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Generalized #-unknotting operations
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Introduction.

We shall work in the P.L. and locally flat category. We discuss oriented
knots and links in S® Two knots are equivalent if there is an ambient isotopy
of S® carrying one knot to the other.

H. Murakami showed that any knot can be changed into a trivial knot
by repeatedly altering a diagram of the knot as in Figure 0.

A A A A

\ 4
Y

#-move

Y
\

Figure 0.

This move on a diagram is called the #-move or the #-unknotting operation.
In this note, generalizing this, we define for any prime p, a #P-move on a
knot diagram as shown in Figure 1. Note that even if p is fixed, x and
in Figure 1 may vary. (It is easy to define #?-moves for any integers p.
However, if p’ is a factor of p, then a #P?-move is also a #?"-move. We thus
consider #?-moves only for prime numbers p.) The #-unknotting operation
and the pass-move [4] are examples of #*-moves.

We shall show that for any prime p any knot can be transformed into a trivial
knot by a finite sequence of #?-moves (Theorem 1.1)). (In fact, if p is odd, a
combination of a certain #P-move and Reidemeister moves achieves a crossing
change.) Then we can define the #P-unknotting number u?(K) much like the
ordinary unknotting number. Since a family of #P-moves is a wide variety of
diagramatic changes, one might initially think that every knot can be untied
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by a single #?-move for some p and/or there might be an upper bound for
the values of #?-unknotting numbers. However, we shall show that:

PROPOSITION 1.6. Given n and p, there is a knot K such that u?(K)=n.
PROPOSITION 2.7. There is a knot K such that u?(K)>1 for any p.

Let M be S?XS? with a puncture. In §2, #?-moves are related to certain
disks properly embedded in M, and studied using results of 4-dimensional
topology. As an application, in § 3, we consider whether every link in oM=S?
bounds disjoint disks in M. It is already known that every knot bounds a disk
in M (Norman [8], Suzuki [10]). We shall show that this does not hold for a
2-component link (Proposition 3.6). We only find an obstruction of links being
slice in M for certain, not all, links.

PROBLEM. Find an obstruction for links to bound disjoint disks in S%xS?
with a puncture.

We summarize the notation used in this note. All manifolds will be assumed
to be oriented. For a manifold M, —M denotes M with the opposite orientation.
If M* is a closed 4-manifold, puncM* denotes M* with an open 4-ball deleted;
the orientation of d(puncM*) is the one induced from puncM*®. For a knot K

in S%, we write K for the knot —K in —S3. We write O for a trivial knot
in S3.
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1. #P-Moves.

If a diagram of a knot K’ is a result of one #P-move on a diagram of a

knot K, then we write KK’

THEOREM 1.1. For any prime p, a diagram of any knot can be transformed
into a diagram of a trivial knot by a finite sequence of #P-moves.

Before proving the theorem we define a function ¢,(K, K’) for K ®EK.If
a diagram of K’ is obtained from that of K by a single #?-move, then we define
¢p(K, K’) to be the sum of signs of the changed crossings. See Figure 2. Note
that ¢,(K, K’) does not depend on the orientation of K. However, ¢,(K, K’)
seems to depend on a diagram of K and the #P”-move to apply.

below says that ¢,(K, K’) depends only on p, K and K’. The proof will be
given in § 2.

A A

-+ —+ --6- = -.1' —_— #s‘move 1 1 ] 1 1 >

-] =] | e— >
HHIH =S —- B
oA et Bt Bl el hp s >
YyYvyy 4 YvyYy Y

K K’
¢s(K, K")=9
Figure 2.

THEOREM 1.2. Suppose KXK', Then for any #P-move transforming a
diagram of K into that of K', ¢,(K, K') takes the same value.

COROLLARY 1.3. (1) If K K', then K'*>K and ¢, (K', K)=—q¢,(K, K').
@) If K and K’ are amphicheiral knots such that K*>K', then ¢ (K, K")=0.

PROOF OF COROLLARY 1.3. We only prove (2). Let K be a diagram of K
which a single #?-move transforms into K’. Change all crossings of K and
the orientation ; then the sign of each crossing changes and K becomes a diagram

of K. 1t follows K¥ K’ with ¢,(K, K')=—¢,(K, K’). Since K and K’ are
amphicheiral, the equality implies ¢,(K, K')=0. 0
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We now give the proof of [Theorem 1.1.

Proor oF THEOREM 1.1. If p=2, then #2-moves contain the #-unknotting
operation in [6]. Thus a #*move is an unknotting operation.

If p is odd, then Figure 3 demonstrates how a combination of a certain
#P-move and isotopies achieves a crossing change. O

Given two knots K, K’, define the #?-Gordian distance d%(K, K’) to be the
minimum number of #?-moves which can transform a diagram of K to that of
K’. Given a knot K, define the #?-unknotting number u?(K) to be d& K, O).
The proof of then implies the following.

COROLLARY 1.4. If p is an odd prime, then de(K, K")=Zd¥ K, K’) where dg
is the Gordian distance defined in [6]. In particular, u(K)=u?(K) where u(K)
is the ordinary unknotting number of K.

ExAaMPLE 1. By the #?-unknotting number of the figure
eight knot 4, is 1 if p>2. On the other hand, if p=2, Figure 4 describes a

sequence 4,ﬁ§ﬁ0 where 3, is the right handed trefoil. Hence u*4,)<2. We
also see that ¢.(4,, 3,)=0 and ¢2(3;, O)=4. In §2 we shall see that u%4,)=2.

ExaMPLE 2. Let T(p, q¢) be the (p, ¢) torus knot. Since a 2n-full twist of
p parallel strings can be realized by a single #?-move (Figure 5), T(p, 2np+1)

2 T(p, £1)=0. Thus u?(T(p, 2np+1)=1 for any n, where ¢,(T(p, 2np=1), O)
=2np.

It is a standard technique to find lower bounds of unknotting numbers in
terms of the minimum number of generators of the first homology group of a
covering space [13], [7]. In this direction Nakanishi pointed out the following
estimates.

PROPOSITION 1.5. Let X, be the p-fold cyclic branched covering of S* along
a knot K. Let e,(K) be the minimum number of genmerators of H\(X,).
len(K)—ey(K")|

Then dEK, K') = 3p s

ep(K)
u”(K) g “%;,)‘“’.

PrOOF. First note that a #?-move is realized by three surgeries as shown
in Figure 6. The linking number of each surgery circle and the knot is a
multiple of p. Hence the preimage of each surgery circle in X, has p compo-
nents. In general, a single Dehn surgery changes the minimum number of
generators of the first homology group of an ambient manifold by at most one
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[3, Lemma 3]. Thus, if K* K’ then |e,(K)—e,(K')|<3p. The proposition
easily follows. O

The estimates in [Proposition 1.5 will be far from best possible, but are
enough to prove:

PROPOSITION 1.6. For any n and prime p, there is a knot whose #P-unknotting
number is greater than or equal to n.

Proor. By [Proposition 1.5 it suffices to prove that for given p and n there
is a knot K such that ¢,(K)=3pn. The figure eight knot 4, has a Seifert

matrix S:<_} (1)), for example see [1, p. 320]. Since det S=—1, M, =I—
(STS-Y)™ is a presentation matrix for the first homology group of the m-fold
cyclic branched covering along 4,. Hence, if det M,,#+1, then ¢,(4,)=1. A
calculation shows that det M, =2—(a™+ ™), where a=(3++/5)/2, f=(38—+/5)/2

are the eigenvalues of STS‘1:<% %) Since a>2, 2—(a™+B™)#+1 for m=2.

Thus, en(4)=1 for m=2, and so ¢,(#°**"4,)=3pn for any prime p and n. [J
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2. #P-moves from a 4-dimensional point of view.

In this section, we show that ¢,(K, K’) in §1 is well-defined and study its
properties via 4-dimensional topology. As shown below, ¢,(K, K’) approximates
o,(K")—a,(K), where ¢, is Tristram’s p-signature [11].

PROPOSITION 2.1. If K*>K', then the following hold.

1) |- [S]entk. K+asrr—a,K| 52,

where [x] is the greatest integer not exceeding x.

(2) _}IW(K, K’) = Arf(K)+Arf(K’) mod 2.

Note that the coefficient of ¢, in the inequality of (1) above equals 1 if
p=2, (p*—1)/p* if p>2.

REMARK 1. If a knot K’ is obtained from a knot K by a #-unknotting
operation [6], then we have K K’ with 0K, K')==4. It follows from
IProposition 2.1(1) that 0,(K')—a,(K)=—2, —4, —6 if @K, K’')=—4, and a,K")

—0y(K)=2, 4, 6 if @K, K’')=4. This recovers [6, Theorem 3.2], which is
proved by using a Goeritz matrix.

REMARK 2. Recall that Tristram’s p-signature ¢,(K) is the signature of
the Hermitian matrix V(&)=(1—&M+(1—&MT where M is a Seifert matrix of
a knot K and &=exp([p/2]2ni/p). Note that 2x/3<[p/2]2x/p=<w. The matrix
V(&) is singular if and only if £ is a root of the Alexander polynomial A(?) of
K. The signature of V(z) for z&S* is continuous at z=z, if V(z,) is a non-
singular matrix. Thus, if the arguments of the roots of A(f) do not lie in
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[27/3, =], then Tristram’s p-signatures of K do not depend on p.

As an application of [Proposition 2.1 we show :

PROPOSITION 2.2. u%(4,)=2.

ProorF. We know that u?(4,)<2 (Example 1 in §1). Assume for a contra-

diction that 41130. Since 4, is amphicheiral, 2) implies ¢.(4;, O)
=0. Then, applying [Proposition 2.1[(2) gives Arf(4,)=0, a contradiction. O

Lemma 2.3. If K¥ K', then there exists a properly embedded 2-disk A in
M=punc(S?x S? such that

(1) 0ACoOM is K# K,

(2) [AleH (M, oM) is divisible by p, and

(3) the intersection number [A]-[A] equals 2¢,(K, K').

PROOF. Suppose that K # K is in the boundary of a 4-ball D*. Note that

RK#K* K# K’ and that K # K bounds a 2-disk A in D*. Figure 7 shows that
doing 0-surgeries along [, and /, have the same effect on K # K as the #?-move,
Attach 2-handles h? and h3 to D* with framings 0 along /, and [, respectively.
Then M=D"Uh*Uh% is homeomorphic to punc(S*x S?) and (M, 0A)=(S*, K # K').
Orient [y, I, so that 1k(/,, ;))=1, and set x=lk(/,, K#K) and y=lk(l, K#K).
Then A represents xa+yBsHy,(M, M) where a, & H,(M, 0M) are represented
by the cocores of h3, h%, respectively. It follows that [A]-[A]=2xy=2¢,(K, K').
By the definition of #?-moves x and y are multiples of p, thus [A] is divisible

by p. O
K#K K#K'
P R
/
l
oV 1 0
ﬁ .
0
N N
oD* (D" Uh3Uh3)

Figure 7.
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LCemma 2.3 relates a #P-move to an embedded disk in punc(S?xS?. Then
and [Proposition 2.1 follow from the theorems in 4-dimensional
topology, Theorems and below. is originally due to Viro
[12]. It is also obtained by letting d=p» and a=[p/2] in the inequality of
Gilmer [2, Remarks (a) on p. 371]. is really Robertello’s definition
of the Arf invariant [9].

THEOREM 2.4. Let M be a compact, oriented 4-manifold with OM=@ or
=S® and F a properly embedded, oriented surface in M with 0F=@ or =S If
[FleHy M, 0M ; Z) is divisible by a prime integer p, then we have

2

o [—g](p—[—gDEF] [F1—0,(0F)—a(M)| < dim H(M ; Z,)+2 genus(F).

THEOREM 2.5. Let M and F be as in Theorem 2.4. If genus(F)=0 and F
represents a characteristic element of Hy(M, OM), then the following holds.

[F1-[F1—a(M)
8

where Arf(0F)=0 for 0F=0.

= Arf(0F) mod 2,

PrROOF OF THEOREM 1.2. Suppose that ¢,(K, K’) takes two values n, and
n,. By for each n; (i=1, 2), there is a properly embedded 2-disk
A, in M;=punc(S2xS?) such that: (1) 0A,CoM, is K# K’, (2) [A;] is divisible
by p, and (3) [A]-[A]=2n,.

Set M=M,\U(—M,), ¥=A,U,(—A,), where f is an orientation reversing
diffeomorphism from (0M,, 0A,) to (—0OM,, —0A,). Then M= #2*(S?xS?), Y=S2
[21eH,(M, dM) is divisible by p and [X]-[X]=2(n,—n,).

If p=2, then Theorems 2.9 give
),

[n,—n,| =

and

(m—ny) _ [2]-[2] _

i 8 mod 2.

This implies 7n,=n,.
Suppose p is an odd prime. By [Theorem 24,

(n— m)(pz 1){_“2_3_[_5_1@1 <4.

By the definition of a #?-move, both n, and #n, are multiples of p% If n;#n,,
then



Generalized F-unknotting operations 117

o [

p

This contradicts p>2. It follows n,=n.. O
PROOF OF PROPOSITION 2.1. By and we have

4 p p ' 7a ’

il Z N[5 Dentr K10 R K| 2.

Since ¢,(K# K')y=—a,(K)+a,(K') for any prime integer p, we have (1) of the
proposition. [Proposition 2.1(2) follows from [Lemma 2.3 and [Theorem 2.5 We
omit the detail. u

COROLLARY 2.6. If there is a ‘triangle’ sequence of #P-moves K, # K, #
KzﬂKo, then SDp(Ko, Kl)‘l‘@p(Kl, KZ)+‘Pp(K2; Ky)=0.
Proor. For simplicity, set a=@/p®)[p/21(p—1[p/2]), K:=K, and x=

20Ky, Ki). Apply [Proposition 2.1(1) to sequences Ki_lﬁKi and add
those three inequalities; then

3
i=21 lagy (Ko, K)+o,(Kio)—0,(Ky)| 6.

Hence |ax+0,(Ky)—0,(K;)| <6, so that |(x|=<6/a. If p>2, 6/a=6p*/(p*—1)
<27/4; otherwise, 6/a=6. Since ¢, and thus x are multiples of p? it follows
x=0 for p>2 as desired.

If p=2, then x=0, +=4. On the other hand, adding the three equalities

obtained by applying [Proposition 2.1(2) to Ki_lﬁ K, (1<:<3), we obtain x/4=
Arf(K,)+Arf(K;)=0 mod 2. Hence, x=0. ' O

REMARK. does not necessarily hold for an ‘n-gon’ sequence

of #P-moves if n>3. By Example 1 in §1 there is a sequence 4,#—2>3“1£O
such that ¢.(4,, 3)=0 and (31, O)=4. By the amphicheirality of 4,, changing

all the crossings in Figure 4 yields a sequence 41f§31f30 such that ¢.(4,, 3.)
=0, @3, O)=—4, where 3, is the left handed trefoil. We thus obtain a

‘4-gon’ sequence 4,%3, %0 %3, %4, such that gu(4;, 3)+0:(3:, O)+s(0, 3)
+ (31, 41)=8+0. O

PROPOSITION 2.7. There is a knot K such that min, u,(K)=2.

ProOF. We show that 5,#5, is the desired knot. Set K=5,. Figure 8

shows that O %> K with ¢©,(0, K)=0 for any p. This extends to a sequence
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OB KK #K with ¢,(0, K)=¢,(K, K# K)=0. Suppose K# K* 0 for some
p.  Then, by those sequences and we have ¢ (K#K, O)=
—¢p(0, K)—¢,(K, K# K)=0. [Proposition 2.1(1) then implies |o,(K# K)|=2.
Since ¢,(K) is even, ¢,(K)=0 for some p. This is absurd because o¢,(K)=

for any prime p as proved below. It is known that o¢,(K)=2 [1, p. 312], so
it suffices to see 0,(K)=0,(K). Now the roots of the Alexander polynomial
2t2—3t42 of 5, are ¢'Y where cos §=3/4, so 8&[2x/3, =]. Hence, by Remark 2
after Proposition 2.1, ¢,(5,)=04(5,)=2. O

O -@&

trivial knot

Oq
Figure 8.

3. Non-slice links in punc(S*Xx S?).

To construct a non-slice link in punc(S?x S?, we first define a #%move for
knot concordance classes. The definition is based on the 4-dimensional;proper-
ties of #%moves stated in Lemma 2.3.

DerINITION 3,1. Let C, C’ be knot concordance classes. We write CﬁC’
if there are a properly embedded disk ACpunc(S2xS? and knots KeC, K'e(C’
satisfying the following :

(1) 0ACOM is a knot K# K’

(2) [AleH,(M, dM) is divisible by 2, i.e., characteristic.

DEFINITION 3.2. Let C, C’ be knot concordance classes. If CfﬁC’, then
define ¢(C, C’) to be a half of the intersection number [A]-[A] where A is the
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disk in Definition 3. 1.

REMARKS. (1) If K*>K’ for knots K, K’, then Lemma 2.3 implies that

[K1%[K'] and (K], [K'})=¢.K, K’) where [x] denotes knot concordance
class.

(2) Suppose C# ¢’ for some knot concordance classes C, C’; then for any
knots KeC, K'e(C’ there is a disk A in punc(S?xS?) satisfying (1) and (2) in
Definition 3.1

The disk A in satisfies conditions (1), (2) of
Therefore the proofs of and [Proposition 2.1 readily imply the
following results on a #%*move of concordance classes.

PROPOSITION 3.3. Let C, C' be knot concordance classes. If CﬂC’, then
©(C, C’) does not depend on the choice of a disk A and representatives of C, C'.

PROPOSITION 3.4, Let C, C’' be knot concordance classes, and knots K, K’

their representatives, respectively. If C£C’, then
(D) 1e(C, C)+a(K)—ax(K")| < 2,

2) %ﬂ—go(c, C’) = Arf(K)+Arf(K’) mod 2.

In §2 it is shown that the figure eight knot 4, cannot be untied by a single

#2-move (Proposition 2.2). Here we show that [4,] # [O7] is impossible for knot
concordance classes. In other words, the following holds.

PROPOSITION 3.5. The figure eight knot does not bound a disk in punc(S?x S?)
representing a characteristic element.

Proor. If the figure eight knot 4, bounded a disk in punc(S%xS?) repre-
senting a characteristic element, then [41]1’5[0]. Reversing the orientation

of punc(S*xS?), we obtain [4,]1%[0] with o([4,], [0))=—e([4], [01). Since
4, and O are amphicheiral, ¢([4,], [0])=0. It then follows from
3.4(2) that Arf(4,)=0, which is absurd. 0

PROPOSITION 3.6. There is a 2-component link in d(punc(S?X S?) which does
not bound disjoint disks in punc(S?XS%).

The rest of this section is devoted to proving this proposition. We define
a band sum of a link as follows. Let L be a link in S3 and f:IXI—S® an
embedding such that f(IXI)NL=/f@IxI). We assume that if L is oriented,
f(IxI) and L induce the opposite orientations to LN f(IXI). Then the link
LUf(IxI)— f(Ixint I) is said to be the band sum of L along the band f(/XI).
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LeMMA 3.7. Let L=K, UK, be a 2-component link with Ik(K,, K,) even. Let
K be the band sum of L via arbitrary band connecting K, and K,. If none of
K; bounds a disk in punc(S*XS®) representing a characteristic element, then L
cannot bound two disjoint disks in punc(S*XS?).

PROOF. Suppose for a contradiction that L bounds disjoint disks D,, D, in
M=punc(5*xS?). Let a and B be generators of H,(M, 0M), and set [D;]=
xa+y:B, i=1, 2. Then K, bounds a 2-disk D; in M representing [Ds]=[D,]
+[D.]=(x1+x)a+(y,+y2)B. Since DiNDy=@, k(K,, K;)=[D,]-[D:]=x,y.+
x:y, is even. Then x,y,=x,y,=1 mod 2 or x,y,=x.y,=0. The former implies
x; ¥; are all odd, and hence [D,] is characteristic, a contradiction. Suppose
the latter holds. Without loss of generality x,=0 mod 2. Since [D,], [ D,] are
not characteristic, it follows that y,=1, x,=0, and v,=1. However, this implies
[D,] is characteristic, a contradiction. O

To construct such a link as in[Lemma 3.7, we use a result from the theory
of spatial theta curves. A [abelled theta curve is a graph 6 with two vertices
labelled v,, v, and three edges labelled 1, 2, 3. A spatial theta curve is the
image of an embedding of a labelled theta curve into S® The i-th constituent
knot of a spatial theta curve is the union of the two edges labelled ; and #
where {7, 7, k} =1{1, 2, 3}. As for the representability of constituent knots,
Kinoshita [5] proved:

THEOREM 3.8. Given knots K,, K,, K,, there is a spatial theta curve whose
three constituent knots are equivalent to K., K, K..

See the Appendix for a concise proof using a canonical diagram of knots.

PROOF OF PROPOSITION 3.6. Using [Theorem 3.8 take a spatial theta curve,
G, such that each constituent knot is equivalent to the figure eight knot. Let
K be one of the constituent knots of G, and ¢ the edge not contained in K.
Take a band B in S® which connects K to itself and its centerline is the edge
e. Then the band sum of K along B is a 2-component link, say K,\UK, with
K;=4,. By twisting the band B, if necessary, we may assume that the linking
number of K; and K, is even. Since BNK; is an arc for /=1, 2, we can regard
the disk B as a band connecting K, and K,. Then, the band sum of the link
K, UK, along B becomes K. Since the figure eight knot does not bound a disk
in punc(S*XS?) representing a characteristic element, the link K,\UK, satisfies
the hypothesis in Therefore, by Lemma 3.7 this is a non-slice
link in punc(S%XS?). [y
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Appendix. Proof of Theorem 3.8.

We first show the claim below by using a canonical diagram of knots due
to Suzuki, Terasaka, and Yamamoto.

CLAIM. Given a knot K, there is a spatial theta curve such that one of its
constituent knots is equivalent to K and the other two are trivial knots.

PROOF OF CLAIM. Let L=py,\Uy,\J - Uy, be the link in the diagram of
Figure 9, where u=u(K), and let ¢ be the union of the left, right and lower
sides of the rectangle 7,. Let 4, ---, A, be mutually disjoint disks in S* such
that 0A;=y; and A;N\y, is a single point off ¢ for all 7. Suzuki showed
that the knot K can be expressed as a band sum of L along mutually disjoint
u bands B,, ---, B, with the following properties (1) (2):

(1) B, connects y; and ¢ for /=1, -, u,

(2) BinintA;=¢@ for all 4, J.

Moreover, Yamamoto improved these in such a way that
(3) when 7, is counterclockwise oriented, the u subarcs B;N\e, B.No, -,
B.MNo are located on ¢ in this order.

é

L
Figure 9.

This diagram is said to be a canonical diagram K. An example is Figure 10(a).

Now attach an edge, e, to this diagram, say [z', of K so that en\K=0e=dc,
eN(AUB)=¢ for all 7, and the spatial theta curve 7, ¢ lies on some plane
after an ambient isotopy. (Cf. Figure 10(b).) Then, the constituent knots of the
spatial theta curve Ke are e\J(yy—0), e‘u(k—(yo~0)), I?; the knot types are
0, O, K respectively. Hence, K\ e is the desired theta curve in Claim. O

Let K, (1<k<3) be arbitrary knots. By Claim, for 1</< /<3 there is a
spatial theta curve f;;: 8§ —S® such that its %-th constituent knot is equivalent
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(a) canonical diagram (b)
e
T T2 Ts
2
®
K\Je
Figure 10.

to O if k= {i, 7}, and K, otherwise. Take the vertex connected sum of the

three spatial theta curves f,.(8), f2(0), f13(8) (Figure 11). (For the definition of
a vertex connected sum refer to [14].)

f1:(0) f23(8) f1s(6)
s 1

(IS4 oniavppses | &

[ 3][ \/\-/\/SJL

eIl 1 e

vertex 1 connected sum

/AW W N\
WA AW \W T ]
:l _J:l l:l /\ /\ /-\ I
N NN/ B 1 J
H Y B s
F12(0)# 123(0)# f15(0)
Figure 11.

Then the first constituent knot of the resulting theta curve is O # K, # O=K, ;
the second one O#0 # K,=K,; the third one K;# 0O #0O=K,  Therefore,
F12(0) £ fa3(8) # f1:(0) is the desired spatial theta curve. 0
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