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1. Introduction.

We consider the motion of a viscous incompressible fluid in an exterior
domain with moving boundaries, in other words we have to deal not with a
space-time cylinder but with a noncylindrical domain in R*x[0, T]. To be
more precise, we consider a domain

Q= U Q0% {t}

0s¢sT

A
IA

where each Q(t) is the exterior of a bounded connected domain £2¢¢)in R?, and
T>0 is a finite number.

The exterior problem for the Navier-Stokes equations consists of finding in
the region 27 exterior to a closed bounded surface, the velocity u and the
pressure p which together solve the system given below, and are such
that the velocity assumes a given value on the surface, for |x|—oo, and in
t=0.

The motion of the fluid in &7 is governed by the following equations

(1.1) ou—pAu+u-Vu = f—Vp, Veu=0 in 27

where 0,=0/0t, u=u(t)=(u.(x,1), us(x,t), ux,1))is the velocity, p=p)=p(x,?)
the pressure, f=f()=(f(x, 1), folx, 1), f4x, t)) the external force, and g the
viscosity. We take the motion of the fluid at =0 to be known, hence u(x, 0)=u,
is a prescribed vector field in 2(0). Let

I'r=_\J I'OxA{t}

ostsT

where I'(t) is the boundary of 2¢¢). Throughout the paper we suppose that /'
is smooth enough and £(¢) does not change its topological type as ¢ increases
over [0, T]. The classical formulation of the problem is the velocity % and
the pressure p to satisfy and the initial boundary conditions
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u(x, t) = blx, t) on I’y
(1.2) u(x, 0) = u, in 2(0)
u(x, H)—b(t)—0 as |x|—co.

In the cylindrical case i.e. 2)=2(0)=2 for all >0 there exists a very exten-
sive literature (see [2] for a bibliography). For the non cylindrical case the
theory is much less developped. When £2(¢) is a bounded domain results are
given in [T], [7], [13], [14], [15], [16], [17], [18], [19], (207, [23], [24].

This paper concerns global existence and local-in-time regularity of weak
solutions (Hopf’s solutions). To prove this we employ the method of the elliptic
regularization used in and improved in [20]. For this method also see
[10]. Furthermore we prove that weak solutions satisfy the energy inequality
as in the case of bounded domains. Note that a proof of this inequality is
given in [2], and with additional conditions on the data, and in with
no additional assumptions on the data, in cylindrical domains.

Section 2 is devoted to the preliminaries. In Section 3 the initial boundary
value problem is posed. Section 4 contains the proof of the existence of weak
solutions and of the energy inequality. Section 5 contains the main results on
the regularity.

2. Preliminaries.

Throughout this paper £2(t) represents a spatial region filled with the fluid
and is taken to be an open set of R® with bounded connected complement £2¢¢)
(dependent on t) and ['(t) is the boundary of 2¢¢). All functions in this paper
are R or R®-valued. The letter ¢ denotes a constant depending on £,. We
employ the usual notations of vector analysis; in particular the jth components
of uVu and Au are X}_,u;0.,u; and X}.,0%,.u; respectively. Some additional
notation is needed. We let

3
(, aw = 2|, wwdx;  lulba =, Dacw;

(u, Vow = ZZi}l SQU)vuivvidx ’ lullbey = (u, W)awy;

3
(u-Vo, wgw = 2 S ujazjviwidx;
i,7=1J 2

T T
ulby = |, lulBwdt;  ulh, = lulbodt;
D) = {p] p=(CHW), T-=0};

D(2r) = {p | p=(C=(27))*, suppep 27, V-¢=0};
H(Q2(t)) = completion of D(Q(?)) in the norm |u| o, ;
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V(2(t)) = completion of D(2(#)) in the norm |ul o ;
H(87) = completion of D(£27) in the norm |ulg,;
V(27) = completion of D(£27) in the norm |uf e,
The following lemmas are well known.
LEMMA 1. For any domain QCR®, functions in HYX) satisfy the Sobolev

inequality
lulliscer < 372 ul ollullg

(in the following H*(R2) denotes the usual Sobolev space of order s on L¥Q)).

LEMMA 2. For any domain 2 and v in R®, functions in V(L) satisfy
T
[ 1y —y)irdx < agupe.

We assume in the present paper that near (x,, t,)&l 7 the boundary [’y is
expressed as

X3 = ¢(x1; Xe, 1), 0=t<T
by translation and rotation of coordinates if necessary, and
(2.1) 0V (x1, %o, 1), (h+£<3) is continuous near (x,, to).

Since I’y is compact we have uniformity of bound on |d}V*¢(x,, x,, t)| near
(%0, te) (h=0, k=0 are integer).

Now we define the Stokes operator A. A is the Friedrichs extension of the
symmetric operator —PA in H(2) for every ¢o=H)NV(L) and P is the
projection operator from L% Q) into H(£2). D(A) denotes the domain of A.
We can see the operator A more explicitly from the following proposition (see

in [6], and in [I1]).

PROPOSITION 1. Let £ be an open set in R® the boundary I' of which is
smooth (at least uni formly of class C®) and Q° is bounded. Suppose us V(2Q)NHY(Q)
s a solution of the Stokes egquations

—Au+Vp=f de  ((u, )0 =(f, @)
holds for all p=D(2).

Then u possesses second derivatives in L*(2) and the inequalities

| D*ulo < mir(|Pflo+ule),
IVulzicoy = mor(| PGl +llule),
lullz>coy < mor(1 PA1Y 2 ullg®+lully® uls®);

hold with constants m;r dependent only on the regularity of I' (not on the size

of I).
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We remark if I satisfies our assumptions with respect to (x, ) we can
consider m;r independent of ¢.

3. The initial boundary value problem.

We shall pose the initial boundary value problem for the Navier-Stokes
equations in a general form to permit the study of the flow exterior to a non
rigid body which may undergo acceleration. In other words the region occupied
by the fluid may be time dependent, not only, but the equations cannot be

written in a coordinate frame attached to the body without being completely
modified.

We shall consider system (1.2) assuming that the data (b, b.) can be
extended continuously into £r as a solenoidal function b which satisfies

1) be L(Q)NLYL2W);
i) 8,b4+b-Yb—pAb e LY2y).

Throughout the paper we set pg=1, and g=a.,b+b-Vb—Ab—f. We assume
FeL¥2)NL¥*L2r). Notice, in the following, we need f< LY Q27)NL*%(Lr)
with ¢ any positive number, and for simplicity we put 2—e=>5/3.

Now we are in the position to give the definition of weak solutions.

~ u is a weak solution of (1.2) if u=v+b and b satisfies the following
conditions

i) ve LN0, T; V(Qu)NL=0, T; HL®));
i) {10, 0)ew+0Tp, Mawtb, v Ig)aw+, b Ilaw—(@, Pow
~(& Powldt = —n, P0aw, ¢ D@r) with ¢(T)=0;
i) 1001 +2 [ollbcrrdo < 015 —2] 0-To+g, vacrrda;
holds for almost all s>0 including s=0 and all ¢>s.

Our results are now given by

THEOREM 1. Let v, H(2(0)) and g<= Lz(.QT). Furthermore (2.1) holds with
h=0 and k=1. Then there exists a weak solution of (1.1), (1.2).

THEOREM 2. Let v, HY(0), g L¥2r), Vb= L=(27), u a weak solution of
(1.1), (1.2), and (2.1) holds. Then there exists a T>0 (T<T) such that
i) ve L0, T; HA(Q)NVQWNNL=0, T ; VQE)NHY(Q);
Po,ow e LY 27 ;

i) v satisfies the equations
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P(0,v—Av+v-Vo+b-Vo+v-Vb+g) =0 a.e. in Qr;
2 Lo 2 t
ka2 Dol = 15) 5w—2] - To+g, vacnda

for all t>s with t, s<T;
iili) v is unique.

4. Proof of Theorem 1.

We consider the following auxiliary problem. We look for »™: ¢ such that
Voe H(Qr)NV (2r)

T
So {1/m) @™, az‘/’)!)(t)‘l‘((vm’E;?))Q(t)‘i’(eXP O™ *-Nv™ %, @) owy+@™*-Nb, @) o
+(b-To™ %, @lawyFEW™S, @)owy— (™%, 0:9)ew} dt4+@W™(T), ¢(T))acry

= —{exp(—kt)g, Plocrdt-+ 0, 0o

~

holds where 7™ ¢ is a regularization of v™*® by using a space-mollifier depending
on &. We set
T
ag, (™", @)= So {1/m)@w™*, ) aws+ (0™, @Now+kRW™, ©)ouws
+(exp kO@™ *-Nv™ %, @)+ (b-NVv™ ¢, ©)ow)

+@™ Vb, @) o, — @™, 3ot dt+@™(T), o(THawr;
Lo(g) = —| (exp(—E00e, @Dowdt+ o, o |
By the following well known theorem (see [3], page 106) one obtains the
existence of a solution in H{(Q2:)N\V(2;) of the equation
“4.1) ao(v™*, @) = Lo(¢).
THEOREM 3. If 1) there exists a constant ¢>0 such that
ao ™, v™e) Z clv™ | gicop ;

il) the form v™—ag,W™*, ¢) is weakly continuous in H'(Qr)NV(Lr) i.e.
vy ™ ¢ weakly in HY(Qp)NV(L2r) implies

limag, (7% @) = ao, (™", ¢).
Then (4.1) has a solution in H (Q7)N\V(LQr).
The condition i) can be easily proved; in fact
T
ao, (™ v™ ) = Ko {(1/m)] 8:0™ ¢ | 9y —(1/2)I1bllz=cop [v™ ¢ ] aeey+(1/2) 0™ ] 2crs

v
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+Rv™ by} dt4-(1/2) 0™ (T) | o>
+(1/2)[v™5(0) | o> = C||Um'EH2H1(9TmV<QT)
(for suitable %); hence i) holds.
For ii) we consider v™*—v™¢ weakly in H(Q7,)N\V(27). We need to prove

the convergence of the non linear term. We note that v7*—v™* strongly in
L.(27), then

pm.e.Jpm. e — M Jym.e in the distributions sense.

Now
pme.Jym e —> Bme weakly in LY*(Q7),
consequently
ﬁm,s — ~m,e.vv7n,s.
So

T T
lim | @7+ V0p-e, Phawdt = | om0 T0m, ot

N—oo

Yo H (2:)NV(27), hence
ao (v, @) —> an, (™", @) Yo HY (Qr)NV (2r).
Then there exists a solution of (4.1}

To passing to the limit in we will need a priori estimates of the
approximations v™¢, To do this, we replace in ¢ by v™¢, it comes

T
So {(1/m)| atvm's15<c>+(1/2)llvm’el|f}(z)+k|Um'el5@)“(1/2)”b“i°°<!27~)]Um‘ehzzcz)

—(™, azvm'E)Qm‘i‘(eXp(—kt))(g’ V™ Nortdt = F, v™ (0o — 1™ (T) *ocrsy -

After some calculations, one has

T
W/m19m* pardt < c;

T T

4.2) [ sodtze; | 1omelpndt < e
[v™ ()b = ¢ o™ %(0) | 50> = ¢

(the constant in [(4.2) is independent of m and e).

It follows

(4.3) Pt — p° weakly in V(Q)NHY Q7).

To passing to the limit with respect to m (and after with respect to ¢) in
we need the convergence of {v™°} in a suitable topology e.g. in L%*0, T ; L% .(2(1))).
For this we shall prove a time difference quotients estimates.

We denote by 7™ the natural extension, by zero, to R® of v™%(x, t) for
every t<[0, T]; moreover we put v™*=0 for (<0 and for t>7T. We let
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pe — (1/;1)5:_"5%6(;«, Sds  (h>0).
Let w3 be the solution of the system

—Awp s+ Awp*+Vg =0

in 2@)
V-wie=0
(4.4)
Wi = v on I'(t)
wket —( as |x|—oo,

Here 2 is an arbitrary positive number.
For the estimates of d,w?'¢, we formally differentiate (4.4) with respect to
t, and we consider 0,w7° as a generalized solution of the problem

—Aagwg'E‘l"xa;w;ﬁ’e‘{"vatq = 0

in Q@)
v- a;w}{"ﬁ =0
o wi s = —p™(t—h)/h on I'(t)
Jwire —>90 as |x|—ooo.

We need wPcHY(Q()) and o,wP < L¥(QQ)).
From standard results (see or [22]), and bearing in mind 7™ °(t—h)=0
on I'(t—h), we have
t
R Lascoan < e|A/m|_ vmeds

< ot/vi|,_omds|

72ty HIcey'

and
[0.wh By = (e/hDT™ (t—h)3ecray
< (c/h*)(measure(Q°(t) — 2@t —h)|0™ *(t—h)||ks < (c/M)|D™ || Bs.
Now we can replace in ¢ by vP —wp* and we get
T
SO {(1/m)(@ ™ ¢, @™ (t)—0™ (t—h))/ h— 0w Vaw>y—(1/R) W™ (), T™ ()

=™t =)o+ @™, QWE owy+ (€XPRODE™ - VVE-S, VB —wi )ac)
+(exp(—kD)(g, Vi —wi" owy+(b-No™ o™ <-Nb, vi —wi o>} dt
= —@™ (D), vi-(T)—wi “(T)aw+ @, vE (0)—w§(0))acw> .
As in [17], page 218 we obtain

(4.5) wam»ew — ™t —h) | Berdt < VI

(¢ is independent of m and é&).

By the classical characterization of M. Riesz and A. Kolmogorov of compact
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sets, we can prove that the set {v™ ¢} of v™* satisfying [4.2), is relatively
compact in L¥0, T; L2.(2())). From (4.3) and the relatively compactness of
{v™¢} in L¥0, T; L3.(2(t))) we can choose a subsequence again denoted by
{v™¢} such that Vo=D(2r)

T T
Iimgo(ﬁm'e-va'E, O)owsdt = Sowe—we, Oowrdt .

M-sc0

Now passing to the limit m—oco in we obtain Yo D(27) with o(T)=0

T
So {—(@, a,go)g(t)—}—(expkt)(ﬁs-Vvs, ®owr+ kRS, go)g(”—}—(b-Vvs, ©)ace

(4.6)
+@©*-Vb, @)ows+(exp(—kXE, @laws+((v°, @awtdt = (vo, ¢(0))aco> -

If we denote again ¢p=(expkt)p, and v*=v‘exp kt, we have proved the existence
of a solution of '

T
@7 So {—@*, 0:0)aws+ (%, PNowy+ (@ -Vve+b-Vv+v°-Vb+g, o>} dt
= (v(E)} SD(O))Q(O) .
Now to prove the strong convergence of {v°} in L* ;) we need some estimates
on d.v°. We shall prove that
dw* & L*0, T; V(2W));
uniformly with respect to ¢ (V-2 is the dual of HYQ@)NV(L()). First we
shall prove that
4.8) 0™y =0 on /(%)

where v is the unit exterior normal vector to I'(f). It is well known (see [22])
that it exists a linear continuous operator 7,: E(Q@)—H Y*['(t)) with E=
{ploe LX), Vo= L¥(2(1)) with the natural norm} (we denote 7,¢=¢-v on
I'(t)). We consider time difference quotient for 7™ ¢ (3™ ¢ is as above) on ['(t)

[(@™ @+ R)—=0™ @)/ h) vl m-1i2cr ayy = (@™ (E+R)/h)-vilg-v2cr ey
< c|0™(t+h)/hlgewy = (¢/h)measure (1) — 2+ DIT™ 4+ Ml geas
< cllv™ D)l ecctr-gectrnyF V™ (E+ 1) —T™ ()| & .
Bearing in mind the L% £27)-continuity of a square summable function, we have
[0:0™ vl g-172¢crcy; =0 a.e. in (0, 7).

This last relation implies that d,0™°¢= L0, T; H(Q@))CTLY0, T; V-L2®))).
Furthermore {0,v™¢} is a bounded set in D'(£27) the dual of D(£2;) uniformly
with respect to m; so 0,0°<D’(27). Thank to (4.7) {0:v°} is a bounded set in
L¥0, T ; V-3(L2®)).

From standard arguments, we have that exists a distribution p»® such that
Yo C=(0, T; Co(2(t))) with ¢(T)=0
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T

So {—(@", ang)Q(t)+((VE, (P))ocz)'l-(ﬁe'vve, ¢)Q(t)+(ps: V'SD).Om
(4.11)

+(- Vv +v°-Vb, ©)ou>+(g, Plawrtdt = (vo, ¢(0))ac -

From (4.11) follows that p® satisfies, in the sense of distributions
(4.12) Apt = —V-(@*-Vv+-b-Vv*+0v°-Vb+g) in 2(t) (a.e. in (0, T)).
We note that and (4.6), for suitable £, imply

{v*} is a bounded set in L=(0, T ; L*(2(1))),
hence

{v¢-v%} is a bounded set in L¥3(Q:)NL¥0, T; L¥*(Q())),
{p¢-Vv®} is a bouded set in L%*(27).

Now we localize (4.12). Let £,={x<=R?||x|>p}, p is a positive number
chosen such that 2{D2°¢) for every ¢. And let yeC=(R?*) with y=0 in a
neighborhood of £¢ and =1 for |x|>2p. Then in any time in R®

(4.13)

(4.14) A(rp®) = peAY+2VVp+rApe.
Let now a=9(R?) with a=1 in a neighborhood of the origin. Then
(4.15) A(—a/37) = —(1/3)(Aa)/r+2VaN1/r)+6 = {+0

where {=9D(R?), 0 is the Dirac measure, and r=x,*+x,2+x,%. From
we have, in any time, for |x|>3p

(4.16) 7D* = (A(—a/3r)xr p*—Lx7D°

= X (—0%,4,(@/3r)xr - (ivs+bi+bpi+g)—Lxrpe.

i, j=1

In frg=\_f()al—ndy.

By standard arguments, we have that the first term in the right side of

(4.16) belongs to L0, T; L**Q)), where 2={x<=R*| |x|>3p}. Now we note
that

(4.17) AC(rpe) = LxArp*) = Lx((A1)p )+ 2L(VrV p)+Lx(rAD?).

Since {p°}, {Vp¢} are bounded sets in L¥0, T ; 9'(2(t))), the first two terms in
the right side of are continuous functions in x with support compact,
and square summable in ¢, uniformly with respect to ¢, and from (4.12) it follows
CxrApe can be considered as a sum of continuous functions with support compact
in x, square summable in ¢, of second derivatives of functions belonging to
L¥0, T; L¥*R®), and of derivatives of function belonging to L2(27)N\L%*L27)
for example. Now thank to we have p*=p{+ps such that

{p¢} is a bounded set in L0, T; L**(Q2)),
(4.18)

{ps} is a bounded set in L¥0, T'; L¥(2)).
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Now following Leray [9], we introduce the cut-off function 9=C=(R?), 9=0
for |x|<d and 9=1 for |x|>2d (d is a number big enough). Replacing in
(4.11) ¢ by Hv°, we obtain

(1/2)0,|-9"*v% | ks < — |92V | Ba+(1/2)| A9 12| 0% | R+ (W, 0°|v°|*)ps
+((V19)Pe, ve)Ra*(g—l-vs-Vb%—b-Vv‘, 19v5)33.

Bearing in mind that |V9|<c/d; |A9|Zc/d?; HN(2)C L¥(2), the following
inequalities hold

19)

r T
{11079, 010 Dt < (/D 10 hscoandt < /d;

[, b9l 1o | endt = e/

T

(W9, vImsdt| < c/(@d+dH0);

0

(4.20)

0

T

0
[.b, 791 10crdt| < e/d;
r 2 T
[ w96, v90crdt| < cf 101mwn | 900130+ 1/D 1990 30rke/d

r T
lSo(g’ gve)gcwdtl = So(lﬁ”zg[ga_[_ | 9120% | 2,)dt .

Integrating (4.19) with respect to ¢, and using (4.20), and Gronwall’s lemma, we
deduce

T
(4.21) So [V°| Recizersiizi>a+1ndl = €| Vo] Teersiizi>asn+(c/d)Y°

T
+CS0 192G |2 crsiizi>atn -

Thanks to the estimates [4.2), (4.5), (4.7), and to the characterization of
compact sets in L*&r) of M. Riesz and A. Kolmogorov, it is now routine to
show that from the set {v®} it is possible to select a subsequence again denoted
{v*} such that

(4.22) v —>v weakly in L*0, T; V(£2())) and strongly in L2%(£;).

Now replacing in (4.7) ¢ by v°*n where % is the characteristic function of the
interval (s, ¢t), we have

4 t
(4.23) |7)5(1)lf)(w‘f‘zgs”Us”f)(a)dU = |Ua(5>l29cs>"288(g+vs'Vb, V) 0csrda.
Passing to the limit é—0 in (4.23), and bearing in mind (4.22) we have

t
201 aw+2] [0ada < 1605) =2 (g+0-9b, ocrda.
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Finally passing to the limit e—0 in (4.7), we have that v satisfies ii) of [Theoreml
1. is now completely proved.

5. Proof of Theorem 2.

Now we prove the regularity of weak solutions using the method developed
in [18]. For this reason we shall give only a sketch of the proof. First we
need the following uniqueness theorem proved in [15].

PROPOSITION 2. Let u, v be weak solutions of (1.1), (1.2) in the interval
[0, T]. Suppose

T '
So lv[i*Lscoands < oo
for some pair (s, s’) with 3s™*+2(s")=1 and with s>3. Suppose that
t t
@1 as+20, [0lbcrdo+2) (v-To+g, Vacsda = 190 e
holds for OZt<T. Then we have
¢
4= 0> = 14O~ 2O ecwexp(e] [ scaconds).
In particular, if u(0)=v(0), then u=v in [0, T].
Now we consider the following auxiliary problem. Let
F = {p|les L¥0, T ; H(Q@)NV(L(1))) with the natural norm} ;
P = {plee L¥0, T ; HXQE)NV(2®),
0.p € L¥0, T; HXQW)NV(Q()), ¢(T)=0}.
We consider on ¢ the norm

lelle = llellz+1e(0)] 2 coco-

We note that, for ¢=@, has sense ¢(x, T) in X(T) and ¢(x,0) in 2(0);
furthermore, [|¢|laice» is continuous in [0, T'] hence ¢(x, 0)e H'(£(0)).
We consider the following problem.

Find a veJ such that for all =2
[ 1=, 4+ a0+, U+ A0)0w+ k@, T+ Aehaw+0-Tv, (+Ap)w

6.0+ b, U+ Apahdt = | (exp(— kDX —u-Tutg, (I+Ap)aw}dt
+ (@0, (T+A)pO)ocy

holds. Here I is the unit operator. In (5.1) %2 is a suitable constant and
us L0, T; H(QW)NNTF, vo= H*(£2(0)) are given functions. We let
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Ew, 9)=( 1=, I+ A0+ (Av, U+ ADplacot k@, [+ Apec
+(@-Vb, I+Apacy+(b-Vv, I+ D)acr} dt ;
L(p) = —{ (exp(—EO)u-Tutg, I+ AD)acsdt+n, ([+DpO)ac-

First L(p) is a linear continuous form on & with respect to the norm [¢lle.
Moreover, bearing in mind that

”V(P”de‘(m = c(lngol};’%“ ”SDH})/%U’}‘”(P“QU))
= lel“(|ASDIH?c)“ﬂﬁuwt)’l“”W[!Jcn)"‘“‘ﬂi!)(z) s
if cr=sup,c(m,r+1), t<[0, T], one has
T T
[, @, 40.)acdt = | —Tp, Toip)acdt
T T T
= —(1/2)], dlglawdt =19l =ap| I9glkadt > —1/8)| | Aplhaadt
T
—2er |0 uplimcap+erl 9l =capn)|, o1 dt+1/Dlglhw

(Q_T:domain where is defined ¢).
Consequently
T
E(p, ¢) = So {—(p, U+ A0 ) oyt llelawr+1Aplawy+0-Vo, T+A)p) o

+(p-Vb, U+ A)p)ow+ERlelaw HRl@l2wdt = (1/2)S:|A§Dlzgmdt
T
+kSO(HD|29(z>+||§0||§2<t))dt—“2(CT4|| 0l i=ap +ertllodli>a,y)

X (et el ¢l o+ g low)dt -+l 0w

= cllol%; for suitable k.

Then there exists a v& ¥ such that (5.1) is satisfied for every o=@ (see [23],
page 208). Now (/+ A) is one to one and onto from H(Q()NV(2(t)) to H(L2(t)),
so if h(t)eH(Qt)) for all [0, T, there exists a ()= H*2@)NV(2(t)) such
that h(t)={+A)p(¢t). Hence if we substitute A(¢) in (5.1), by density, we obtain
that vEF satisfies (5.1) with 0,h= L¥0, T ; L¥( Q1)) and A(T)=0.

In the above result we have used the following relation

Now, if h()eCy(0, T ; H(L(t))), one obtains
T T
1,00, 3hO)acdt| = || 1400, B+, AO)aw+-Tud)

+0(0)- b, h(O)aw+(exp(— kD) (u-Tu—g, ktowhdt| = o 1h1%0adt)

2
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and by results in we have Pd,ve L¥£2r), and by standard arguments,
(5.2) P(0,v—Av+(exp(—kt))(u-Vu—g)+kv+b-Vo+v-Ib) = 0
a.e. in Qr.

Bearing in mind P(expkt)=(expkt)P, multiplying by expkt, and
denoting again v=(expkt)v, we have proved the auxiliary problem.

We notice that o,usH(Q(t)) a.e. in (0, T). In what follows, we do not
make any explicit use of this. In any case, later, we will give, formally, a
proof of this.

Now we complete the proof of

The existence and the uniqueness of the equation
(5.3) P, v—Av+b-Vo+v-Ib+u-Yu—g) =0
enables us to define the map v=ru. The fixed point of 7 are just the solutions
of [(1.I). Consider the set
Y=A{plloliow. 7 zicown+ ||90H12(0.T;H2(9<t>>)+ 10l E2co, 75 meorn = Krlvolliicewont

(the constant Ky will be defined below, and T<T).

a7 is a compact set in L%.(27). We have to prove that tyC%y and 7 is
continuous in 4 with respect to the L2%.(£27) norm. We prove that tyC4y for
suitable T. In fact, multiplying by Po,v+Av+v and integrating over 2,
we have

54 [P o+ Av, Pam)aco+ 1 Avl o+ vl 2cw)dst1v] 0

= o (1w Tulpeo+15-T0 oo+ 100 e+ | 2 Beodds+[00) 2o

Bearing in mind

3

(Av, Pow)au; = (1/2)0:|v]2w)— = SF(:)Vvivviat(ﬁcos(y' x5)dl’

i=1
(see [20]), (5.3}, (5.4), and imply
4
[ Pow I+ 0l +1 Avlaeds+ Iolioa
(5.5) < allveliicwncsT(suplulow)+ 2] 0w
T 1/2 T .
+eosupular (| 1Aulaodt) T +e 1glawdt.

In ¢y, -+, ¢, are constants dependent on /'r and on the data. At this
point we define Kr. We set

Kr = 2(inf(1, Zm.r)") "' (e, + D).
Now from [5.5), choosing T sufficiently small, it follows that ¢Cdj. To prove
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the continuity in L.(27) of ¢ we observe that if {u,}C%4y then u,—u strongly
in L2 (R27) and weakly = in L>0, T; H(Q@)) and {u,-Vu,} converges weakly
in L¥Q7) so

Un Nty —> u-Nu weakly in L¥ Q7).

It follows from the linear equation that v,—v strongly in L%.(Q7) where
v, and v are the solutions of corresponding to u, and u respectively.
Hence 7 is continuous and the existence of a local solution is completely proved.
It is routine matter to prove the energy equality. By we have
the uniqueness of the solution.

Now we prove, formally, that o, ucsH(Q(t)). First, from V-u=0 we have
V-0,u=0. Then, let ¢ be any unit vector tangent to /';. Bearing in mind
u=0 on I'y, and differentiating in the direction 7, we get d,u=0 on [I'(t).
This fact implies

(5.6) 0,u-+0,ucos(y, t)/cos(t, ) =0 on I'(¢)

(v is the unit normal to I'(®)).

Thanks to V-u=a,u-v on I'(¢), (5.6) implies 0,u-v=0 on I'(t). Since the
vectors in H(Q(t)) are divergence free and have vanishing normal component
on I'(t), we get

d:u € HQ®)).

Now is completely proved.
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