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Introduction.

We shall work in the P. L. and locally flat category. We discuss oriented
knots and links in $S^{3}$ . Two knots are equivalent if there is an ambient isotopy
of $S^{3}$ carrying one knot to the other.

H. Murakami [6] showed that any knot can be changed into a trivial knot
by repeatedly altering a diagram of the knot as in Figure $0$ .

$arrow||$

$\frac{||}{||}$

$rightarrow\#$
-move $--|=$

Figure $0$ .

This move on a diagram is called the $\#$ -move or the $\#$ -unknotting operation.
In this note, generalizing this, we define for any prime $p$ , a $\#^{p}$ -move on a
knot diagram as shown in Figure 1. Note that even if $P$ is fixed, $x$ and $y$

in Figure 1 may vary. (It is easy to define $\#^{p}$-moves for any integers $p$ .
However, if $P’$ is a factor of $p$ , then a $\#^{p}$ -move is also a $\#^{p^{r}}$ -move. We thus
consider $\#^{p}$ -moves only for prime numbers $p.$ ) The $\#$ -unknotting operation
and the pass-move [4] are examples of $\#^{2}$-moves.

We shall show that for any prime $p$ any knot can be transformed into a trivial
knot by a finite sequence of $\#^{p}$-moves (Theorem 1.1). (In fact, if $P$ is odd, a
combination of a certain $\#^{p}$ -move and Reidemeister moves achieves a crossing
change.) Then we can define the $\#^{p}$-unknotting number $u^{p}(K)$ much like the
ordinary unknotting number. Since a family of $\#^{p}$-moves is a wide variety of
diagramatic changes, one might initially think that every knot can be untied
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algebraically $x$ times
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$x$ and $y$ are multiples of $p$

Figure 1.

by a single $\#^{p}$-move for some $Pand/or$ there might be an upper bound for
the values of $\#^{p}$-unknotting numbers. However, we shall show that:

PROPOSITION 1.6. Given $n$ and $p$ , there is a knot $K$ such that $u^{p}(K)\geqq n$ .
PROPOSITION 2.7. There is a knot $K$ such that $u^{p}(K)>1$ for any $p$ .

Let $M$ be $S^{2}XS^{2}$ with a puncture. In \S 2, $\#^{p}$ -moves are related to certain
disks properly embedded in $M$, and studied using results of 4-dimensional
topology. As an application, in \S 3, we consider whether every link in $\partial M\cong S^{3}$

bounds disjoint disks in $M$. It is already known that every knot bounds a disk
in $M$ (Norman [8], Suzuki [10]). We shall show that this does not hold for a
2-component link (Proposition 3.6). We only find an obstruction of links being
slice in $M$ for certain, not all, links.

PROBLEM. Find an obstruction for links to bound disjoint disks in $S^{2}\cross S^{2}$

with a Puncture.

We summarize the notation used in this note. All manifolds will be assumed
to be oriented. For a manifold $M,$ $-M$ denotes $M$ with the opposite orientation.
If $M^{4}$ is a closed 4-manifold, $puncM^{4}$ denotes $M^{4}$ with an open 4-ball deleted;
the orientation of $\partial(puncM^{4})$ is the one induced from $puncM^{4}$ . For a knot $K$

in $S^{3}$ , we write $\overline{K}$ for the knot $-K$ in $-S^{8}$ . We write $O$ for a trivial knot
in $S^{s}$ .
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1. $\#^{p}$-Moves.

If a diagram of a knot $K’$ is a result of one $\#^{p}$-move on a diagram of a

knot $K$, then we write $K\#^{p}arrow K’$ .

THEOREM 1.1. For any prime $p$ , a diagram of any knot can be transformed
into a diagram of a tnvial knot by a finite sequence of $\#^{p}$-moves.

Before proving the theorem we define a function $\varphi_{p}(K, K’)$ for $K\#^{p}arrow K’$ . If
a diagram of $K’$ is obtained from tbat of $K$ by a single $\#^{p}$ -move, then we define
$\varphi_{p}(K, K’)$ to be the sum of signs of the changed crossings. See Figure 2. Note
that $\varphi_{p}(K, K’)$ does not depend on the orientation of $K$. However, $\varphi_{p}(K, K’)$

seems to depend on a diagram of $K$ and the $\#^{p}$-move to apply. Theorem 1.2
below says that $\varphi_{p}(K, K’)$ depends only on $p,$ $K$ and $K’$ . The proof will be
given in \S 2.

$-+ \overline{+\overline{+}}|_{\mp}^{\mp}\mp|_{\mp}^{\mp}\mp|_{-}^{-}----|_{\mp}^{\mp}\mp|\equiv\#^{3}- movearrow\frac{\frac{\frac{|||||}{II1l1}}{lI\mathfrak{l}Il}}{\downarrow\downarrow\downarrow||}$

$K$ $K’$

$\varphi_{3}(K, K’)=9$

Figure 2.

THEOREM 1.2. Suppose $K\#^{p}arrow K’$ . Then for any $\#^{p}$-move transforming a
diagram of $K$ into that of $K’,$ $\varphi_{p}(K, K’)$ takes the same value.

COROLLARY 1.3. (1) If $K_{arrow}^{\#^{p}}K’$ , then $K^{J_{arrow}^{*^{p}}}K$ and $\varphi_{p}(K’, K)=-\varphi_{p}(K, K’)$ .
(2) If $K$ and $K’$ are amphicheiral knots such that $K\#^{p}arrow K’$ , then $\varphi_{p}(K, K’)=0$ .

PROOF OF COROLLARY 1.3. We only prove (2). Let $\tilde{K}$ be a diagram of $K$

which a single $F^{p}$-move transforms into $K’$ . Change all crossings of $\tilde{K}$ and
the orientation; then the sign of each crossing changes and $\tilde{K}$ becomes a diagram

of $\overline{K}$ . It follows $\overline{K}arrow\overline{K}’\#^{p}$ with $\varphi_{p}(\overline{K},\overline{K}’)=-\varphi_{p}(K, K’)$ . Since $K$ and $K’$ are
amphicheiral, the equality implies $\varphi_{p}(K, K’)=0$ . $\square$
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We now give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. If $p=2$ , then $\#^{2}$-moves contain the #-unknotting
operation in [6]. Thus a $\#^{2}$-move is an unknotting operation.

If $p$ is odd, then Figure 3 demonstrates how a combination of a certain
$\#^{p}$-move and isotopies achieves a crossing change. $\square$

Given two knots $K,$ $K’$ , define the $\#^{p}$ -Gordian distance $d\not\in(K, K’)$ to be the
minimum number of $\#^{p}$ -moves which can transform a diagram of $K$ to that of
$K’$ . Given a knot $K$, define the $\#^{p}$ -unknotting number $u^{p}(K)$ to be $d\not\in(K, O)$ .
The proof of Theorem 1.1 then implies the following.

COROLLARY 1.4. If $p$ is an odd prime, then $d_{G}(K, K’)\geqq d\not\in(K, K’)$ where $d_{G}$

is the Gordian distance defined in [6]. In particular, $u(K)\geqq u^{p}(K)$ where $u(K)$

is the ordinary unknotting number of $K$ .

EXAMPLE 1. By Corollary 1.4 the $\#^{p}$ -unknotting number of the figure
eight knot $4_{1}$ is 1 if $p>2$ . On the other hand, if $p=2$ , Figure 4 describes a

sequence $4_{1^{arrow}}^{\#^{2}}\overline{3_{1^{arrow}}}^{\#^{2}}O$ where 5; is the right handed trefoil. Hence $u^{2}(4_{1})\leqq 2$ . We
also see that $\varphi_{2}(4_{1}, \overline{3}_{1})=0$ and $\varphi_{2}(\overline{3_{1}}, O)=4$ . In \S 2 we shall see that $u^{2}(4_{1})=2$ .

EXAMPLE 2. Let $T(p, q)$ be the $(p, q)$ torus knot. Since a $2n$ -full twist of
$p$ parallel strings can be realized by a single $\#^{p}$ -move (Figure 5), $T(p, 2np\pm 1)$

$arrow T(p\#^{p}, \pm 1)\cong O$ . Thus $u^{p}(T(p, 2np\pm 1))=1$ for any $n$ , where $\varphi_{p}(T(p, 2np\pm 1),$ $O)$

$=2np$ .
It is a standard technique to find lower bounds of unknotting numbers in

terms of the minimum number of generators of the first homology group of a
covering space [13], [7]. In this direction Nakanishi pointed out the following
estimates.

PROPOSITION 1.5. Let $X_{p}$ be the $p$ -fold cyclic branched covering of $S^{3}$ along
a knot K. Let $e_{p}(K)$ be the minimum number of generators of $H_{1}(X_{p})$ .

Then $d g(K, K’)\geqq\frac{|e_{p}(K)-e_{p}(K’)|}{3p}$ ,

$u^{p}(K) \geqq\frac{e_{p}(K)}{3p}$ .

PROOF. First note that a $\#^{p}$ -move is realized by three surgeries as shown
in Figure 6. The linking number of each surgery circle and the knot is a
multiple of $p$ . Hence the preimage of each surgery circle in $X_{p}$ has $P$ compo-
nents. In general, a single Dehn surgery changes the minimum number of
generators of the first homology group of an ambient manifold by at most one
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Figure 3.
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$4_{1}$

$/isotopy$

trivial knot $3_{1}$

Figure 4.

[3, Lemma 3]. Thus, if $K\#^{p}arrow K’$ , then $|e_{p}(K)-e_{p}(K’)|\leqq 3p$ . The proposition
easily follows. $\square$

The estimates in Proposition 1.5 will be far from best possible, but are
enough to prove:

PROPOSITION 1.6. For any $n$ and prime $p$ , there is a knot whose $\#^{p}$ -unknotting
number is greater than or equal to $n$ .

PROOF. By Proposition 1.5 it suffices to prove that for given $P$ and $n$ there
is a knot $K$ such that $e_{p}(K)\geqq 3pn$ . The figure eight knot $4_{1}$ has a Seifert

matrix $S=(\begin{array}{ll}-1 01 1\end{array})$ ; for example see [1, p. 320]. Since $\det S=-1,$ $M_{m}=I-$

$(S^{T}S^{-1})^{m}$ is a presentation matrix for the first homology group of the m-fold
cyclic branched covering along $4_{1}$ . Hence, if $\det M_{m}\neq\pm 1$ , then $e_{m}(4_{1})\geqq 1$ . A
calculation shows that $\det M_{m}=2-(\alpha^{m}+\beta^{m})$ , where $\alpha=(3+\sqrt{}\overline{5})/2,$ $\beta=(3-\backslash /\overline{5})/2$

are the eigenvalues of $S^{T}S^{-1}=(\begin{array}{ll}2 11 1\end{array})$ . Since $\alpha>2,2-(\alpha^{m}+\beta^{m})\neq\pm 1$ for $m\geqq 2$ .
Thus, $e_{m}(4_{1})\geqq 1$ for $m\geqq 2$ , and so $e_{p}(\#^{spn}4_{1})\geqq 3pn$ for any prime $P$ and $n$ . $\square$
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Figure 5.
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$-:-|$ $|$

Figure 6.

2. $\#^{p}$-moves from a 4-dimensional point of view.

In this section, we show that $\varphi_{p}(K, K’)$ in \S 1 is well-defined and study its
properties via 4-dimensional topology. As shown below, $\varphi_{p}(K, K’)$ approximates
$\sigma_{p}(K’)-\sigma_{p}(K)$ , where $\sigma_{p}$ is Tristram’s $P$-signature [11].

PROPOSITION 2.1. If $K\#^{p}arrow K’$ , then the following hold.

(1) $| \frac{4}{p^{l}}[\frac{p}{2}](p-[\frac{p}{2}])\varphi_{p}(K, K’)+\sigma_{p}(K)-\sigma_{p}(K’)|\leqq 2$ ,

where $[x]$ is the greatest integer not exceeding $x$ .

(2) $\frac{1}{4}\varphi_{2}(K, K’)\equiv Arf(K)+Arf(K’)mod 2$ .

Note that the coefficient of $\varphi_{p}$ in the inequality of (1) above equals 1 if
$P=2,$ $(P^{2}-1)/P^{2}$ if $p>2$ .

REMARK 1. If a knot $K’$ is obtained from a knot $K$ by a #-unknotting

oPeration [6], then we have $Karrow K’\#^{p}$ with $\varphi_{2}(K, K’)=\pm 4$ . It follows from
Proposition 2.1(1) that $\sigma_{2}(K’)-\sigma_{2}(K)=-2,$ $-4,$ $-6$ if $\varphi_{2}(K, K’)=-4$, and $\sigma_{2}(K’)$

$-a_{2}(K)=2,4,6$ if $\varphi_{2}(K, K’)=4$ . This recovers [6, Theorem 3.2], which is
proved by using a Goeritz matrix.

REMARK 2. Recall that Tristram’s $P$-signature $\sigma_{p}(K)$ is the signature of
the Hermitian matrix $V(\xi)=(1-\xi)M+(1-\overline{\xi})M^{r}$ where $M$ is a Seifert matrix of
a knot $K$ and $\xi=\exp([P/2]2\pi i/p)$ . Note that $2\pi/3\leqq[p/2]2\pi/p\leqq\pi$ . The matrix
$V(\xi)$ is singular if and only if $\xi$ is a root of the Alexander polynomial $\Delta(t)$ of
$K$. The signature of $V(z)$ for $z\in S^{1}$ is continuous at $z=z_{0}$ if $V(z_{0})$ is a non-
singular matrix. Thus, if the arguments of the roots of $\Delta(t)$ do not lie in
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$[2\pi/3, \pi]$ , then Tristram’s $P$-signatures of $K$ do not depend on $p$ .
AS an application of Proposition 2.1 we show:

PROPOSITION 2.2. $u^{2}(4_{1})=2$ .

PROOF. We know that $u^{2}(4_{1})\leqq 2$ (Example 1 in \S 1). Assume for a contra-

diction that $4_{1}arrow 0\#^{2}$ . Since $4_{1}$ is amphicheiral, Corollary 1.3(2) implies $\varphi_{2}(4_{1},0)$

$=0$ . Then, applying Proposition 2.1(2) gives $Arf(4_{1})=0$ , a contradiction. $\square$

LEMMA 2.3. If $K*^{p}arrow K’$ , then there exists a properly embedded 2-disk $\Delta$ in
$M=punc(S^{2}\cross S^{2})$ such that

(1) $\partial\Delta\subset\partial M$ is $\overline{K}\# K’$ ,
(2) $[\Delta]\in H_{2}(M, \partial M)$ is divisible by $p$ , and
(3) the intersection number $[\Delta]\cdot[\Delta]$ equals $2\varphi_{p}(K, K’)$ .

PROOF. Suppose tbat $\overline{K}\# K$ is in the boundary of a 4-ball $D^{4}$ . Note that
$\overline{K}\# Karrow\overline{K}\# K’\#^{p}$ and that $\overline{K}\# K$ bounds a 2-disk $\Delta$ in $D^{4}$ . Figure 7 shows that
doing $0$-surgeries along $l_{1}$ and 12 have the same effect on $\overline{K}\# K$ as the $\#^{p}$-move.
Attach 2-handles $h_{1}^{2}$ and $h_{2}^{2}$ to $D^{4}$ with framings $0$ along $l_{1}$ and $l_{2}$ respectively.
Then $M=D^{4}\cup h_{1}^{2}\cup h_{2}^{2}$ is homeomorphic to punc$(S^{2}XS^{2})$ and $(\partial M, \partial\Delta)\cong(S^{3},\overline{K}\# K’)$ .
Orient $l_{1},$ $l_{2}$ so that $1k(l_{1}, l_{2})=1$ , and set $x=ik(l_{1},\overline{K}\# K)$ and $y=1k(l_{2},\overline{K}\# K)$ .
Then $\Delta$ represents $x\alpha+y\beta\in H_{2}(M, \partial M)$ where $\alpha,$ $\beta\in H_{2}(M, \partial M)$ are represented
by the cocores of $h_{1}^{2},$ $h_{2}^{2}$ , respectively. It follows that $[\Delta]\cdot[\Delta]=2xy=2\varphi_{p}(K, K’)$ .
By the definition of $\#^{p}$-moves $x$ and $y$ are multiples of $p$ , thus $[\Delta]$ is divisible
by $P$ . $\square$

$\overline{K}\# K$ $\overline{K}\# K’$

$--|$ $|$

$\cap$ $\cap$

$\partial D^{4}$ $\partial(D^{4}\cup h_{1}^{2}\cup h_{2}^{2})$

Figure 7.
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Lemma 2.3 relates a $\#^{p}$-move to an embedded disk in punc $(S^{2}XS^{2})$ . Then
Theorem 1.2 and Proposition 2.1 follow from the theorems in 4-dimensional
topology, Theorems 2.4 and 2.5 below. Theorem 2.4 is originally due to Viro
[12]. It is also obtained by letting $d=p$ and $a=[p/2]$ in the inequality of
Gilmer [2, Remarks (a) on p. 371]. Theorem 2.5 is really Robertello’s definition
of the Arf invariant [9].

THEOREM 2.4. Let $M$ be a compact, oriented 4-manifold with $\partial M\cong\emptyset$ or
$\cong S^{3}$ , and $F$ a properly $e7nbedded$ , oriented surface in $M$ with $\partial F\cong\emptyset$ or $\cong S^{1}$ . If
$[F]EH_{2}(M, \partial M;Z)$ is divisible by a prime integer $p$ , then we have

$| \frac{2}{p^{2}}[\frac{p}{2}](p-[\frac{p}{2}])[F]\cdot[F]-\sigma_{p}(\partial F)-\sigma(M)|\leqq d\cdot mH_{2}(M;Z_{p})+2genus(F)$ .

THEOREM 2.5. Let $M$ and $F$ be as in Theorem 2.4. If genus$(F)=0$ and $F$

represents a characteristic element of $H_{2}(M, \partial M)$ , then the following holds.

$\frac{[F]\cdot[F]-\sigma(M)}{8}\equiv Arf(\partial F)mod 2$ ,

where $Arf(\partial F)=0$ for $\partial F=\emptyset$ .

PROOF OF THEOREM 1.2. Suppose that $\varphi_{p}(K, K’)$ takes two values $n_{1}$ and
$n_{2}$ . By Lemma 2.3, for each $n_{i}(i=1,2)$ , there is a properly embedded 2-disk
$A_{i}$ in $M_{i}=punc(S^{2}\cross S^{2})$ such that: (1) $\partial\Delta_{i}\subset\partial M_{i}$ is $\overline{K}\# K’$ , (2) $[\Delta_{i}]$ is divisible
by $p$ , and (3) $[\Delta_{i}]\cdot[\Delta_{i}]=2n_{i}$ .

Set $M=M_{1} \bigcup_{f}(-M_{2}),$ $\Sigma=\Delta_{1}\bigcup_{f}(-\Delta_{2})$ , where $f$ is an orientation reversing
diffeomorphism from $(\partial M_{1}, \partial\Delta_{1})$ to $(-\partial M_{2}, -\partial\Delta_{2})$ . Then $M\cong\#^{2}(S^{2}xS^{2}),$ $\Sigma\cong S^{2}$ ,
$[\Sigma]\in H_{2}(M, \partial M)$ is divisible by $P$ and $[\Sigma]\cdot[\Sigma]=2(n_{1}-n_{2})$ .

If $p=2$ , then Theorems 2.4, 2.5 give

$|n_{1}-n_{2}|=|[_{\frac{\Sigma]\cdot[\Sigma]}{2}1}\leqq 4$ ,

and
$\frac{(n_{1}-n_{2})}{4}=[\sum_{-}]_{\frac{[\Sigma]}{8}}\equiv 0mod 2$ .

This implies $n_{1}=n_{2}$ .
Suppose $P$ is an odd prime. By Theorem 2.4,

$| \frac{(n_{1}-n_{2})(p^{2}-}{p^{2}}\underline{1)}|=|\frac{[\Sigma]\cdot[\Sigma](p^{2}-1)}{2p^{2}}|\leqq 4$ .

By the definition of a $\#^{p}$ -move, both $n_{1}$ and $n_{2}$ are multiples of $p^{2}$ . If $n_{1}\neq n_{2}$ ,

then
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$P^{2}-1 \leqq|\frac{(n_{1}-n_{2})(p^{2}-1)}{p^{2}}|\leqq 4$ .

This contradicts $p>2$ . It follows $n_{1}=n_{2}$ . $\square$

PROOF OF PROPOSITION 2.1. By Lemma 2.3 and Theorem 2.4, we have

$| \frac{4}{p^{2}}[\frac{p}{2}](p-[\frac{p}{2}])\varphi_{p}(K, K’)-\sigma_{p}(\overline{K}\# K’)|\leqq 2$ .

Since $\sigma_{p}(\overline{K}\# K’)=-\sigma_{p}(K)+\sigma_{p}(K’)$ for any prime integer $p$ , we have (1) of the
proposition. Proposition 2.1(2) follows from Lemma 2.3 and Theorem 2.5. We
omit the detail. $\square$

COROLLARY 2.6. If there is a ’ triangle’ sequence of $\#^{p}$ -moves $K_{0^{arrow K_{1}arrow}}^{*^{p}\#^{p}}$

$K_{2^{arrow}}^{\#^{p}}K_{0}$ , then $\varphi_{p}(K_{0}, K_{1})+\varphi_{p}(K_{1}, K_{2})+\varphi_{p}(K_{2}, K_{0})=0$ .

PROOF. For simplicity, set $\alpha=(4/p^{2})[p/2](p-[p/2])$ , $K_{3}=K_{0}$ , and $x=$

$\Sigma_{i=1}^{3}\varphi_{p}(K_{i-1}, K_{i})$ . Apply Proposition 2.1(1) to sequences $K_{i-1}arrow K_{i}\#^{p}$ and add
those three inequalities; then

$\sum_{i=1}^{3}|\alpha\varphi_{p}(K_{i-1}, K_{i})+\sigma_{p}(K_{i-1})-\sigma_{p}(K_{i})|\leqq 6$ .

Hence $|\alpha x+\sigma_{p}(K_{0})-\sigma_{p}(K_{3})|\leqq 6$ , so that $|x|\leqq 6/\alpha$ . If $p>2,6/\alpha=6p^{2}/(p^{2}-1)$

$\leqq 27/4$ ; otherwise, $6/\alpha-6$ . Since $\varphi_{p}$ and thus $x$ are multiples of $p^{2}$ , it follows
$x=0$ for $p>2$ as desired.

If $p=2$ , then $x=0,$ $\pm 4$ . On the other hand, adding the three equalities

obtained by applying Proposition 2.1(2) to $K-1^{arrow K_{i}}\#^{2}(1\leqq i\leqq 3)$ , we obtain $x/4\equiv$

$Arf(K_{0})+Arf(K_{3})\equiv 0mod 2$ . Hence, $x=0$ . $\square$

REMARK. Corollary 2.6 does not necessarily hold for an ‘
$n$ -gon ‘ sequence

of $\#^{p}$-moves if $n>3$ . By Example 1 in \S 1 tbere is a sequence $4_{1}\#^{2}arrow\overline{3_{1}}\#^{2}-O$

such that $\varphi_{2}(4_{1}, \overline{3_{1}})=0$ and $\varphi_{2}(\overline{3_{1}}, O)=4$ . By the amphicheirality of 4,, changing

all the crossings in Figure 4 yields a sequence $4_{1}arrow 3_{1}arrow O\#^{2}\#^{2}$ such that $\varphi_{2}(4_{1},3_{1})$

$=0,$ $\varphi_{2}(3_{1},0)=-4$ , where $3_{1}$ is the left handed trefoil. We thus obtain a
’ 4-gon’ sequence $4_{1}arrow\overline{3_{1}}arrow Oarrow 3_{1}arrow 4_{1}$ such that $\varphi_{2}(4_{1}, \overline{3_{1}})+\varphi_{2}(\overline{3_{1}}, O)+\varphi_{2}(O, 3_{1})$

$+\varphi_{2}(3_{1},4_{1})=8\neq 0$ . $\square$

PROPOSITION 2.7. There is a knot $K$ such that $\min_{p}u_{p}(K)=2$ .

PROOF. We show that $5_{2}\# 5_{2}$ is the desired knot. Set $K=5_{2}$ . Figure 8

shows that $0arrow K\#^{p}$ with $\varphi_{p}(O, K)=0$ for any $p$ . This extends to a sequence
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$0arrow Karrow K\# K\#^{p}\#^{\tau}$ with $\varphi_{p}(O, K)=\varphi_{p}(K, K\# K)=0$ . Suppose $K\# Karrow O\#^{1)}$ for some
$p$ . Then, by those sequences and Corollary 2.6 we have $\varphi_{p}(K\# K, O)=$

$-\varphi_{p}(O, K)-\varphi_{p}(K, K\# K)=0$ . Proposition 2.1(1) then implies $|\sigma_{p}(K\# K)|$ S2.
Since $\sigma_{p}(K)$ is even, $\sigma_{p}(K)=0$ for some $p$ . This is absurd because $\sigma_{p}(K)=2$

for any prime $P$ as proved below. It is known that $\sigma_{2}(K)=2$ [ $1$ , p. 312], so
it suffices to see $\sigma_{p}(K)=\sigma_{2}(K)$ . Now the roots of the Alexander polynomial
$2t^{2}-3t+2$ of $5_{2}$ are $e^{i\theta}$ where $\cos\theta=3/4$, so $\theta\not\in[2\pi/3, \pi]$ . Hence, by Remark 2
after Proposition 2.1, $\sigma_{p}(5_{2})=\sigma_{2}(5_{2})=2$ . $\square$

isotopy
$\sim$

trivial knot

isotopy
$\sim$

$5_{2}$

Figure 8.

3. Non-slice links in punc $(S^{2}\cross S^{2})$ .
TO construct a non-slice link in punc $(S^{2}XS^{2})$ , we first define a $\#^{2}$-move for

knot concordance classes. The definition is based on the $4- dimensiona1_{RP^{ro_{P^{er-}}}}$

ties of $\#^{2}$-moves stated in Lemma 2.3.

DEFINITION 3.1. Let $C,$ $C’$ be knot concordance classes. We write $Carrow C’\#^{2}$

if there are a properly embedded disk $\Delta\subset punc(S^{2}\cross S^{2})$ and knots $K\in C,$ $K’\in C’$

satisfying the following:
(1) $\partial\Delta\subset\partial M$ is a knot $\overline{K}\# K’$

(2) $\sim\lfloor\Delta]\in H_{2}(M, \partial M)$ is divisible by 2, $i.e.$ , characteristic.

DEFINITION 3.2. Let $C,$ $C’$ be knot concordance classes. If $Carrow C’\#^{2}$ , then
define $\varphi(C, C’)$ to be a half of the intersection number $[\Delta]\cdot[\Delta]$ where $\Delta$ is the
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disk in Definition 3.1.

REMARKS. (1) If $Karrow K’\#^{2}$ for knots $K,$ $K’$ , then Lemma 2.3 implies that

$[K]arrow\#^{2}[K’]$ and $\varphi([K], [K’])=\varphi_{2}(K, K’)$ where $[*]$ denotes knot concordance
class.

(2) Suppose $Carrow C’\#^{2}$ for some knot concordance classes $C$ , C’ ; then for any
knots $K\in C,$ $K’\in C’$ there is a disk $\Delta$ in punc $(S^{2}\cross S^{2})$ satisfying (1) and (2) in
Definition 3.1.

The disk $\Delta$ in Definition 3.1 satisfies conditions (1), (2) of Lemma 2.3.
Therefore the proofs of Theorem 1.2 and Proposition 2.1 readily imply the
following results on a $\#^{2}$-move of concordance classes.

PROPOSITION 3.3. Let $C,$ $C’$ be knot concordance classes. If $Carrow C’\#^{2}$ , then
$\varphi(C, C’)$ does not depend $m$ the choice of a disk $\Delta$ and representatives of $C,$ $C’$ .

PROPOSITION 3.4. Let $C,$ $C’$ be knot concordance classes, and knots $K,$ $K’$

their rePresentatives, resPectively. If $Carrow C’\#^{2}$ , then
(1) $|\varphi(C, C’)+\sigma_{2}(K)-\sigma_{2}(K’)|\leqq 2$ ,

(2) $\frac{1}{4}\varphi(C, C’)\equiv Arf(K)+Arf(K’)mod 2$ .

In \S 2 it is shown that the figure eight knot $4_{1}$ cannot be untied by a single

$\#^{2}$-move (Proposition 2.2). Here we show that $[4_{1}]arrow\#^{2}[0]$ is impossible for knot
concordance classes. In other words, the following holds.

PROPOSITION 3.5. The figure eight knot does not bound a disk in punc $(S^{2}\cross S^{2})$

representing a characteristic element.

PROOF. If the figure eight knot $4_{1}$ bounded a disk in punc$(S^{2}XS^{2})$ repre-

senting a characteristic element, then $[4_{1}]arrow\#^{2}[O]$ . Reversing the orientation

of punc $(S^{2}\cross S^{2})$ , we obtain $[\overline{4_{1}}]arrow\#^{2}[\overline{O}]$ with $\varphi([4_{1}], [O])=-\varphi([\overline{4_{1}}], [\overline{O}])$ . Since
$4_{1}$ and $0$ are amphicheiral, $\varphi([4_{1}], [O])=0$ . It then follows from Proposition
3.4(2) that $Arf(4_{1})=0$ , which is absurd. $\square$

PROPOSITION 3.6. Ther $e$ is a 2-component link in $\partial(punc(S^{2}\cross S^{2}))$ which does
not bound disjoint disks in punc $(S^{2}\cross S^{2})$ .

The rest of this section is devoted to proving this proposition. We define
a band sum of a link as follows. Let $L$ be a link in $S^{3}$ , and $f:I\cross Iarrow S^{3}$ an
embedding such that $f(I\cross I)\cap L=f(\partial I\cross I)$ . We assume that if $L$ is oriented,
$f(I\cross I)$ and $L$ induce the opposite orientations to $L\cap f(I\cross I)$ . Then the link
$L\cup f(I\cross I)-f(I\cross intI)$ is said to be the band sum of $L$ along the band $f(I\cross I)$ .
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LEMMA 3.7. Let $L=K_{1}\cup K_{2}$ be a 2-component link with $1k(K_{1}, K_{2})$ even. Let
$K_{3}$ be the band sum of $L$ ma arbitrary band connecting $K_{1}$ and $K_{2}$ . If none of
$K_{i}$ bounds a disk in punc $(S^{2}\cross S^{2})$ representing a characteristic element, then $L$

cannot bound two disjoint disks in punc $(S^{2}\cross S^{2})$ .

PROOF. Suppose for a contradiction that $L$ bounds disjoint disks $D_{1},$ $D_{2}$ in
$M=punc(S^{2}\cross S^{2})$ . Let $\alpha$ and $\beta$ be generators of $H_{2}(M, \partial M)$ , and set $[D_{i}]=$

$x_{i}\alpha+y_{t}\beta,$ $i=1,2$ . Then $K_{3}$ bounds a 2-disk $D_{3}$ in $M$ representing $[D_{3}]=[D_{1}]$

$+[D_{2}]=(x_{1}+x_{2})\alpha+(y_{1}+y_{2})\beta$ . Since $D_{1}\cap D_{2}=\emptyset,$ $1k(K_{1}, K_{2})=[D_{1}]\cdot[D_{2}]=x_{1}y_{2}+$

$x_{2}y_{1}$ is even. Then $x_{1}y_{2}\equiv x_{2}y_{1}\equiv 1mod 2$ or $x_{1}y_{2}\equiv x_{2}y_{1}\equiv 0$ . The former implies
$x_{i},$ $y_{i}$ are all odd, and hence $[D_{3}]$ is characteristic, a contradiction. Suppose
the latter holds. Without loss of generality $x_{1}\equiv 0mod 2$ . Since $[D_{1}],$ $[D_{2}]$ are
not characteristic, it follows that $y_{1}\equiv 1,$ $x_{2}\equiv 0$ , and $y_{2}\equiv 1$ . However, this implies
$[D_{3}]$ is characteristic, a contradiction. $\square$

TO construct such a link as in Lemma 3.7, we use a result from the theory
of spatial theta curves. A labelled theta curve is a graph $\theta$ with two vertices
labelled $v_{1},$ $v_{2}$ , and three edges labelled 1, 2, 3. A spatial theta curve is the
image of an embedding of a labelled theta curve into $S^{3}$ . The i-th constituent
knot of a spatial theta curve is the union of the two edges labelled $J$ and $k$

where $\{i, i, k\}=\{1,2,3\}$ . As for the representability of constituent knots,
Kinoshita [5] proved:

THEOREM 3.8. Given knots $K_{1},$ $K_{2},$ $K_{3}$ , there is a spatial theta curve whose
three cmstituent knots are equivalent to $K_{1},$ $K_{2},$ $K_{3}$ .

See the Appendix for a concise proof using a canonical diagram of knots.

PROOF OF PROPOSITION 3.6. Using Theorem 3.8, take a spatial theta curve,
$G$ , such that each constituent knot is equivalent to the figure eight knot. Let
$K$ be one of the constituent knots of $G$ , and $e$ the edge not contained in $K$.
Take a band $B$ in $S^{3}$ which connects $K$ to itself and its centerline is the edge
$e$ . Then the band sum of $K$ along $B$ is a 2-component link, say $K_{1}\cup K_{2}$ with
$K_{i}\cong 4_{1}$ . By twisting the band $B$ , if necessary, we may assume that the linking
number of $K_{1}$ and $K_{2}$ is even. Since $B\cap K_{i}$ is an arc for $i=1,2$ , we can regard
the disk $B$ as a band connecting $K_{1}$ and $K_{2}$ . Then, the band sum of the link
$K_{1}\cup K_{2}$ along $B$ becomes $K$. Since the figure eight knot does not bound a disk
in punc $(S^{2}\cross S^{2})$ representing a characteristic element, the link $K_{1}\cup K_{2}$ satisfies
the hypothesis in Lemma 3.7. Therefore, by Lemma 3.7 this is a non-slice
link in punc $(S^{2}\cross S^{2})$ . $\square$
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Appendix. Proof of Theorem 3.8.

We first show the claim below by using a canonical diagram of knots due
to Suzuki, Terasaka, and Yamamoto.

CLAIM. Given a knot $K$, there is a spatial theta curve such that one of its
constituent knots is equivalent to $K$ and the other two are trivial knots.

PROOF OF CLAIM. Let $L=\gamma_{0}\cup\gamma_{1}\cup\cdots\cup\gamma_{u}$ be the link in the diagram of
Figure 9, where $u=u(K)$ , and let $\sigma$ be the union of the left, right and lower
sides of the rectangle $\gamma_{0}$ . Let $\Delta_{1},$

$\cdots,$
$\Delta_{u}$ be mutually disjoint disks in $S^{3}$ such

that $\partial\Delta_{i}=\gamma_{i}$ and $\Delta_{i}\cap\gamma_{0}$ is a single point off $\sigma$ for all $i$ . Suzuki [10] showed
that the knot $K$ can be expressed as a band sum of $L$ along mutually disjoint
$u$ bands $B_{1},$ $\cdots$ , $B_{u}$ with the following properties (1) (2):

(1) $B_{i}$ connects $\gamma_{i}$ and $\sigma$ for $i=1$ , $\cdot$ .. , $u$ ,
(2) $B_{t}\cap int\Delta_{j}=\emptyset$ for all $i,$

$J$ .
Moreover, Yamamoto [15] improved these in such a way that

(3) when $\gamma_{0}$ is counterclockwise oriented, the $u$ subarcs $B_{1}\cap\sigma,$ $B_{2}\cap\sigma,$ $\cdots$ ,
$B_{u}\cap\sigma$ are located on $\sigma$ in this order.

$L$

Figure 9.

This diagram is said to be a canonical diagram $K$. An example is Figure 10(a).

NOW attach an edge, $e$ , to this diagram, say $\tilde{K}$, of $K$ so that $e\cap\tilde{K}=\partial e=\partial\sigma$ ,
$e\cap(\Delta_{i}\cup B_{i})=\emptyset$ for all $i$ , and the spatial theta curve $\gamma_{0}\cup e$ lies on some plane
after an ambient isotopy. (Cf. Figure $10(b).$ ) Then, the constituent knots of the
spatial theta curve $\tilde{K}\cup e$ are $e\cup(\gamma_{0}-\sigma),$ $e\cup(\tilde{K}-(\gamma_{0}-\sigma)),\tilde{K}$ ; the knot types are
$O,$ $0,$ $K$ respectively. Hence, $\tilde{K}\cup e$ is the desired theta curve in Claim. $\square$

Let $K_{k}(1\leqq k\leqq 3)$ be arbitrary knots. By Claim, for l;$i $<_{J}\leqq 3$ there is a
spatial theta curve $f_{ij}$ : $\thetaarrow S^{3}$ such that its k-th constituent knot is equivalent
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(a) canonical diagram (b)
$e$

Figure 10.

to $O$ if $k\in\{i, J\}$ , and $K_{k}$ otherwise. Take the vertex connected sum of the
three spatial theta curves $fi_{2}(\theta),$ $f_{23}(\theta),$ $f_{13}(\theta)$ (Figure 11). (For the definition of
a vertex connected sum refer to [14].)

$f_{12}(\theta)\# f_{23}(\theta)\# f_{13}(\theta)$

Figure 11.

Then the first constituent knot of the resulting theta curve is $O\# K_{1}\# O\cong K_{1}$ ;
the second one $O\# O\# K_{2}\cong K_{2}$ ; the third one $K_{3}\# O\# O\cong K_{3}$ . Therefore,
$f_{12}(\theta)\# f_{23}(\theta)\# f_{13}(\theta)$ is the desired spatial theta curve. $\square$
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