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1. Introduction.

A, Connes and E. Stgrmer [3] defined the relative entropy H(M|N) for finite
dimensional von Neumann subalgebras M and N of a finite von Neumann algebra
L by using the notion of Umegaki relative entropy. When L is commutative,
M and N are generated by some finite partitions P and @, then H(M|N) coin-
cides with the classical conditional entropy A(P, Q) ([2]). Later, M. Pimsner
and S. Popa investigated the relation between the relative entropy H(M|N)
and the Jones index [M: N7, where N is a subfactor of a factor M of type I7,.
Very recently Y. Watatani and J. Wierzbicki computed the relative entropy
H(M|N) for two subfactors M and N of a factor of type II, without assuming
NCM, which extended the classical formula A(P, Q)=h(PVQ, @) in ergodic
theory to the non-commutative case. They showed that the commuting square
condition implies H(M|N)=H(MI|MNN) and the commuting square condition for
commutants implies HM|N)=H(M\VN|N).

Now, J.I. Fujii and E. Kamei [5] introduced the relative operator entropy
s(a|b) for positive operators a, b as a relative version of the Nakamura-Umegaki
operator entropy. In the case where a, b are commutative, this relative operator
entropy coincides with the Umegaki relative entropy, but in general they do not
coincide. On the other hand Belavkin and Staszewski had defined in a
relative entropy sps in C*-algebra setting. F. Hiai and D. Petz pointed
out that spg(a, b)=—Tr(s(a|b)) for density matrices a, b where Tr denotes the
usual trace matrices. In noncommutative probability theory, F. Hiai investigated
the relation between the Umegaki relative entropy and Belavkin and Staszewski
relative entropy and showed some remarkable results in [9], [10].

In the previous paper [15, 16], we introduced an entropy S(M|N) of a finite
von Neumann algebra M relative to its subalgebra N as a noncommutative
version of the Umegaki relative entropy which is not identical with the Connes-
Stermer relative entropy H(M|N) and showed a version of the Pimsner-Popa
Theorem on the relative entropy and the Jones index for the factors of type I7,.

In this paper we shall compute the relative entropy S(M|N) without
assuming NCM and investigate the difference between the relative entropy
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S(M|N) and HM|N).

2. Relative entropy.

Following after [4] the relative operator entropy s(a|b) for positive operators
a and b is given by

s(a|b) = —lim a'*(log a'/*(b+¢)"'a''?a'’?,
e=0

if the strong limit exists.
The relative operator entropy for noninvertible positive operators does not
always exist, but if there exists A=0 such that b=4a, then s(al|b) exists and

(log a < s(alb) = —a log a+(log|bl)a .

First we summarize the basic properties concerning the relative operator entropy
and use them frequently. If s(a|b) exists, then

(2-1) monotonity : b=c imply s(a|b)=s(a|c),

(2-2) transformer inequality : x*s(a|b)x<s(x*ax|x*bx) for all x,
(2-3) subadditive: s(a|c)+sbld)<s(a+blc+d),

(2-4) upper semicontinuity : b, | b implies s(a|b,) | s(a|b),

where a, b, ¢ and d are positive operators. Note that in (2-2) x*s(a|b)x=
s(x*ax|x*bx) for an invertible operator x. For some general results on the
relative operator entropy, see [4], [5].

Let L be a finite von Neumann algebra with a fixed faithful normal normal-
ized trace z. Let M and N be von Neumann subalgebras of L. We denote by
Ey and Ey the unique faithful normal z-preserving conditional expectations onto
M and N. Let S(L) be the set of all finite families (x,, ---, x,) of positive
elements of L and satisfying

é‘ X; = 1 .
In [15], we defined the relative entropy by

S(M|N) = 3&? ,2 —t(S(Exy(x) | ExEy(xy)).

In the above definition we may replace S(L) by S(D) for any von Neumann
algebra D with M\VVNC DC L without affecting the value S(M|N). Here M\/N
is the von Neumann algebra generated by M and N in L. In fact, since
Eu(x)=EuwEp(x;) for x;&L, we have
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sup X —t(S(Ex(x)| EnEy(x4))

(®pHES(L) ¢

= sup X —t(s(ExEp(x)|ExExEp(xy)))
(xppeSly i

< sup 2 —t(S(Ex(¥)ExEx(y:)).
wpeESWw) i

If M is a factor of type /I, and N is a subfactor of M, then as shown in
[16], the relative entropy S(M|N) coincides with the Jones index [M: N] in the
sense of that S(MIN)=Ilog[M: N]. In particular we have HM|N)<S(M|N).

First of all, we shall show that this relative entropy extends the classical
conditional entropy in commutative probability theory.

Let (X, 4, p) be a probability space and

A: {141’ ) Am}, B= {Bl; ) Bn}; D= {AkmBi}kSm.iSn

are finite partitions of X, then we may consider the following von Neumann
algebras:

M= L>X, 0(A)), N= L>X, o(B)), L =L"X, a(D)).
The trace on L corresponds to the expected value of a random variable, 7(g)=
ngdp and Ey, Ey are conditional expectations in the sense of the probability

theory. In this case,
h(A, B) = 33 p(B) 3 n(p(As| Ba))

is the conditional entropy of the partition A given B in the ergodic theory ([2]).

THEOREM 1. [In the above situation, the relative entropy S(M|N) coincides
with the classical conditional entropy h(A, B).

Proor. We may suppose that
L= @k.i[/k.i’ M= @kMk, N = @;N;,

where L, ;=C, M,=C, N;=C and C is a complex field. We denote by ¢, ;
respectively s, and u; the traces of the minimal projections f** in I respec-
tively e* in M and g* in N. Also we have 3};t,.;=s; and its.;=u;. Note
that the conditional expectation £, EyxyE, acts as follows:

; le.s e, ;
E k.1 — k — XS k.Jj
w(fr = hter = It g g

. tb.i tk,j .
ExE By = 22 S 2l gd,
vEu(f*%?) S ; u; g
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Let {x,;} be a partition of the unity in L and write x,=3; ;cL;f** with
ct.€R,. We get X, ct ;=1 by X, x,=1. By (2-3), we have

=2 7(s(Eu(x)| ExEn(x0)

= -2 2 t(S(En(ch i f* I ExEn(ch o f*9))
=—2 2 ckit(s(Ex(f* O ExEx(f*9))
=—2 t(S(Ex(f* ) ExEx(f5 ).
In order to prove [Theorem 1, it is sufficient to show that the above last term

is equal to h(A, B) since {f* %} is a partition of the unity in L.
By the commutativity of L we get that

2 —t(S(En(fF O ExEx(£*1)

=g ete(s(e1 3 20 e)

Sk

- - gt 3 (oe's)e)

J
bp.j
Sy

J

=l s (log

kot Sp 7

_ N
— %tk,Jlog ) |

3. Commuting squares and the relative entropy.

Mc L
Let us denote a diagram I% ]L\J[ of finite von Neumann algebras with a
-

fixed finite faithful normal trace z on L by (L, M, N, K). Then a diagram
(L, M, N, K) is a commuting square if EyEx=FEyEy and K=MNN. ([6])

Also, T. Sano and Y. Watatani introduced a dual notion of co-com-
muting square in study of angles of two subfactors:

DEFINITION 2. A diagram (L, M, N, K) of finite von Neumann algebras
with a fixed finite faithful normal trace =’ on K’ is a co-commuting square if
their commutants

M cC K
U U form a commuting square.
L' C N

Since L'=M'"N’, it is necessary for L=MVN to hold. Throughout the
paper we consider only the case of K’ being a finite factor.
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Though it is true the classical formula A(A, B)=h(AV B, B) in ergodic
theory, HM|N)=H(M\/N|N) is not always true even if M and N are com-
muting finite dimensional von Neumann subalgebras of L. In [20], Y. Watatani
and J. Wierzbicki showed that the commutative case always satisfies the co-
commuting square condition by suitable representation and a co-commuting
square condition implies HM|N)=H(M\/ N|N).

The following two theorems are a modification of [20: Theorem 6, 7].
So, our results suggest that the relative entropy S(M|N) may be another
generalization of the classical conditional entropy in noncommutative frame.
Now we consider the case of commuting squares.

THEOREM 3. If the diagram (L, M, N, K) is a commuting square of finite
von Neumann algebras, then

S(IM|N)=SWM|K).

ProOF. Since EyEy=FEg, we have

S(IMIN) = sup 2 —t(s(Eu(x:)| ExEn(x2)))

S(Ly ¢

= sup 2 —T(s(Eu(x)| ExEy(xy))

S(Ly ¢

= SM|K). 0

COROLLARY 4. If the diagram (L, M, N, K) is a commuting square of
factors of type II,, then

S(M|N) =z HM|N).
PRrROOF. By [16 : Theorem 8] and [13: Corollary 4.1], we have
S(IMIN)=S(M|K) = log[M: K] = HM|K)= HM|N). O
The proof of the next lemma is essentially same as that of [13: Lemma

4.2]. However it is the key result in proving the estimation of S(M|N) from
below.

LEMMA 5. Let the diagram (L, M, N, K) be factors of type II, such that
[L:K]<oo. If gq=M is a projection such that Ex ~y(q)=cf for some scalar ¢
and some projection feK'N\M, then

SMIN) = —2(s(g| Ex()).

PrROOF. Let x=¢—cf and 2=co¥ {vxv*;veU(K)}, where U(K) is group
of all unitary operators in K. It follows that £ is a weakly compact convex
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subset of M, therefore there exists a unique y,&£ such that |y,/.=inf{|ly].;
yeR}. Hence we have y,=(U(K))=K’. Since Eg y@wxv¥)=0 for velU(K),
we have Ex:~u(y)=0 for all ye£, in particular yo=FEx ~x(yo)=0=8. There-
fore for any e>0 there exist unitary elements v, ---, v, in K such that
ly—Flle<ellflle with y=Q1/cn)2 vigv¥. Let 6>>0 and denote by p the spectral
projection of y corresponding to [0, 14-0] in the algebra fMf. Put

1
X = A ayen PV @ = vt —p Avigut.

Since 33 %< f, (2:)=(e07)r(f) and s(Eyw.qu) | ExEx@:qu)=s@:qu¥| E y(v:qv}))
=v;s(g| Ex(@)v¥, we have

— 2 (s(En(x)| ExEn(x4))
=—2

T(s@iqu¥| Exiqu)) —— 2 1(s(z: | E n(24)))

S
(1+5) cn

7(s(g| En(g))—

« +5)

> — a +5) p a +5) ——(log A)(ed™")?z(f),

where A=[L : N]7'. Letting first ¢ —0 and then d—0, then we have S(M|N)
=—1/0)(s(@I En(@)). 0

Following after [20], let KM be factors of type /I, with [M: K]<co.
The inclusion KCM is called extremal if it satisfies any of the following con-
ditions:

(1) HM|K)=log[M: K].

(2) Ex~u(e)=[M: K], where e P(M) satisfies Ex(e)=[M: K7™

(3) if ¢’ is the normalized trace on K’, then 7,x/ ny=7\ g ~n-

(4) the trace preserving conditional expectation coincides with the expecta-
tion of minimal index.

THEOREM 6. If the diagram (L, M, N, K) is a co-commuting square of
factors of type II, such that [L:K]<co and the inclusion KCM is extremal,
then

S(M|N) = S(L|N) = log[L: NJ.

Proor. The proof in the following is a slight modification of that of [20:
Theorem 7]. Let Q be the downward basic construction for KCM and e its
Jones projection. Since [L : K]<oo, we can consider the downward basic con-
struction. Since FEx(e)=[M: K] ' and the inclusion KCM is extremal, we
have Ex~y(e)=[M: K]™*. By Lemma b, it follows that

S(MIN) =z —[M: K]t(s(e| Ex(e))).
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Mc L

Since the diagram LIJ( Lj{[ is a co-commuting square, by [20: Lemma 5] it
cC

follows that a=[L: N]Ey(e) is a projection in N. Therefore ¢ and E y(e)
commute. Then we have

7(s(e| En(e)) = 7(s([L: Nlela))

il —_—
[L:N]
. 1
~ [L:N]
= —z(e)log[L: N].

o(—[L: Nlelog[L: Nleta loga)

Hence we have SIM|N)=[M: K]z(e) log[ L : N1=log[L : N]=S(L|N).
As S(M|N) is increasing in M, this gives the theorem. O

COROLLARY 7. If the diagram (L, M, N, K) is a co-commuting square of

factors of type II, such that [L:K]<oco and the inclusion KCM is extremal,
then

S(M|{N)=HWM|N).
PROOF.

S(M|N)=S(L|N)=1log[L:N]=H(L|N)=HM|N). O

COROLLARY 8. If the diagram (L,, M,, N,, K,) is a commuting square of
factors of type I, and the diagram (L, M,, N, K,) is a co-commuting square

of factors of type II, such that [L,: K,]<<co and the inclusion K,CM, is
extremal, then

S(IMiQM:| N:@QNs) =z HM,QM:| N\QN).

PROOF. Let aiEL1,+ with Ziaizl and bjELz,.,, with Zjbj=1. Then
> 7a8:9b;=1R1 and it follows that

S(M,@M,| NQN,)
= — 12} 71,01y (S(Eu,01,(8:Q0) | Ex on, En,eu,(a: QD))

= _?_—‘; 1, (S(Ex, (@) | En, En ()71, (Ew,(by)
_ tg; T2, (Eu, (@)L, (S(Ea,(b) | E nyEu,(b))

= — ; TLl(s(EMl(a Dl ENIEMI(G DM— ; Tr,(S(Euy(b)) | ENzEMz(bj)D .

Hence S(M;Q@M,|N,Q@N;)=S(M,;|N,)+S(M,|N,).
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By 7 and [20: Example 11] we get
S(MiQ@M,| N\@Ns) = S(M| N,)+S(M,| Ny)
= H(M,|N,)+H(M,|N,)
= HM,QM,|N,QN,). (|

4. Examples.

Here we shall show that there is a slight difference between the relative
entropy S(M|N) and H(M|N). By the same example in [20: Example 8], it
follows that the formula S(M|N)=S(M\V/N|N) does not hold in general. We
note that the equality in is not always true.

ExAMPLE 9. Let M=(M,PC)RXA(CPHC), L=M;PC)RQM,PC), N=(CPHC)
RQM,PC) and K=(CHC)RK(CHC), where M, is the algebra of 2X2 matrix.
Since MNN=K and Ey(N)CK, it follows that the diagram (L, M, N, K) is a
commuting square. On the other hand, since

M = (MBC)DM.DC)
K= (CaC)P(ICHO),
by [15: Example 11] and [13: Theorem 6.2] we have the following :

HM|K)=2HM,PC|CPHC) = g—logS,

SIM|K) = 25(M;BC | CPHC) = logb.
Therefore we have SIM|N)=SM|K)=ZHM|K)=H(M|N).

ExaMPLE 10. For 1<1/4, let R; be Jones’ subfactors of the hyperfinite
factor R with [R: R;]=2"'. Then it follows from [13: Corollary 5.3] that
H(R|R)=2qt+2n(1—1), where {(1—t)=A4.

Let ¢ be a positive number such that A7'=2-4¢+4¢7!, and define g=qgep
—(1—eg). Then by [6: Example 4.2.10] the diagram (KR, ez), R, gRg™, R;)
is a commuting square. Therefore we have H(R|gRg )=H(R|R;)=2nt+
2p(1—1t). Also S(R|gRg™)=S(R|R;)=log[R: R;]=log A"!. Hence H(R|gRg™)
<S(RIgRg™).
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