$ and let $q$ be the number of contours of $R$ . Let $N$ be the
degree of an Ahlfors function on $R$ . Then Ahlfors [1] showed that $q\leq N\leq 2p+q$ . If
$p=0$ , that is, if $R$ is a planar region, then $N=q$ . Let $N(R)$ be the set of degree of
Ahlfors functions on $R$ . Then $N(R)=\{q\}$ , if $p=0$ . In this case, Ahlfors functions
can be expressed by theta functions (see Fay [3] Proposition 6.17). On the other hand, if
$p>0$ , then it is not well-known what is $N(R)$ . There is only one example constructed
by Yamada [4] (section 4. Example). Let $Y$ be the example of a finite Riemann surface:
the genus of $Y$ is one and its boundary consists of two components. Yamada [4] (sec-
tion 4. Example.) showed $\{2, 4\}\subset N(Y)$ in the example.

In this paper, we deal with the Ahlfors functions on non-planar Riemann surfaces
whose double are hyperelliptic. In Section 2, we shall show that the double $\hat{R}$ of such
Riemann surface $R$ can be expressed as

$y^{2}= \prod_{j=1}^{g+1}(x-\alpha_{j})(1-\overline{\alpha_{j}}x)$ , (1)
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where $g=2p+q-1$ denotes the genus of $\hat{R},$ $|\alpha_{j}|<1(j=1, \ldots, g+1)$ and $\alpha_{j}\neq\alpha_{k}$

$(j\neq k)$ , and $R=\{P\in\hat{R} : |x(P)|<1\}$ (Lemma 2 and its followings). By using the
equation (1), we shall show that an Ahlfors function on $R$ is of degree 2 or $g+1$

(Proposition 3), that is, $N(R)\subset\{2, g+1\}$ . Yamada [4] (Theorem 2) showed that
$\{g+1\}\subset N(R)$ . In Section 3, we consider the relation between Ahlfors functions and
conformal automorphisms of Riemann surfaces. As the consequence of this section, we
may not move points on fixed Riemann surface, but we move the branch points $\alpha_{j}$

$(j=1, \ldots, g+1)$ . It will give the same results obtained by moving points. Thus we
fix the point $O$ with $x(O)=0$ and we consider the Ahlfors function at $O$ on the Riemann
surface defined by the equation (1). In Section 4, we consider necessary and sufficient
conditions that the Ahlfors function at $O\in R$ with $x(O)=0$ is of degree 2. We define
the parameter space $S\subset C^{g+1}$ . Each point in $\mathfrak{S}$ corresponds to the branch points
$\alpha_{j}(j=1, \ldots g+1)$ in (1). We say that a point of $\mathfrak{S}$ is of degree 2(or $g+1$ ), if the
degree of the Ahlfors function at $O$ on the Riemann surface corresponding to the point
of $\mathfrak{S}$ . Let $\mathfrak{S}_{2}$ be the set of all points of degree 2 and let $\mathfrak{S}_{g+1}$ be the set of all points
of degree $g+1$ . We shall show that $\mathfrak{S}_{2}$ is closed in $\mathfrak{S}$ and $\mathfrak{S}_{g+1}$ is open in $\mathfrak{S}$ (Theorem
8). In the proof of Theorem 8, we shall construct a Riemann surface $R$ with $N(R)=$

$\{2, g+1\}$ .

2. The degree of Ahlfors functions.

LEMMA 1. Let $R$ be a finite Riemann surface and let $\hat{R}$ be the double of R. Suppose
that $\hat{R}$ is a hyperelliptic Riemann surface of genus $g\geq 2$ . Then the hyperelliptic involution
$J$ of $\hat{R}$ and the anti-conformal involution $\emptyset$ of $\hat{R}$ satisfy $\phi\circ J\circ\phi=J$ .

PROOF. By Farkas and Kra [2] (Proposition III.7.9 and its corollaries), a conformal
involution of $\hat{R}$ which fixes $2g+2$ points is the hyperelliptic involution $J$ . For a mero-
morphic function $f$ of degree 2 on $\hat{R}$ , by Theorem III.7.3 of [2] we have $f\circ\phi\circ J=$

$f\circ\emptyset$ . Hence $f\circ\phi oJ\circ\phi=f\circ\phi\circ\phi=f$ . In particular, for any Weierstrass point
$W\in\hat{R},$ $f\circ\phi\circ J\circ\phi(W)=f(W)$ . Thus the conformal involution $\phi\circ J\circ\phi$ fixes $2g+2$

Weierstrass points and it is the hyperelliptic involution J. $\square$

LEMMA 2. Let $R$ be a finite bordered Riemann surface of genus $\geq 1$ with contours
$andlet\hat{R}bethedoubleofR$ . $Then\hat{R}ishyperellipticifandonlyifRcanbeexpressedas$

a two-sheeted unlimited covering surface of the unit disk $\{z\in C:|z|<1\}$ .

PROOF. If $R$ is a two-sheeted unlimited covering surface of the unit disk, then, by
reflection principle, $R$ can be extended to a two-sheeted unlimited covering surface of the
Riemann sphere $\hat{C}$ . Thus $\hat{R}$ is hyperelliptic.

Suppose $\hat{R}$ is hyperelliptic. We shall show that $J(\partial R)=\partial R$ and $J(R)=R$ . Let
$P\in\partial R$ and let $\emptyset$ be an anti-conformal involution which fix the boundary $\partial R$ . Since
$\phi\circ J\circ\phi=J,$ $J(P)=\phi\circ J\circ\phi(P)=\phi\circ J(P)$ . Hence $J(P)\in\partial R$ . If $P\in\partial R$, then $P=$

$JoJ(P)\in J(\partial R)$ , and so $J(\partial R)=\partial R$ . Let $P\in R$ and let $\gamma\subset R$ be a curve joining from
$P$ to a Weierstrass point in $R$ . We note that Weierstrass points do not exist on $\partial R$ (see
Yamada [4] Theorem 2). Assume that $J(P)\in\phi(R)$ . Since $J$ fixes Weierstrass points,
we must have $J(\gamma)\cap\partial R\neq\emptyset$ . This contradicts the above assertion that $\partial R=J(\partial R)$ .
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Hence $J(P)\in R$ . On the other hand, we obtain $P=J\circ J(P)\in J(R)$ for $P\in R$ . Con-
sequently $J(R)=R$ .

For a meromorphic function $f$ of degree 2 on $\hat{R}$ , we know that $f=f\circ J$ and $f$ is a
locally conformal mapping around $\partial R$ . These imply that $f$ maps $R$ onto a connected
domain in $\hat{C}$ and $f(\partial R)$ consists of a finite number of analytic curves. Similarly $f$ maps
$\phi(R)$ onto the complement of $f(R\cup\partial R)$ in $\hat{C}$ and $f(\phi(R))$ is connected. Hence $f(R)$

must be simply connected and the boundary of$f(R)$ is equal to $f(\partial R)$ . By the Riemann
mapping theorem, there exists a mapping $h$ which maps $f(R)$ onto the unit disk. Hence
$R$ can be expressed as a two-sheeted unlimited covering surface of the unit disk. $\square$

The functions $f$ and $h$ appeared in the proof of Lemma 2 satisfy $|h\circ f|=1$ on
$\partial R$ . We put $x=h\circ f$ . We can extend $x$ to a meromorphic function on $\hat{R}$ of degree
2. There is a meromorphic function $y$ on $\hat{R}$ such that $\hat{R}$ can be expressed by

$y^{2}= \prod_{j=1}^{g+1}(x-\alpha_{j})(1-\overline{\alpha_{j}}x)$ ,

where $|\alpha_{j}|<1,$ $\alpha_{j}\neq\alpha_{k}(j\neq k)$ and $g$ the genus of $\hat{R}$ . We note that $R=\{P\in\hat{R}$ :
$|x(P)|<1\}$ . We also note that $2g+2$ Weierstrass points $\{P_{1}, \ldots , P_{g+1}\}\subset R$ and
$\{\phi(P_{1}), \ldots, \phi(P_{g+1})\}\subset\phi(R)$ satisfy $x(\{P_{1}, \ldots, P_{g+1}\})=\{\alpha_{1}, \ldots, \alpha_{g+1}\}$ and $x(\{\phi(P_{1}),$

$\ldots$ ,
$\phi(P_{g+1})\})=\{1/\overline{\alpha_{1}}, \ldots, 1/\overline{\alpha_{g+1}}\}$ .

PROPOSITION 3. Let $R$ be a finite bordered Riemann surface with contours such that
$itsdouble\hat{R}ishyperelliptic$ . $TheneveryAhlforsfunctiononRisofdegree2org+1$ .

PROOF. Ahlfors [1] proved that the degree $N$ of an Ahlfors function on a finite
Riemann surface $R$ satisfies $q\leq N\leq 2p+q=g+1$ , where $p$ is the genus of $R,$ $q$ is the
number of boundary components of $R$ and $g$ is the genus of $\hat{R}$ . If $g=0$ or 1, then $p=0$

and $N=q=g+1$ . If $g\geq 2$ , then $N\neq 1$ , and so

$2\leq N\leq g+1$ .

It is known that the degree of the Ahlfors function at a Weierstrass point on $R$ is equal
to $g+1$ (see Yamada [4] Theorem 2). Assume that $Q_{1}$ is not a Weierstrass point and
take $x$ as a local parameter around $Q_{1}$ . Since each Ahlfors function on $R$ can be ex-
tended to $\hat{R}$ meromorphically, in what follows we regard it as a function defined on
$\hat{R}$ . By Farkas and Kra [2] (Proposition III.7.10), on a hyperelliptic Riemann surface of
genus $g$ any function of degree $\leq g$ must be even degree and a rational function of a
meromorphic function $x$ of degree 2. Assume that the degree of the Ahlfors function $f$

at $Q_{1}$ is less than $g+1$ . Let $2n$ be the degree of $f$ . The Ahlfors function $f$ has zeros
$Q_{j}(j=1, \ldots, 2n)$ and has poles $\phi(Q_{j})(j=1, \ldots, 2n)$ , because $|f|=1$ on $\partial R$ . Since

$f$ is a rational function of $x$ , we put $\{\gamma_{1}, \ldots, \gamma_{n}\}=\{x(Q_{1}), \ldots, x(Q_{2n})\}$ , especially
$\gamma_{1}=x(Q_{1})$ . Clearly we have $|\gamma_{j}|<1(j=1, \ldots, n)$ . Thus $f$ can be expressed as

$e^{i\theta} \prod_{j=1}^{n}\frac{x-\gamma_{j}}{1-\overline{\gamma_{j^{X}}}}$ for some $\theta\in R$ .
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The absolute value of the derivative of $f$ at $Q_{1}$ (i.e. $|f’(Q_{1})|$ ) is equal to

$\frac{1}{1-|\gamma_{1}|^{2}}\prod_{j=2}^{n}\frac{\gamma_{1}-\gamma_{j}}{1-\overline{\gamma_{j}}\gamma_{1}}$ ,

where we take the function $x$ as a local parameter. On the other hand, the absolute
value of the derivative of

$\frac{x-\gamma_{1}}{1-\overline{\gamma_{1^{X}}}}$

at $Q_{1}$ is equal to

$\frac{1}{1-|\gamma_{1}|^{2}}$

This value is greater than that of $f$ , because clearly

$| \frac{\gamma_{j}-\gamma_{1}}{1-\overline{\gamma_{1}}\gamma_{j}}|<1$ $(j=2, \ldots,n)$ .

This shows thatn–l. $HencewehaveN=2org+1$ . $\square$

We see that ifg $\geq 2andifthedegreeoftheAhlforsfunctionatP\in Risequalto2$ ,
then the Ahlfors function is of the form

$e^{i\theta} \frac{x-x(P)}{1-\overline{x(P)}x}$ $(\theta\in R)$ .

According to Yamada [4] (section 4. Example), we write the Ahlfors function at
Weierstrass points $P_{j}\in R(j=1, \ldots, g+1)$ as of the form

$e^{i\theta} \frac{y}{\prod_{j=1}^{g+1}(1-\overline{\alpha_{j}}x)}$

$(\theta\in R)$ ,

where $x(P_{j})=\alpha_{j}(j=1, \ldots, g+1)$ .

3. Conformal automorphisms and Ahlfors functions.

LEMMA 4. Let Riemann surfaces $R$ and $S$ be conformally equivalent and let $\Phi$ :
$Rarrow Sbeaconformalmapping$ . $Letf_{P}betheAhlforsfunctionatP\in Randletg_{Q}$ be the
$AhlforsfunctionatQ\in S$ . $Thenwehavef_{P}=e^{i\theta}g_{\Phi(P)}\circ\Phi forsome\theta\in R$ .

PROOF. This follows from the fact that the Ahlfors functions do not depend on the
choice of local parameters. $\square$

Let $S_{1}$ and $\hat{S}_{2}$ be hyperelliptic Riemann surfaces of genus $g(\geq 2)$ defined by

$\hat{S}_{1}$ : $y^{2}= \prod_{j=1}^{g+1}(x-\alpha_{j})(1-\overline{\alpha_{j}}x)$
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and

$\hat{S}_{2}$ : $Y^{2}=\prod_{j=1}^{g+1}(X-\beta_{j})(1-\overline{\beta_{j}}X)$ ,

respectively. Put $S_{1}=\{P\in\hat{S}_{1} : |x(P)|<1\}$ and $S_{2}=\{P\in\hat{S}_{2} : |X(P)|<1\}$ .

LEMMA 5. The Riemann surfaces $S_{1}$ and $S_{2}$ are conformally equivalent if and only
$lf$ there $\dot{i}$ a linear transformation $T$ of the unit disk such that $T(\{\alpha_{1}, \ldots , \alpha_{g+1}\})=$

$\{\beta_{1}, \ldots,\beta_{g+1}\}$ .

PROOF. Suppose that there is a linear transformation $T$ of the unit disk such that
$T(\{\alpha_{1}, \ldots, \alpha_{g+1}\})=\{\beta_{1}, \ldots,\beta_{g+1}\}$ . Then $T$ maps $\{1/\overline{\alpha_{1}}, \ldots, 1/\overline{\alpha_{g+1}}\}$ to { $1/\overline{\beta_{1}},$

$\ldots$ ,
$1/\overline{\beta_{g+1}}\}$ . Thus, if we write the linear transformation $T$ as the form $T(x)=e^{i\theta}(x-\alpha)/$

(1–dix), then we have a birational relation

$\{$

$X=e^{i\theta} \frac{x-\alpha}{1-\overline{\alpha}x}$

$Y=\frac{\sqrt{\prod_{j--1}^{g+1}(e^{i\theta}+\overline{\alpha}\beta_{j})(1+e^{i\theta}\alpha\overline{\beta_{j}})}}{(1-\overline{\alpha}x)^{g+1}}y$ .

Thus $\hat{S}_{1}$ and $\hat{S}_{2}$ are conformally equivalent and a point $P$ of $\hat{S}_{1}$ with $|x(P)|<1$ is
mapped to a point $Q$ with $|X(Q)|<1$ . Hence $S_{1}$ and $S_{2}$ are conformally equivalent.

Conversely, suppose that $S_{1}$ and $S_{2}$ are conformally equivalent. Then $\hat{S}_{1}$ and $\hat{S}_{2}$ are
conformally equivalent, too. Let $\Phi$ be the conformal mapping. By Farkas and Kra [2]
(Theorem III.7.3), $Xo\Phi$ is a linear transformation of $x$ . We denote it by $T(x)$ . Then
$T$ maps $\{\alpha_{1}, \ldots, \alpha_{g+1}\}$ to $\{\beta_{1}, \ldots,\beta_{g+1}\}$ . $\square$

For any point $P\in S_{1}$ with $x(P)=\alpha$ , we put $\beta_{j}=(\alpha_{j}-\alpha)/(1-\overline{\alpha_{j}}\alpha)$ . Then $S_{1}$ and
$S_{2}$ are conformally equivalent and $P$ is mapped to $O\in S_{2}$ with $X(O)=0$ . Note that
there are two points $O_{j}$ with $X(O_{j})=0(j=1,2)$ , in general. Assume that the Ahlfors
function $fo_{1}=r_{1}(X)Y+r_{2}(X)$ , where $r_{j}(X)(j=1,2)$ are rational functions of $X$ .
There is the hyperelliptic involution $J$ of $S_{2}$ , by Lemma 4, we have that $f_{0_{2}}=$

$f_{J(O_{1})}=f_{0_{1}}\circ J=-r_{1}(X)Y+r_{2}(X)$ . Thus the difference between $f_{0_{1}}$ and $f_{0_{2}}$ is small.
We may take any one of them $O$ . Hence we do not consider the Ahlfors function at an
arbitrary point. Instead, we consider the Ahlfors function at $O$ with $X(O)=0$ on an
arbitrary Riemann surface.

4. Distribution of degree of Ahlfors functions.

We shall investigate necessary and sufficient conditions that the Ahlfors function at
$O$ is of degree 2. Let $\hat{R}$ be the compact Riemann surface defined by

$y^{2}= \prod_{j=1}^{g+1}(x-\alpha_{j})(1-\overline{\alpha_{j}}x)$ , (2)

where $|\alpha_{j}|<1(j=1, \ldots g+1)$ and $\alpha_{j}\neq\alpha_{k}$ , and let $R=\{P\in\hat{R} : |x(P)|<1\}$ . We may
assume that $\alpha_{j}\neq 0(j=1, \ldots, g+1)$ . By Yamada [4] (section 4. Example.), the func-
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tion $x$ is the Ahlfors function at $O$ if and only if there is a meromorphic differential
ut such that ut is real and non-negative along $\partial R$ and its divisor $D(\psi)$ is equal to
$-O+J(O)+B+\phi(B)-\phi(O)+J\circ\phi(O)$ , where $B$ is a positive divisor of degree $g-1$

such that $O\not\in B\subset R\cup\partial R$ .

LEMMA 6. Let $D_{1}=-O+J(O)-\phi(O)+J\circ\phi(O)$ and let $D_{2}=J(O)+Jo\phi(O)$ .
Then we have

$\dim A(D_{1})=g-1$

and
$\dim A(D_{2})=g-2$ ,

where $A(D_{1})=$ {ru: to is a meromorphic differential with $D(\omega)\geq D_{j}$ } $\cup\{0\}$ .

PROOF. By the Riemann-Roch theorem, we have

$\dim A(D_{1})=\dim L(D_{1})-\deg(D_{1})+g-1$

$=\dim L(D_{1})+g-1$ ,

where $L(D_{1})=$ {$f$ : $f$ is a meromorphic function with $D(f)\geq-D_{1}$ } $\cup\{0\}$ . Since $J(O)$

is not a Weierstrass point, there is not a meromorphic function of degree 2 which has
apole only at J$(O)$ . Thus dim L$(D_{1})=0$ . Hence we have dimA $(D_{1})=g-1$ . Simi-
larly, we have that $L(D_{2})=C$ and $\dim L(D_{2})=1$ . Since $\deg(D_{2})=2,$ $\dim A(D_{2})=$

$g-2$ . $\square$

By Lemma 6, we see that there is a meromorphic differential $\psi_{1}$ such that $\psi_{1}\in$

$A(D_{1})\backslash A(D_{2})$ . The equation (2) can be written as

$y^{2}= \prod_{j=1}^{g+1}(x-\alpha_{j})(1-\overline{\alpha_{j}}x)$

$= \prod_{j=1}^{g+1}(-\alpha_{j})-\prod_{j=1}^{g+1}(-\alpha_{j})\sum_{k=1}^{g+1}(\frac{1}{\alpha_{k}}+\overline{\alpha_{k}})x+\cdots$

$- \prod_{j=1}^{g+1}(-\overline{\alpha_{j}})\sum_{k=1}^{g+1}(\alpha_{k}+_{\overline{\overline{\alpha_{k}}}}^{1})x^{2g+1}+\prod_{j=1}^{g+1}(-\overline{\alpha_{j}})x^{2g+2}$ . (3)

We put $a_{0}=\sqrt{\prod_{j--1}^{g+1}(-\alpha_{j})}$ and $a_{1}=-a_{0}/2 \sum_{k=1}^{g+1}(1/\alpha_{k}+\overline{\alpha_{k}})$ , where we take a sign of the
square root so that $y=a_{0}+a_{1}x+\cdots$ in a neighborhood of $O$ .

LEMMA 7. The $d\iota fferential$

$\psi_{1}=\frac{y+a_{0}+a_{1}x+\overline{a_{1}}x^{g}+\overline{a_{0}}x^{g+1}}{ix}\frac{dx}{y}$

satisfies the following conditions:
(i) $\psi_{1}\in A(D_{1})$ and $\psi_{1}\not\in A(D_{2})$ .
(ii) $\psi_{1}$ is real along $\partial R$ .

PROOF. Since $y=a_{0}+a_{1}x+\cdots$ in a neighborhood of $O$ , by the equation (3),
$y=-a_{0}-a_{1}x-\cdots$ in a neighborhood of $J(O),$ $y=\overline{a_{0}}x^{g+1}+\overline{a_{1}}x^{g}+\cdots$ in a neighbor-
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hood of $\phi(O)$ and $y=-\overline{a_{0}}x^{g+1}-\overline{a_{1}}x^{g}-\cdots$ in a neighborhood $J\circ\phi(O)$ . Thus the dif-
ferential $\psi_{1}$ has simple poles at $O$ and at $\phi(O)$ . Clearly $\psi_{1}$ does not have poles at the
other points and has zeros at $J(O)$ and at $J\circ\phi(O)$ . Hence we have that $\psi_{1}\in A(D_{1})$

and $\psi_{1}\not\in A(D_{2})$ .
For the anti-conformal involution $\emptyset$ of $\hat{R}$ , we have that $\overline{x\circ\emptyset}=1/x$ and $\overline{y\circ\emptyset}=$

$y/x^{g+1}$ . Hence we see that $\overline{\psi_{1}\circ\emptyset}=\psi_{1}$ . This implies that the differential $\psi_{1}$ is real
along $\partial R$ . $\square$

By Farkas and Kra [2] (III.7.5. Corollary 1), the $g$ differentials

$x^{j}dx$

$(j=0, \ldots, g-1)$
$y$

form a basis of the space of the holomorphic differentials on $\hat{R}$ . By Ahlfors [1] (Theo-
rem 2 and its corollary), we see that the space of holomorphic differentials which are real
along $\partial R$ is real $g$-dimensional. Simple calculation shows that we can take the following
as a basis of holomorphic differentials which are real along $\partial R$ :

$\{\frac{(x^{j}+x^{g-1-j})dx}{iy}\}_{j=0,\ldots,n-1}$

for even $g$ , where $g=2n$ ;

$\{\frac{(x^{j}-x^{g-1-j})d\kappa}{y}\}_{j=0,\ldots,n-1}$

$\{\frac{(x^{j}+x^{g-1-j})dx}{iy}\}_{j=0,\ldots,n}$ $\{\frac{(x^{j}-x^{g-1-j})dx}{y}\}_{j=0,\ldots,n-1}$

for odd $g$ , where $g=2n+1$ . Thus the subset of the differentials above which corre-
spond to $j=1,$ $\ldots,n-1$ (or $n$ ) form a basis of $A(D_{2})$ . Let $\psi_{j}(j=2, \ldots, g-1)$ be the
basis. Then we know that the function $x$ is the Ahlfors function at $O$ on $R$ if and only
if there are $c_{1},$ $\ldots$ , $c_{g-1}\in R(c_{1}\neq 0)$ such that

$\psi=\sum_{j=1}^{g-1}c_{j}\psi_{j}$

is non-negative along $\partial R$ .
Put $\mathfrak{S}=\{(\gamma_{1}, \ldots, \gamma_{g+l}) : |\gamma_{j}|<1, \gamma_{j}\neq\gamma_{k}(j\neq k)\}$ for fixed $g\geq 2$ . We regard $\mathfrak{S}$ as

a topological subspace of $C^{g+1}$ . For any $(\gamma_{1}, \ldots, \gamma_{g+1})\in \mathfrak{S}$ , there is a Riemann surface
$\hat{S}$ defined by

$y^{2}= \prod_{j=1}^{g+1}(x-\gamma_{j})(1-\overline{\gamma_{j}}x)$ .

We consider the Ahlfors function at $O$ on $S=\{P\in\hat{S} : |x(P)|<1\}$ and we say that
$(\gamma_{1}, --, \gamma_{g+1})$ is of degree 2 (or $g+1$ ) if the degree of the Ahlfors function is 2 (or
$g+1)$ . We denote by $\mathfrak{S}_{2}$ the set of all points of degree 2 and by $\mathfrak{S}_{g+1}$ the set of all
points of degree $g+1$ . Clearly, we have $\mathfrak{S}_{2}\cap \mathfrak{S}_{g+1}=\emptyset$ and $S_{2}US_{g+1}=S$ .

THEOREM 8. Let $\mathfrak{S}_{2},$ $\mathfrak{S}_{g+1}$ and $\mathfrak{S}$ be defined as in the above. Then $\mathfrak{S}_{2}$ is closed in
$\mathfrak{S}$ , and so $\mathfrak{S}_{g+1}$ is open in S. Neither $\mathfrak{S}_{2}$ nor $\mathfrak{S}_{g+1}$ are empty.
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PROOF. We shall show that $\mathfrak{S}_{g+1}$ is not empty. Take a point $(0, \gamma_{2}, \ldots, \gamma_{g+l})\in$

G5. Let $\hat{S}_{1}$ be the Riemann surface defined by $y^{2}=x \prod_{j=2}^{g+1}(x-\gamma_{j})(1-\overline{\gamma_{j}}x)$ and let $O$ be
the point of $\hat{S}_{1}$ satisfying $x(O)=0$ . Then $S_{1}=\{P\in\hat{S}_{1} : |x(P)|<1\}$ corresponds to the
point $(0, \gamma_{2}, \ldots, \gamma_{g+1})$ and $O$ is a Weierstrass point. Thus the Ahlfors function at $O$ on
$S_{1}$ is

$e^{i\theta} \frac{y}{\prod_{j=2}^{g+1}(1-\overline{\gamma_{/}}x)}$

$(\theta\in R)$

and is of degree $g+1$ . Hence $\mathfrak{S}_{g+1}$ is not empty.
We shall show that $\mathfrak{S}_{2}$ is not empty. Put $\zeta=e^{(2\pi i)/(g+1)}$ . Assume that (1/2,

$1/2\zeta,$ $1/2\zeta^{2},$
$\ldots,$

$1/2\zeta^{g-1},1/2\zeta^{g})\in \mathfrak{S}$ is of degree $g+1$ . Then there is the Riemann sur-
face $\hat{R}$ defined by $y^{2}= \prod_{j=1}^{g+1}(x-1/2\zeta^{j})(1-1/2\overline{\zeta}^{j}x)$ and the Ahlfors function $f$ at $0$ on
$R$ , where $R=\{P\in\hat{R} : |x(P)|<1\}$ . The function $f$ has $g+1$ zeros on $R$ and one of
them is the point $O$ . On the other hand, there is an automorphism $\Phi$ of $R$ which maps
$(x,y)$ to $(\zeta x,y)$ . The order of $\Phi$ is $g+1$ and $\Phi$ fixes the point $O$ . Thus functions $f$

$f\circ\Phi,$ $fo\Phi^{2},$
$\ldots,$

$f\circ\Phi^{g}$ must be the Ahlfors function at $O$ . This contradicts the
uniqueness of the Ahlfors function. Hence $(1/2, 1/2\zeta, \ldots, 1/2\zeta^{g})$ is of degree 2.

Next we shall show that $\mathfrak{S}_{2}$ is closed in S. Put $x=e^{i\theta}(\theta\in R)$ . Then the function
$y$ is a continuous function of $\theta$ and $\alpha_{j}(j=1, \ldots, g+1)$ . We note that the function $y$

is a multi-valued function of $\theta$ . We may assume the differential $dx/ix=d\theta$ is posi-
tive. For a basis $\{\psi\}_{j=1}^{g-1}$ of $A(-O+J(O)-\phi(O)+J\circ\phi(O))$ , put

$\psi_{j}=f_{j}(\theta, \alpha_{1}, \ldots, \alpha_{g+1})d\theta$ $(j=1, \ldots,g-1)$ .

Then the functions $f_{j}(\theta, \alpha_{1}, \ldots, \alpha_{g+l})(j=1, \ldots , g-1)$ are (multi-valued) continuous
functions. Accordingly, the point $(\alpha_{1}, \ldots, \alpha_{g+1})$ is of degree 2 if and only if there are
$(c_{1}, \ldots, c_{g-1})\in R(c_{1}\neq 0)$ such that

$\inf_{\theta\in R}\sum_{j=1}^{g-1}c_{j}f_{j}(\theta, \alpha_{1}, \ldots, \alpha_{g+1})\geq 0$ .

Since $c_{1}\neq 0$ , we may assume $\sum_{j=1}^{g-1}c_{j}^{2}=1$ , that is $(c_{1}, \ldots, c_{g-1})\in S^{g-2}$ , where $S^{g-2}$ is the
$(g-2)$ -sphere. Suppose that a sequence $\{(\alpha_{1}^{(k)}, \ldots, \alpha_{g+1}^{(k)})\}_{k=1}^{\infty}$ of $\mathfrak{S}_{2}$ converges to a point

$g-1)$ shows that

$\inf_{\theta\in R}\sum_{j=1}^{g-1}c_{j}^{(0)}f_{j}(\theta, \alpha_{1}^{(0)}, \ldots, \alpha_{g+1}^{(0)})\geq 0$ .

Hence the set $\mathfrak{S}_{2}$ is closed. $\square$

From this theorem, we see that on each Riemann surface $\hat{R}$ the set of points of
degree 2 is closed on $R$ and the set of points of degree $g+1$ is open on $R$ .
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5. Examples.

In this section we assume that the genus of $\hat{R}$ is 2. Then we can write $\hat{R}$ as

$y^{2}= \prod_{j=1}^{3}(x-\alpha_{j})(1-\overline{\alpha_{j}}x)$

and $R=\{P\in\hat{R} : |x(P)|<1\}$ . In this case, dimension of $A(D_{1})$ and $A(D_{2})$ in Lemma 6
are equal to 1 and $0$ , respectively. Thus the differential $\psi_{1}$ in Lemma 7 forms a basis of
$A(D_{1})$ . We can calculate explicitly the necessary and sufficient condition that $x$ is the
Ahlfors function at $O$ , where $x(O)=0$ . As in the proof of Lemma 3 of Yamada [4], we
see that $\psi_{1}$ is real and non-negative along $\partial R$ if and only if

$\frac{y^{2}-(a_{0}+a_{1}x+\overline{a_{1}}x^{2}+\overline{a_{0}}x^{3})^{2}}{x^{3}}\geq 0$ for all $|x|=1$ . (4)

Put $s_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3},$ $s_{2}=\alpha_{1}\alpha_{2}+\alpha_{2}\alpha_{3}+\alpha_{3}\alpha_{1}$ and $s_{3}=\alpha_{1}\alpha_{2}\alpha_{3}$ . Then $a_{0}^{2}=-s_{3}$ and
$2a_{0}a_{1}=\overline{s_{1}}s_{3}+s_{2}$ . In the numerator of the left-hand side of the inequality (4), the terms
of $x$ of order $0,1,5$ and 6 are equal to zero. Put $A=-(\overline{s_{1}}s_{2}+s_{2}\overline{s_{3}}+s_{1}+2a_{0}\overline{a_{1}}+a_{1}^{2})$

and $B=(1+s_{1}\overline{s_{1}}+s_{2}\overline{s_{2}}+s_{3}\overline{s_{3}}-2a_{0}\overline{a_{0}}-2a_{1}\overline{a_{1}})$ . Then the inequality (4) holds if and
only if

$\frac{A}{X}+B+\overline{A}x\geq 0$ for all $|x|-1$ .

When $x=-e^{i\arg A},$ $A/x+B+\overline{A}x$ takes a minimum. Thus $A/x+B+\overline{A}x\geq B-2|A|$

for all $|x|=1$ . Hence $x$ is the Ahlfors function at $O$ if and only if

$B-2|A|\geq 0$ .
We show some figures below. Points contained in black regions of figures corre-

spond to the projection of points of degree 3. Points contained in white regions of
figures correspond to the projection of points of degree 2.

First, we put $\alpha_{1}=r,$
$\alpha_{2}=re^{(2\pi i)/3}$ and $\alpha_{3}=re^{(4\pi i)/3}$ .

$r=0.1$ $r=0.2$

$r=0.3$ $r=0.4$

$r=0.21$ $r=0.23$

$r=0.6$ $r=0.99$

Fig. 1.
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Second, we put $\alpha_{1}=r,$ $\alpha_{2}=0$ and $\alpha_{3}=-\gamma$ .

$r=0.1$ $r=0.23$

$r=0.5$ $r=0.6$

$r=0.24$ $r=0.3$

$r=0.7$ $r=0.9$

Fig. 2.

Finally, we show another types.

$\{$

$\alpha_{1}=0.2$

$\alpha_{2}=0$

$\alpha_{3}=0.5i$

$\{$

$\alpha_{1}=0$

$\alpha_{2}=0.1$

$a_{3}=-0.5$

$\{$

$\alpha_{1}=0.5$

$\alpha_{2}=0.5i$

$\alpha_{3}=-0.5$

$\{$

$a_{1}=0$

$\alpha_{2}=0.8$

$a_{3}=0.9$

Fig. 3.

AS in the case of $r=0.1$ in Figure 1 and 2, if the three points $\alpha_{1},$ $\alpha_{2}$ and $\alpha_{3}$ are suf-
ficiently close, then the region of degree 3 is very small. We shall show this. Take a
real number $r(0<r<1)$ . Then

$\lim_{\alpha_{1},\alpha_{2},\alpha_{3}arrow-r}\frac{y^{2}-(a_{0}+a_{1}x+\overline{a_{1}}x^{2}+\overline{a_{0}}x^{3})^{2}}{x^{3}}=\frac{(r-1)^{4}}{4}(3rx+4r^{2}-2r+4+\frac{3r}{X})$ .

The right-hand side of the equation takes a minimum when $x=-1$ . So we have

$\frac{(r-1)^{4}}{4}(3rx+4r^{2}-2r+4+\frac{3r}{X})|_{x=-1}=(r-1)^{6}>0$ .
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This implies that for any fixed $r(0<r<1)$ , for any $\alpha_{j}(j=1,2,3)$ which are sufficiently
close $to-r$, the point $O$ is of degree 2. This completes the proof.

6. Conjectures.

In this final section, the author gives two conjectures. First, in the case of $g=2$ , as
in the figures above, the region of degree 3 consists of three simply connected compo-
nents and the region of degree 2 is non-empty. The author could not settle this. More
generally, it is plausible that the region of degree $g+1$ consists of $g+1$ simply connected
components and the region of degree 2 is non-empty. Second, in the case of $g=2$ , we
have seen that if the branch points $\alpha_{j}(j=1,2,3)$ are sufficiently close, the region of
degree 3 is very small. The author guesses that if the $g+1$ branch points $\alpha_{j}$

$(j=1, \ldots, g+1)$ are sufficiently close, then the region of degree $g+1$ is very small.
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