Generalized #-unknotting operations

By Katura MIYAZAKI and Akira YASUHARA

(Received Jan. 12, 1995)

Introduction.

We shall work in the P.L. and locally flat category. We discuss oriented knots and links in S^3 . Two knots are equivalent if there is an ambient isotopy of S^3 carrying one knot to the other.

H. Murakami [6] showed that any knot can be changed into a trivial knot by repeatedly altering a diagram of the knot as in Figure 0.

Figure 0.

This move on a diagram is called the #-move or the #-unknotting operation. In this note, generalizing this, we define for any prime p, a $\#^p$ -move on a knot diagram as shown in Figure 1. Note that even if p is fixed, x and y in Figure 1 may vary. (It is easy to define $\#^p$ -moves for any integers p. However, if p' is a factor of p, then a $\#^p$ -move is also a $\#^p'$ -move. We thus consider $\#^p$ -moves only for prime numbers p.) The #-unknotting operation and the pass-move [4] are examples of $\#^p$ -moves.

We shall show that for any prime p any knot can be transformed into a trivial knot by a finite sequence of $\#^p$ -moves (Theorem 1.1). (In fact, if p is odd, a combination of a certain $\#^p$ -move and Reidemeister moves achieves a crossing change.) Then we can define the $\#^p$ -unknotting number $u^p(K)$ much like the ordinary unknotting number. Since a family of $\#^p$ -moves is a wide variety of diagramatic changes, one might initially think that every knot can be untied

Figure 1.

by a single $\#^p$ -move for some p and/or there might be an upper bound for the values of $\#^p$ -unknotting numbers. However, we shall show that:

PROPOSITION 1.6. Given n and p, there is a knot K such that $u^p(K) \ge n$.

PROPOSITION 2.7. There is a knot K such that $u^p(K) > 1$ for any p.

Let M be $S^2 \times S^2$ with a puncture. In § 2, $\#^p$ -moves are related to certain disks properly embedded in M, and studied using results of 4-dimensional topology. As an application, in § 3, we consider whether every link in $\partial M \cong S^3$ bounds disjoint disks in M. It is already known that every knot bounds a disk in M (Norman [8], Suzuki [10]). We shall show that this does not hold for a 2-component link (Proposition 3.6). We only find an obstruction of links being slice in M for certain, not all, links.

PROBLEM. Find an obstruction for links to bound disjoint disks in $S^2 \times S^2$ with a puncture.

We summarize the notation used in this note. All manifolds will be assumed to be oriented. For a manifold M, -M denotes M with the opposite orientation. If M^4 is a closed 4-manifold, $\operatorname{punc} M^4$ denotes M^4 with an open 4-ball deleted; the orientation of $\partial(\operatorname{punc} M^4)$ is the one induced from $\operatorname{punc} M^4$. For a knot K in S^3 , we write \overline{K} for the knot -K in $-S^3$. We write O for a trivial knot in S^3 .

1. $\#^p$ -Moves.

If a diagram of a knot K' is a result of one $\#^p$ -move on a diagram of a knot K, then we write $K \stackrel{\#^p}{\longrightarrow} K'$.

THEOREM 1.1. For any prime p, a diagram of any knot can be transformed into a diagram of a trivial knot by a finite sequence of $\#^p$ -moves.

Before proving the theorem we define a function $\varphi_p(K, K')$ for $K \stackrel{\#^p}{\to} K'$. If a diagram of K' is obtained from that of K by a single $\#^p$ -move, then we define $\varphi_p(K, K')$ to be the sum of signs of the changed crossings. See Figure 2. Note that $\varphi_p(K, K')$ does not depend on the orientation of K. However, $\varphi_p(K, K')$ seems to depend on a diagram of K and the $\#^p$ -move to apply. Theorem 1.2 below says that $\varphi_p(K, K')$ depends only on p, K and K'. The proof will be given in § 2.

THEOREM 1.2. Suppose $K \stackrel{\#^p}{\longrightarrow} K'$. Then for any $\#^p$ -move transforming a diagram of K into that of K', $\varphi_p(K, K')$ takes the same value.

COROLLARY 1.3. (1) If $K \stackrel{\#^p}{\longrightarrow} K'$, then $K' \stackrel{\#^p}{\longrightarrow} K$ and $\varphi_p(K', K) = -\varphi_p(K, K')$. (2) If K and K' are amphicheiral knots such that $K \stackrel{\#^p}{\longrightarrow} K'$, then $\varphi_p(K, K') = 0$.

PROOF OF COROLLARY 1.3. We only prove (2). Let \widetilde{K} be a diagram of K which a single $\#^p$ -move transforms into K'. Change all crossings of \widetilde{K} and the orientation; then the sign of each crossing changes and \widetilde{K} becomes a diagram of \overline{K} . It follows $\overline{K} \stackrel{\#^p}{\to} \overline{K}'$ with $\varphi_p(\overline{K}, \overline{K}') = -\varphi_p(K, K')$. Since K and K' are amphicheiral, the equality implies $\varphi_p(K, K') = 0$.

We now give the proof of Theorem 1.1.

PROOF OF THEOREM 1.1. If p=2, then $\#^2$ -moves contain the #-unknotting operation in [6]. Thus a $\#^2$ -move is an unknotting operation.

If p is odd, then Figure 3 demonstrates how a combination of a certain $\#^p$ -move and isotopies achieves a crossing change.

Given two knots K, K', define the $\#^p$ -Gordian distance $d_{\mathcal{C}}^p(K, K')$ to be the minimum number of $\#^p$ -moves which can transform a diagram of K to that of K'. Given a knot K, define the $\#^p$ -unknotting number $u^p(K)$ to be $d_{\mathcal{C}}^p(K, O)$. The proof of Theorem 1.1 then implies the following.

COROLLARY 1.4. If p is an odd prime, then $d_G(K, K') \ge d_G^p(K, K')$ where d_G is the Gordian distance defined in [6]. In particular, $u(K) \ge u^p(K)$ where u(K) is the ordinary unknotting number of K.

EXAMPLE 1. By Corollary 1.4 the #*p-unknotting number of the figure eight knot 4_1 is 1 if p>2. On the other hand, if p=2, Figure 4 describes a sequence $4_1 \stackrel{\#^2}{\to} \overline{3_1} \stackrel{\#^2}{\to} O$ where $\overline{3_1}$ is the right handed trefoil. Hence $u^2(4_1) \leq 2$. We also see that $\varphi_2(4_1, \overline{3_1}) = 0$ and $\varphi_2(\overline{3_1}, O) = 4$. In § 2 we shall see that $u^2(4_1) = 2$.

EXAMPLE 2. Let T(p, q) be the (p, q) torus knot. Since a 2n-full twist of p parallel strings can be realized by a single $\#^p$ -move (Figure 5), $T(p, 2np\pm 1)$ $\stackrel{\#^p}{\to} T(p, \pm 1) \cong O$. Thus $u^p(T(p, 2np\pm 1)) = 1$ for any n, where $\varphi_p(T(p, 2np\pm 1), O) = 2np$.

It is a standard technique to find lower bounds of unknotting numbers in terms of the minimum number of generators of the first homology group of a covering space [13], [7]. In this direction Nakanishi pointed out the following estimates.

PROPOSITION 1.5. Let X_p be the p-fold cyclic branched covering of S^3 along a knot K. Let $e_p(K)$ be the minimum number of generators of $H_1(X_p)$.

Then
$$d_G^p(K, K') \ge \frac{|e_p(K) - e_p(K')|}{3p}$$
,
$$u^p(K) \ge \frac{e_p(K)}{3p}.$$

PROOF. First note that a $\#^p$ -move is realized by three surgeries as shown in Figure 6. The linking number of each surgery circle and the knot is a multiple of p. Hence the preimage of each surgery circle in X_p has p components. In general, a single Dehn surgery changes the minimum number of generators of the first homology group of an ambient manifold by at most one

Figure 4.

[3, Lemma 3]. Thus, if $K \stackrel{\#^p}{\to} K'$, then $|e_p(K) - e_p(K')| \leq 3p$. The proposition easily follows.

The estimates in Proposition 1.5 will be far from best possible, but are enough to prove:

PROPOSITION 1.6. For any n and prime p, there is a knot whose $\#^p$ -unknotting number is greater than or equal to n.

PROOF. By Proposition 1.5 it suffices to prove that for given p and n there is a knot K such that $e_p(K) \ge 3pn$. The figure eight knot 4_1 has a Seifert matrix $S = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$; for example see [1, p. 320]. Since $\det S = -1$, $M_m = I - (S^T S^{-1})^m$ is a presentation matrix for the first homology group of the m-fold cyclic branched covering along 4_1 . Hence, if $\det M_m \ne \pm 1$, then $e_m(4_1) \ge 1$. A calculation shows that $\det M_m = 2 - (\alpha^m + \beta^m)$, where $\alpha = (3 + \sqrt{5})/2$, $\beta = (3 - \sqrt{5})/2$ are the eigenvalues of $S^T S^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Since $\alpha > 2$, $2 - (\alpha^m + \beta^m) \ne \pm 1$ for $m \ge 2$. Thus, $e_m(4_1) \ge 1$ for $m \ge 2$, and so $e_p(\#^{3pn}4_1) \ge 3pn$ for any prime p and p.

Figure 6.

2. #p-moves from a 4-dimensional point of view.

In this section, we show that $\varphi_p(K, K')$ in § 1 is well-defined and study its properties via 4-dimensional topology. As shown below, $\varphi_p(K, K')$ approximates $\sigma_p(K') - \sigma_p(K)$, where σ_p is Tristram's *p*-signature [11].

PROPOSITION 2.1. If $K \stackrel{\#^p}{\longrightarrow} K'$, then the following hold.

$$(1) \quad \left| \frac{4}{p^2} \left[\frac{p}{2} \right] \left(p - \left[\frac{p}{2} \right] \right) \varphi_p(K, K') + \sigma_p(K) - \sigma_p(K') \right| \leq 2,$$

where [x] is the greatest integer not exceeding x.

(2)
$$\frac{1}{4}\varphi_2(K, K') \equiv \operatorname{Arf}(K) + \operatorname{Arf}(K') \mod 2.$$

Note that the coefficient of φ_p in the inequality of (1) above equals 1 if p=2, $(p^2-1)/p^2$ if p>2.

REMARK 1. If a knot K' is obtained from a knot K by a #-unknotting operation [6], then we have $K \stackrel{\#^p}{\to} K'$ with $\varphi_2(K, K') = \pm 4$. It follows from Proposition 2.1(1) that $\sigma_2(K') - \sigma_2(K) = -2$, -4, -6 if $\varphi_2(K, K') = -4$, and $\sigma_2(K') - \sigma_2(K) = 2$, 4, 6 if $\varphi_2(K, K') = 4$. This recovers [6, Theorem 3.2], which is proved by using a Goeritz matrix.

REMARK 2. Recall that Tristram's p-signature $\sigma_p(K)$ is the signature of the Hermitian matrix $V(\xi) = (1-\xi)M + (1-\bar{\xi})M^T$ where M is a Seifert matrix of a knot K and $\xi = \exp(\lfloor p/2 \rfloor 2\pi i/p)$. Note that $2\pi/3 \leq \lfloor p/2 \rfloor 2\pi/p \leq \pi$. The matrix $V(\xi)$ is singular if and only if ξ is a root of the Alexander polynomial $\Delta(t)$ of K. The signature of V(z) for $z \in S^1$ is continuous at $z = z_0$ if $V(z_0)$ is a non-singular matrix. Thus, if the arguments of the roots of $\Delta(t)$ do not lie in

 $[2\pi/3, \pi]$, then Tristram's p-signatures of K do not depend on p.

As an application of Proposition 2.1 we show:

Proposition 2.2. $u^{2}(4_{1})=2$.

PROOF. We know that $u^2(4_1) \leq 2$ (Example 1 in § 1). Assume for a contradiction that $4_1 \stackrel{\#^2}{\longrightarrow} O$. Since 4_1 is amphicheiral, Corollary 1.3(2) implies $\varphi_2(4_1, O) = 0$. Then, applying Proposition 2.1(2) gives $Arf(4_1) = 0$, a contradiction.

LEMMA 2.3. If $K \stackrel{\#^p}{\to} K'$, then there exists a properly embedded 2-disk Δ in $M = \text{punc}(S^2 \times S^2)$ such that

- (1) $\partial \Delta \subset \partial M$ is $\overline{K} \# K'$,
- (2) $[\Delta] \in H_2(M, \partial M)$ is divisible by p, and
- (3) the intersection number $[\Delta] \cdot [\Delta]$ equals $2\varphi_p(K, K')$.

PROOF. Suppose that $\overline{K} \# K$ is in the boundary of a 4-ball D^4 . Note that $\overline{K} \# K \stackrel{\#^p}{\longrightarrow} \overline{K} \# K'$ and that $\overline{K} \# K$ bounds a 2-disk Δ in D^4 . Figure 7 shows that doing 0-surgeries along l_1 and l_2 have the same effect on $\overline{K} \# K$ as the $\#^p$ -move. Attach 2-handles h_1^2 and h_2^2 to D^4 with framings 0 along l_1 and l_2 respectively. Then $M = D^4 \cup h_1^2 \cup h_2^2$ is homeomorphic to punc $(S^2 \times S^2)$ and $(\partial M, \partial \Delta) \cong (S^3, \overline{K} \# K')$. Orient l_1 , l_2 so that $lk(l_1, l_2) = 1$, and set $x = lk(l_1, \overline{K} \# K)$ and $y = lk(l_2, \overline{K} \# K)$. Then Δ represents $x \alpha + y \beta \in H_2(M, \partial M)$ where α , $\beta \in H_2(M, \partial M)$ are represented by the cocores of h_1^2 , h_2^2 , respectively. It follows that $[\Delta] \cdot [\Delta] = 2xy = 2\varphi_p(K, K')$. By the definition of $\#^p$ -moves x and y are multiples of p, thus $[\Delta]$ is divisible by p.

Figure 7.

Lemma 2.3 relates a $\#^p$ -move to an embedded disk in punc $(S^2 \times S^2)$. Then Theorem 1.2 and Proposition 2.1 follow from the theorems in 4-dimensional topology, Theorems 2.4 and 2.5 below. Theorem 2.4 is originally due to Viro [12]. It is also obtained by letting d=p and $a=\lfloor p/2 \rfloor$ in the inequality of Gilmer [2, Remarks (a) on p. 371]. Theorem 2.5 is really Robertello's definition of the Arf invariant $\lceil 9 \rceil$.

THEOREM 2.4. Let M be a compact, oriented 4-manifold with $\partial M \cong \emptyset$ or $\cong S^3$, and F a properly embedded, oriented surface in M with $\partial F \cong \emptyset$ or $\cong S^1$. If $[F] \in H_2(M, \partial M; Z)$ is divisible by a prime integer p, then we have

$$\left|\frac{2}{p^2}\left[\frac{p}{2}\right]\left(p-\left[\frac{p}{2}\right]\right)\left[F\right]\cdot\left[F\right]-\sigma_p(\partial F)-\sigma(M)\right| \leq \dim H_2(M\,;\,Z_p)+2\,\mathrm{genus}(F)\,.$$

THEOREM 2.5. Let M and F be as in Theorem 2.4. If genus(F)=0 and F represents a characteristic element of $H_2(M, \partial M)$, then the following holds.

$$\frac{\lceil F \rceil \cdot \lceil F \rceil - \sigma(M)}{8} \equiv \operatorname{Arf}(\partial F) \bmod 2,$$

where $Arf(\partial F)=0$ for $\partial F=\emptyset$.

PROOF OF THEOREM 1.2. Suppose that $\varphi_p(K, K')$ takes two values n_1 and n_2 . By Lemma 2.3, for each n_i (i=1, 2), there is a properly embedded 2-disk Δ_i in $M_i = \text{punc}(S^2 \times S^2)$ such that: (1) $\partial \Delta_i \subset \partial M_i$ is $\overline{K} \# K'$, (2) $[\Delta_i]$ is divisible by p, and (3) $[\Delta_i] \cdot [\Delta_i] = 2n_i$.

Set $M=M_1\cup_f(-M_2)$, $\Sigma=\Delta_1\cup_f(-\Delta_2)$, where f is an orientation reversing diffeomorphism from $(\partial M_1, \partial \Delta_1)$ to $(-\partial M_2, -\partial \Delta_2)$. Then $M\cong \#^2(S^2\times S^2)$, $\Sigma\cong S^2$, $[\Sigma]\in H_2(M,\partial M)$ is divisible by p and $[\Sigma]\cdot [\Sigma]=2(n_1-n_2)$.

If p=2, then Theorems 2.4, 2.5 give

$$|n_1-n_2|=\left|\frac{[\Sigma]\cdot[\Sigma]}{2}\right|\leq 4$$
,

and

$$\frac{(n_1 - n_2)}{4} = \frac{\lceil \Sigma \rceil \cdot \lceil \Sigma \rceil}{8} \equiv 0 \bmod 2.$$

This implies $n_1 = n_2$.

Suppose p is an odd prime. By Theorem 2.4,

$$\left|\frac{(n_1-n_2)(p^2-1)}{p^2}\right| = \left|\frac{[\Sigma] \cdot [\Sigma](p^2-1)}{2p^2}\right| \leq 4.$$

By the definition of a $\#^p$ -move, both n_1 and n_2 are multiples of p^2 . If $n_1 \neq n_2$, then

$$p^2-1 \leq \left| \frac{(n_1-n_2)(p^2-1)}{p^2} \right| \leq 4.$$

This contradicts p>2. It follows $n_1=n_2$.

PROOF OF PROPOSITION 2.1. By Lemma 2.3 and Theorem 2.4, we have

$$\left|\frac{4}{p^2}\left[\frac{p}{2}\right]\left(p-\left[\frac{p}{2}\right]\right)\varphi_p(K, K') - \sigma_p(\overline{K} \# K')\right| \leq 2.$$

Since $\sigma_p(\overline{K} \# K') = -\sigma_p(K) + \sigma_p(K')$ for any prime integer p, we have (1) of the proposition. Proposition 2.1(2) follows from Lemma 2.3 and Theorem 2.5. We omit the detail.

COROLLARY 2.6. If there is a 'triangle' sequence of $\#^p$ -moves $K_0 \xrightarrow{\#^p} K_1 \xrightarrow{\#^p} K_0$, then $\varphi_p(K_0, K_1) + \varphi_p(K_1, K_2) + \varphi_p(K_2, K_0) = 0$.

PROOF. For simplicity, set $\alpha = (4/p^2)[p/2](p-[p/2])$, $K_3 = K_0$, and $x = \sum_{i=1}^3 \varphi_p(K_{i-1}, K_i)$. Apply Proposition 2.1(1) to sequences $K_{i-1} \stackrel{\#^p}{\to} K_i$ and add those three inequalities; then

$$\sum_{i=1}^{3} |\alpha \varphi_{p}(K_{i-1}, K_{i}) + \sigma_{p}(K_{i-1}) - \sigma_{p}(K_{i})| \leq 6.$$

Hence $|\alpha x + \sigma_p(K_0) - \sigma_p(K_3)| \le 6$, so that $|x| \le 6/\alpha$. If p > 2, $6/\alpha = 6p^2/(p^2 - 1) \le 27/4$; otherwise, $6/\alpha = 6$. Since φ_p and thus x are multiples of p^2 , it follows x = 0 for p > 2 as desired.

If p=2, then $x=0, \pm 4$. On the other hand, adding the three equalities obtained by applying Proposition 2.1(2) to $K_{i-1} \stackrel{\#^2}{\longrightarrow} K_i$ $(1 \le i \le 3)$, we obtain $x/4 \equiv \operatorname{Arf}(K_0) + \operatorname{Arf}(K_3) \equiv 0 \mod 2$. Hence, x=0.

REMARK. Corollary 2.6 does not necessarily hold for an 'n-gon' sequence of $\#^p$ -moves if n>3. By Example 1 in §1 there is a sequence $4_1 \stackrel{\#^2}{\to} \overline{3_1} \stackrel{\#^2}{\to} O$ such that $\varphi_2(4_1, \overline{3_1}) = 0$ and $\varphi_2(\overline{3_1}, O) = 4$. By the amphicheirality of 4_1 , changing all the crossings in Figure 4 yields a sequence $4_1 \stackrel{\#^2}{\to} 3_1 \stackrel{\#^2}{\to} O$ such that $\varphi_2(4_1, 3_1) = 0$, $\varphi_2(3_1, O) = -4$, where 3_1 is the left handed trefoil. We thus obtain a '4-gon' sequence $4_1 \stackrel{\#^2}{\to} \overline{3_1} \stackrel{\#^2}{\to} O \stackrel{\#^2}{\to} 3_1 \stackrel{\#^2}{\to} 4_1$ such that $\varphi_2(4_1, \overline{3_1}) + \varphi_2(\overline{3_1}, O) + \varphi_2(O, \overline{3_1}) + \varphi_2(3_1, 4_1) = 8 \neq 0$.

PROPOSITION 2.7. There is a knot K such that $\min_{p} u_p(K) = 2$.

PROOF. We show that $5_2 \# 5_2$ is the desired knot. Set $K=5_2$. Figure 8 shows that $O \xrightarrow{\#^p} K$ with $\varphi_p(O, K)=0$ for any p. This extends to a sequence

 $O \stackrel{\#^p}{\to} K \stackrel{\#^p}{\to} K \# K$ with $\varphi_p(O, K) = \varphi_p(K, K \# K) = 0$. Suppose $K \# K \stackrel{\#^p}{\to} O$ for some p. Then, by those sequences and Corollary 2.6 we have $\varphi_p(K \# K, O) = -\varphi_p(O, K) - \varphi_p(K, K \# K) = 0$. Proposition 2.1(1) then implies $|\sigma_p(K \# K)| \leq 2$. Since $\sigma_p(K)$ is even, $\sigma_p(K) = 0$ for some p. This is absurd because $\sigma_p(K) = 2$ for any prime p as proved below. It is known that $\sigma_2(K) = 2$ [1, p. 312], so it suffices to see $\sigma_p(K) = \sigma_2(K)$. Now the roots of the Alexander polynomial $2t^2 - 3t + 2$ of 5_2 are $e^{i\theta}$ where $\cos \theta = 3/4$, so $\theta \notin [2\pi/3, \pi]$. Hence, by Remark 2 after Proposition 2.1, $\sigma_p(5_2) = \sigma_2(5_2) = 2$.

Figure 8.

3. Non-slice links in punc($S^2 \times S^2$).

To construct a non-slice link in punc($S^2 \times S^2$), we first define a $\#^2$ -move for knot concordance classes. The definition is based on the 4-dimensional properties of $\#^2$ -moves stated in Lemma 2.3.

DEFINITION 3.1. Let C, C' be knot concordance classes. We write $C \stackrel{\#^2}{\to} C'$ if there are a properly embedded disk $\Delta \subset \text{punc}(S^2 \times S^2)$ and knots $K \in C$, $K' \in C'$ satisfying the following:

- (1) $\partial \Delta \subset \partial M$ is a knot $\overline{K} \# K'$
- (2) $\lceil \Delta \rceil \in H_2(M, \partial M)$ is divisible by 2, i.e., characteristic.

DEFINITION 3.2. Let C, C' be knot concordance classes. If $C \stackrel{\#^2}{\longrightarrow} C'$, then define $\varphi(C, C')$ to be a half of the intersection number $[\Delta] \cdot [\Delta]$ where Δ is the

disk in Definition 3.1.

REMARKS. (1) If $K \stackrel{\sharp^2}{\longrightarrow} K'$ for knots K, K', then Lemma 2.3 implies that $[K] \stackrel{\sharp^2}{\longrightarrow} [K']$ and $\varphi([K], [K']) = \varphi_2(K, K')$ where [*] denotes knot concordance class.

(2) Suppose $C \stackrel{\#^2}{\to} C'$ for some knot concordance classes C, C'; then for any knots $K \in C$, $K' \in C'$ there is a disk Δ in punc $(S^2 \times S^2)$ satisfying (1) and (2) in Definition 3.1.

The disk Δ in Definition 3.1 satisfies conditions (1), (2) of Lemma 2.3. Therefore the proofs of Theorem 1.2 and Proposition 2.1 readily imply the following results on a $\#^2$ -move of concordance classes.

PROPOSITION 3.3. Let C, C' be knot concordance classes. If $C \stackrel{\#^2}{\to} C'$, then $\varphi(C, C')$ does not depend on the choice of a disk Δ and representatives of C, C'.

PROPOSITION 3.4. Let C, C' be knot concordance classes, and knots K, K' their representatives, respectively. If $C \stackrel{\#^2}{\to} C'$, then

- (1) $|\varphi(C, C') + \sigma_2(K) \sigma_2(K')| \leq 2$,
- (2) $\frac{1}{4}\varphi(C, C') \equiv \operatorname{Arf}(K) + \operatorname{Arf}(K') \mod 2$.

In § 2 it is shown that the figure eight knot 4_1 cannot be untied by a single $\#^2$ -move (Proposition 2.2). Here we show that $[4_1] \stackrel{\#^2}{\to} [O]$ is impossible for knot concordance classes. In other words, the following holds.

PROPOSITION 3.5. The figure eight knot does not bound a disk in punc($S^2 \times S^2$) representing a characteristic element.

PROOF. If the figure eight knot 4_1 bounded a disk in punc $(S^2 \times S^2)$ representing a characteristic element, then $[4_1] \stackrel{\#^2}{\longrightarrow} [O]$. Reversing the orientation of punc $(S^2 \times S^2)$, we obtain $[\overline{4_1}] \stackrel{\#^2}{\longrightarrow} [\overline{O}]$ with $\varphi([4_1], [O]) = -\varphi([\overline{4_1}], [\overline{O}])$. Since 4_1 and O are amphicheiral, $\varphi([4_1], [O]) = 0$. It then follows from Proposition 3.4(2) that $Arf(4_1) = 0$, which is absurd.

PROPOSITION 3.6. There is a 2-component link in $\partial(\text{punc}(S^2 \times S^2))$ which does not bound disjoint disks in $\text{punc}(S^2 \times S^2)$.

The rest of this section is devoted to proving this proposition. We define a band sum of a link as follows. Let L be a link in S^3 , and $f: I \times I \to S^3$ an embedding such that $f(I \times I) \cap L = f(\partial I \times I)$. We assume that if L is oriented, $f(I \times I)$ and L induce the opposite orientations to $L \cap f(I \times I)$. Then the link $L \cup f(I \times I) - f(I \times \operatorname{int} I)$ is said to be the *band sum* of L along the band $f(I \times I)$.

LEMMA 3.7. Let $L=K_1 \cup K_2$ be a 2-component link with $lk(K_1, K_2)$ even. Let K_3 be the band sum of L via arbitrary band connecting K_1 and K_2 . If none of K_i bounds a disk in $punc(S^2 \times S^2)$ representing a characteristic element, then L cannot bound two disjoint disks in $punc(S^2 \times S^2)$.

PROOF. Suppose for a contradiction that L bounds disjoint disks D_1 , D_2 in $M = \operatorname{punc}(S^2 \times S^2)$. Let α and β be generators of $H_2(M, \partial M)$, and set $[D_i] = x_i \alpha + y_i \beta$, i = 1, 2. Then K_3 bounds a 2-disk D_3 in M representing $[D_3] = [D_1] + [D_2] = (x_1 + x_2)\alpha + (y_1 + y_2)\beta$. Since $D_1 \cap D_2 = \emptyset$, $\operatorname{lk}(K_1, K_2) = [D_1] \cdot [D_2] = x_1 y_2 + x_2 y_1$ is even. Then $x_1 y_2 = x_2 y_1 = 1 \mod 2$ or $x_1 y_2 = x_2 y_1 = 0$. The former implies x_i , y_i are all odd, and hence $[D_3]$ is characteristic, a contradiction. Suppose the latter holds. Without loss of generality $x_1 = 0 \mod 2$. Since $[D_1]$, $[D_2]$ are not characteristic, it follows that $y_1 = 1$, $x_2 = 0$, and $y_2 = 1$. However, this implies $[D_3]$ is characteristic, a contradiction.

To construct such a link as in Lemma 3.7, we use a result from the theory of spatial theta curves. A labelled theta curve is a graph θ with two vertices labelled v_1 , v_2 , and three edges labelled 1, 2, 3. A spatial theta curve is the image of an embedding of a labelled theta curve into S^3 . The *i-th constituent knot* of a spatial theta curve is the union of the two edges labelled j and k where $\{i, j, k\} = \{1, 2, 3\}$. As for the representability of constituent knots, Kinoshita [5] proved:

THEOREM 3.8. Given knots K_1 , K_2 , K_3 , there is a spatial theta curve whose three constituent knots are equivalent to K_1 , K_2 , K_3 .

See the Appendix for a concise proof using a canonical diagram of knots.

PROOF OF PROPOSITION 3.6. Using Theorem 3.8, take a spatial theta curve, G, such that each constituent knot is equivalent to the figure eight knot. Let K be one of the constituent knots of G, and e the edge not contained in K. Take a band B in S^3 which connects K to itself and its centerline is the edge e. Then the band sum of K along B is a 2-component link, say $K_1 \cup K_2$ with $K_i \cong 4_1$. By twisting the band B, if necessary, we may assume that the linking number of K_1 and K_2 is even. Since $B \cap K_i$ is an arc for i=1, 2, we can regard the disk B as a band connecting K_1 and K_2 . Then, the band sum of the link $K_1 \cup K_2$ along B becomes K. Since the figure eight knot does not bound a disk in punc($S^2 \times S^2$) representing a characteristic element, the link $K_1 \cup K_2$ satisfies the hypothesis in Lemma 3.7. Therefore, by Lemma 3.7 this is a non-slice link in punc($S^2 \times S^2$).

Appendix. Proof of Theorem 3.8.

We first show the claim below by using a canonical diagram of knots due to Suzuki, Terasaka, and Yamamoto.

CLAIM. Given a knot K, there is a spatial theta curve such that one of its constituent knots is equivalent to K and the other two are trivial knots.

PROOF OF CLAIM. Let $L = \gamma_0 \cup \gamma_1 \cup \cdots \cup \gamma_u$ be the link in the diagram of Figure 9, where u = u(K), and let σ be the union of the left, right and lower sides of the rectangle γ_0 . Let $\Delta_1, \dots, \Delta_u$ be mutually disjoint disks in S^3 such that $\partial \Delta_i = \gamma_i$ and $\Delta_i \cap \gamma_0$ is a single point off σ for all i. Suzuki [10] showed that the knot K can be expressed as a band sum of L along mutually disjoint u bands B_1, \dots, B_u with the following properties (1) (2):

- (1) B_i connects γ_i and σ for $i=1, \dots, u$,
- (2) $B_i \cap \text{int } \Delta_j = \emptyset$ for all i, j. Moreover, Yamamoto [15] improved these in such a way that
- (3) when γ_0 is counterclockwise oriented, the u subarcs $B_1 \cap \sigma$, $B_2 \cap \sigma$, \cdots , $B_u \cap \sigma$ are located on σ in this order.

Figure 9.

This diagram is said to be a canonical diagram K. An example is Figure 10(a). Now attach an edge, e, to this diagram, say \widetilde{K} , of K so that $e \cap \widetilde{K} = \partial e = \partial \sigma$, $e \cap (\Delta_i \cup B_i) = \emptyset$ for all i, and the spatial theta curve $\gamma_0 \cup e$ lies on some plane after an ambient isotopy. (Cf. Figure 10(b).) Then, the constituent knots of the spatial theta curve $\widetilde{K} \cup e$ are $e \cup (\gamma_0 - \sigma)$, $e \cup (\widetilde{K} - (\gamma_0 - \sigma))$, \widetilde{K} ; the knot types are O, O, K respectively. Hence, $\widetilde{K} \cup e$ is the desired theta curve in Claim. \square

Let K_k $(1 \le k \le 3)$ be arbitrary knots. By Claim, for $1 \le i < j \le 3$ there is a spatial theta curve $f_{ij}: \theta \to S^3$ such that its k-th constituent knot is equivalent

Figure 10.

to O if $k \in \{i, j\}$, and K_k otherwise. Take the vertex connected sum of the three spatial theta curves $f_{12}(\theta)$, $f_{23}(\theta)$, $f_{13}(\theta)$ (Figure 11). (For the definition of a vertex connected sum refer to [14].)

Then the first constituent knot of the resulting theta curve is $O \# K_1 \# O \cong K_1$; the second one $O \# O \# K_2 \cong K_2$; the third one $K_3 \# O \# O \cong K_3$. Therefore, $f_{12}(\theta) \# f_{23}(\theta) \# f_{13}(\theta)$ is the desired spatial theta curve.

References

- [1] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Math., vol. 5, Walter de Gruyter, Berlin, 1985.
- [2] P.M. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc., 264 (1981), 353-380.
- [3] J. Hoste, Y. Nakanishi and K. Taniyama, Unknotting operations involving trivial tangles, Osaka J. Math., 27 (1990), 555-566.
- [4] L. Kauffman, On knots, Ann. of Math. Stud., vol. 115, Princeton Univ. Press, Princeton, New Jersey, 1987.
- [5] S. Kinoshita, On θ_n -curves in R^3 and their constituent knots, Topology and Computer Science, (ed. S. Suzuki), Kinokuniya, Tokyo, Japan, 1987, pp. 211-216.
- [6] H. Murakami, Some metrics on classical knots, Math. Ann., 270 (1985), 35-45.
- [7] Y. Nakanishi, A note on unknotting number, Math. Sem. Notes, Kobe Univ., 9 (1981), 99-108.
- [8] R.A. Norman, Dehn's Lemma for certain 4-manifolds, Invent. Math., 7 (1969), 143-147.
- [9] R. Robertello, An Arf invariant of knot cobordism, Comm. Pure Appl. Math., 18 (1965), 543-555.
- [10] S. Suzuki, Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad., 45 (1969), 34-38.
- [11] A.G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc., 66 (1969), 251-264.
- [12] O. Ya Viro, Link types in codimension-2 with boundary, Uspekhi Mat. Nauk, 30 (1970), 231-232, (Russian).
- [13] H. Wendt, Die gordische Auflösung von Knoten, Math. Z., 42 (1937), 680-696.
- [14] K. Wolcott, The knotting of theta curves and other graphs in S³, Geometry and Topology, (eds. C. McCrory and T. Shifrin), Marcel Dekker, New York, 1987, pp. 325-346.
- [15] M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl., 36 (1990), 291-298.

Katura MIYAZAKI

Faculty of Engineering Tokyo Denki University 2-2 Kanda-Nishikicho Tokyo 101

Japan

(E-mail: miyazaki@cck.dendai.ac.jp)

Akira Yasuhara

Department of Mathematical Sciences College of Science and Engineering Tokyo Denki University Hatoyama-Machi Saitama 350-03 Japan

Present Address

Department of Mathematics
Faculty of Education
Tokyo Gakugei University
Koganei, Tokyo 184
Japan

(E-mail: yasuhara@u-gakugei.ac.jp)