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1. Introduction.

As one of the fundamental theorems in C*-algebras, it is well known that
a self-adjoint element has the Jordan decomposition and a self-adjoint bounded
linear functional has the Hahn decomposition: i.e. if x is a self-adjoint element
in a C*-algebra A, then there exist two positive elements x,, x,= A such that
X=x,—X; %1%,=0 and [x||=]x.+=x.]. If f is a self-adjoint bounded linear
functional on A, then there exist two positive linear functionals f,, f.= A* such
that f=/f,—f, and [[f]=[/f1+/.].

As a generalized version of the Hahn decomposition, Loebl and Tsui con-
sidered independently whether the bounded self-adjoint map has the positive
decomposition [10], [16]. The answer was negative except a few cases. Fur-
thermore Huruya and Tomiyama obtained a non-existence theorem of the Hahn
decomposition of bounded maps in the general situation [8]. However, it was
Wittstock who showed the self-adjoint completely bounded map of a C*-algebra
to an injective C*-algebra can be written as a difference of two completely
positive maps with the norm condition [17]. This can be seen as a generalized
Hahn decomposition, since the complete boundedness coincides with the bounded-
ness and the complete positivity coincides with the positivity if the range alge-
bra is commutative.

On the other hand, a completely bounded map can be regarded as an ele-
ment in the dual space of a certain Banach space [6], [9], [6] In this paper,
especially motivated by the isomorphism which is obtained by Effros and Exel
[5], we intend to get the Jordan decomposition and the Hahn decomposition in
an advanced form. The main theorem is the following.

THEOREM B. Let A be a C*-algebra and B(H) be all bounded operators on
a Hilbert space H. Suppose that p is a finite dimensional projection.

(1) If V is a self-adjoint element in pB(H)RX, AR, B(H)p with the Haagerup
norm || |, then
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Via=inf{[Vi+Veln|V = Vi=V,, V20 (=1, 2)}.

(2) If @ is a self-adjoint bounded linear functional on pB(H)YR»AR,B(H)p,
then
18] = min{|$,+&,| | $=0,—-F,, ,=0 (=1, 2)}.

To see this, we introduce a *-operation and a new product to a triple tensor
product space and get a new Banach x-algebra with the Haagerup norm (see
Theorem A in Section 2). Next we investigate the order structure of the
Banach x-algebra to get the Theorem B in Section 3. As an application, we
can prove the Wittstock’s theorem from the view point of the classical ordered
Banach space theory in Section 4.

2. Banach *-algebra with the Haagerup norm.

Let B(H) be all bounded operators on a Hilbert space H over the complex
number field C. We say that a subspace X in B(H) is an operator space and
denote the set {§*<B(H)|é=X} by X* Let A be a C*-algebra and F be a
bounded sesquilinear form on XxXX. We call F is positive and denote F=0 if
F(&, §)=0 for any £= X, and call F is strictly positive and denote F >0 if F=0
and F(&, £)=0 implies £&=0. We introduce a product and a =-operation to the
algebraic tensor product space X*QARXX as follows.

DEFINITION 1. Let F be a fixed bounded sesquilinear form on X X X. Given
E*RaR@7, e*QbRP=X*QARX, we define

(§*QaQN)P*VbRYP) = §*KabRLF (7, ¢),
(E*QaQn)* = P*Qa*®E .

This product is different from the usual product cf. [3]. Let M,.(X) be
the space of nXm matrices with the entries in X (abbreviated to AM,(X) in case
n=m), which is a subspace in M, ,(B(H))= B(H™, H™) with the operator norm.
Throughout this paper, we introduce the Haagerup norm to X*®RARX and
denote by X*®,AX,X the completion of X*QAXX with the Haagerup norm
| IIs. The Haagerup norm is defined as follows [6], [12].

Given TeX*QRARKX,

VI, =inf {| 2 ez

Pl S| V= 2 £1@eu @),

where [a,;] is in M,(A). For convenience, we use the operation [3]
‘ 13
§*@[az‘j]©7] = 215?®au®7]j ,
L4

where §*=[&%, ---, §3]1€ M, (X*), and l;:[m, e, pelte My (X). It follows that
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1€ I=127E¥:0"* and lipll=1XZj.939,0**  To see that the product on
X*QnARrX with || ||, is well-defined and continuous, the following will be
needed.

LEMMA 2. Let X be an operator space. If F is a bounded sesquilinear form
on XXX with |F|| <1, then

n 1/2 n 11/2
ILFE, a1l < | Bete || £ otn|
for any {&}7-1, {9;}3-1 in X.
The right hand side can be replaced by
n /2| n 1/2 n 1/2|| n 1/2

Dol | Do | S | S

n /2 n 1/2
and | SELY| | 207

ProOOF. Let {4:}}-1, {#;}7-1 be in C such that (Z7.,[4:]5)"2=(20 | ;1 2)Y2
=1. Then we have

ILF&:, p)]ll =sup iélziﬂjF(Si; 05)
_ N e S SPTA LB S
= sup F(Ellzsu ngﬂ,ﬂ?]) § Sup”igllsl ]gxﬂjv]l
S 7~ WO Y | [ 2y 0 - 0
0---05.1.. . 0--0 121 ]
=supflf. . . - T - -
0...0_§n0"'0 0 -0 77n0"'0,
£ 0 -0 7, 00 ) I Y
<{l: . : AR | S EE%&H 205
. 00 Na 0 -+ 0

where the supremums are taken over all {4;}7;, {p¢;}7-, as above.
The remainder can be obtained in the similar way. =

THEOREM A. Let X be an operator space in B(H) and A be a C*-algebra.
If F is a bounded sesquilinear form on XXX with |F| <1, then X*Q,AR,X is
a Banach *-algebra with the product and the x-operation in Definition 1.

ProorF. Given V=§*®[aij]©72, I'V:?*Q[bij]@g!) in X*QARX, it is easy
to see that

VW = &0Lai LF (s, ¢)1bi10¢,
where [a;;], [bi;]1€MA(A) and [F(n:, ¢)]€M,(C). By Lemma 1, we have



622 T. ITon

Wi = 1€*1ILa s JNEF (e @IIMITb: ]
= 1€ 1 0as M llie* bl -
Hence the product is well-defined and satisfies |[VW|[,Z |V IAlW]la.
For the x-operation, we have
IV*ln = inf [lp*[ILazIN1£I
= inf |§*[[ILa:; 1Nl
=[Vln. =

3. Order structure of Banach *-algebras.

Let p be a k-dimensional projection (2= N)in B(H). B(H)p={xp=B(H)|x
€ B(H)} is an operator space and (B(H)p)*=pB(H). Let {e;;} be a matrix unit
in B(H) such that p=3Y_e;; and put P;=3c1 2% ke Q1Qe;;, where 2 is a
finite subset in 4 whose cardinal number is the same as the dimension of H
and which is directed by set inclusion. Let ¢ be the normalized trace on M,(C).
We define a sesquilinear form F, on B(H)p X B(H)p by Fyx, v)=t(y*x). From
now on, we consider the product defined in Section 1 using F, to pB(H)R,A
R,B(H)p. It is easy to see that

If A is not unital, we regard P; as an operator acts on pB(H)X,ARwB(H)p
from the left and the right. We note that

=0

t- 2 SRR, eey

lim
2ed
for any &= B(H)p, since |&|<~VEr(E*E)V2. We put

k
(]25 = 2 kFE, eij)eij-
i€l j=1
PROPOSITION 3. For all VepB(H)RrnARQB(H)p, we have the following
properties.

(1) NP VI=V s
@) 1PVP =V
(3) limzeq|V—PV|»=0.
(4) limes|V—PaVP;[»=0.

PROOF. We show only (2) and (4). Given V=£Q[ay]On=pBH)IDAR)
B(H)p and fixed a A= 4, it is easy to see that
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PaVPi = 3 (@:60"@au,@an; -
Since
§*6 =2 (926)%¢a€
for any £€= B(H)p, given ¢>0, we have
1V late = 1€ Cas gl

2 (@606

!

1/2
= 2 |P2V Pyl

Vltedl| 2 @amraan,

Since ||P;| is bounded for the fixed A=, we then have
[P2VPilln < [V

for any VepB(H)QnARQwB(H)p.
Since [[§]=2%108:] and [[[ay, =207 a0 llaul,

IV—P;VPiln = L%(H&—w&ll\)[au] i1 +llgag:ltiCas M n—gansl)

and [|PaWP;|n<|W|, for any WepB(H)QrARB(H)p, it turns out that

ied

for any VepB(H) QL AR B(H)p. &

Let =(X*Rr,AR:X)?, where (X*®,A®,X)* means the dual space of
X*®,A®R,X to avoid the confusion. We call @ is positive if S(V*V)=0 for
any VeX*®,AQ,X. We define &* by #*(V)=0(V*) and say & is self-adjoint
if @*=¢@. Let A% be the || ||,-closure of the convex combinations of the ele-
ments of the form V*V. We call V is positive and denote V=0 if Ve A%

As above, {P,;};c1 behaves like an approximate identity even if A is not
unital. However, lim;e||Pillr=cc if dim H=co. If a Banach *-algebra B has
a bounded approximate identity {P;};ies with a constant K=0 such that | P,|
<K for any 2= 4, and if & is positive on B, then & satisfies the Schwarz
inequality

BV < K| 8| S(V*V)

for any V=B [15, Lemma 9.11]. By the following proposition, pB(H)R» AR
B(H)p is quite different from a C*-algebra.

PROPOSITION 4. Suppose that dim H=co, then pB(H)Q1,AR»B(H)p does not
have any bounded approximate identity.

PrROOF. Let f be a fixed state on A. Define that
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f§*Ole:10n = 3 7€)/ (a:)

for any £*Ola.;JOnEpB(H)QAQB(H)p. It is easy to see that IfI<1 and
F=0. Given &>0, there exists a=A such that ¢=0, |a| <1 and f(a)>1—e.
Put V=2 2k e Q@ aQe;;, then

fVa) = 31 Se(eten @) =m(l—e).

Since V,=V%=>V?%, it follows that
[FVa)® _ FV )
FVEVR) — f[(Va)

Hence, f does not satisfy the Schwarz inequality. m

=m(l—e¢).

The following is the main theorem in this paper. We can regard this as
an extension of Wittstock’s theorem in Section 4.

THEOREM B. Let A be a C*-algebra and B(H) be all bounded operators on
a’Hilbert space H. Suppose that p is a finite dimensional projection.
(1) Let VepB(H)YRL,ARWB(H)p such that V=V*, then

Ve =1f{|Vi+Volla| V=V1—V,, V20 (i=1, 2)} .
(2) Let @=(pBH)RQnARQnB(H)p)* such that ®=0&*, then
18] = min{|$,+&,| | =&, — ., $,20 (=1, 2)} .

To see this, we have only to show two facts [4], [1, Theorem 1.3.1]:
namely,

(1Y Let V, WepB(H)RQ AR, B(H)p such that V=V* W=W* and —W<
VW, then [|[V[[,Z[Wl.

2y Let &, TF=(pBH)RnARQ,B(H)p)* such that ¢=@* ¥F=F* and —F
S<Y¥, then | <|T].

In fact, by the argument followed Theorem 1.3.1 in [1], (1)’ implies that

IA

IVIe < inf|Vit-Volla, 8] = min|B,+3,]
and (2) implies that

IVila Zinf|Vi4+Vala, 18] £ min|@,+8,| .
We provide some lemmas.

LEMMA 5.

Ay = {V*VIVepBH)QARQB(H)p} .
Proor. Let V,, V,epB(H)QARB(H)p. Then there exist two positive ele-
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ments [a;;], [bi;]=M,(A) for some n such that

PVIViP = 3 etQau@e;,  PiVIViPi= 3 ct®b:Qe;,

=
for some suitable {e;}C{e;;}. It is easy to see that
P,(VIV \+VEV,)P, = {(V¥V|VepBH)QARXRB(H)p} .
Hence we have
ViV +VEV, = %161311 PyVIV i+ VEV)P,
c {V¥V|VepBH)QARXBH)p}''n. m

LEMMA 6. Let X be an n-dimensional operator space, F >0 and {e;}?, be an
orthonormal basis with respect to F. If VeX*R,ARX, then there exists a
unique [a;;1€ M,(A) such that V=317 ;.,e¥Qa;Qe;.

Moreover

(1) V is self-adjoint if and only if [ai;1=[a.;]*.

(2) V is positive if and only if [a;]=0.

ProoOF. Since X is finite dimensional, the first assertion is trivial.

(1) is clear.

If V is positive, as in the proof of Lemma 5, we may assume that V is of
the form W*W for some WeX*Q,AR,X such that W=7 ;.,eTR[b:;1Re;,
since X is finite dimensional. Then we have

V = ¢*QLby;1*[F (s, ¢)][b:i;1O¢ = ¢*OLbs;1*[bi;]10e .

The converse is trivial. m

We note that the operation (© satisfies the following property. Let L&=
(2@, ) Daani§;lt for L=[ay]1€Mu(C) and §=[§,, -, §n]' € Muu(X).
Then we have

(LE*OLawJOMy = §*O L*[a;1MO7,
for any L, Me M,(C).

LEMMA 7. Let VeX*RQARXKRX such that V*=V. Then

IVlin =inf [9l*ILa: ],

where the infimum is taken over all representations of V such that V=5*O[a;;]
@Z)EX*@)A@X, La; 1= M (A) is self-adjoint and {7:}7-:CX is linearly inde-
pendent.

PrOOF. First we show that the infimum can be taken over all representa-
tions of V such that V=9*QLa,;]On=X*QARX and [a,;]1=[a;;]*cM,(A).



626 T. ITon

To see this, given ¢>0, then there exist §, Z?EJWM(X) and [a;;]=M,(A) such
that
V =2800ai;J07n,  Viat+e > 1£4ILa: Iyl

Then we have, for any A>>0,

V=304
= %(,@*@[aij]@/%“7~7+2‘11)*®[au]*®2§)

= el Ol Y owr i)

bl

Since

[[gwj [aij =

o (RN +27 171" Ces ]l

and

.1 _ . \
r}l;glf(lzllié*HZnLl “19l%) = 1€*llli7ll
there exists 4,>>0 such that

1 7 A& %1207 O aqi

IViate > H\/_Z—[Za‘iz] [[au]* [ OJJ]H'
Next we show that one can choose {'771-}?;1 is linearly independent. Let V=
§*OLa;1O§ such that [a;;1*=[a;], |VI+e>1&1%I[a:]ll. We may assume that
{&;, -, Er}r<n is linearly independent. Then there exists L& M, .(C) such that
§= L&, ---,&:]". LetU] L] be the polar decomposition of L, where U= M, ,(C)
and |L|eM(C). Put |L[[&, ,&) =0, -, pel), then {y, -, 9} is
linearly independent. By the property of (, it follows that

V = §0La;J0¢§ = (Un)*Olay;10Uy = p*OU*ay,;JUOY .
Moreover we obtain

I 1U*Cau, UL = 1€1°I0audl < IVIat+e. =

LEMMA 8. Let X be an n-dimensional operator space and F=0. If V,We
X*QunARnX such that V=V* W=W* and —WZVZW, then |V, |W].

ProoOF. Given ¢>0, by [Lemma 7, there exist nEMix(X) and [bi;]€My(A),
(k<n) such that W= 77*@[%]@77, [bs;1*=[b;:;], {nl, -+, N} is linearly inde-
pendent and HWHk+e>II77H I[b:;]ll. Then we can choose an invertible matrix
LeM,(C) such that 9= Lg where ¢'=[ey, -, ¢;,1* and {e, -, ¢,} is a basis
in X. Because -
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L Q- 07\* L 00
0 o0 0 bij 0 0 o 0
I | ol e o] R
00 0 00 0

for any 6>0, where e=[e,, -, e,]" and

L 007
00 N B < e,
00 o

for some 0>0, we may assume that L=M,(C) is invertible, lyeMm(X ), [bijle
M,(X), and W=¢*Q©OL*[b;;]L(Oe. Let V=¢*©O[a;;]JO¢. By Lemma 5, we have

—L*[bi;1L < [ai] = L*[bi;]1L .
Hence
—[bi;]1 = L™ [ay;] L7 < [byy] .

Since V:g*@L“*[a”]L“@Z], we have
IWla+e > linl*llo:;]l
= llgI?0 L * a1 L7
ZVin. =
It is now possible to prove Theorem B.

PROOF OF THEOREM B. First given V, WepB(H)R,AR,B(H)p such that
V=vV* W=W=* and —WIV W, it is easy to see that

—-P,WP, £ P, VP, £ Pb,WP;,

where P;=3)ic: 2% 1ke}iR1Re;; in From it follows
that
[PVP:|n = |PiWP5 .

Hence we obtain that |V |,<|W|. by

Next given @, ¥<(pB(H)R,ARQ,B(H)p)* such that @*=@, T*=¥ and
—T<P<T. Let V=V*cpB(HRQARXB(H)p. Then by for given
e>0, V is represented as V=79*O[a;;]JO7 such that [a;;]*=[a;;] and |V|,+e
>I|g|[2|![ai,-]||. We put that W:g*@l[&i,{ﬂ@g. It follows that — W<V =W
and [[W|,=|Vls+e by Since (F+@)W-—V)z0 and (T—@)W+V)
=0, we get F(W)=®&(V). Similarly we have F(W)=—&(V). Hence

6| < [T < |TNW il = 1TIAV Ia+e) .

Therefore we obtain that |@|<||7]|. m
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4. An application.

Recall that, if @ is a linear map of an operator space A to B(H), then
linear maps @, of M,(A) to M,(B(H)) can be defined by @,[a;;1=[D(a;;)] for
[a;;]eM,(A). We say that @ is completely positive if @, is positive for any
n and @ is completely bounded if sup,||®@,| is finite and denote the supremum
by |@ll,s. It is well known that a completely positive map @ is completely
bounded and ||| ,=]@].

In [5], Effros and Exel introduced a norm | [|. to H*QARH as follows:
for any V:g*@[auj@l]eH*@)A@H,

VI =int (£ 16) “ICac(E 1mt?)

where the infimum is taken over all representations of V. They showed that
the space of all completely bounded maps from an operator space A to B(H)
with || ||, which is denoted by CB(A, B(H)), is isomorphic onto (H*®Q.AXR..H)%.
The correspondence is defined as follows:

3 OLas1On = 3 (Plaw)nslé)

for @=CB(A, B(H)).

Suppose that p is a 1-dimensional projection in B(H), then B(H)p=B(C, H)
~H and pB(H)=B(H, C)=H*. By this identification, we notice that | [. is
nothing but the Haagerup norm | |[,. In this situation, it is clear that the
product &*y for &, e B(H)p is just the inner product (n|§) and Fy(yn,&)=(n|8).
The following means that a completely positive map is a positive linear func-
tional on a Banach *-algebra.

PROPOSITION 9. Let A be a C*-algebra and @ is a completely bounded map
of A to B(H).

(1) @ is self-adjoint if and only if @ is self-adjoint.

(2) @ is completely positive if and only if V*V)=0 for any Ve H*RQ,A
QnH.

Proor. (1) If @==0* then

B(§*OLa IO = 33 (P(afé; 1 70)

= 5 @a,)m;18) = B(ECLa 10y

i,j=1

for any g’*@[a”]@l]eH*@A@H.
If @=a&*, then
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(P(a*)E]7) = B(E*RaRn) = (B(a)*€|n)
for any ac A, &, p=H.
(2) Suppose that @ is completely positive. Let V=§*®[aii]®ge
H*QARH. It follows that V*V:g*@[a”]*[(éil&,«)][aij]@g. Then we have

1]

Conversely, let ai, -, a,€A and &, -+, &,, € H with |9|=1. Then we have

([a (ala7):[ . }
Eﬂ
((1_—1 ) <7=1 J J)) =

The following was obtained in [17], [7], [I1]. We prove it as a Corollary
of Theorem B.

5(V*V) = (@n<[aij]*[<§i ’Ej):l[aij])I: 7]1 }
Nn

3 ~
[ : D = O(§*Olata;]08)

n

COROLLARY 10 (Wittstock). Let A be an operator system and @ be a self-
adjoint completely bounded map of A to B(H). Then there exist two completely
positive maps D,, D, such that @=0,— D, and |D| =D, +D,].

Proor. We may assume that A is a C*algebra, because the Haagerup
norm has the injectivity [12], [2]. From @ is self-adjoint in
(H*QnARyH)*. Then there exist two positive linear functionals @,, @, on
H*Q, AR, H such that ®=®,—®, and | @||=| P, + .|| by Theorem B(2). Hence,
by the correspondence of Effros and Exel and we get @,, @, which
satisfy the conditions. W
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