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Introduction.

In [3], Dynkin classified all the semi-simple subalgebras of finite dimen-
sional complex semi-simple Lie algebras. There, a special kind of subalgebras
with compatible root space decompositions, called regular semi-simple subalge-
bras, played an important role.

In this paper, we treat a Kac-Moody algebra with a symmetrizable gener-
alized Cartan matrix (=GCM), and study its regular subalgebras, defined as a
natural infinite dimensional analogue of Dynkin’s ones. Though being no more
isomorphic to Kac-Moody algebras in general, these regular subalgebras are
isomorphic to generalized Kac-Moody algebras (=GKM algebras) introduced by
Borcherds [1].

We now give a constructive definition of regular subalgebras. Let g(A) be
a Kac-Moody algebra with a symmetrizable GCM A4, %) be a Cartan subalgebra
of g(A), and 4 be the root system of g(A). A subset {Bi, **, Bm, Bm+1» =)
Bm+r}C4 is called fundamental if it satisfies the following three conditions (see
Definition 5.2):

(1) {B.}7Hch* is a linearly independent subset;

(2) Bs—B:EAU{0} A<s#t<m+k);

(3) B:is a real root (1=<7<m) and B, is a positive imaginary root

(m+1=<j<m+k).
Let § be a subalgebra of g(A) generated by root vectors attached to each root
+B, (1<r<m-Fk) and a certain vector subspace §), of ). Then, § is canonically
isomorphic to a GKM algebra (see [Theorem b.1). We call this subalgebra § a
regular subalgebra of g(A) after Dynkin.

The above definition of a fundamental subset and the construction of a
subalgebra § are generalizations of those by Morita in [8]. There, he con-
sidered only the case all 8, are real roots (i.e., =0 in the above notation) and
constructed a subalgebra §, which coincides with the derived algebra [§, ] of
the above §, in order to introduce certain subsystems of the root system 4 of
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g(A) (see Remarks 2.3 and 3.1).

In this paper, we obtain three main results.

Let us explain the first result. Let {§,}7,C47¢ be fundamental. And we
take a “good” vector subspace Y, of § in the above construction of 3. Then,
we show in that the resulting § is isomorphic to a Kac-Moody
algebra g(;l) with some symmetrizable GCM A. (This is a special case (k=0)
of [Theorem 5.1 We give here a different proof from that of [Theorem 5.1.)
Moreover, we prove in that the restriction of a standard invariant
Sform (cf. §1) on g(A) to its regular subalgebra § coincides with a standard
invariant form on §, considered canonically as a Kac-Moody algebra g(ﬁ). As
a consequence of this, real (resp. imaginary) roots of g(ﬁ)s@ can be regarded
canonically as a subset of real (resp. imaginary) roots of g(A) (Theorem 3.9).

The second result is as follows. As an application of we
obtain a fact that, if g(A) is of affine type, then any regular subalgebra §
which is a Kac-Moody algebra is a direct sum of Kac-Moody algebras of finite
or of affine type, and the number of direct summands of affine type is at most
one (Theorem 4.1). Further, when g(A) is of non-twisted affine type, we deter-
mine, using the results in [3], all the types of regular subalgebras which are
Kac-Moody algebras (Theorem 4.2).

Contrary to this affine case, we see through an example (Example 4.1)
that even if g(A) is of hyperbolic type, there can be a regular subalgebra §
which is a Kac-Moody algebra, but whose direct summands do not remain in-
side the category of finite, affine, or hyperbolic types. This is mainly because
a Kac-Moody algebra of hyperbolic type can not be characterized only by the
signature of a standard invariant form on it (cf. A in §1).

For our third result, let us consider a general fundamental subset {f§.}7f
cd. We show in that § is canonically isomorphic to a GKM
algebra g(A) with some symmetrizable GGCM A (cf. Definition 5.1).

This paper is organized as follows. In §1, we recall some preliminary
facts about Kac-Moody algebras. In § 2, we review the notion of a fundamental
subset of a Kac-Moody root system introduced by Morita (the case k=0 in
our general definition), and prove some elementary properties. In §3, we
establish the first result stated above. In §4, as our second result, we study
the types of regular subalgebras of a given Kac-Moody algebra. In §5, we
deal with a general fundamental subset and obtain the third result.

NOTATIONS. We denote by C the complex number field, R the real number
field, Q the rational number field, and Z the ring of integers. We define sub-
sets N and Z, of Z by

N:={k=Z; k=1}, Z,..={k=sZ; k=0}.
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And we denote by <-, -> a pairing between a vector space V over R or C and
its algebraic dual V*.

The author is deeply grateful to Professor Takeshi Hirai and Professor
Kiyokazu Suto, for their valuable suggestions and helpful discussions. He is
also grateful to Professor Jun Morita, who kindly sent his preprint from West
Germany.

§1. Preliminaries.

In this section, we recall some prelimiary facts about Kac-Moody algebras.
For detailed accounts, see [4].

1.1. Kac-Moody algebras. Let n be a positive integer, and [:={1, 2, ---, n}
be an index set. A matrix A=(a,); je; is called a generalized Cartan matrix
(=GCM) if it satisfies the following three conditions:

(Cl) ayu=2, for all ;=1;
(C2) a;; are non-positive integers, for 77
(C3) a;; =0 implies a,; = 0.

A GCM A is called indecomposable if there is no permutation ¢ on / such
that A% :=(@sc»,0p)s jes 1S a direct sum of its non-trivial diagonal blocks. We
call an indecomposable GCM A of finite type if all its principal minors are posi-
tive, and of affine type if all its proper principal minors are positive and det A
=0. It is called of hyperbolic type if it is symmetrizable, neither of finite type
nor of affine type, and possesses the property that a removal of any row and
the corresponding column makes A a direct sum of GCM’s of finite type or of
affine type.

A triple (9, II, II™) is called a realization of A if it satisfies the following
three conditions:

(R1) 9 is a finite dimensional complex vector space, and
dimc)=2n—rank A4 ;

(R2) II={a;}:e; is a linearly independent subset of §*, and
II"={a7}:c; is a linearly independent subset of §;
(R3) [ajy, aiy=a;; for i, j&1.

REMARK 1.1. For any nXn GCM A, there exists an essentially unique
realization.

For an arbitrary GCM A=(a;;);, je;, there is a unique, up to isomorphism,
Lie algebra g{A) which satisfies the following:
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(L1) ey, fi: =) and Y generate g(A) as a Lie algebra, and §) is a
commutative subalgebra of g(A);

(LZ) [eir f]:] = 51]“7 (Z’ ]E]):
(L3> [h) ei] = <air h>ei: [hr fi]:“<air h>f1. (ZEI’ heb);
(L4) g(A) has no non-zero ideals which intersect § trivially.

We call the Lie algebra g(A) a Kac-Moody algebra associated with A, the
subalgebra § the Cartan subalgebra of g(A), and the matrix A the Cartan matrix
of g(A4). Elements of IT (resp. II™) are called simple roots (resp. simple coroots),
and the elements e;, f; (=I) are called the Chevalley generators of g(A4). We
set

Q:=lerfa;, Q= DierZ ay, Q7 :=Xie1Zaj.

With respect to Y, we have a root space decomposition of g(A):

Q<A) - E%BGQ Qo

where g,:={x=g(A); [h, x]1=<a, h>x, for all h€h} for a=Q. Note that
80=Y, 8.,=Ce;, and g_,,=Cf, for icl. An element a in Q, (resp. in —@Q)
is called positive (resp. negative). Denote by 4, 4., and 4. the set of all roots,
positive roots, and negative roots, respectively, and then 4=4,114_ (a disjoint
union). Let n, (resp. n_) be the subalgebra of g(A) generated by e,, 11 (resp.
[ i€1), then n,=3>%c, 8. and n_=3%c4, 80

REMARK 1.2. Let (%%, II, II”) be a realization of a matrix A over R, then
(§:=CQRghr, II, I") is a realization of A over C. In this case, we can define
an antilinear automorphism w, of g(A4) by

wie)) = —fi,  olfd=—e (€I), olh)=—h (h<hr).

We call w, the compact involution of g(A). Note that w.(g.)=g., for all ac
A4U{0}.

1.2, Standard invariant forms.

Suppose that A=(a;;); je; is a symmetrizable GCM (i.e., there exist an in-
vertible diagonal matrix D and a symmetric matrix B, such that A=DB). And
fix a decomposition A=DB, where D=diag (e, -, €,) iS a positive rational
diagonal matrix, and B=(b;;); je; is a symmetric rational matrix. Fix a com-
plementary subspace 9%” to §’:=3;c;Cay in Y, then we can define uniquely a
non-degenerate symmetric invariant bilinear form (-, -) on g(A4) such that

B1) (a7, h) = <ay, h>e; (<1, hey),
(BZ) (hl} h//) _— 0 (h/’ h”Eb”).
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This form is called a standard invariant form on g(A). This induces an iso-
morphism v : )—§*, defined by <uv(h), h’'>=(h, h') (h, h'EY), as well as an induced
bilinear form on §*. Note that

(1) (8a> 85) =0 (a, B=4U{0}, a+B+0),
(2) For all xE8., yE4-., [x, y1=(x, ) v (@) (asd),

3) (-, -)lyxp is non-degenerate.

It is clear that y(aj)=e;a; and (a;, a;)=b;;=ay;/e; (, j€I). So we have
a;=02/(a;, a:))-vH(a;) (1) and A=(2a;, @;)/(as, @), je;- Moreover, we can
define a Hermitian form (-, +), on g(4) by

(x, ¥)o:= —(x, w(3)) (x, yE9(A)).

Note that (ga, 85)e=0 (@, B=4U{0}, @+ p) and (-, -)olg,xq, IS pOsitive definite
for all a4 (cf. [4, Chap. 117]).

Let A=DB be the decomposition of a symmetrizable GCM A, and denote
by (a, b, ¢) the number of positive, zero, and negative eigenvalues of the “sym-
metrized” matrix B. This (a, b, ¢) is called the signature of the standard in-
variant form (-, -) defined by (Bl) and (B2). Then we know the following.

PROPOSITION A ([4]). Let A=(ai;); jer be an indecomposable symmetrizable
GCM, and (-, -) be a fixed standard invariant form on ¢(A). Then the following
hold.

(1) A is of finite type if and only if (-, ) is positive definite on Xic;Raj.

(2) A is of affine type if and only if (-, -) is positive semi-definite of rank
n—1 on Ze;Rai. In this case, there exists 0=(a)e; Such that Aé=0 and
a;=N for all icl. Moreover, {ac=Q; (a, a)=0}=2Z - (Zicra:a;).

(3) If A is of hyperbolic type, then the signature of (-, -) is (n—1,0, 1).
Note that the converse is not true, in general.

1.3. Real roots and imaginary roots.

Let A=(ai;)i jer be a GCM and (9, II={a;}:c;, [I"={a}}:c;) be a realiza-
tion of A. Then the transposed matrix ‘A is also a GCM and (§*, IT”, II) is a
realization of *A. In this case, the root system 4~ of g(*A4) is a subset of Q7,
and is called the dual root system of g(A4). For each /=, we define a funda-
mental reflection »; of the space * by

ri{d)i=2—<4, a;i>a; (A€h*).

The subgroup W(A) of GL(H*) generated by r; (1) is called the Weyl group
of g(A). Since the subgroup W(*A) of GL()) and the subgroup W(A) of GL(hH*)
are contragradient linear groups, we can identify these groups.
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We call a root a=4 real if there exists a weW such that w(a)=a; for
some =1, and smaginary if it is not real. Denote by 47¢ (resp. 4'™) the set
of all real (resp. imaginary) roots. For each real root a=w(a;), define the
dual real root a”=(4")"¢ by a”:=w(a;). Note that a~ is independent of the
presentation of a=w(a;) (weW, i1).

We know the following.

PROPOSITION B ([4]). Let a be a real root of a Kac-Moody algebra g(A).
Then,
(@) dimeg.=1,
(b) kasd for k=C if and only if k==+1,
(c) for B4, there exist non-negative integers p and q with p—q=<{8, a™,
such that B+kasdU{0} if and only if —p<k<q, k=Z.

ProrosITION C ([4]). Let A be a symmetrizable GCM, and (-, -) be a fixed
standard invariant from on g(A). Then,

@ (-, )legexyr s W-invariant,

() [8as §-a1=CvX(a), for acd™,

© a’=@2/(a, a)-v¥a), for acde,

@) for acd, asd ® if and only if (a, @)>0, and as4'™ if and only if

(@, a)=0,
(e) for all acd'™ and meZ~{0}, we have ma=d4'™.

§2. Subroot systems of a Kac-Moody root system.

In this section, we review the notion of a fundamental subset of a Kac-
Moody root system introduced by Morita [8], and prove some elementary prop-
erties. In the sequel, we always denote by A=(a.,): jer a symmetrizable GCM
and by (5, [I={a;}.c;, II"={a7}:c;) a realization of the GCM A.

We owe the following definition and proposition to Morita.

DEFINITION 2.1 ([8]). A subset IT={B,, B, -, Bu} of 47¢ is called funda-
mental if

¢9) IT is linearly independent over C, and

(2) Bi—Bi;EAU0} (1<i#j<m).

Let ﬁ:{ﬁl, Bz, -+, Bn} be fundamental. Put ;1::(&”),’-'},«:1 with a,;=
{B;» B7>, where B7 is the dual real root of 3, 1<i<m.

PROPOSITION D ([8]). The matrix A is a GCM.

PROPOSITION 2.1. In case m=2, there exists a wEW such that either w(B,),
w(B)=d, or w(By), w(B)=4-.
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PROOF. Since B,=47¢, we can assume that 8,=a;, for some /<I. Then
it is enough to assume B.=4_. By B, there exist non-negative
integers p and ¢ with p—¢=<{B,, a7, such that B,+ka,=4 {0} if and only if
—p=<k=q, keZ. As B,—a;&4U{0} from the assumption, we have p=0, and
s0 —g=<{Ps,, a7). Therefore r,(B:)=pB:—<B2 ai>a;=Ps+qa;=4. Since B.=4_,
Batga;4, and B;+ +a;, we get B,+ga;=4_. Hence ri(B)=p.+ga;=4_. On
the other hand, r(a;)=—a;=4_. Thus the assertion is proved. O

PROPOSITION 2.2. The matrix A is symmetrizable.

PrROOF. Let (-, -) be a standard invariant form on g(A), and v: )—h* be
an isomorphism induced by (-, -). Then, by C, for any acd",
we have a”=(2/(a, a))-v '(a). Therefore, a“—<,8,, B>=Q@2/(B:s, B))-<{Bs v (B
=(2/(Bs, B)-(Be, B7), 1<i, j<m. Soputting D:=diag (2/(8:, B, - 2/(Bm, fm))
and B: =((B4, 18,))1§1 jsm, We have A= DB and D is a positive rational dlagonal

matrix and B is a symmetric rational matrix. Hence the matrix A is sym-
metrizable. O

REMARK 2.1. Since B7=(2/(B:, B))-v '(B:), 1<i<m, ﬁv2={ﬁ?}§"=1Cf) is
linearly independent over C. But, it is an open problem whether or not I7” is

still linearly independent if we do not assume the symmetrizability of the
GCM A.

REMARK 2.2. If I is a subset of /7, then I7 is clearly fundamental in the
sense of [Definition 2.1. In this case, the Kac-Moody algebra g(A) associated
with the GCM 4 is canonically embedded in the Kac-Moody algebra g(A) (see
[5, p. 86]). In §3, we generalize this fact to an arbitrary fundamental subset
I[Icd7e in case the GCM A4 is symmetrizable.

REMARK 2.3. In [8], Morita defined a subalgebra § of g(A) generated by
85, (l<]<m) where 1= {B;}jricd7e is fundamental. Then §=3%<3(6Mgp)
with Q: =X".ZB;, So he put 4= ﬁeQ\ {0}; 8ngs+#1{0}} and called it a
subsystem of 4, and then the matrix A= =B, Bi>)T=1 is a GCM and he intro-

duced the notation A< A (cf. also Remark 3.1). Further he proved the follow-
ing theorem.

THEOREM. Lot aSZ, az2. Then [ 3 ~5|<Aif and only if a=Q(A):
={]4,4,Q155 - Qg yigl =2; | Qigig_y = QigipQigiy | =1, 11, 2, -+, i1}

However the “if” part of the statement in the above theorem is not correct.
In fact, after discussions with Morita, we found the following counter-example
for the “if” part.
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2 -2 -8
COUNTER-EXAMPLE. Let A——-{—% % —2} and a=4. Then a=2(A),
-2 — 2

since a=]a:a,3| and |as.a.;|=1, whereas we can not find any fundamental
subset II={Bi, B.} C4"¢ such that {B,, fi>=—a and <{B,, Bi>=—1.

We know also that, in case the Dynkin diagram of GCM A is a “tree”, the “if”
part remains to be true.

§3. Construction of regular subalgebras.

3.1. Construction of a realization of the GCM A.

Let the triple (9, [I={a:}ic;, [I"={a}}:c;) be a realization of the GCM A
over R. Then (§=CQRgrbr, II, I") is a realization of A over C. Let (-, -) be
a fixed standard invariant form on g(A), and 11 ={B1, B2, -, Bn} be a funda-
mental subset of 47°. We set [=rank A and k=rank A, where A=({B;, B1))F-1.
Clearly, we have 2<!.

PROPOSITION 3.1. There exists a basis {h;}T¥\U{vi} i1 of DY over R,
such that the presentation matrix R of (-, -) with respect to this basis is of the
form
Ji 0 0 0
0 Om_k O ]m-k
(0] 0] Je 0] ’

O Iln.x O Ons

R =

where 1, _, is the identity matrix of degree m—£Ek, On_p is the O-matrix of de-
gree m—k, Jy=diag(+1, £1, ---, £1): kXk-matrix, and J.=diag(=*l, *1, ---,
+1): NXN-matrix, N:=2n—{)—2m—k)=0.

PROOF. STEP 1. We put H::—-E}’LIRﬁ}, and take {hi, hs, -+, hm} as a
basis of H over R such that the presentation matrix of (-, -) with respect to
this basis is as

o o

}: m X m-matrix, with J, and O,_, as above.
O Om-—k

To take such a basis, first take A/ H such that (h{, h))#0 (for instance,
take BY). Here since (4{, h1))€R*, by normalizing hj, we can take h.=H such
that (hy, h)==+1. Then we have H=Rh,®(Rh,)*, where (Rh.,)*:={hcH;
(h, hy)=0}. Next, if there is hi;=(Rh,)* such that (h;, h3)#0, then we can get
h,(Rh,)* such that (h,, hy)==+1 by normalizing h;. Then we have A=
{hyy B rP(Chy, hoor)t, where <A, hoor:=Rh,+Rh,. By repeating this pro-
cedure, we can finally get some k'’ N, such that ﬁ:<h1, oy heoR P Ay, -

2
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hyor)*t and (h, h)=0 for any he({hy, .-+, hppr)*. Note that (h, 2')=0 for any
h, h"'€(Khy, =+, heop)*.

By taking a basis of (<A, -, hxDr)* and combining it with {hy, -+, hs},
we get a basis of H such that the presentation matrix of (-, -) with respect

to it is as follows, with Ji=diag(x1, ---, £1): 2’ X k’-matrix,
[]i 0 } _
:mXm-matrix.
O Om—k’

On the other hand, the presentation matrix of (-, -) with respect to the
basis {87}, is DA, where D=diag (2/(B:, B) - » 2/(Bm, Bm)) and rank DA
=rank A=Fk. Therefore we get k’=Fk. So if we take a basis {hzs1, -, fim}
of (<hy, -+, hedr)t, then {hy, -+, Ay, Aess, =, An} is a desired basis of H
over R.

STEP 2. Let H,:=<hy, -, hsdr. Then (-, -) is non-degenerate on ﬁl as
well as on B Therefore hr=H,BH)*, and (-, -) is non-degenerate also on
(H)*, where (H)*:={h&b; (h, H)=0}.

Let H,:=(HA,)*. Note that hs.i, -, hme H, by the definition of H,. Further
we recall (hy, h;)=0 (k4+1<Z4, 7<m). So there exist vy, -, vnE H, such that
(vi, h;)=0;; and (v, v;)=0 (k+1<7, j<m) by Cor. 1 of Prop. 2 in [2, §4].

Then {v;, A ™., is linearly independent over R and (-, -) is non-degenerate
on Hy:=<v;, hi(k+1<i<m)>p. Therefore Hy=H,@H+ and (-, -) is non-degen-
erate on ﬁ;, where ﬁg ::{heﬁz; (h, 173):0}. So if we set H, :=ﬁ§, then Hr=
171@}73@}74, where the sum is an orthogonal direct sum.

Here dimpH,=dimphr—(dimeH,+dimeH;)=2n—1)—(k+2(m—k)=2n—1)—
(2m-—k)=N. Since (-, -) is non-degerate on Ii, we can construct, as in Step 1,
a basis {Amss, =+, hmsy} Of H, such that the presentation matrix of (-, -) with
respect to this basis is [, So {h: ™Y U{v:}T,4: is the basis of §z over R,
which is desired. Thus the proposition is now proved. 0

Now let fr:=<hy, =+, Am, Vi1, *** vm>3::1-71691-73. Then we have the fol-
lowing proposition.

PROPOSITION 3.2. The triple (ba, {Bilep) ™, {B7}RY is a realization of the
GCM A over R.

PROOF. First, note that 2{”=1Rﬂ§21-1=<h1, ooy Riy Rrsr, = hmprChr. Next,
dimphr=dimzH,+dimpH,=k+2(m—k)=2m—Fk. Then we have only to show
that {B:lgg}i~: is linearly independent.

CLam. Let Cr:={h&bhr; <Bj, h>=0, for j=1, ---, m}. Then Cr=<hp4,

T hm; hm+l: U hm+N>R-
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PrROOF OF THE CLAIM. For each / (1</<m) and h<)p,
1
Bi, h) =@ (B, h) = EE‘“”‘@ -(B7, h).

Therefore for all j (k+1=<7<m-+N), {B:, h;>=0as (87, h;)=0 by the construc-
tion in [Proposition 3.1, So we have

<hk+1’ ) hm; hm+1) Tty hm+l\’>11’.C C~R-

On the other hand, dimgCr=dimg)r—m=0@n—0)—m, and this is equal to
the dimension of <An.y, -+, Ams> Ams1, =+ » Amanyor. Thus we get the claim.

From the claim, we have §r=0r+Cr (not necessarily direct). Therefore
{B;lggt - is linearly independent, because {B;}/~, is originally linearly inde-
pendent. So the proposition is proved. O

Putting §:=CQRgzhr, we thus get the triple (, {B;l5} %1, {87} %) as a reali-
zation of the GCM A over C.

We note that if we merely want to construct the Cartan subalgebra § of
g(/Nl) as a subspace of the Cartan subalgebra ) of g(A4), in such a way that the
triple (h, {B;ls} ™, {B7}) is a realization of the GCM Zl, it is sufficient to
give a much simpler construction. But, we have taken into account the proof

of [Theorem 3.7, so we constructed § in this detailed way.
Note further that w,(§)=%H, where w, is the compact involution of g(A).

3.2. Construction of a regular subalgebra of g(A).

Let the triple (§, {B;l5} 1, {B7}7) be the realization of A constructed in
3.1. And let gz, (resp. g-p,) be the root space attached to B; (resp. —B;), and
(-, -) be a fixed standard invariant form on g(4). By Theorem 11.7 in [4], the
restriction (-, -)olg,xg, iS positive definite for all @=4, so we can choose E; =g,
such that (E;, E;)=2/(B: B:) for each 7 (1=/<m). Set F;:=—w,(E;), then
FiEg—ﬂi and [E;, Fi]=(E,, Fz‘)'Vl(,Bi):(Z/(ﬁi, ‘81‘))'((,81." 151)/2)',8\{:5? (I1=igm).
Note that g3, =CE; and g_3,=CF; since §;&4"° (1<i<m).

Let i, (resp. fi_) be a subalgebra of g(A) generated by E;, 1=:/<m (resp.
F,, 1<i<m), and § be a subalgebra of g(A) generated by E;, F;, (1=:/<m),
and Y.

LEMMA 3.3. 3=m®0a.. Put Q.:=37Z.B: then
ﬁ+:2%eé+\(0)(§mgﬂ), ﬁ-=2%65+\(o;(§ﬂ9-,9).

ProoF. This follows easily from the assumption that B;,— B;&4\{0}
(=i#j=m). |

LEMMA 3.4. We have the following decompositions of §.
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(1) @=Zﬁew\(0)(§m9a)@(@mf)>@2§ecg+\(m(@mg—a)-

(m) @:Z?GQ.F\(O)(@GQB)@f)@E?EGg(o}(§m9~ﬂ)-

ProoF. Taking into account, we have to prove only the de-
composition (I). Again by Lemma 3.3, we see that §=f,DHiPi_ is §-invariant.
Therefore by Proposition 1.5 in [4], the decomposition (I) follows from the root
space decomposition: g(A)=%cs 8.Ph. O

Now we set for BeQ=31",Z8,,
§s:= {x<€d; [h, x1=1<B, h>x, for all heb}.

Since § is a subspace of Y, we can define a surjective map P: §*—b* by restrict-
ing a linear form on % to §. Because {B;|3} . is linearly independent, the
restriction of the map P to C?:Z}}“:,Z,Bj is injective. So by identifying § with
P(§)=3m™,Z(B;!5) through P, we can regard O as a subset of B*.

LEMMA 3.5. For all ﬁe@cf)*, we have §Ngp=qp.

ProoF. Clearly §MgsC{ds and §=2>3e5{p is a direct sum, so that §Ngz=ds
for ail B=0Q. O

THEOREM 3.6. The subalgebra § of g(A) is canonically isomorphic to g(;l),
where g(A) is a Kac-Moody algebra associated with A.

Proor. We already have the following relations:
[E, F;1=0,87 (=i, j=m),
Lh, E;]=<Bs WE;, [h, F;1=—<B; KF; (1<7<m, heb),
[h, 1=0 (h, h'ED).
So we have only to prove the following claim.

CLAIM. § has no non-zero ideals which intersect § trivially.

PrROOF OF THE CLAIM. Let ¢ be an ideal of § which intersects § trivially.

By Lemmas [B.4 and we have the decomposition §=3%cs,\3sBID
128, «nd-p. Sincecis f-invariant, we get 5:2%&64.\(0)(”\@ﬁ)@2%66+\(0)(5m@-,6)-
(Note that ¢(N\§H={0} by assumption.)

Now let us prove that ¢N\§gz={0}, for all [BE@+\{0}. (For ﬂe—§+\{0},
the proof is similar.) First we recall that w(§)=0h, wi(gs,)=6-5, wi(8-5,)=83,
(1<7<m). Therefore we have w,(§)=§ by the definition of §. Suppose that
there exist ﬁe@+\{0} and XeeNjs, X+0. Then X&is=dNgsCgs, so gz {0}
and B4, where 4 is the root system of g(A4). Since (-, -).,Igﬁxg s is positive
definite, we have 0<(X, X)o=—(X, ws(X)). Here @f(X)Ewd@Nw0u(8s)=FN8-5
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={J_p, because X&iz=3§Ngs.
On the other hand, as X&g; and w(X)<g-5, we have

[X, 0(X)] = (X, @(X))-v7(B) = —(X, X)o-v(B)EY.

Since B+0, we get v'(8)#0 and [ X, wy(X)]#0. However, since X<, an ideal
of §, and w.(X)=id, we get [X, w(X)]sc. Therefore, 0#[X, w(X)]<¢ and
[X, (X)]=dNh=0h. This contradicts the assumption ¢\§H=1{0}. Thus the
claim has been proved.

This completes the proof of the theorem. [

DEFINITION 3.1. The subalgebra § of g(A) in Theorem 3.6, which is gen-
erated by g3, g-3;, (1=7<m), and b, is called a regular subalgebra of g(A).

REMARK 3.1. It is easy to see that [{§, §]=48 where § is Morita’s sub-
algebra defined in [8] (see Remark 2.3). So we have a canonical isomorphism :
@g[g(ﬁ), g(ﬁ)]. It is an open problem whether or not this isomorphism still
exists if we do not assume the symmetrizability of the GCM A.

3.3. The inheritance of a standard invariant form.
Since we have constructed the Cartan subalgebra §) of g(A) as in 3.1, we
can easily prove the following theorem.

THEOREM 3.7. Let A be a symmetrizable GCM, and {B;}..Cd"¢ be a funda-
menz‘al subset. Let the triple (B, {B;|5} ~1, {B7} 1) be a realization of the GCM
A= (KB, Bid)li=1 in Proposition 3.2. Further let § be the regular subalgebra of
g(A) corresponding to B; (1=j<m), §. Set

N 2
B := (81, BNTs=1 D*d‘ag(wl,ﬁ) " (B ﬂm>>

where (-, -) is a fixed standard invariant form on g(A). Then the restriction of
(-, ) to gCg(A) coincides with a standard invariant from on 3, canonically
ident: ﬁed with g(A), which corresponds, according to (B1)-(B2), to the decomposi-
tion A=DB.

PrROOF. We see from the construction in Propositions and 3.2 that h=
D CB P Wesr,  » Unde. S0 we take §” :=<vsy1, -+, Vudc as a complementary
subspace to §’:=37™,CB7 in . Then we have the following from the con-
struction in Propositions and B.2

(D (87, h)=<Bs h>- (heb, 1=7<m),
(ﬂz» B1)
(2) (h,) h”) =0 (h', hlle<7]k+l: Tty Um>C) .

Thus the theorem has been proved. O
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Corresponding to the notations 47¢ and 4*™ for the root system 4 of g(A),
we denote by 47¢ (resp. 4°™) the set of all real (resp. imaginary) roots for the
root system 4 of @zg(gl). We saw in 3.2 tha.~t g:E%EQ+\(0)@ﬁ@a@zgeé+\(o)@_ﬁ,
and §;=0Ngp for B=Q. So we can regard 4 as a subset of 4 by identifying
Bslg with B;, 1<7<m. Then we have the following as a direct consequence

of [Theorem 3.7.

THEOREM 3.8. The notations are the same as in Theorem 3.7. Then we

have,
dre=Jdndre, 4™ = Andgim .

PrOOF. For a=4 (resp. 4), we know that a=47¢ (resp. 47¢) if and only
if (@, @)>0, and that a=4'™ (resp. 4'™) if and only if (@, @)<0, by
C. Here (-, :) is a standard invariant form on g(A) (resp. g(;l)). Therefore
the assertion immediately follows from [Theorem 3.7 O

REMARK 3.2. As we have seen above, ZCAK\@. In case 17:{,8,};’;l is a
subset of IT={a;}ic;, the equality 4=4NQ holds. So we have the following
question, which is discussed in §4.

QUESTION 3.1. Does this equality always hold with an arbitrary funda-
mental subset I of A7¢?

§4. Type of the GCM A=(<B,, B))")=1.
4.1. General results.

THEOREM 4.1. Let A=(ai;)ise; be a GCM of afine type, and IT={B:} ™
cdr® be fundamental. Put /NI::(<‘8j, BNtz Then, A is a direct sum of
generalized Cartan matrices of finite type or of affine type. Moreover, the num-
ber of direct summands of affine type is at most one.

PROOF. This will follow immediately from [Theorem 3.7 and [Proposition| A.
O

Assume the GCM A is of hyperbolic type, then the signature of the restric-
tion to X7, RB} of a standard invariant form (-, -) on g(4) is (m, 0, 0), (m—1,

1,0), or (m—1,0,1) (cf. Moody [6]. Therefore, in view of A,

the following question naturally arises.

QUESTION 4.1. Do the direct summands of A remain inside of three types,
finite, affine, or hyperbolic if A is of hyperbolic type?

We have the following example, which answers Questions 3.1 and 4.1.
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ExaMPLE 4.1 (cf. Moody and Pianzola [7]).

Let A be a 3x3-matrix given below. Then A is a GCM of hyperbolic type
with the Dynkin diagram below.

2 =2 0
A= |-2 2 -1/, 0&——=0——0
0 -1 2

Put B.:=(rsr2)(a1), Bs:=ri(B1), and Bs:=ry(B;), where r; (1=</<3)cW are funda-
mental reflections. Here W denotes W(A)=W(*A) identified as contragradient
linear groups. Then

‘81 = a1+2a2+233, }92 = 30(1+2(12+2a3, ;83 = 3a1+6a2+2a'3 ’

B = ai+2a5+2a3, B; =3ai+2a;+2a;, By =3ai+6a;+2aj.

In this case {B;, 8., Bs}C47¢ is fundamental because B,—fB:=2a;, B:— B.=4a.,

Bs— Bi=2(a,+2a,), where a;+2a,=r,(a;)=47¢ (cf. B).
We get the GCM A and its Dynkin diagram as follows.

(14, 14)
2 -2 =2 O———0
A=|-2 2-14], \/
—2 —14 2 o

Obviously A is neither of finite type, of affine type, nor of hyperbolic type.
This is mainly because a GCM of hyperbolic type can not be characterized only
by the signature of a standard invariant form on the Kac-Moody algebra asso-

ciated with that GCM (cf. A).

Further in this example, we have the inequality 0N\424. In fact,

Zﬂl_‘ﬁz—ﬁs = _4(a1+(12)€@ ’ (a;+as, ata;)=0.

Therefore, a,+a,=4'™ and —4(a,+a,)=4'™ since A is of hyperbolic type (see
[4, Chap. 5]). Hence Zﬁl—ﬁg—ﬁseémd"m. But, since it does not belong to
either Q, or —Q,, we have 2,81—52—,83%3.

4.2. Case of affine type GCM. In this subsection, we assume that the
GCM A=(a;)os:.js¢ is of non-twisted affine type (cf. [4, Chap. 4]). So, there
exists d=(a;)i=, such that Ad=0 and a,=N for all / (0</<(). Such a d is
unique under the condition that the a,’s are relatively prime integers. So we
take this 0, and also denote Xi_,a;a; by 8. Then, we know the following
facts (cf. [4, Chap. 6]):
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4im = (k6 kEZN{0}}, ATt = {r+kd; 14, e Z),

where 4 is the root system of the finite type Kac-Moody algebra g(fi)Cg(A)
associated with the principal submatrix /i:(a,-j)lsi, js. of A. Note that the
choice of the removed vertex 0 of the Dynkin diagram of A is so made that
a,=1 and the type of Ais X, when the type of the GCM A is X{¥. There-
fore, we have

jC Q°3= SiaiZa, 0= a,+Xia:a;.

Hence, if we take B,=47¢ (1<7<m) and express them as B,=7;+k%,0 (rjeﬁ,
k;=Z), then the following are equivalent:

(1) Bi—B; & 4U{0} (AZi#j=m);
A ri—1; & dUi0)  AZiziZm).

Since A is of finite type, we know that the Dynkin diagram of {Tj}}"zlcﬁ is of
finite type or of non-twisted affine type if it is connected and {r,-};’;lc:z? satisfies
the condition (i) (cf. [3, Chap. I, §51). So, if {r;}.C4 satisfies the condition
(i), its Dynkin diagram is a disjoint union of those of finite type or of non-
twisted affine type. Note that if all the connected components are of finite
type, then {r,-}}';lc:(f))* is linearly independent, where §:=3)i.,Cay is a Cartan
subalgebra of g(/i)c:g(A).

Now, let (-, -) be a standard invariant form on g(A4). Then the restriction
of (-, ) to g(/i)(:g(A) is again a standard invariant form on g(/i), and

w __ 2(Bi, By) oo 2T 75

B B> = 5., E;)*, Tiptiv= T 7

On the other hand, we have (9, a;)=0 for all / (0</<!() since Ad=0. There-

fore, we have (Bi, B)=(1it+kid, 7;+k0)=: 7,), so that a,=(B; fid=

@(Be, BN/(Bes BN=Cs, 1)/ Tas 1=, 73> (1i, j<m) and A :=(a@:)P o=
(<Tj: T\i/>)lsi,j5m-

From now on, we assume that {8;}7-,C4"7¢ is fundamental. Then {8} 7,
cdr¢ satisfies the condition (1), and so {rj}}":lc:ﬁ satisfies the condition (i).
Therefore, from the above argument and [Theorem 4.1, we can deduce that the
GCM A is a direct sum of generalized Cartan matrices of finite type or of non-
twisted affine type, and that the number of direct summands of non-twisted
affine type is at most one. So we have the following two cases.

(1=, jEm).

CASE (a). If the number of direct summands of non-twisted affine type is
zero, then {7;}™,C(h)* is linearly independent. Hence {r,}m.cd is a funda-
mental subset of 4. Types of the Dynkin diagrams of such subsets of 4 are
completely determined by Dynkin [3, Chap. II, §57.
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CASE (b). Let the number of direct summands of non-twisted affine type
be exactly one. Then by the removal of an appropriate root (say 7. for def-
initeness) the Dynkin diagram of {7,}7* is a direct sum of those of finite
type. Therefore {7;}7iC(f)* is linearly independent, and so it is a fundamental
subset of 4. For the type of such a subset of Zi, cf. Dynkin [3]. Further we
know that the removed vertex corresponding to 7, is the “extended” vertex of
the Dynkin diagram of the connected component which is of non-twisted affine
type X{¥, that is to say, 7. is the lowest root of the root system of type X..
So, suppose that the Dynkin diagram of {n}%’”;ﬂcﬁ is of type X, +X;,+ - +X¢,
with ¢,+#,+ -+ +¢,=m—1, then clearly the Dynkin diagram of {7}/, is of
type either X{P+X;,+ - + X, Xy + X+ - +Xe,, o, or Xop+ X, + 0 XD,
where X;, is a Dynkin dlagram of finite type of rank ti.

Combining these two cases, we can conclude that, if {8;=7,+k,0}.C4™°

is fundamental, then its Dynkin diagram is necessarily of type either X; 4+ X;,+

+‘Xz,,, X )+Xt2+ +Xt,., Xt1+X Df o +X:T, s, O Xt1+Xt2+ +Xt(,1.);

where X; +X;,+ - +X;, is a Dynkin diagram of some fundamental subset of
J, and X;, is a Dynkin diagram of finite type of rank t,.

Conversely we now prove the actual existence of a fundamental subset
{Bj} 2o of 47¢ whose Dynkin diagram is of type X{’+X,+ ---+X,, where
Xi,+Xi,+ - +X,, is a Dynkin diagram of an arbitrary fundamental subset
{r;} e of 4. For Xe+ X+ +X,, -+, or X; +X,,+ - +X(P, the proof is
similar.

Let us divide {r;}/~, into the disjoint union of { ®1ie (1<p<r) such that
the Dynkin diagram of {r{®}:2, is of type Xt for each p (1Lp=r). And let
(§,)~ be a regular subalgebra of g(A)Cg(A) correspondlng to the fundamental
subset {r®}:2 4 (1<p<r) and (§)~ be a regular subalgebra of g(A) corre-
sponding to {T]},-zlcd. Then we have

(4 = 2°5_.(4,)~  (direct sum of ideals).

And 3°5_,(h,)~ is a Cartan subalgebra of (§)~, where (§,)~ :=S2,C(r)” (1<
p=<r) is a Cartan subalgebra of (§,)~. Moreover, the root system (A) C
or_(h,)* of (4)~ is a disjoint union of the root system (4,)~C(§,)"* of (4,)".
Therefore, by adding the lowest root 7" of the root system (ﬁ )~ of (§:)~ to
(T}, we have a subset {7{}L, of (4,)~ whose Dynkin diagram is of type
X{P. Hence the Dynkin dlagram of {ré"}u{r;}jx is of type X{P+X,,+ -
+ X
Since X{P is of affine type, there exists 8:=(ay)!L, such that {z=C'1*';
X{Pz=0}=C0,, and a,€ N for all ¢ (0=/=<t,), where the last symbol X{}> denotes
the corresponding GCM. Therefore, if we set B{":=r{"+a.0, (0=/<t;) and
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B =r{» 2<p<r, 1<i<t,), then we have the following claim.

CLAIM. {Bj}F0:={BP} L UUp={B{P}i2,C47¢ is a fundamental subset of
are.

PrROOF OoF THE CLAIM. (1) B;,—B;£4U{0} (0<i#7<m). To show this,
we have only to prove that rg"—ré”géﬁu{O} (1<i<t,). But this follows from
the fact that (Z)‘: {,zl(ﬁpr is a closed (with respect to addition) subset of 4
(cf. [3, Chap. II, §5, p. 42]), and the fact that 7§ is the lowest root of (ﬁ1)~.

(2) {Bj}j~CHh* is linearly independent. In fact, this follows from the above
fact that {zeC"1*'; X{Pz=0}=C9,, and the fact that \Uj-.{B{"} {7, is linearly
independent. O

Thus we get a fundamental subset {8;} ™, of 47¢ whose Dynkin diagram
is of type X{P+X;,+ - +X,,.
Summing up the above argument, we get the followmg theorem.

THEOREM 4.2. Let A=(aij)si jsi be a GCM of non-twisted affine type.
Then the Dynkin diagram of any fundamental subset of A7° is of type either
Xt1+Xz2+ +er; Xt )+Xc2+ +Xt,., X: +X )+ -+ X, sty or th+Xt2+
o +X{D, where Xy + X+ - +X, is a Dynkm diagram of some fundamental
subset of the root sysyem 4 of g(/i). Moreover for each of the above diagrams,
there exists a fundamental subset of A7¢ whose Dynkin diagram is of that type.

Owing to the above theorem, we can determine all the types of regular
subalgebras of the non-twisted affine Lie algebra g(A), because those of the

finite dimensional simple Lie algebra g(fi) are completely determined (see [3,
Chap. II, §5]).

REMARK 4.1. Also in the case of twisted affine type GCM (but not of type
A$ (I1=1)), the sufficiency part (the second part) of [Theorem 4.2 is true. Its
proof is almost the same as that for [Theorem 4.2, but note that for the GCM A
=(aiost.sst of type Af, (I=3), Dm (zgzx E®, or D®, the type of A=
(@iihsi, s s Cy, By, F,, or G, respectively. (See [4, Chaps. 4 and 6].)

§5. A generalization of regular subalgebras.

In this section, we generalize the notion of regular subalgebras of a Kac-
Moody algebra.

5.1. Generalized Kac-Moody algebras (GKM algebras).
For that purpose, we utilize the notion of generalized Kac-Moody algebras
(GKM algebras for short) introduced by Borcherds in [1]. Here we abopt
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the definition in [4, Chap. 11] of GKM algebras, which is a little different from
that in [T], as a definition of GKM algebras.

DEFINITION 5.1 ([4]). A real n’Xn’ matrix A’=(a})si 50’ is called a
GGCM if it satisfies the following three conditions :

(C'1) either ;=2 or al;<0:
(C'2) al;<0 ifi#j, and al; € Z if al;=2;
(C’3) a}; =0 implies a}; =0.

Note that when a/;=2 for every i, A’ is a GCM.

A triple (9, II={a,;},, II"={a3}%,) is called a realization of the GGCM A’
if it satisfies the conditions (R1), (R2), and (R3) in 1.1.

Let 3(A’) be a Lie algebra with the generators e;, f; (1<i<n’), and Y,
and the following defining relations:

Lei, fi]1=0ua; (1=i, j<n'),
(I) [A,h1=0 (h, K'EY),
[h! ei] = <ai’ h>ei; [h’ fi] = _<ai7 h>fi (lézén', heb)-

We define g(A’):=3(A’)/t, where t is a unique maximal ideal among the
ideals of §(A’) intersecting Y trivially. This g(A’) is called a generalized Kac-
Moody algebra (GKM algebra). Especially when A’ is a GCM, g(A’) is a Kac-
Moody algebra (cf. [4, Chap. 1]).

It is also shown in [4, Chap. 117 that, when the GGCM A’ is symmetriz-
able, the GKM algebra g(A’) is a Lie algebra with the generators e;, f;

(1=:/<n’) (Chevalley generators of g(A’)), and ¥, and the defining relations (1)
and (II):

(ade)%e; =0, (ad f)'"*¥f;=0, if ali=2, i+J,
[ei, ¢,1=0, [fs f5]=0 if ai;=0.

()

Here A’ is symmetrizable if there exist an invertible diagonal matrix D’ and a
symmetric matrix B’ such that A’=D'B’.

5.2, A generalization of fundamental subsets.
» Let A=(aij)isi, js» be a symmetrizable GCM, g(A) be a Kac-Moody algebra
associated with A, and (-, -) be a fixed standard invariant form on g(A). Then,

we have the following definition of a fundamental subset, which is a generali-
zation of Definition 2.1l

DEFINITION 5.2. A subset IT={Bs, -, Bm, Brs1, = » Bmss} of the root
system 4 of g(A) is called fundamental if it satisfies the following:
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O I ={B,}74F C §* is linearly independent;
@) Bs—BeE AU{0} (A=s#t=m+k);
(B Biede (1<i<m) and B; < 4™ (m+1=7<m+k).

Note that I7 is fundamental in the sense of if and only if £=0.

Now for each imaginary root B; (m+1=7<m-+k), we define 85 :=v7(8;)
b, where v: h—h* is a linear isomorphism determined by <u(h), h'>=(h, h’)
(h, h'€h). For real root B; (1=/<m), Bi<)h has been defined as a dual real
root of B;, and we know B7=(2/(B: B:i))-v'(B:). We take and fix non-zero
vectors E. =g, and F,&g_p, such that [E,, F,]=8; (1=r<m-+k). Such vec-
tors always exist since [ga, g-.]=Cv *(a) for all ac4. Then we have the
following propositions.

PROPOSITION 5.1. If we set A: _(a”)m jsm+r, Where @;;=<B;, 7>, then A
is a symmetrizable GGCM.

PROOF. First, note that we have the following equalities.

. 2 _
B 80 = (B0 g, gy B0) = (g g (B B) =i
By B> =1<By v (B =(Bu B)  (m+l<ism+k).

ProoF OF (C'1). For i (1<i<m), @::=@2/(Bi, B))-(Bs, Bi)=2 since B;&4"°.
For i (m+1=i<m+k), @;:=(B:, B)=0 since B,=4'™.

PrOOF OF (C'2). For i (1<:<m), there exist non-negative integers p and
g related by the equality p—qg=<B;, B7> such that B,+tB.=4 {0} if and only
if —p=<t<q, teZ. Since B;—B:£4 {0} from the assumption, we have p=0
so that @;;=<{B;, Bi>=—¢=0. Fori(m+1=i<m-+k) and j (1=<;<m), we have
{Bs, Bi>=(B;, B:). But we had 0=a;;=<{B:, B;>=(2/(B;j B:))(B:, Bs), and so
a:;=<B; B7>=(B:, B;)=0 since B,=47¢ implies (B;, B;)>0. And for i and j
(m+1=4, jEm+k), we have @,;=<B;, Bi>=(B:, B;). Therefore we have d;;<0
since B;, B;=4i™ from the assumption (cf. [4, Chap. 5, Ex. 5.16]).

Proor oF (C’3). This is obvious since (-, -) is symmetric and (8;, 8:)>0
for ; (1Zi<m).

Finally we prove the symmetrlzabxhty of A. Put B: —((/3,, 5:))151 jsmtk and
D =diag (2/(B1, B1), -+, 2/(Bm, Bm), 1, ==+, 1). Then clearly A= DB and B is a
symmetric matrix. O

PROPOSITION 5.2. There exists a vector subspace Y, of Y, such that the triple
(Bo, {Bsleb 4", {B714*) is a realization of the GGCM A.

PROOF. Since {B;}74*Ch* is linearly independent and v: )—h* is a linear
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isomorphism, {B7}71*C} is also linearly independent by the definition of S7 for
imaginary root 8; (m+1<j<m+k). And so, the assertion follows easily from
the argument, which is exactly the same as that used in [5, p. 86] when II is
a subset of 1. O

Then, we get the following result, which is a generalization of
3.6.

THEOREM 5.1. Let § be a subalgebra of g(A) generated by E,, F, (1£r<
m-+£), and §,. Then we have the canonical isomorphism @ : g(?l)z@, such that
D(2,)=E,, O(f,)=F, A<r<m+k), and OH)=Y,. Here (5, I={a,} 72, "=
{&7} ™) 4s a realization of the GGCM A, and &,, ., (1<r<m-+k) are the
Chevalley generators of the GKM algebra g(/Nl).

PROOF. We have to check that E,, F, (1<r<m-£k), and Y, satisfy the
defining relations for the GKM algebra g(A).

PROOF OF (I). We check that [E;, F;]1=0.;87 (1=i, j=<m+k). Note that
LE:, Fi1€[9s, 8-5,1C8p,-p, Since B;—B;4U{0} (1<i#j<m-+k) from the
assumption, we have 8s;-5;,—1{0} so that [E,, F;]=0 (1=i#j<m+k). And
[E:, F.]=B7 (1<i<m+Fk) from the definition of E;, F;. The other relations of
(1) are obvious since E;=g5,, Fi€g-5, (1Si<m+k), and §, is a vector subspace
of .

PrROOF OF (II). We first check that (ad E;)'"%iE,;=0 and (ad F;)'*"%F;=0
if 1=i<m and j#i. Note that (ad E,)'"*E;&(ad gg,)'"*igg,Cgp, for f=4;+
(1—a;;)B:;. But we have rp,(8;—B:)=PB,—<{B; BivBi+Bi=p. Here rp, is a
fundamental reflection defined by a real root §8; and preserves the root system
4 of g(A) (cf. [4]). Therefore, we deduce that 8¢ 4\ {0} since B,—B:&4 {0}
from the assumption. Hence we have gs={0} so that (ad E;)'"%E;=0(1<i<m,
J#1). The equality (ad F;)'-%iF,=0 can be proved similarly.

Finally we check [E;, E;]=0 and [F;, F;]=0 if 4,;=0. We have only to
prove these relations for / and j (m+1<i, j<m+k). Note that [E,, E;]&
(85, 85,1C88,48, Since B, f;E45™ and @y;=(Pi, B,)=0 from the assumption,
we have the following claim.

CLaiM. ‘Bl‘!‘ﬁ;%AU{O}

ProoF oF THE CLAIM. We have (8:+8;, Bi+B8,)=(B: B:)+(B; BN=0, since
Bi, B;=4i™. Therefore, B;+pB,=4\U{0} implies B;+pf;=4i™. But this contra-
dicts the fact that (8;, §;)=0 (cf. [4, Chap. 5, Ex. 5.18]). Thus the claim has
been proved.

Hence we have gg,:5,=1{0}, so that [E,, E;]1=0. The proof is similar for
the equality [Fy, F;]=0.
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Thus we have checked all the defining relations for the GKM algebra g(;l).
Therefore, we get the surjective homomorphism @ : g(ﬁ)—»@, such that @(2,)
=E., ®(f)=F, 1=r<m+k), and @(F)=h,. But, since both § and %, are
realizations of the GGCM A7, they have the same finite dimension. So, @(§)="H,
implies Ker @\§={0}. Hence Ker ®={0} from the above definition of g(A).
This completes the proof of the theorem. O

DEFINITION 5.3. The subalgebra § of g(A4) in Theorem 5.1 is called a
regular subalgebra of g(A).

Note that when k=0, this § is a regular subalgebra of g(A4) in the sense
of D 0

REMARK 5.1. In [Theorem 5.1, we have chosen, as generators of §, one
element from each root subspace, that is, E,=g5, and F,eg_5_ (1<r<m+k).
For real root 8, (1=r<m), this is equivalent to taking root subspaces gz, and
g-s, in place of E, and F,, since dimegs,=1. But, if we consider a subalgebra
g generated by the whole root subspaces 8.z, (1=r<m-+£k), then g is a homo-
morphic image of the derived algebra of a certain GKM algebra, and this
homomorphism is not necessarily an isomorphism since [gg,, §-5,1=Cv'(B,)
and dimcgg, can be greater than 1 (m+1<r<m+£k)in general. In this connec-
tion, we have chosen, for imaginary root B, (m+1=<r<m-+*£k), one non-zero
vector E, from g, and F, from g.g, for each r.
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