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§0. Introduction

In the last decade, it was recognized that monoidal categories or categories with
tensor product play essential roles in many branches of mathematics and mathematical
physics such as Jones’ index theory, low-dimensional topology and conformal field
theory. For example, Ocneanu’s classification theory of II;-subfactors deeply depends
on the structure of the monoidal categories of bimodules over von Neumann algebras
(cf. [O]). On the other hand, it is known that a certain class of monoidal additive
categories gives rise to 2-dimensional topological quantum field theories (see Turaev
(TD).

These developments naturally stimulate to construct non-trivial examples of monoidal
categories. Many examples are constructed using representation theory of bialgebras
(quantum groups). However, there still exist monoidal categories which have no
representation-theoretic interpretation; for example, II;-subfactors of type D—FE have no
representation-theoretic counterparts.

In this paper, we begin to study a new algebraic structure named face algebra, which
is a generalization of bialgebra. Although, its definition is much more complicated than
that of bialgebra, the category of its (co-)modules still has the structure of monoidal
abelian category. By considering additional structures on it (such as an antipode, a
universal R-matrix, a ribbon structure and a x-structure), we obtain monoidal categories
with rich additional structures.

In this paper, we concentrate our attention on elementary properties of face algebras
and their (co-)module categories. Non-trivial examples and applications will be given
elsewhere (cf. [H1-6]).

In Sections 1, 2 and 3, We show several basic formulas for face algebras, their
antipodes and their universal R-matrices. In Sections 4 and 5, we show that the
categories of modules and comodules of face algebras naturally become monoidal
categories. When face algebras have antipodes or universal R-matrices, we also discuss
the rigidity or the braiding structure of these categories.

Throughout this paper, we work on a fixed ground field K. For an algebra 4, we
denote its product by m =m,4. For a coalgebra C, we denote its coproduct and its
counit by 4 = A¢ and & = g¢ respectively. We also use the “‘sigma’ notation A(a) =

2@ ) ®ap) (ae C) (cf. [S]).
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§1. Commutative separable algebras

In this section, we discuss some aspects of commutative separable algebras, which
play basic roles throughout this paper. Let R be a commutative algebra over a field
K. Let e be an element of R® R and let {e;} and {e/} be elements of R such that
e=) ;¢ ®e; and that {e;} are linearly independent. We say that (R, e) is a separable
algebra if the following two relations are satisfied:

Zlei@)elf:Zei@le; (AeR), Zeielf:l. (1.1)
We call e a separating idempotent of R. This terminology is justified since

et = E e; ® eeje; = e.
ij

It is known that R has a separating idempotent if and only if R is a finite direct product
of separable field extensions of K (see e.g. [P]). Moreover e is unique if it exists. In
fact, we have

[=)_fi® flee| =) frei® fiej=e
ik ik

for another separating idempotent f =), fr ® f,. The following proposition shows
that (R,e) may be viewed as a “self dual quantum group.”

PROPOSITION 1.1. Let (R,e) be a commutative separable algebra.

(1) Then R becomes a cocommutative coalgebra with coproduct Ag defined by
Ar(A) =), %e;®@ e, (A€ R). Moreover, we have Ar (Au) = Ar(1)dr(u) for each
A€ R.

(2) Let R:=Homg(R,K) be the dual algebra of (R,4r) equipped with the dual
coalgebra structure of R. Then, the map RS R; g @ =Y ;{p,e el is an algebra
and a coalgebra isomorphism. lts inverse R — R; A satisfies A= 3o <8, AYé;.
(3) The element & :=Y,é; ® é&; is a separating idempotent of R. The coproduct of
R satisfies A3(p) =Y,06:®¢] (pe R).

(4) For each ¢,y € R and A,u€ R, we have

er(9A) = {9, 4> = &3 (p4), (1.2)
(o) = oD, oty = <Ay, (1.3)
pu, 4 = g, Y. (1.4)

(5) The sets {e;} and {e}} are linear bases of R, whose dual bases are respectively
{&} and {&}.
Proor. The coassociativity of Ax easily follows from the first relation of (1.1),

while the relation 4g(A)4g(1) = Ar(Au) follows from e = e. Because of the uniqueness
of e, we have

Zei@)e;:Zel{@ei, (1.5)
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which proves the cocommutativity of 4g. To show the existence of the counit, we show
that the map g+ ¢ (p € IOQ) is bijective. Let y be an element of the dual coalgebra R
such that y = 0. Since

<Z('//(1))° @Y e ® 2>
W)

=2 by ey A<el 0
)

=D Yede, 9>
=D _ <Y, eixeid 0

= a0y =0
for each p e R and A€ R, we have Y ¥)” ® Y =0. Hence,

WAy =) <P eeid
= Z Z Py edY), eih>
(')
- Z Wy W) A
(¥)

=0

for each Ae R. This implies the injectivity of the map ¢+ ¢. Since dimg R =
dimg R < oo, ¢+ ¢ is a linear isomorphism. Hence there exists an element eg of R
such that 1z = ég = ) _;er(e;)ej. Using (1.1) and (1.5), we conclude that (R, 4g,¢r) is a
cocommutative coalgebra with counit eg. The verification of the fact that ¢+ ¢ is an
algebra map is straightforward. For example, we obtain

(¥)° =D <o @y, eie; @ €)e]
LJj

= Ko @Y, e ®¢dele]
Lj

Next we show part (4). We calculate

er(92) = ) _ <p,ener(eid) = D _ {p,eidyer(e]) = <p, 4. (1.6)

The first relation of (1.3) follows from (1.5), and the second relation follows from the
first relation. The relation (1.4) follows from (1.6) and (py)° = qn// The second equality
of (1.2) follows from (1.4). Part (3) easily follows from the first assertion of (2). The
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second assertion of (2) follows from (1.3). Since the map R — R; ¢+ ¢ = > {p,evel =
Y. <p,e;ye; is surjective, both {e;} and {e/} span R. By the assumption on {e;},
this proves the first assertion of (5). The other assertion of (5) follows from
e = (éj'-)° =3 <é;,e,~>elf. .

ExampLE. (1) Let R= @(y/n) be a quadratic field extension of the rational
number field K = Q. Then, we have e=(1® 1+ /n® (1//n))/2 and &(q + ry/n) =
2q (q,re @). Since ¢(1) #1, R is not a bialgebra.

(2) Let R be a finite direct product [],., K;, where K; (ie ¥") is a copy of K.
Then we may take e; and e; as the primitive idempotent corresponding to K;, that is,
e; = ¢e; = (0jlKk,);cy- The counit is given by er(e;) = 1.

NoTtaTION. Since R is cocommutative, we have ) ,e;®el =) e ®e;. Hence
there exists no essential difference between the bases {¢;} and {e/}. In the following,
we denote e by >, e; ® ¢; instead of >, e; ® e}, in order to simplify the notation. The
letters ¢ and y stand for elements of R and the letters A and u stand for elements of R.

§2. Face algebras and their antipodes

2.1. Face algebras

For a commutative separable algebra R, we set E(R) := R®R and regard it as an
algebra via Proposition 1.1 (2). We also define a coalgebra structure on E(R) via the
identification €(R) ~ Endg(R)*. By Proposition 1.1 (5) and (4), the coproduct and the
counit of E(R) are given by

Ap@A) =) (r®e)®(&®4), (2.1)

elp® 1) = <p, 2> = er(@p2) = e5(ph) (peR, AeR), (2.2)

where eg and ¢; denote the unit of (R, 4g) and (102, Ay ) respectively. Using (2.1) and
e’ = e, we see that A(ab) = A(a)A(b) for each a,b e E(R).

Let $ be a K-algebra equipped with a coalgebra structure ($, 4, ¢) such that 4(ab) =
A(a)4(b) for each a,be $. Let (R,e) be a commutative separable algebra over K and
let 2 =Qg:E(R)— $ be both an algebra and a coalgebra map. For simplicity, we
denote Q(p® 1) € H by @i for each g€ R and 1e R. We say that § = (9,Q) is an
R-face algebra if

Zs(aei)s(éib) = &(ab) (2.3)
i
for each a,be $. A linear map f:$H — 9’ of R-face algebras is called a map of R-face
algebras if f is both an algebra and a coalgebra map such that f o Qg = Qg/, and a
subspace J < § is called a biideal if it is both an ideal and a coideal. The quotient
$/3 is an R-face algebra precisely when 3 is a biideal of §.



Face algebras I 297

ExampLE (1) For a commutative separable algebra R, €(R) becomes an R-face
algebra via 2 =id. Moreover, R itself becomes an R-face algebra via Q: E(R) — R;
9® A gA (pe R 1€ R).

(2) Each bialgebra $ naturally becomes a K-face algebra. Moreover, an R-face
algebra is a bialgebra if and only if R ~ K (see Corollary 4.6).

(3) Let ¥V be an R-bimodule such that dimg(V) < oo. Then $H(V):=
P, ¢ Endg (V)" naturally becomes an R-face algebra, where V® = R, V() = ¥ and
yr+) — () @ , V. Moreover, every finitely generated R-face algebra is isomorphic to
H(V)/3 for some V and a biideal I = H(V). See [H6] for a proof of this result.

(4) Let R=]],.» Ki, K; ~ K and ¢; be as in Example (2) of Section 1. In this
case, we call an R-face algebra a ¥ -face algebra. An algebra § is a ¥ -face algebra if
and only if it is a coalgebra equipped with elements {ej’:]i, j e ¥} which satisfy the
following relations:

e]’:e,',” :5,-,,,6],,3; (i, j,mne¥’), Ze; =1,
ij
A(ej’:) = Ze}'c@e]'.‘ (i,je?), 3(3}) =d; (i,je¥),
k

A(ab) = A(a)A(b), e(ab) =Y e(ae})(efb) (a,be D).
i),k
In fact, ej’i = Q(&; ®¢;) satisfies these relations.
We refer the reader to [H1, 2, 4, 5] for more non-trivial examples of face algebras.
For an R-face algebra $, let H° (resp. HP) be a copy of H equipped with the
same coproduct (resp. product) as $ and the opposite product m°? : a ® b+ ba (resp.
the opposite coproduct 4°F : ar> 37 ap) @ aqy) of H. Then HP (resp. Sjj"p) becomes
an R-face algebra via Qgo(p ®@ A) = Qg(p ® ) (resp. Qger (¢ ® A) = 2g(4 @ 9)).

LemMMA 2.1. Let $ be an R-face algebra. For each ae€ D, ¢, ¥ € R and A,ue R, we
have the following identities:

A(ph) = Z pe; ® éid, (2.4)
Ze(ei)e,- =1, (2.5)

g(ad) = e(ad), &(da) = e(da), (2.6)
> age(lagu) = Aap, 2.7)

(@)

28(10(1)11)“(2) = daji, (2.8)
(a)
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Z Aayu ® ap) = Z an ® ia(z)ﬁ, (2.9)
(@) (@)

Alprapp) = papy ® rapu, (2.10)
@

A(a) = Z Z eia) ® éap) = Z Z agye: ® agp)é;. (2.11)
i i (a)

Proor. Equations (2.4) and (2.5) are immediate consequences of (2.1), (2.2).
Setting b= 4 in (2.3), and then using (1.1) and (2.5), we obtain e(al) = g(al). The
other formula in (2.6) also follows from (2.3) by setting a = 4. Equation (2.11) follows
from A(a) = 4(1)4(a) = 4(a)4(1) and equation (2.9) follows from (2.11) and (1.1).
Equation (2.10) follows from (2.4) and (2.11). Equation (2.8) follows from (2.9) and
equation (2.7) follows from (2.6) and (2.9). O

2.2. Antipodes
Let x*, e* be four elements of an algebra 4. We say that x~ is an (e*,e”)-
generalized inverse of x* if the following four relations are satisfied:

xTx xt=xt, xxtx" =x". (2.12)

LEMMA 2.2. Let x~ be an (e*,e™)-generalized inverse of x* in an algebra A. Then:
(1) x* is an (e”,e")-generalized inverse of x~.
(2) We have the following formulas:

e xt =xt = x+e+, etx =x =x"e , (ei)z = ei. (213)

(3) Let a and b be elements of A which commute both et and e™, then x*a = bx*
if and only if ax™ = x7b.
(4) The (e*,e™)-generalized inverse of x* is unique.

ProoF. Straightforward. ]

For an R-face algebra $, we define linear operators &, &, &_ and & on $ as
follows:

6(a) =) elae)e;, &'(a)=)  elea)é;,

i 1

&_(a) = Za(aei)é,-, & (a) = Ze(eia)e,- (ae 9). (2.14)

We say that a linear operator S € End($) (resp. S— € End($)) is an antipode (resp. a pode)

of § if S is an (&, &')-generalized inverse (resp. S_ is an (&, &’ )-generalized inverse) of
idg with respect to the convolution product * (resp. opposite convolution product

*op) given by (f *g)(a) =3, faw)g(aw) (resp. (f *opg)(a) =3 () f(a@)g(ay))
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(f,g€ End(9),ac D). We say that $ is an R-Hopf face algebra if it has an anti-
pode. By definition, both the antipode and the pode are unique if they exist. It is easy
to verify that S € End($) is an antipode if and only if the following three relations are
satisfied:

Y " S(agy)ag) = €(a), > aw)S(ap) = &'(a),
(a) (a)

Y S(ag)ap)S(a@) = S(a) (ae$).

(a)

LemMMmA 2.3. For goe]oi, A€ R and ae D, we have:

ZS apy)iap) = 6(ia), Za 9S(ap) = &' (ap), (2.15)

(@)

Zsﬁ =& _(pa), Y apiS_(am) =& (ah). (2.16)
(a)

Proor. Using (2.7) twice, we obtain

> " S(ag)rap =Y Sag))ape(iag)
(a) (@)
=Y &(an))e(Aap)
(a)

= &(4a).

The others are derived in a similar manner. O

THEOREM 2.4. For an R-face algebra ©, its antipode S (resp. its pode S_) is an
antialgebra, anticoalgebra map. Moreover we have:

S(pi) = ip=S_(pd) (peR,AeR). (2.17)

PRrOOF (cf. [S, Proposition 4.0.1]). An operator S_ is a pode of § if and only if it is
an antipode of H°P. Hence it suffices to prove the assertions for S. To start with, we
show

S(pAayy) = S(a)i¢p (Aue R, 9,y € R aeH). (2.18)

We set f(a) ,uS(a) (ae ). It follows from the lemma above that

(id+ f)(a) = Y awiS(ap)i = &'(aji)i = & (Aau),
(a)

where the last equality follows from (2.6) and (1.1). Using (2.7) twice and the fourth
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equality of (2.13), we compute

> S(aw)E (hagu) = _ S(aq)) € (aw)e(Aag)m)
M @

= Z S(a(l))g(la(z),u)
(@)

= S(Aay).

Combining these two formulas, we obtain

S(ap) = (Sxidx f)(@) = Y _ &(aw)iS(ap)A = S(a)4,
(a)

where the last equality follows from the third equality of (2.13). Similarly we obtain
S(pay) = lZS(a)q") which completes the proof of (2.18). Next, we show that S is an
anticoalgebra map. We define maps g,#: 9 — H ® 9 by g(a) = 4(S(a)) and h(a) =
Z(a)S(a(z)) ®S(a(1)). Using (2.15) and (2.7), we compute

A% h)(a) = Z Z agye(ear)S(ag) ® é

=> Z eia)S(ap) ® é
i (a)

= 4(&'(a)).
Hence, by (2.13), we obtain

(g9 x4 *h)(a) = A((S * &')(a)) = 4(S(a)).
On the other hand, using (2.15), (2.8) and (2.11), we calculate

(g*x 4 xh)(a) = Z A4(S(aqy)ap))h(ag))
= ZA(ei)h(aéi)
=Y Slapé) ® S(ay)e)
J (@

= h(a),

where the third equality follows from (2.4), (2.10) and (2.18). Thus we get 4(S(a)) =
> @S(ae) ® S(ag)). Using (2.3), we compute

(ZS a))a ) ZZe(S(au Jen)e(€ia))

=2 " e(S(emany))e(éiag))
i (a)
= ¢&(S(a)),
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where the third equality follows from (2.6) and (2.18), while the last equality follows
from (2.11). On the other hand, by (2.5), we have ¢(&(a)) = ¢(a). Therefore &(S(a)) =
¢(a) follows from (2.15). Lastly, we show that S is an antialgebra map. Using (2.18),
(2.15) and (2.5), we obtain

S(1) =) " S(eé; = &(1) =1.

Let p,g: H®H — H be maps defined by p(a ® b) = S(ab) and g(a ® b) = S(b)S(a).
Using (2.15), (2.6) and (2.3), we compute

(mx*q)(a®b) = ZZa(l ée(eb)S(ap))
= Z Z &' (aé;)e(é;b)

= &' (ab).
Hence by (2.13), we obtain (p*xmxq)(a® b) = S(ab). On the other hand, since

(p*m)(a® b) = &(ab), we have

(pxmxq)(a®b) =Y &lawbn))S(be)S(aw)
(a)(®)

=) alagyee(ébay)S(b)S(ap)

i (a)b)
= S(b)S(a)

where the first equality follows from (2.18) and (2.11), while the last equality follows
from (2.6), (2.8) and (2.18). Thus we get S(ab) = S(b)S(a). The relation (2.17) follows
from (2.18) and S(1) =1. O

PROPOSITION 2.5. Let § be an R-Hopf face algebra. Then its antipode S is bijective
if and only if § has a pode S_. Moreover, we have S_ = S™!.

ProOOF. Suppose $ has a pode S_. Using the theorem above, we obtain

(S (SoS_)) Z S(S-(ap)aqm) = &(a).

Computing similarly, we see that SoS_ is the (&', &)-generalized inverse of S. By
Lemma 2.2 (1) and (4), this implies that SoS_ =idg. Similarly we obtain S_o S =
idg. The proof of the if-part is straightforward. O

PROPOSITION 2.6. Let f : H1 — 9, be a map of R-face algebras. If both $, and H,
have antipodes S (resp. the pode S_), then foS =So f (resp. foS_=S_of).

Proor (cf. [S, Lemma 4.0.4]). A straightforward computation shows that both
foS and So f are (&, &')-generalized inverse of f in the algebra Homg($,,$,) with
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respect to the convolution product, where &, &' € Homg($,,9,) are formally the same
as in (2.14). Therefore, the assertion follows from the uniqueness of the (&,&’)-
generalized inverse. O

§3. Braiding structure

3.1. Invertible Skew pairings

Instead of discussing the braiding structure directly, we begin with considering
slightly more general setting which is called invertible skew pairing. In the bialgebra
case, invertible skew pairing is first introduced by [DT], while its dual version is first
considered by Reshetikhin and Semenov-Tian-Shansky [RS]. In a forthcoming paper,
we will use results of this subsection to construct a functor from a certain category of
quantum semigroups to a category of quantum groups.

Let $* denote the dual algebra of the underlying coalgebra of an R-face algebra $
(cf. [S]). We regard $* as an E(R)-bimodule via the following formula (cf. [H3]):

(pAXyp,a) = (X, pyaluy (Xe€$', ac$, o, yeR AuecR). (31

By (2.6), we have (pA)lg- = 1g:(pAd) =: pA for each pe R and AeR.

Let R be another R-face algebra and let 7+ : § ® R — K be a bilinear pairing with
(e*,e”)-generalized inverse 7~ in the algebra ($ ® R)*, where e* € (H @ R)* are
defined by

et = Ze,- ®e, e = Zéi ® e;. (3.2)

We say that t* is an invertible skew pairing on ($H,R) if

T+(abax) = ZT+(G,X(1))T+(b,X(2)), (33)
()

o (a,xy) = Yt (aq),») (ap), %), (34)
(a)

(e, 1) = ¢(a), 7(1,x) = &(x) (3.5)

for each a,be $ and x,ye R. We call = the generalized inverse of 1.

PROPOSITION 3.1. Let t+ be an invertible skew pairing on ($,R). For each a,be 9,
X, yeER, o,y € R and A, u€ R, we have the following formulas:

™ (pA, x) = e(Axp), t*(a,pA) = &(pad), (3.6)
T (ph,x) = e(pxA) T (a,0h) = e(Jap), (3.7)
o (playu, x) = t* (a, Auxpy)), (3.8)

T (pAayu, x) = 7~ (a,Yoxd), (3.9)



Face algebras I 303

(P@NTHA®1) = (1® ) (14,

(1®9) (184 =(® ) (i), (3.10)
AQe)  =1tT(p®4), (P®VT =7 (AQ9), (3.11)
“(ab, x) = ZT (b, xq))t (a, x(2)), (3.12)

(a,xy) Zr (aq) ,¥). (3.13)

ProOF. The formulas (3.10) immediately follow from t* =eFrte*t. By (3.1),
(3.10) is equivalent to:

r+(¢au, x) = " (a,uxp), t (Aay,x) =1 (a,yxA).

Hence (3.6) follows from (3.5). Using (3.3), (3.6), (2.7) and (2.8), we obtain

T (Aay, x) Zr (4, x@))tH(a, x2))T (¥, x(3))
(x)

= 1" (a, ixn/;),

or equivalently, (A® ¢)t" =t (p ® 4). Therefore (3.11) follows from Lemma 2.2 (3).
The formulas (3.8) and (3.9) follow from (3.10) and (3.11). In order to show (3.12),
weset fi=(m®id)": (HRR)" — (HRH®R)". Then (3.3) and (3.12) are equiv-
alent to f (") = tf;rd; and f(r7) = 15317, respectively, where 35,75 € (H @ H @ R)”
are defined by ti5(a,b,x) = ¢(b)t* (a,x) and t55(a,b,x) = e(a)t*(b,x). Since f(XY) =
FX)f(Y) for X, Y e (H®R), f(x7) is a (f(e*), f(e™))-generalized inverse of f(zF).
On the other hand, using (3.10) and (3.11), we see that 75;17; is also a (f(e*), f(e7))-
generalized inverse of f(z*) = tf;73;. Hence (3.12) follows from the uniqueness of the
generalized inverse. The proof of (3.13) is similar. O

COROLLARY 3.2. Let t* be an invertible skew pairing on ($,R) with generalized
inverse . Then ¢ : x® a1~ (a,x) gives an invertible skew pairing on (R,9) with
generalized inverse ¢~ : x ® a1t (a, x).

LeMMA 3.3. Let § and R be R-face algebras and t* a bilinear pairing on ($,R),
which satisfies (3.3), (3.4) together with the relations (3.14) (resp. (3.15)) below. If $ has
the antipode S (resp. R has the pode S_), then t+ is an invertible skew pairing with
generalized inverse 1~ given by t~(a,x) = t*(S(a),x) (resp. ™ (a,x) =11 (a, S-(x))).

(A, x) = e(Axp), 17(a,1) = &(a), (3.14)

(1, x) =¢e(x), t7(a,0l) = &(pal). (3.15)
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Proor. Using (3.3), (2.15) and (3.14), we see that 77 (a,x) := t+(S(a), x) satisfies

(7t (a,x) = Zr (S(apy)aw),x) = e*(a, x)

and t7t” =e~. On the other hand, the relations ttet =e* and e*t™ =7~ easily
follow from

tH(piayp, x) =Dt (pd, x1))T" (@, X)) T (Y, X(3))
()

= 7% (a, Auxey)). O

3.2. CQT face algebras

In this subsection, we will discuss the braiding structure on face algebras. Instead
of Drinfeld’s quasitriangular (QT) Hopf algebras, we give a generalization of coquasi-
triangular (CQT) bialgebras, because it is more suitable for our examples, as we will
show elsewhere. CQT bialgebra is the dual notion of QT bialgebra, and it has been
studied by Larson and Towber, Majid, Schauenburg, the author and many other people.

Let § be an R-face algebra and let #1 be a bilinear form on $ with (e*,e™)-
generalized inverse %, where et and e~ are as in (3.2). We say that ($,Z") is
coquasitriangular (CQT) if the following relations hold:

Rm (X)R™ = (mP)*(X) (X € H"), (3.16)
(m® id) (#") = BLRL, (@ m)* (RY) = RLRT,. (3.17)

Here m°P denotes the opposite product of $, and Z; (Ze (H ® 9)*, {i, j,k} = {1,2,3})
denotes an element of ($ ® H ® H)* defined by (Zj,a; ® a; ® a3) = {Z,a; ® a;)e(ax).

LeMMA 3.4. For a CQT R-face algebra (9, "), R* is an invertible skew pairing on
(9,9) with generalized inverse R~ .

Proor. It suffices to verify (3.5). We calculate
9?+(1,a) = Z@Jf(l,a(l))e_(l,a(z))
=Y R (1,a0)) R (ei,a)) R~ (1, a(3))
(@)
—Z% ei,an)) R (éi,a0))

= &(a),

where the first equality follows from (2.5) and the definition of e~, the second and the
last equalities follow from #t#~ = e, and the third equality follows from (3.3). The
proof of #*(a,1) = ¢g(a) is similar. O
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PROPOSITION 3.5. Let ($,#") be a CQT R-face algebra. For each ae $, ¢, € R
and A, ue R, we have the following formulas:

Rt (a,pl) = e(pal), Rt (pi a) = e(lag), (3.18)

R (a,pk) = e(Aap), R (pi,a) = e(pal), (3.19)

R (phapp,b) = R+ (a, Jubp), R~ (phapp,b) = A~ (a,Ypbiih),  (3.20)
(m® id)(#) = ARy, (i[d @m)" (A7) = AR, (3.21)
RERERYE = RERERT, (3.22)

RERERE = RERE RS, RERHZRL = RERLRL,. (3.23)

Proor. The relations (3.18-21) immediately follow from Proposition 3.1 and the
lemma above. The proof of (3.22) is quite similar to the original one (cf. [D1]). Using
(3.11) and (3.10), we obtain

Ry (RHLRHR) Ry = 2%2_3@5("1' ®é® 1),

= R RH R

Similarly we get #5;(#5, 2R, Ry = R R, Ry, This proves one of the relations
(3.23). Other formulas of (3.23) are similarly proved. O

By virtue of Lemma 3.3 and Corollary 3.2, we have the following proposition.

ProposITION 3.6. For a CQT R-Hopf face algebra (H,R"), we have the following:
S id)* @) =2, (d®S) % )=ax", (3.24)

(S® )" (#%) = &*. (3.25)

§4. Comodules

In this section, we study right comodule theory of an R-face algebra . We put
emphasis on category-theoretic aspects of the comodules, rather than representation-
theoretic one’s. Unless otherwise stated, $-comodule means right $-comodule. For a
comodule L, we denote its coaction L - L ® $ by p=p,. We also use the “sigma”
notation p(u) = 3_, u) ® uq)(ue L) (cf. [S]).

4.1. The truncated tensor product

Let $ be an R-face algebra and let ¥oszg be the category of all right $-comodules.
In this subsection, we construct a binary operation ® : @omg X Gomg — Gomg and
show that (€omg, ®) is a monoidal category. We refer the reader to the book [M] of
Mac Lane for elementary aspects of monoidal category theory.
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Let L be an $H-comodule. Using (2.7), we see that L becomes an R-bimodule via
Aup = Z uoe(Augyyu) (uel, A,ueR). 4.1)
(u)
Using (2.8) and (2.7), we obtain:
Z Aoy ® uiry = ) u(o) ® Auqn, (4.2)
(W) (u)
p(Aup) = Zu ® Augpp (4.3)

for each ue L and A,ue R. For an $H-comodule map f: L — L', we have
Mwu= f(Auy) (uelL, Ai,ueR). (4.4)

Let M be another $-comodule. We define a linear endomorphism ~: L@ M —
L®M by u®uv:=)ue; ®ev and denote its image by L ® M.

PRrOPOSITION 4.1. For right $H-comodules L and M, L ® M becomes a right $-
comodule via

pU®v) = up) ® v(0) ® uqyvq)
(W)

= Z Uo) ®U(0) ®u(1)v(1) (ueL,ueM). (45)
()(v)

Proor. For ue L and ve M, let p(u ® v) denote the right-hand side of the first
equality of (4.5). Using (4.2), we obtain

pu®v) = ZZu(O ® v(g) @ u(1)é:ié;v

= Z Uo) ® (o) ® U(1)v(1)
)()

e(LAM)®H.

Hence j defines a linear map from L ® M into (LOM)® $. On the other hand, by
(4.3), we have j(u ® v) = f(u ® v). This proves that p :=j|, z,, is a well-defined map
into (LOM)® 9. The relation (p ® id) o p = (id ® 4) o p follows from (f ® id) o p =
(id ® 4) o p. Finally, using (2.3), (2.6) and (4.1), we obtain

(d@e)op(u®®v) =u®v. (4.6)
This completes the proof of the proposition. O

We call L® M the truncated tensor product of L and M. Let f:L — L' and
g: M — M be H-comodule maps. Using (4.4), we see that f®g:=(f ®g)| 5 :
L®M — L' ® M is an H-comodule map. Thus ® defines a bifunctor from €omsg
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into itself. Let N be another $-comodule. Since

A u®v)u = Z U @ v(0) Z 8(/1u(1)ei)8(e,~v(1)u)

()(v) i
=A@ vu 4.7)

for each ue L, ve M and A,u€ R, we have

(u®v)®w:Zue,-@e,-vej@ejw:u@(v@w)

i

for each ue L,ve M and we N. Moreover, we have

p(U@)@w) = ) ug ® ) ® wo) ® unypywa)
W)

=pu (v ®w).

Hence we have (LQM)®N ~L® (M ® N) as H-comodules. Next, we define an
$H-comodule structure pr on R and linear maps y,: L - R® L, 6. : L — L®R by
prA) = ei®@éA (AeR) and y,(u) =) ,e; @ eu, op(u) = ;ue; ® e; (ue L) respec-
tively. Using (4.2) and (4.3), we see that y, and J; are $-comodule isomorphisms with
inverses A ® u+> Au and u ® A ul (ue L, 1 e R) respectively. It is easy to verify that
yr = Or and that id; ® y,, =6, ®idy. We have thus proved the following theorem.

THEOREM 4.2. Let  be an R-face algebra. Then, the category €omg of all right
$9-comodules becomes a monoidal category with product ® and unit object R.

PrOPOSITION 4.3. Let § be an R-face algebra. For a right $-comodule M, denote
by F(M) the linear space M viewed as an R-bimodule via (4.1). Then F defines a
morphism of monoidal categories from (€omg, ®) into the category (Bimodr, ® r) of
all R-bimodules, with functorial isomorphism

ki FL)QrF(M)SFLRIM); u@pr—u®@v (uelL,veM).
ProoF. It is easy to verify that xpjs gives a well-defined bijection. Therefore, the
proposition easily follows from (4.4) and (4.7). O

COROLLARY 4.4. Let § be an R-face algebra. For each $-comodule L, both L@ —
and —Q®L give exact endofunctors on €oms,.

ProOF. Since R is isomorphic to a finite direct product of fields, L& z— and
—® gL are exact endofunctors on #eimodg. Accordingly, the assertion follows from
the proposition above. O

As an application of the comodule theory, we obtain the following:

PrOPOSITION 4.5. Let R and R' be commutative separable algebras over a field K.
Let $=(9,2) be an R-face algebra and let Q' : €(R') — $ be an algebra and a
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coalgebra map. If (9,Q') is an R'-face algebra, then there is a K-algebra isomorphism
a: RS R such that @ (a(A)° @ a(u)) = QA ® u) for each i,pue R.

Proor. By (4.5) and (4.6), we have

URv = Z ue) ® vye(uayvay) (uweL,veM).
(u)(v)

This relation shows that the monoidal category (¥omg, ®) does not depend on R and
Q. Hence there exist natural isomorphisms y; : L3 R'® L and 6; : L~ L ® R’ such
that (R’,y,d') forms a unit object of ¥omg. Define an isomorphism «: RS R’ in
@omg by o = yg! 05%. By standard category-theoretic argument, we obtain (¢ ® idz) o
v = y1, which is a part of the uniqueness theorem of the unit object. On the other
hand, because of the naturality of ', we have (idg' ® &) o Y% = yk o «. Using these two
relations we obtain «oyg! = (y}’Q,)_1 o (x® «), which implies that « is a K-algebra
isomorphism. In particular, (x ® «)(e) is the separating idempotent of R’. Since « is
an $-comodule map, we have

D x(e)®QE®A) = (x® id)op(2) = Y aler) ® 2(aer)’ ® «(d))
for each A€ R. Since {a(e;)|i} is a basis of R’, we get 2(&é; ® A) = Q' («(e;)° ® a(4)) for
each i. This completes the proof of the proposition. O

COROLLARY 4.6. An R-face algebra becomes a bialgebra over K if and only if
R=K.

4.2. Dual comodules

In this subsection, we show that every finite-dimensional $-comodule has a left dual
object in the sense of [D2], provided that $ has an antipode. Let C be an arbitrary
coalgebra. Let M be a finite-dimensional C-comodule with basis {v*}. We define a
left C-comodule structure p,,. on the dual space M* := Homg(M,K) via p,. (V") =
3, a™ ® y", where {y*} denotes the dual basis of {v*} and a™ denotes the element of
C given by p(v") =5, v" ®a™. Then, the coaction p,. does not depend on the
choice of {v*}. In fact, it equals to the following composition:

M MKk wreomem 2 vreome com 228 co M
It is easy to verify that the coaction p. : x+— ), (x) X(-1) ® X(q) satisfies:
Zx( 1)<X0), Uy = Z(x uou (xeM*,ueM), (4.8)

(*)

D Dy ®vy ®¥ =) > v*®y, ®xp) (4.9)

k- (vk) k(%)

Let  be an R-face algebra with antipode S. For a finite-dimensional right $-
comodule M, we define a right $-comodule MY to be the vector space M* equipped
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with coaction x> )7, x0) ® S(x(-1))(x € MY). We call M" the left dual comodule of
M. We have:

Z {X(0), Xy = Z {x, u(o)>S(u(1)) (ue M,xe M), (4.8)’
() (1)
ZZU&)®yk®S(Uﬁ)) =szk®.)’(’§))®yzc1)- (4.9
ko (v) k (k)

LemMMmA 4.7. Let $ be an R-face algebra with antipode S. Then, for each finite-
dimensional H-comodule M, M" is a left dual object of M in (6omg,®). That is, there
exist H-comodule maps $: MY @ M — R, % : R — M ® M" which satisfy the following
equalities:

(%®1)oy 5 o(1®9)

M— L MMM M
M —2 M, (4.10)
MY (18%)od MEMBM y1o($®1) MY
=M —4 MV (4.11)
Explicitly these maps are given by
$(x@u) = Z {e;x,ude; = Z {x,ue;ye;, (4.12)
i i
%(A) =Y MF @yt => vk @), (4.13)
k k

where {v*} and {y*} are as above.

Proor. Straightforward calculations based on (4.8) and (4.9) yield

Axp,uy = {x,uudy (ueM, xeM”, A,ueR), (4.14)

ka®,1yk,u= Zyvkl ®y* (AueR). (4.15)
k k

Using these formulas, we see that (4.12) gives a well-defined map and that the right-hand
side of (4.13) belongs to M ® M". An application of (4.9) gives

po %(/1) = Z Z Uk(o) X® yk ® /1Uk(1)S(Uk(2))
k (vF)

=) erf @y  ®@éia
k i

= (% ®1idg)(p(4))-
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Similarly, applying (4.8)', we obtain

($®idg)(p(x @) = DY <x,u00)De; ® S(uq))uez)éi
() i

= Z <X, uej >€i ® é,-ej
7

=p(3(x @ u)).
The proof of (4.10) and (4.11) is straightforward. O

Let M be a finite-dimensional comodule of an R-face algebra § with pode S_. We
define its right dual comodule M" to be the vector space M* equipped with coaction
X Y X0) ® S-(x(-1)). In the same fashion as the lemma above, we see that M" is
a right dual object of M. Thus we have proved the following theorem.

THEOREM 4.8. For an R-face algebra $ with bijective antipode, the category of all
finite-dimensional right $-comodules is a rigid monoidal category.

Let L and M be finite-dimensional comodules of an R-Hopf face algebra §. For
an $-comodule map f : L — M, its left dual f¥ : MY — LV is defined to be the following
composition:

MR werel e wemer 2L R LY LY.

By the theory of monoidal category, the correspondence f +— f defines a contravariant
endofunctor of the category of finite-dimensional $-comodules. We show that fV
satisfies

SYD)uy =, f(w)) (yeMYuel). (4.16)

By a category-theoretic calculation, we see that $ o (f¥® idz) : MY ® L — R agrees with
$0(id® f). Hence the assertion follows from {x,u) =ero$(x®u) (xe LV,ueL).

Let L and M be finite-dimensional comodules of an R-Hopf face algebra $. By
the theory of monoidal categories, we have the following isomorphism:

(1 ® %)od

TMYRIL —SMYRL R(LDM) B (LB M)

- _
18y o088 y v M B (LB M) 3, (L& M),

PROPOSITION 4.9. Let Z: MY ® LV (L ® M) be as above. Then the following
diagram is commutative.

MY®LY —— (L®M)

f f

ML —— (L®M)
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Here we regard (L ® M) as a subspace of (L® M)* via the decomposition L@ M =
(LOM)® Ker(: LOM —» LR M).

Proor. Using { , > =egro$ and (4.10) for L ® M, we obtain {(Z(y ® x),u ® v) =
> {x,ueiy{y,evy for each ye MY, xeL¥, ueL and ve M. This proves the
proposition. (]

4.3. Homg(L, M)

In this subsection, we discuss some additional properties of comodules of face
algebras, which we will use in [H5]. Let $ be an R-face algebra. For an $-comodule
M, we define its subspace M9 by

M® = {u e M|p(u) = Z ue; ®é,}. (4.17)

LemMa 4.10. (1) For each ue M® and 1 € R, we have Au = uA. In particular, we
have p(u) =, eu® é;.
(2) We have the following linear isomorphism:

Homg (R, M) S M®;  fis f(1).
Proor. Part (1) follows from (2) and (2) follows from (4.3) and (4.4). O

Now we assume that $ has an antipode. Let L be a finite-dimensional $-
comodule. We define a linear isomorphism 6: M ® LY =$Homg(L, M) by
é(v@x)(u) =<{x,uyv (ve M,xe LY,ue L). Using (4.14), we obtain

00 ® x)(uh) = Z (Aeix, upve; = 60 ® x) ()2

On the other hand, if f = H(ZP v? ® x?) € Homg(L, M), then

= Zf(uei)e,- = é(Z vP ®x1’) (u).
i 2

Thus 6 induces a linear isomorphism 6: M @ LY = Homg(L, M). We define an $-
comodule structure on Homg(L, M) via this isomorphism. By (4.8)" and (4.14), we have

D foy @) ® fiuy =D <x,u0)dv0) ® v1)S(uqy), (4.18)
03] (u)(v)

3 () = (3f ) () (4.19)

for f =0(v®x), ueL and A,ue R, where Afu is defined by (4.1).

Next, we assume that $ has a pode S_. Then there exists a linear isomorphism
0 g Hom(L,M) S L"® M which is compatible with the usual isomorphism
Homg (L, M) ~ L* @ M. We define an $-comodule structure on RHom(L, M) via 6_.
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PROPOSITION 4.11. Let $ be an R-face algebra with an antipode S (resp. a pode S_).
For an H-comodule M and a finite-dimensional $-comodule L, we have the following
relation (4.20) (resp. (4.20')):

Homg (L, M) = Homg(L, M)?®, (4.20)

Homg (L, M) = gRHom(L, M)®. (4.20)

ProOF. Suppose f = 6(},v” ® x?) e Homg(L, M), or equivalently,

Z Z xP udv? ) @ vP () = Z Z xXP, uig) )P @ uqy.
P (w

P (v)
Then, using (4.18) and (4.19), we obtain Z( 5 Joy(u) ® fuy = ;(fei))(u) ®é;. On the
other hand, if f belongs to the right-hand side of (4.20), then
p(f@) =D " <x,uedvP () ® vP (e
p i (vP)
= Z Z X uo) Y0P 0y ® vP (1) S (u(r))u2)
P (u)(vF)
=Y fo(uw) ® fuyu
()

= Z Z f(eiug)) ® éiug
(w) i

= (f ®id)(p(u)),

where the first equality follows from Zp v? ® xP = Zp v? ® xP, (4.14) and (4.3), and the
third equality follows from (4.18). This completes the proof of the proposition. []

PROPOSITION 4.12. Let $ be an R-face algebra with an antipode (resp. a pode). Let
L and M be finite-dimensional right $-comodules and let N be an arbitrary right $H-
comodule. Then the following (4.12) (resp. (4.21")) gives an $-comodule isomorphism and
(4.22) (resp. (4.22)) gives a linear isomorphism:

Homg(L ® M,N) ~ Homgz(L,N ® M"), (4.21)
rHom(L ® M,N) ~ RHom(M,L"® N), (4.21')
Homg (L ® M, N) ~ Homg (L, N ® M"), (4.22)
Homg (L ® M, N) ~ Homg (M, L"® N). (4.22))

Proor. The isomorphism (4.21) follows from (L® M)" ~ MY ® L". Since the
correspondence K +— K® is functorial, (4.22) follows from (4.21) and Proposition 4.11.

O
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4.4. Braided monoidal categories
Let ($,2#%) be a CQT R-face algebra and let L and M be $H-comodules. We
define a linear map ﬁLM LM —- M®L by

Pruu®v) = o) @ uoy® (uqy,v)) (ueL,veM).
(u) (v)

Using (3.20) and (4.3), we obtain f; ,,(u ® v) = B, ,(u® v) for each ue L and ve M.
Similarly, using (3.20) and (4.2), we obtain

B ®@v) =P, u@)e ML (uecL,veM).
Hence there exists a linear map B;,,: L® M — M ® L given by

Buu@®v) =Y vi0) ® uo) R (ugy, (1))
)(o)

= Z U(o) ® u(o)%+(u(1), U(l)). (423)
(u)(v)

LEMMA 4.13. The map B4 : LA M — M ® L is an H-comodule isomorphism with
inverse

Biu(®u) = D ug) @ vy (uq), v(1))
(90

= Zu0)®v(0 Uy, v 1)) (ue Lyve M). (4.24)
(u)(v)

ProoF. Since # #" =m*(1), we have Z m*(X)= mP)"(X)R" (X € H*), or
equivalently

P AN by = Y bayagy R (a@), bey).
(a)(b) (a)(B)

It easily follows from this formula that §;,, is an $-comodule map. The proof of the
other assertions is straightforward. O

It is easy to see that 8, ,, is natural in L and M, thatis, B, 0 f®g=9g® foBiy
for each $H-comodule maps f : L — L' and g: M — M'. Let N be another $-comodule.
Using (3.17), we obtain

/3L®MN (Bry ®idpy) o (idL ® Bagw), ﬁL,MéN = (idy ® Brn) o (Brau®idw).

Thus we have completed the proof the following theorem.

THEOREM 4.14 (cf. [D1], [JS]). For each CQT R-face algebra ($H, "), the category
(€omg, ®) of all right H-comodules forms a braided monoidal category with braiding
given by (4.23).
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§5. Module theory

The module theory of an R-face algebra § is quite parallel to the comodule theory
of $. In this section, we give analogues of Theorems 4.2 and 4.8 without detailed
proof.

Let L and M be left modules of an R-face algebra $. Let L ® M be the image of
the linear map " : LM - LOM;u@v— >, eu®@év(ue L,ve M). Since A(1) =
Y,ei®é, L® M becomes an $H-module via

a(u®v):Za(l)u®a(2)v:Za(l)u®a(2)v (ae9, uel, veM).
(a) (a)

On the other hand, we see that R becomes a left $-module via ap =Y, &(eap)é;
(ae H,pe f{). Moreover, there are $H-module isomorphisms p; : L S R®L and
6, LSL®R given by y,(u) =Y,6;®@éu and d.(u) =, e;u ® & respectively. It
is easy to verify that the category g.# oo of all left $H-modules becomes a monoidal
category with product ® and unit object (IOQ, y,0). Next, suppose $ has an antipode.
For a finite-dimensional $-module L, we define a left $H-module structure on the dual
space LY := Homg (L, K) by {ax,u) = {x,S(a)u) (xe LY, ue L,ae $). Then there exist
$-modulemaps$ : MY@M — R and % : R - MM givenby $(x ® u) = 3, (&:x, u)é;
(xe M¥,ue M) and %(p) =Y, ov* ® y*(p € R) respectively, where {v*} denotes a
basis of M and {y*} denotes its dual basis. These maps satisfy the relations (4.10) and
(4.11), that is, we have the following theorem.

THEOREM 5.1. Let $ be an R-face algebra. Then, the category ¢ M od of all left H-
modules becomes a monoidal category with product ® and unit object R. If, in addition,
9 has a bijective antipode, then the category of all finite-dimensional left $-modules is
rigid.
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