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   Introduction. 

   Let X be a projective variety with Gorenstein, rational singularities. Let 
cp : X-Y be a surjective morphism with connected fibers from X to a normal 

projective variety Y. Let L be a cP-ample line bundle and assume that K~r is 
not cp-nef. Then the Kawamata rationality theorem states that there is a posi-
tive fraction z=u/v, where u, v are positive coprime integers, and such that 

   a) KX+rL is cP-nef but not so-ample ; 
   b) u<_maxyEY{dim c-1(y)} +1. 

If u takes on the maximal value, max2,EY {dim cp-1(y)} +1, allowed by the Kawa-
mata rationality theorem, then X is a Pu-1 bundle over Y (see (2.2)). More-
over there is an ample line bundle £ on X such that KX +L u cp*H for an 
ample line bundle H on Y, and thus X=P(e) for the ample vector bundle e= 

   If L is ample and K~ is not nef, the Kawamata rationality theorem and 
the Kawamata-Shokurov base point free theorem imply that there is a fraction, 
r=u/v, with u, v positive coprime integers (called the nef value of the pair 

(X, L)) and a morphism c : X-~Y with connected fibers (called the nef value 
rnorphisrn of the pair (X, L)) onto a normal projective variety Y such that 

   i) vKX+uL~c5*H for an ample line bundle H on Y, 
   ii) u<_maxYEY{dim c-1(y)} +1. 

   We saw that u=max5EY {dim ¢ 1(y)} +1 implies that ¢ : X-~Y is very special. 
In our main result, (1.4.2), we study the structure of the nef value morphism, 

¢, in the case when u=maxyEY {dim ¢1(y)}. If the nef value morphism is bira-
tional we need a smoothness assumption on X. 

   We would like to thank the Max-Planck-Institut fur Mathematik in Bonn 
for its support. This paper was conceived and worked out during the authors' 
stay at the Max-Planck-Institut in July, 1991. The second author would like to 
thank the National Science Foundation (NSF Grant DMS 89-21702) for its sup-

port. 
   We would like to thank the referee for suggesting improvements of Theo-
rem (2.2). The original proof was longer and only worked in the smooth case.
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   § 0. Background material. 

   (0.1) Notation. We work over the complex field C. By variety we mean 
an irreducible and reduced projective scheme, V. We denote its structure sheaf 
by OV. 

   Basically we use the standard notation from algebraic geometry. We almost 
always follow the notation of [BS1]. We refer to it and to [KMM] for de-
finitions of the following : Q-divisor, Q-Cartier divisor, Q-factorial, Q-Gorenstein, 

numerically effective (nef, for short), numerical equivalence (denoted by '), 
linear equivalence (denoted by ) of Q-divisors, intersection of cycles (denoted 
by ". "), canonical divisor, terminal, log-terminal, and canonical singularities. 
Note that for Gorenstein varieties, rational, canonical, and log-terminal sin-

gularities are all equivalent (see [KMM], (0.2)). 
   The smallest positive integer, r, such that rKV is a line bundle, where Ky 

is the canonical divisor of a normal variety V, is called the index of V. 
   Linear equivalence classes of Weil divisors on a normal variety and iso-

morphism classes of reflexive sheaves of rank 1 are used with little (or no) 
distinction. Hence we shall freely switch back and forth between the multi-

plicative and additive notation for divisors. 
   We fix some more notation (here £ denotes a rank 1 reflexive sheaf on a 

      variety V). 
    £ , the complete linear system associated to eC ; 

   PC C), the space of the global sections of £ ; we say that £ is spanned if 
      £ is spanned at all points of V by ['(..C); 

   f (co), the dimension of the general fiber of a surjective morphism with 
       connected fibers, cP : V - *Y, of two varieties V, Y. 

   Let cp : V--*Y be a surjective morphism of varieties. Let £ be a rank 1 
reflexive sheaf such that r..E is a line bundle for some positive integer r. We 

say that £ is cp-ample if r..E Is cp-ample in the ordinary sense (see e. g. [I], 
Chapter 7). 

   (0.2) Nef values. The following Theorem, due to Kawamata, inspired 
this paper. We state here the results in the case of terminal singularities 
which occur in the adjunction theory (see e. g. [BS1]), even though they hold 
true in the more general case of log-terminal singularities (see [KMM], 4.1). 

   (0.2.1) Kawamata Rationality Theorem. Let V be a normal variety of 
dimension n with terminal singularities and let r be the index of V. Let n : V 
-~S be a projective morphism onto a variety S . Let L be a ;r-ample line bundle 
on V. I f KV is not n-nef, , then 

                   r min {tER, KV+tL is 2r-nef }
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is a positive rational number. Furthermore expressing rr=u/v with u, v positive 

coprime integers, we have u <_r(b+l) where b=maxSEs {dim 7r-1(s)}. 

   With the notation as in (0.2.1) we say that the rational number r is the ~r-

nef value of (V, L). If S is a point, z is called the nef value of (V, L). Note 

also that, if S is a point, then KV-FrL is nef and hence by the Kawamata-

Shokurov Base Point Free Theorem ([KMM], 3) we know that m(KV+zL) 
is base point free for m>>0 such that mr and m/r are integral, and defines a 

morphism, ~5, which we call the nef value morphism of (V, L).

   (0.2.2) REMARK. Let (V, L) be as in (0.2.1). Let v be the nef value of 
(V, L) and let ~5 be the nef value morphism of (V, L). Then 

       r = min {tE-R, Ky+tL is nef} = min {tER, KV+tL is ~5-nef} . 

That is, v coincides with the ~5-nef value of (V, L). 

   (0.2.3) LEMMA ([BS1], (0.8.3)). Let V be a normal variety with terminal 
singularities. Let L be an ample line bundle on V. A rational number r is the 

nef value of (V, L) if and only if KV+rL is nef but not ample. 

   (0.3) Let V be an n-dimensional normal variety with canonical singularities. 
Define 

   Z1(V) = the free abelian group generated by reduced irreducible curves; 
  N1(V) = {Z1(V)/'} ®R; 

   NE(V) = the convex cone in N1(V) generated by the effective 1-cycles; 

          NE(V)=the closure of NE(V) with respect to the Euclidean 

          topology. 

A part of Mori's theory of extremal rays is to be used throughout the paper. 

We will use freely the notion of extremal ray, extremal rational curve, as well 

as the basic theorems such as Cone Theorem and Contraction Theorem. We 
refer the reader to [M] and [KMM]. 

   In particular we will denote by p=contR : V -Y the morphism given by the 

contraction of an extremal ray R. We also simply refer to p as Mori contrac-

tion. We say that p is of fiber type if n>dim Y and R is nef in this case. 
If R is not nef then p is a birational morphism. If r is a 1-dimensional cycle 

in V we will denote by R+[r], where R+={xER, x>_0}, or [r] its class in 

NE(V ). 

   If V is smooth, the length 1(R) of an extremal ray R is defined as 

          1(R) := min {-KY C, C rational curve and [C]ER}. 

We will denote by E(R) the locus of R, that is the locus of curves whose 

numerical classes are in R. We say that R is of divisorial type if dim E(R)=
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n -i. Let e be any irreducible component of the locus, E(R), of R and let 4 

be an irreducible component of any fiber of the restriction pc : e--ap(e). If V 
is smooth, we have the following result of Wisniewski [W], (1.1) (see also 

[lo], (0.4)) 

(0.3.1) dim e+dim 4 >_ n+l(R)-1. 

   (0.3.2) LEMMA ([BS1], (0.4.3)). Let V be a normal pro3ective variety with 
at most canonical singularities. Let L be an ample line bundle on V and let t 

be some positive rational number such that KV+tL is nef. Let C be an effective 
curve in NE(V) such that (KV+tL) • C=0. Then C can be written in NE(V) as 

a finite sum C=~~AiC1 where A ER+ and R+[C1] are extremal rays such that 

(KV+tL) Ci=0 for all i. In particular if V is nonsingular the curves Ci can 
be taken to be extremal rational curves. 

    (0.3.3) LEMMA. Let V be an n-dimensional smooth profective variety. Let R1, 
R2 be two distinct extremal rays of length l(R1), i=1, 2. Let E(RA) be the loci 

of Ri, i=1, 2. If l(R1)+l(R2)>_n+3 then E(R1)nE(R2)=O. 

   Furthermore if R1, R2 are not nef and l(R1)+l(R2)>_n+1 then E(R1)nE(R2) 
=0. 

   PRooF. Assume E(R1)nE(R2) ~ 0 and take a point v n E(R1)f E(R2). Let 

p~ be the contraction of R, and let 4~ be an irreducible component of a fiber 
of p~ with v~427 i=1, 2. If dim(J1nd2)>-1, there exists a curve, C, contained 

in 41n42 which contracts to a point under pl, p2. Therefore [C] E R1, [C] R2. 

This leads to the contradiction R1=R2. Thus we have 

                  0 = dim (41n42) >_ dim 41+dim 42--n 

and hence 

(0.3.3.1) dim 41+dim 42 - n. 

By (0.3.1) we have, for i=1, 2, 

              n+dim 4Z >_ dim E(R1)+dim 4. >_ n+l(R1)-1. 

This gives dim 41+dim 42>_l(R1)+l(R2)-2>_ n+l, which contradicts (0.3.3.1). 
    If p,, p2 are birational, (0.3.1) yields, for i=1, 2, 

             n-l+dim 41 >_ dim E(R2)+dim 4, >_ n+l(R1)-1. 

   This gives dim 41+dim 42>_l(R1)+l(R2)>_ n+1, the same contradiction as 

above. Q.E.D. 

    REMARK (0.3.3.2). Notation as in (0.3.3;. The proof above shows that 

E(R1)nE(R2)'=0 if l(R1)+l(R2)) n+3-codvE(R1)-codvE(R2). Note that inn this
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case the assumption that R1, R2 are not nef is not needed. 

   (0.4) Some special varieties. Let V be a normal variety of dimension n 
and index r, L an ample line bundle on V. We say that (V, L) is a scroll 

(respectively a quadric fibration) over a normal variety Y of dimension m if 
there exists a surjective morphism with connected fibers p : V -+Y, such that 
r(KV+(n-m+1)L)~ p*J: (respectively r(KV+(n-m)L)N p*() for some ample 
line bundle .i: over Y. 

   We say that (V, L) is a Pd bundle over Y if there exists a surjective 
morphism p : V -Y such that all fibers F of p are Pd and L F ~' Opa(l). 

   For any further background material we refer to [BS1] and [KMM]. 

    1. On the structure of the nef value morphism. 

   Let X be a projective, irreducible, variety of dimension n with Gorenstein, 
rational singularities. Hence in particular, X has log-terminal singularities (see 

[KMM], (0.2)). Let L be an ample line bundle on X. Let r=u/v be the nef 
value of (X, L), u, v coprime integers. Let 0 : X--W be the nef value mor-

phism of (X, L). From the Kawamata Rationality Theorem we know that u <_ 
maxwEW {dim O-1(w)} +1. In this section we study the structure of ~5 in the 
cases when either u=maxwEW {dim c-1(w)} +1 or u=maxwEW {dim c-1(w)}. 

   First we need the following preparatory lemmas. 

   (1.1) LEMMA. Let u, v coprime positive integers. Then there exist positive 
integers a, b such that av--bu=1. 

   PROOF. There exist integers a', b' such that a'v-b'u=1. If a'>0, b'>0 
we are done. If not, let a := a'+Au, b := b'-F2v for A»0. Therefore 

                av-bu = (a'+Au)v-(b'+Av)u = a'v-b'u=1 

and a>0, b>0 for A>>0. Q. E. D. 

   (1.2) LEMMA. Let X be a normal projective variety with log-terminal sin-

gularities and let r be the index of X. Let L be an ample line bundle on X. 
Let c t: X--~Y be a surjective morphism onto a normal variety Y. Assume that cp 
has at least one positive dimensional fiber and that rvKx+uL ~cp*H for some 

ample line bundle H on Y and coprime positive integers u, v. Let £ := brKx 
+aL where a, b are as in (1.1). Then £ is ample, rKX+uL~co*(aH) and 
u/r is the nef value of (X, £). 

   PROOF. Since av-bu=1 by Lemma (1.1) we have 

   rKX+uL = r(1+ub)KX+auL = ravK~~H-auL = a(rvKx+uL)~ce*(aH).
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Hence in particular rKx+u~ is nef but not ample, so that u/r is the nef 
value of (X, £) by (0.2.3). Note that £=brKx+aL is ample since rvKx+uL 
is nef and a/br=1/brv+u/rv>u/rv. Q. E.D. 

   The following consequence of (1.2) improves (3.1.1.2) of [BSW]. 

   (1.3) COROLLARY. Let X be a smooth connected projective variety, L an 
ample line bundle on X. Let r=u/v be the nef value of (X, L) and let ~b : X->Y 
be the morphism with connected fibers associated to I m(KX+rL) for m»0. 
Assume that ~5 is not birational. If u>_n/2+1, ~S is a fiber type contraction of 

an extremal ray R. Let £ be the ample line bundle on X given by (1.2). Then 
Pic(X)~c* Pic(Y)~Z[..E] unless u=n/2+1, (X, £)^'(Pn/2XPni2, OpnI2Xpnr2(1)) 
and dim Y=O. 

   PROOF. By the Rationality Theorem (0.2.1), r=u/v where u, v are coprime 

positive integers. By Lemma (1.1) there exist positive integers a, b such that 
av-bu=1. 
   Let £ := bKx+aL. From Lemma (1.2) we know that £ is ample, KX+uL 
=a(vKx+uL)~c*(aH) for an ample line bundle H on Y and u is the nef 

value of (X, £). From Kx+uC~c*(aH) it thus follows that the nef value 
morphism of (X, £) coincides with ~S. Therefore from [BSW], (3.1.1.2) we 
conclude that, if u > n/2+1, ~5 is a fiber type contraction of an extremal ray 
and Pic(X)~~5* Pic(Y)~Z[..C] unless a=n/2+1 and (X, £)=(Pn~2xPn'2, 
Opnl2X pn/2(1)) and dim Y=O. Q. E. D. 

   We can prove now the main result of this paper. 

   (1.4) THEOREM. Let X be a projective, irreducible, variety of dimension n 
with Gorenstein, rational singularities. Assume Kx is not nef. Let L be an 
ample line bundle on X. Let r=u/v be the nef value of (X, L), u, v coprime 

positive integers. Let ~S: X-4W be the nef value morphism of (X, L). Let £ :_ 
bKX+aL be an ample line bundle on X given by (1.2). 

   (1.4.1) Assume that u=maxwEW {dim ~ 1(w)} +1. Then (X, £) is a scroll 
over W under ~b. I f X is smooth, or more generally i f codim Sing (X) > dim W, 
then (X, £) is in fact a PU_1 bundle over W under ~5. Furthermore ~5 is a 

fiber type contraction of an extremal ray. 
   (1.4.2) Assume that u=maxwEW {dim c-1(w)}. If ~5 is not birational, then 

either 
   i) (X, .C) is a scroll over W under c ; or 

   ii) (X, £) is a quadric fibration over W under ~5, and all fibers are equi-

   dimensional. 
       If ~b is birational, X is smooth, and u>__(n+1)/2, then 

   iii) c is the simultaneous contraction of a finite number of extremal rays
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   and is an isomorphism outside of cb 1(B) where cBcW is an algebraic subset 
   of W which is the disjoint union of irreducible components of dimension n-u 
   --1 . Let B be an irreducible component of and let E=c-1(B). The general 

   fiber, 4, of the restriction, OE, of ~5 to E is a linear Pu, (4, £a)~(Pu, 
   Opu(1)), 12E,a^'Opu(-1) and W is factorial with terminal singularities. 

   PROOF. We only prove (1.4.2). Indeed (1.4.1) is essentially contained in 
Theorem (2.2). So for a proof of it we simply refer to (2.2) below. 

   To prove (1.4.2), let us first consider the case when c is not birational. 
Since vKx+uL~c*H for some ample line bundle Hon W we have from Lemma 

(1.2) that KX+u.L c *(aH), where a is a positive integer. Let F be a general 
fiber of c and let £F be the restriction of £ to F. Then KF+uLF OF and 
hence 

                  u < dim F+1= f (c)+1, 

where f(¢) denotes the dimension of the general fiber of ¢. Since u= 
maxWEW {dim O-1(w)} >_ f (~5), then either u= f (~b)+1 or u= f (¢). 

   Let u=f(~)+1. Therefore KX+uJ' *(aH) where u=n-dimW+1. This 
means that (X, C) is a scroll under ~b as in (1.4.2), i). 

   Let u = f (c). In this case Kx+ u oC = O*(a H) with u = n -dim W, so that 
(X, C) is a quadric fibration under ~5 as in (1.4.2), ii). Since u= f (O), clearly 

0 has equidimensional fibers. 
   Now, let us assume that the nef value morphism ~5: X-~W is birational, X 

is smooth and u>(n+1)/2. By Lemma (0.3.2) we know that there exists an 

extremal ray R such that (Kx+rL) • R=O. Let p=contR : X->Z be the contrac-
tion of R. Then c factors through p, ¢=a~ p. Let e be any irreducible com-

ponent of the locus, E(R), of R. Let 4 be a general fiber of the restriction 
pe : e--* p(e). Then by (0.3.1) we have 

(1.4.3) dime+dim 4 >_ n+l(R)-1. 

Note that we can choose an extremal rational curve, C, such that (KX+rL) • C 
=0 and -KX • C=1(R) (see e. g. [BS1], (0.7)). Therefore l(R)=rL • C=(uL • C)/v 

or 

(1.4.4) vl(R) = uL • C . 

Since (u, v)=1, we see from (1.4.4) that a divides l(R) and hence in particular 
l(R)> u. Thus (1.4.3) yields 

(1.4.5) dime+dim4 >_ n+u-1. 

Since 0=ao p, clearly a := maxWEw {dim O-1(w)} dim 4, so that (1.4.5) gives 

(1.4.6) dim E(R) = dim e= n -1
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and hence 

(1.4.7) u = dim d . 

In view of the Contraction Theorem we conclude from (1.4.6) that E(R) is a 

prime divisor in X and from (1.4.7) we have that the image p(E(R)) is of 
dimension n-u-1. Let Q=p(E(R)). 

   (1.4.8) CLAIM. The general fiber, d, of the restriction pE(R) : E(R)-~Q is a 
linear Pu with £4 Opu(1). Furthermore HE(R) I4 ̂ 'OPU(-1). 

   PROOF. First let us show that for a suitable very ample line bundle A on 
Z the linear system KX+uL+p*A defines the contraction p. To see this, 

note that KX+ueC~~*~C=p*a*iC for some ample line bundle 1C on TV. Then 
the assertion follows from the fact that a*~C+ is very ample if A is very 
ample enough on Z and that 

Let A1, i=1, ..., n-u-1, be n-u-1 general elements of A I and let A= 
~1n non-u-1 be the (u+1)-dimensional subvariety of Z given by the trans-
versal intersection of the A1's. By Bertini's Theorem we can assume that 
A' := p-1(A) is a smooth (u+l)-dimensional subvariety of X. By the above and 
by noting that 

                       KA' (KX+(n-u-1)P*.A)A, 

we have that the restriction PA' of p to A' is given by the linear system as-
sociated to the divisor 

      (Kx+uL+(n-u-1)p*)A' KA,+ULA, KA +(dimA'-1)LA' 

where LA' denotes the restriction of L to A'. This means that PA' is the 
morphism associated to the adjoint line bundle of (A', LA'). Therefore we can 
apply Theorem (3.1) of [BS1] to the pair (A', LA') to conclude that PA' has 
disjoint exceptional divisors D.N Pu with the restrictions LA' IDz isomorphic to 
OPu(1) for each index i. Since Q and intersect in a finite number of points 
it thus follows that the general fiber, d, of PE(R): E(R)-D is a linear Pu with 
L4 NOPu(1), where L4 is the restriction of L to d. 

   To show that I2X(R) 14 ̂' OPu(-1) note that (KX+uL)4 ~O4. Then KX I4 
-uL4~OPu(-u) and therefore the adjunction formula yields 

                 OPu(-u-1) N K4 = KE(R)I4 N h~XI4+J1E(R)I4, 

whence J7E(R) I4 =OPu(-1). 

   Let R, be distinct extremal rays on X such that (KX+TL) • Ri=O. Exactly
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the same argument as above, by using (1.4.4), shows that l(Ri)>_ a for each 
index i. Assume that there exist two distinct extremal rays at least R1j R2. 
Then l(R1)+l(R2)>_2u>_n+1. Therefore Lemma (0.3.3) applies to give E(R1)n 
E(R2)=O. This shows that the loci, E(R), of the extremal rays Ri are dis-

joint. Thus we can consider the contraction Q : X->V which is a biholomorphism 
in the complement of all the E(R) and which agrees in some complex neigh-
borhood of E(R) with the contraction associated to Rti, for all i. Then V is 
a normal, compact, analytic variety and ~5 factors through a, ~S_ j Q. Note 
that S has connected fibers since c, r have connected fibers. 

   We claim that j3 is an isomorphism. Assume the converse. Then there 
exists a curve contained in V, say C, such that /3(C) is a point. Let C' be an 
irreducible curve in X such that C' goes onto C under 6. Since C' is contracted 
to a point under ~b, we have (KX+vL).C'=0. Hence by Lemma (0.3.2) we can 
write in NE(X ), 

                                C' _ 

where A ER+ and Ri=R+[C1] are extremal rays which correspond to the E(R1) 
that gave rise to the morphism i. Recall that E(R2). Ci=0 since E(R1)nE(Rj) 
_ 0 for i ~ j and E(R). C•<0 for all i. Therefore, for each index j, 

              E(R3).C' _ ~iA2E(Rj).C1= A3E(R,)C,<0, 

so that C' is contained in E(R3) for all j. This leads to a contradiction unless 
C'=AjCj for some index j. In this case [C']e Rj and hence 6(C') is a point. 
This contradicts the fact that d(C')=C. Thus we conclude that /3 is an iso-
morphism. 
   For any fixed index i, let 4 denote a general fiber of the restriction to 

E(RA) of the contraction pi=contRi. Then the condition /X(R1)i4NOpu(-1) 

proved above implies that (E(R1). Ci)=-1, where Ri=R+[C1]. By the Contrac-
tion Theorem (see e. g. [BS1], (0.4.4.2)) it thus follows that W is factorial with 
terminal singularities. This completes the proof of the Theorem. Q. E. D. 

   (1.5) REMARK. Note that a converse of (1.4.1) above holds true. Let X 
be an n-dimensional projective variety with Gorenstein singularities, and let L 
be an ample line bundle on X. Assume that (X, L) is a scroll, c : X-~W, over 
a normal variety W of dimension m. Furthermore assume that ~5 is a Pn-m 
bundle. Since KX+(n-m+1)L N~5*(H) for some ample line bundle H on W, 
the nef value, z, of (X, L) is -r=n-m+l=maxWEW {dim c-1(w)} +1. 

   (1.6) REMARK. Notation and assumptions as in (1.4.2). In [BS2] we con-

jectured that if X is a manifold, and (X, L) is a scroll, p : X->Y, over a normal 
variety Y and f (p)>dim Y-1, then p : X--~Y is a Pf cp> bundle. Note that 

(X, £) in (1.4.2), i) is not a p!() bundle, since maxWEW {dim c-1(w)} = f (~5)+1
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in this case. Then assuming the conjecture above it would follow that f (O)< 

dim W-1 or 2 f (¢) <dim X-1, or u= f (~5)+ 1 <(dim X+1)/2, or u <_dim X/2. 

   § 2. Final Remarks. 

   Let X be a projective irreducible variety with Gorenstein rational (hence 
log-terminal) singularities, and let cp : X--~Y be a surjective morphism. Let L 
be a co-ample line bundle on X. Assume that KX is not cp-nef. Let v := 
min {te R, Kx+tL is c-nef} . Then, by the Kawamata Rationality Theorem, 
r=u/v where u, v are coprime, positive integers with a <_maxyEY {dim cp-1(y)} 
+1. In Theorem (2.2) we describe the structure of ~o in the boundary case 
when u=maxy`Y {dim cp-1(y)} +1. This result extends (1.4.1). We thank the 
referee for the proof given here, which is simpler than our original proof, and 
applies in the more general case where X has Gorenstein, rational singularities. 

   First we need the following Lemma. 

   (2.1) LEMMA. Let X be an irreducible, projective variety with Gorenstein, 
rational singularities and let cp : X--~Y be a surf ective morphism with connected 

fibers onto a normal projective variety Y. Let L be a cp-ample line bundle on 
X. Let t be a positive rational number such that KX+tL is (p-nef but not cp-
ample. Then there exists an ample line bundle JC on Y such that 

   (2.1.1) at : =L+cp*JC is ample; 
   (2.1.2) Kx+tat is nef and not cp-ample. 

   PROOF. (2.1.1) is well known, and (2.1.2) follows by standard reasoning by 
using the relative version of the Kawamata-Shokurov Base Point Free Theorem 

([KMM], 3.1.1). Q. E. D. 

   (2.2) THEOREM. Let X be an irreducible, projective variety with Gorenstein, 
rational singularities, and let ~o: X-Y be a surjective morphism with connected 

fibers onto a normal projective variety Y. Let L be a So-ample line bundle on 
X. Assume that eodim Sing(X)>dim Y and that KX is not ~o-nef. . Let 

                  r := min {tE R, Kx +tL is c-nef } . 

By (0.2.1), r=u/v for some coprime positive integers u, v with u<_ 
maxyEY {dim co 1(y)} +1. Assume u=maxyEY {dim cp-1(y)} +1. Then cp is a Pu-1 

bundle, which is a Mori contraction, and (X, 1() is a scroll over Y under ~o for 
some ample line bundle 1( on X. 

   PROOF. Take a, b as in (1.1) and let £ := bKX+aL. Then £ is cp-ample, 
KX+uL=a(vKX+uL) is cp-nef, but not cp-ample. Replacing L by £ if neces-
sary we may assume that v=1. By Lemma (2.1) we may further assume that
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£ is ample. 
   Let F be a general fiber of cp : X-~Y. By Lemma (0.3.2) we know that 

there exists an extremal ray R such that (KX+uL). R=O. Let p=contR : X-~Z 

be the contraction of R. Then cp factors through p, cp=ao p. We claim that 

p cannot be birational. Indeed, if it was, let t := dim p-1(z) for some point ze Z. 
Then by [F], (2.5) we know that (Kx+tL) • R>_O and hence t>_ u. Since 

          u = maxYEY {dim cp-"(y)} +1 >_ maxzE2 {dim p-1(z)} +1>t 

we find the contradiction u > t. Thus p is not birational and hence the general 

fiber, F, of cp is of positive dimension and F contains all curves C such that 

[C]ER. Therefore (Kx+uL)F~KF+uLF is ne , but not ample. Note that 
F has log-terminal singularities since X has log-terminal singularities. There-

fore [Ma], (2.1) applies to say that u <_dim F+l. 
   If u <dim F+1 we get the contradiction dim F>maxYEY {dim c-1(y)}. 

  If u=dimF+1, then (F, JSF) (Pu-1, O-1(1)) by well known results of 

Kobayashi-Ochiai type. Furthermore dim F=u-1=maxyEY {dim cp-1(y)} so that 

cp is equidimensional. Since codim Sing (X) > dim Y, the arguments of [F], 

(2.12) (see also [BS1], (1.4)) let us conclude that cp is a Pu-1 bundle. The re-
maining assertions are now straightforward. Q. E. D. 
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