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1. Main result.

Unless stated otherwise, Lie algebras mentioned in this paper are always
assumed to be finite dimensional over algebraically closed field $F$.

For $x\in L$ , denote $C(x)$ the centralizer of $x$ in L. $L$ is called to be cen-
tralizer nilpotent (abbreviated c. n.) provided that the centralizer $C(x)$ is nil-
potent for all nonzero $x\in L$ . Such algebras have been studied by Benkart and
Isaacs in [1].

For $x\in L$ , denote $E_{L}(x)$ the Engle subalgebra of $L$ determined by $x$ , i. e.,
the Fitting null-component of ad $x$ in L. $L$ is called to be Engel subalge-
braically anisotropic (abbreviated E. $a.$ ) if every proper Engel subalgebra $E_{L}(x)$

of $L$ has no any ad-nilpotent element of $L$ . E. $a$ . Lie algebras have been studied
by Varea in [2].

In many special cases, [2] has proved that E. $a$ . Lie algebras are $c$ . $n.$ .
It is conjected that only E. $a$ . simple Lie algebras are $sl(2, F),$ $W_{p}(F)$ and
$sl(3, F)/F\cdot 1$ , where char $F=p>0$ . Under this conjecture, [2] has proved that
every E. $a$ . Lie algebra is $c.n.$ .

The aim of this short paper is to prove Varea’s conjecture. In fact, the
way used here is more direct than that of [2]. We will prove the following

THEOREM. Let $L$ be a Lie algebra over an algebraically closed field $F$.
Then $L$ is E. $a$ . if and only if $L$ is $c.n.$ .

2. The proof of Theorem.

Sufficiency can be follow upon application of Theorem 2.5 of [1]. The main
effort in the following will be to prove the necessity. Some preliminaries will
be needed.

Let $U$ be an abelian subalgebra of $L$ . Then $L$ can be decomposed into
direct sum of weight spaces $L_{\lambda}$ . That is, $L= \sum_{\lambda}L_{\lambda}$ , where $L_{\lambda}$ is the largest
subspace of $L$ on which ad $u-\lambda(u)$ is nilpotent for all $u\in U$ . Let $K_{\lambda}=\{\eta\in L|$

ad $u(\eta)=\lambda(u)\eta$ , for all $u\in U$ }, $K=\Sigma_{\lambda}K_{\lambda}$ . Then $K$ is a subalgebra of $L$ , for
$[K_{\lambda}, K_{\mu}]<K_{\lambda+\mu}$ .
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Motivated by [3], we have

LEMMA 1. Let $D\in Der$ L. If there exists an integer $n$ such that $D^{n}(K)=0$ ,

then $D$ is nilpotent on $L$ .
PROOF. For an eigenvalue $\lambda$ of $D$ , let $L^{\lambda}$ be the largest subspace of $L$

on which $D-\lambda$ is nilpotent. Then $L=\Sigma_{\lambda}L^{\lambda}$ and $[L^{\lambda}, L^{\mu}]\subseteqq L^{\lambda+\mu}$ . Since
$D^{n}(K)=0,$ $K\subseteqq L^{0}$ and hence $U\subseteqq K_{0}\subseteqq K\subseteqq L^{0}$ . So, $[U, L^{\lambda}]\subseteqq[L^{0}, L^{\lambda}]\subseteqq L^{\lambda}$ , that
is, $L^{\lambda}$ is a $U$-submodule of $L$ .

Suppose that $L^{\lambda}\neq 0$ . Since $U$ is abelian, there exists $\eta\in L^{\lambda}$ such that $\eta$ is
a common eigenvector of ad $U$ . Clearly, $\eta\in K$. So, $L^{0}\cap L^{\lambda}\supseteqq K\cap L^{\lambda}\neq 0$ and
therefore $\lambda=0$ . The result follows.

It is clear that the subalgebra of a $c$ . $n$ . algebra is yet $c$ . $n.$ . However, it
is difficult to prove that the subalgebra of an E. $a$ . algebra is E. $a.$ . By Lemma
1, we can prove the following

LEMMA 2. Let $L$ be E. $a.$ , then $K$ is E. $a$ . for every abelian subalgebra $U$

of $L$ .

PROOF. Let $x\in K$ such that $ad_{K}x$ is not nilpotent. Then $ad_{L}x$ is certainly
not nilpotent. Since $L$ is E. $a$ . and $E_{K}(x)\subseteqq E_{L}(x),$ $E_{K}(x)$ has no nonzero ad-
nilpotent element of $L$ . By Lemma 1, $E_{K}(x)$ has no nonzero ad-nilpotent ele-
ment of $K$. So, $K$ is E. $a.$ .

The following lemma is due to Benkart and Isaacs [1].

LEMMA 3. Suppose that $G$ is a $c.n$ . Lie algebra over F. Let $U\subseteqq G$ be a nil-
potent subalgebra with $\dim U\geqq 2$ . Then ad $u$ is nilPotent on $L$ for all $u\in U$ .

PROOF OF THEOREM. On the contrary, suppose that $L$ is a Lie algebra
such that

(1) $L$ is E. $a$ . but not $c.n$ . ;
(2) $L$ has the lowest dimension with respect to property (1).

The aim in the following is to prove that the centralizer $C(x)$ of $x$ for all
$0\neq x\in L$ is nilpotent. And this contradicts with above hypotheses on $L$ .

Let $0\neq x\in L$ . If $C(x)=Fx$ , then $C(x)$ is nilpotent clearly. So, in the fol-
lowing, we consider only the case of $C(x)\neq Fx$ . There are two posibilities:

Case 1: For all $y\in C(x)\backslash Fx,$ $U=Span\{x, y\}$ is toral on $L$ , i. e., every ele-
ment in $U$ is ad-semisimple on $L$ .

In this case, $C(x)$ is toral on $L$ . For $F$ is algebraically closed, $C(x)$ is
abelian. Of course, $C(x)$ is nilpotent.

Case 2: There exists $y\in C(x)\backslash Fx$ such that $U=Span\{x, y\}$ is not toral
on $L$ .

In this case, we decompose $L$ into weight spaces $L_{\lambda}$ relative to $U$ . That
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is, $L=\Sigma_{\lambda}L_{\lambda}$ , where $L_{\lambda}=\{x\in L|$ there exists an integer $n$ such that (ad $\eta-$

$\lambda(\eta))^{n}(x)=0$ for all $\eta\in U$ }. Let $K_{\lambda}=$ { $x\in L|ad\eta(x)=\lambda(\eta)x$ for all $\eta\in U$ } and
$K=\Sigma_{\lambda}K_{\lambda}$ . Then $K$ is a subalgebra of $L$ . Since $U$ is not toral, $\dim K<\dim L$ .
By Lemma 2, $K$ is E. $a.$ . By the hypotheses on the dimension of $L,$ $K$ is $c$ . $n.$ .
Then it follows from Lemma 3, ad $u$ is nilpotent for all $u\in U$ . In particular,
ad $x$ is nilpotent.

In this case, if there exists $z\in C(x)\backslash Fx$ such that $W=Span\{x, z\}$ is toral
on $L$ , then $x\in Z(L)$ , the center of $L$ . Therefore, $Z(L)\neq 0$ . It follows from
Proposition 2.1 of [2] that $L$ is nilpotent. It is a contradiction. Thus, in the
case 2, every element in $C(x)$ is nilpotent on $L$ . In particular, $C(x)$ is nil-
potent.

Above discussion shows that, in any cases, $L$ must be $c$ . $n.$ . This con-
tradicts with the hypotheses on $L$ .
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