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Introduction.

It is known that a diffusion process on a domain $D$ with smooth boundary
is determined by a pair of analytical data $(A, L)$ , where $A$ is a second order
differential operator of elliptic type (possibly degenerate) and $L$ is a Wentzell’s
boundary condition which consists of the sum of a second order differential
operator and non-local terms. (For the precise definition see \S 1.) The problem
of constructing the diffusion from a pair $(A, L)$ has been discussed by many
authors. Analytically, K. Sato and T. Ueno [12] laid a fundamental route and
following it, Bony-Courr\‘ege-Priouret [2] and Taira [14] succeeded in very
general cases. In their manner, one constructs a Feller semigroup (and hence
the transition function) on $\overline{D}$ via Hille-Yosida semigroup theory to dispose the
diffusion.

On the other hand, the construction of a semigrouP can be carried out directly
by probabilistic methods, which have an advantage to permit the degeneracy of
$A$ . That is, by using stochastic calculus or the martingale method. See Ikeda
[9], Watanabe [17], Stroock-Varadhan [13], Anderson [1] and Cattiaux $[5, 6]$ .
Apart from this, a direct construction of path functions (and hence the diffusion
process) by using the notion of Poisson point process of Brownian excursion
was succeeded by Watanabe [18]. See also Ikeda-Watanabe [10] and Takanobu-
Watanabe [16].

Although we can construct diffusions as the functionals on Wiener-Poisson
space as above, we have another task left to verify regularity results, for ex-
ample, statements about transition functions. Returning to the viewpoint of
analysis, one way to treat this problem in the case with non-local boundary
conditions will be the use of the theory of pseudodifferential operators developed
by H\"ormander [8], Boutet de Monvel [3] et al. It is natural to make such a
study since the class of pseudodifferential operators includes a wide class of
significant non-local operators (cf. Cancelier [4]).

Here we shall afford a concrete example in this framework. That is, the
Pair $(A, L)$ is given by a second order differential operator of uniformly elliptic
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type and a Wentzell’s boundary condition having “non-local” terms of the form
the generator of stable processes. In fact, we discuss the case where the
boundary condition $L$ possesses two non-local terms, one corresponds to the
Cauchy process on the boundary and the other to a stable process of order $\beta\in$

$(0,1)\cap Q$ having inward jumps from the boundary (see Section 1). The reason
why we confine ourselves to the generator of stable processes is that it is a
typical example in the class of stationary L\’evy processes and that the form of
its symbol is simple and well-known through several studies ( $e$ . $g$ . Komatsu [11]).

Under a supplementary condition and a transversality condition, we shall show
analytically the existence and uniqueness of the Feller semigroup, and hence
the diffusion.

We sum up the content of this paper briefly. In Section 1, we state a
general existence theorem for a Feller semigroup on $\overline{D}$ (Theorem 1), and by
utilizing it we state our main result (Theorem 2) under a supplementary condi-
tion (A). Note that our assumption (A) is a natural extension to the non-local
case of the corresponding hypothesis in Taira [15]. In Sections 2 and 3, we
prove our main theorem. We mimic the way of proof in [14]. That iS, the
existence of the semigroup is reduced to the hypoellipticity of a boundary
operator and we solve it via index argument. Uniqueness follows from the
maximum principle for operatorsA and $L$ . The fundamental a Priori estimate
(Proposition 2.1) is proved separately in Section 4 because of the length of its
proof.

The author wishes to express his hearty thanks to Professor K. Taira for
having a seminar.

\S 1. Statement of the result.

Let $D$ be a bounded domain in $R^{N}$ with smooth boundary $\partial D$ . $\overline{D}=D\cup\partial D$ .
Let

Au $(x)= \sum_{ji.=1}^{N}a^{ij}(x)\frac{\partial^{2}u}{\partial_{X_{i}}\partial x_{j}}(x)+\sum_{i=_{1}}^{N}b^{i}(x)\frac{\partial u}{\partial_{X_{i}}}+c(x)u(x)$

be a differential operator in $D$ whose coefficients satisfying

$\int^{1^{o}}$

$a^{tj}\in C^{\infty}(\overline{D})$ , $a^{ij}=a^{ji}$ and

(1.1)
$\sum_{i,j^{=1}}^{N}a^{ij}(x)\xi_{i}\xi_{j}\geqq C|\xi|^{2}$ , $x\in\overline{D},$ $\xi\in R^{N},$ $C>0$ ,

$\downarrow 3^{o}2^{o}$

$b^{i}\in C^{\infty}()c\in C^{\infty}(^{\frac{\overline{D}}{D}})$

, $c(x)\leqq 0$ in $D$ .
Let $L$ be a “Wentzell’s boundary condition” on $\partial D$ given by
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$Lu(x’)= \sum_{ji,=1}^{N- 1}\alpha^{ij}(x’)\frac{\partial_{\mathcal{U}}^{2}}{\partial_{X_{i}}\partial x_{j}}(x’)+\sum_{i=1}^{N-1}\beta^{i}(x’)\frac{\partial_{\mathcal{U}}}{\partial x_{i}}+\gamma(x’)u(x’)$

$+ \mu(x’)\frac{\partial_{\mathcal{U}}}{\partial\nu}(x’)-\delta(x’)Au(x’)+s(x’)\int_{\partial D}[u(y’)-u(x’)]\frac{dy’}{||y’-x’||^{N}}$

$+ \lambda(x’)\int_{D}[u(y)-u(x’)]\frac{dy}{|y-x|^{N+\beta}}$ ,

where $x’=(x_{1}, \cdots , x_{N-1})\in\partial D$ , satisfying

(1.2)

$|_{2^{o}}^{1^{o}}$
$whereT_{x’}^{*}(\partial D)isthecotangentspaceofatx\alpha^{ij}itensoroftype(\begin{array}{l}20\end{array})on\partial Dsatisfying\beta^{i}C^{\infty}(\partial D)\sum_{\in}^{N-1}\alpha^{ij}(x)\xi_{i}’\xi_{j}’\geqq 0,x’\in\partial D,\xi’=\sum_{jj=1=1}^{N-1}\xi_{j}’dx_{j}\in T_{x’}^{*}(\partial D)arethecomponentsofaC^{\infty}symmetriccontravariant$

$|_{7^{o}}^{3^{o}}6^{o}5^{o}4^{o}$

$\lambda,s\in C^{\infty}(\partial D),\lambda(x’)\geqq$ 0
$\delta\in C^{\infty}(\partial D),\delta(x)\geqq 0\beta\in(0,1)\mu\in C^{\infty}(\partial D),\mu(x’)\geqq 0\gamma\in C^{\infty}(\partial D),\gamma(x’)\leqq 0$

$on\partial Don\partial Don\partial Ds(x)\geqq 0$

on $\partial D$ .

Here $\nu$ denot\’e the unit interior normal to $\partial D$ at $x’$ , and $||y’-x’||$ denotes the
length of $y’-x’$ with respect to the metric induced on $\partial D$ by the Riemannian
metric (a) of $R^{N}$ .

The terms $\Sigma_{i,j}\alpha^{ij}(\partial^{2}u/\partial x_{i}\partial x_{j})+\Sigma_{i}\beta^{i}(\partial u/\partial_{X_{i}}),$
$\gamma u,$

$\mu(\partial u/\partial\nu)$ and $\delta Au$ of $L$

correspond to the diffusion along the boundary, absorption, reflection and vis-
cosity phenomena respectively. The sixth and the last terms of $L$ correspond
to jump phenomena governed by the generator of Cauchy process on $\partial D$ (a

symmetric stable process of order 1), and the generator of the stable process
of order $\beta$ which possesses the inward jump from the boundary respectively.

We assume that $\beta\in Q$ . This assumption is necessary so that the pseudo-
differential operator $T(\alpha)$ induced by $L$ and $A$ can be written as a pseudodiffer-
ential operator of polyhomogeneous type (cf. Theorem 4.2 below).

DEFINITION 1.1. A Wentzell’s boundary condition $L$ is said to be transversal
on $\partial D$ if

$\mu(x’)+\delta(x’)>0$ on $\partial D$ .

Intuitively this implies that either reflection or viscosity phenomenon occurs on
$\partial D$ .

We can prove the following

THEOREM 1. Let the differential operator $A$ satisfy (1.1) and let the boundary
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condition $L$ satisfy (1.2) and be transversal on $\partial D$ . Suppose that the following
conditions are satisfied:

[I] (Existence) For some constants $\alpha\geqq 0$ and $\lambda\geqq 0$ , the boundary value prob-
$lem$

$(*)$ $\{(\alpha-A)u=0(\lambda-L)u=\varphi$ $inDon\partial D$

has a solution $u\in C^{\infty}(\overline{D})$ for any $\varphi\in C^{\infty}(\partial D)$ .
[II] (Uniqueness) For some constant $\alpha>0$ , we have

$\{\Rightarrow u=0u\in C(\overline{D})$

,
$(\alpha-A)u=0inD$

.
in $D$ , $Lu=0$ on $\partial D$

Then there exists a Feller semigroup $(T_{t})_{t\geqq 0}$ on $\overline{D}$ whose infinitesimal gen-
erator $a$ is characterized as follows:

(1.3) $\{$

(a) the domain $g(\mathfrak{a})$ of $a$ is
$g(\mathfrak{a})=\{u\in C(\overline{D}), Au\in C(\overline{D}), Lu=0\}$

(b) $\mathfrak{a}u=Au$ for $u\in g(\mathfrak{a})$ .
We omit the proof, since one can lead to the result easily following the

way of proof of Theorem 1 in [14] and referring to results in [12]. The main
point of the proof is that, under the conditions [I], [II], one can construct a
Feller semigroup $(T_{t})_{t\geqq 0}$ on $\overline{D}$ by making use of a Feller semigroup $(S_{t}^{\alpha})_{t\geq 0}$ on
$\partial D$ , and that its generator $\mathfrak{b}:C(\partial D)arrow C(\partial D)$ is bijective if the boundary condi-
tion $L$ is transversal. (See [14, Section 3.3].)

Next we shall state our main theorem.
TO state a hypothesis on the boundary condition $L$ , we introduce some nota-

tion. We say that a tangent vector $v=\Sigma_{j=1}^{N-1}v^{j}(\partial/\partial x_{j})\in T_{x’}(\partial D)$ is subunit for
the operator $L^{0}=\Sigma_{i,j=1}^{N-1}\alpha^{ij}(\partial^{2}/\partial x_{i}\partial x_{j})$ if it satisfies

$( \sum_{j=1}^{N-1}v^{j}\eta j)^{2}\leqq\sum_{i.j=1}^{N-1}\alpha^{ij}(x’)\eta_{i}\eta_{J}$ , $\eta=\sum_{j=1}^{N-1}\eta_{j}dx_{j}\in T_{x’}^{*}(\partial D)$ .

The fundamental hypothesis (A) we impose on the boundary condition $L$ is

(A) There exist constants $\epsilon\in(0,1]$ and $C>0$ such that for all sufficiently small
$\rho>0$

$B_{E}(x’, \rho)\subset B_{L0}(x’,$ $c_{\rho^{\epsilon})}$

on $M=$ { $x’\in\partial D;\mu(x’)=0$ and $s(x’)=0$ }.

Here $B_{E}(x’, \rho)$ denotes the ordinary Euclidian ball of radius $\rho$ about $x’$ , and
$B_{L^{0}}(x’, \rho)$ denotes the set of all points $y\in\partial D$ which can be joined to $x’$ by a
Lipschitz path: $[0, \rho]arrow\partial D$ for which the tangent vector $\dot{v}(t)$ of $\partial D$ at $v(t)$ is
subunit for $L^{0}$ for almost all $t$ .
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The notion of subunit trajectory was first introduced by Fefferman-Phong
[7]. The intuitive meaning of (A) is that a particle starting at any point of
the set $M$, where no reflection nor jumps along the boundary occur, can exit
$M$ in finite time.

NOW we can state our main result.

THEOREM 2. Let the differential operatorA satisfy (1.1) and let the boundary
condition $L$ satisfy (1.2) and be transversal on $\partial D$ . Suppose that hypothesis(A)
is satisfied. Then we have the concluston of Theorem 1.

REMARK 1.2. It is known that the infinitesimal generator $\mathfrak{a}$ coincides with
the minimal closed extension in $C(\overline{D})$ of the restriction of $A$ to the space
$\{u\in C^{2}(\overline{D});Lu=0\}$ .

\S 2. Preliminaries.

We start by formulating the local coordinate system. Choose an open neigh-
borhood $W$ of $\partial D$ in $D$ and a $C^{\infty}$-diffeomorphism (a collar) $\varphi$ of $\partial D\cross[0,1)$ onto
$W$ . Choose for each point $x’$ of $\partial D$ a neighborhood $U$ of $x’$ in $R^{N}$ and (under

the mapping $\varphi$ ) a local coordinate system $(x_{1}, \cdots , x_{N-1}, x_{N})$ on $U$ such that

1’ $x\in U\cap D$ $\Leftrightarrow$ $x\in U$, $x_{N}(x)>0$ ,

$x\in U\cap\partial D$ $\Leftrightarrow$ $x\in U$, $x_{N}(x)=0$ .
2 The functions $(x_{1}, \cdots , x_{N-1})$ , restricted on $U\cap\partial D$ , form a local coordi-

nate system of $D$ on $U\cap\partial D$ .
We may take $x_{N}(x)=dist(x, \partial D),$ $x\in R^{N}$ . Then we have

$gradx_{N}(x’)=\nu(x’)$ and hence $\frac{\partial}{\partial\nu}=\frac{\partial}{\partial x_{N}}$ .

We divide the last term of $L$ (the inward jump term)

$\lambda(x’)\int_{D}[u(y)-u(x’)]\frac{dy}{|y-x’|^{N+\beta}}$

into the two sum

$\lambda(x’)\int_{D}[(\theta. u)(y)-(\theta. u)(x’)]\frac{dy}{|y-x|^{N+\beta}}+\lambda(x’)\int_{D}(1-\theta)(y)u(y)\frac{dy}{|y-x’|^{N+\beta}}$

$:=\lambda(x’)K_{1}u(x’)+\lambda(x’)K_{2}u(x’)$ (say) ,

where $(\theta. u)(y)=\theta(y)u(y)$ . Here $\theta\in C^{\infty}(R^{N})$ is a function such that $supp\theta\subset W$ ,
$\theta(x’)=1$ on $\partial D$ and $supp(1-\theta)\subset\{x_{N}\geqq 1/2\}$ in the local coordinate. We remark
that $K_{2}$ forms a compact operator on $C(\overline{D})$ in view of the Ascoli-Arzela theorem.

AS stated in Section 1, we shall reduce the problem $(*)$ to that of an operator
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on the boundary. It is known that if the differential operator $A$ satisfy (1. 1)

and $\alpha\geqq 0$ , then the Dirichlet problem

$\{\begin{array}{l}(A-\alpha)u=0 inDon\partial D\end{array}$

$u|_{\partial D}=\varphi$

has a unique solution $u\in H^{t}(D)$ for any $\varphi\in H^{t-1/2}(\partial D)$ . Here $H^{S}(D)$ (resp. $H^{S}(\partial D)$ )

denotes the Sobolev space of order $s$ on $D$ (resp. $\partial D$).

Put the harmonic operator $H_{\alpha}$ : $H^{t-1/2}(\partial D)arrow H^{t}(D)$ by $u=H.\varphi$ . Then (cf.

[14] $)$ $H_{a}$ is an isomorphism

$H^{t-1/2}(\partial D)arrow$ { $u\in H^{t}(D);(A-\alpha)u=0$ in $D$ }

and its inverse is the trace operator on $\partial D$ .
Put the operator $S(\alpha):C^{\infty}(\partial D)arrow C^{\infty}(\partial D)$ by $\varphi->LH_{\alpha}\varphi$ . Then $S(\alpha)$ can be

written
$S(\alpha)=Q(\alpha)+\mu^{\Pi(}\alpha)+s_{-1}^{-}(\alpha)+\lambda_{-2}^{-}(\alpha)+\lambda\Xi_{3}(\alpha)$ ,

where

$Q( \alpha)\varphi=\sum_{i.j=1}^{N-1}\alpha^{ij}(x’)\frac{\partial^{2}\varphi}{\partial_{X_{i}}\partial x_{j}}+\sum_{i=1}^{N-1}\beta^{i}(x’)\frac{\partial\varphi}{\partial x_{i}}+(\gamma-\alpha\delta)\varphi$ ,

$\Pi(\alpha)\varphi=\frac{\partial}{\partial\nu}[H_{a}\varphi]|_{\partial D}$ , $\Xi_{1}(\alpha)\varphi=\int_{\partial D}[\varphi(y’)-\varphi(x’)]\frac{dy’}{||y’-x’||^{N}}$ ,

and
$-2(\alpha)\varphi=K_{1}H_{\alpha}\varphi$ , $\Xi_{3}(\alpha)\varphi=K_{2}H_{\alpha}\varphi$

We put $T(\alpha)=S(\alpha)^{-}--3(\alpha)$ . Then $T(\alpha)$ is a second order pseudodifferential
operator on $\partial D$ (cf. Bouted de Monvel [3, p. 32]), and its symbol is given by

$\sigma(T(\alpha))=\sigma(Q)+\mu\sigma(\Pi)+s\sigma(\Xi_{1})+\lambda\sigma(\Xi_{2})$ .
Here,

1’ $\sigma(Q)=-\sum_{i.-1}^{N-1}\alpha^{tf}(x’)\xi_{i}\xi_{j}+$ $-1 \sum_{i=1}^{-1}\beta^{i}(x’)\xi_{i}+terms$ of order $S0$ .

2’ $\sigma(\Pi)=\sqrt{-1}\xi_{N}^{+}+terms$ of order:$ $0$ , where

$\xi k=\frac{-a_{1}(x’,\xi’)-\sqrt{-1}[4A_{2}(x’)a_{0}(x’,\xi’)-a_{1}(x’,\xi’)^{2}]^{1/2}}{2A_{2}(x)}$

Here, writing the operator $A$ in the form

$A(x, D)=A_{2}(x)D_{N}^{2}+A_{1}(x, D_{x’})D_{N}+A_{0}(x, D_{x’})$ ,

$a_{1}(x, \xi’),$ $a_{0}(x, \xi’)$ denote the principal symbols of $A_{1}(x, D_{x}’)$ and $A_{0}(x, D_{x}’)$ re-
spectively.

We write $\sqrt{-1}\xi_{N}^{+}=p_{1}(x’, \xi’)+\sqrt{-1}q_{1}(x’, \xi’)$ , where
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$p_{1}(x’, \xi’)=\frac{[4A_{2}(x’)a_{0}(x’,\xi’)-a_{1}(x’,\xi’)^{2}]^{1/2}}{2A_{2}(x’)}$ $q_{1}(x’, \xi’)=\frac{-a_{1}(x’,\xi’)}{2A_{2}(x’)}$ .
Note that $p_{1}(x’, \xi’)<0$ on $T^{*}(\partial D)-\{0\}$ .

$3^{o}$ $\sigma(\Xi_{1})=-C|\xi’|$ . Here $|\xi’|$ denotes the length of $\xi’=(\xi_{1}$ , $\cdot$ .. , $\xi_{N-1})$ with
respect to the Riemannian metric induced on $\partial D$ by the Riemannian metric $(a_{ij})$

(the inverse matrix of $(a^{ij})$) of $R^{N}$ .
$4^{O}$ $\sigma(_{-z}^{-})=-C_{\beta}[\phi(x’, \xi’)]+terms$ of order $\leqq 0$ .

Here $\phi(x’, \xi’)$ is a symbol derived from the last term of $L$ and given by
$\phi(x’, \xi’)=\psi(\xi’, \xi_{N}^{+}(x’, \xi’))$ ,

$\psi(\xi)=\psi(\xi’, \xi_{N})=\int_{S^{N-1}\cap\iota\theta_{N}>0)}|\langle\theta, \xi\rangle|^{\beta}(1-\sqrt{-1}(\tan\beta\pi/2)\cdot sgn\langle\theta, \xi\rangle)d\theta$

(cf. Komatsu [11]). Note that ${\rm Re}\phi(x’, \xi’)>0$ on $T^{*}(\partial D)-\{0\}$ .
Since $T(\alpha):C^{\infty}(\partial D)arrow C^{\infty}(\partial D)$ extends to a continuous linear operator $T(\alpha)$ :

$H^{*}(\partial D)arrow H^{S-2}(\partial D)$ for all $s\in R$ (cf. [15, Section 10.2]), we extend $T(\alpha)$ to a
densely defined, closed linear operator $\tau(\alpha)$ as follows;

$\tau(\alpha):H^{s-5/2+\kappa}(\partial D)arrow H^{s-5/2}(\partial D)$ ,

$\{\begin{array}{l}g(\tau(\alpha))=\{\varphi\in H^{s- 5/2+\kappa}(\partial D). T(\alpha)\varphi\in H^{s-5/2}(\partial D)\}\tau(\alpha)\varphi=T(\alpha)\varphi,\end{array}$

$\varphi\in O(\tau(a))$ ,

where $\kappa$ is a constant and will be fixed later on.
Then we have

PROPOSITION 2.1. Let $A$ and $L$ be as in Theorem 2 and suPPose that $hyPo\lrcorner$

thesis (A) is satisfied. Then there exists a constant $0<\kappa\leqq 1$ such that for any
$s\in R$ we have

$\varphi\in O’(\partial D)$ , $\tau(\alpha)\varphi\in H^{s}(\partial D)\supset\varphi\in H^{s+\kappa}(\partial D)$ .
Furthermore, for any $t<s+\kappa$ there exists a constant $C_{s.t}>0$ such that

$|\varphi|_{H^{S+\kappa_{(\partial D)}}}\leqq C_{s.t}(|T(\alpha)\varphi|_{H\partial D)}+|\varphi|_{Ht(\partial D)})$

holds.

Proposition 2.1 is the essential step in the proof of Theorem 2 and will be
proved in the last section.

Lastly, we remark that $--3(\alpha)$ extends to a compact operator on $C(\partial D)$ as a
composition of continuous and compact operators, which also extends to a com-
pact operator

$\Xi_{3}(\alpha):H^{S-5/2+\kappa}(\partial D)arrow H^{S-5/2+\kappa}(\partial D)H^{S-5/2}(\partial D)\underline{\varpi}_{a}(\alpha)\underline{natural}$

injection
if $s>2-\kappa$ (cf. [3, p. 25]).
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\S 3. Proof of Theorem 2.

Due to Theorem 1 we have only to show that existence [I] and uniqueness
[II] results follow under the given condition.

3.1. First we prove the uniqueness [II].

PROPOSITION 3.1. Let the differential operatorA satisfy (1.1) and let the
boundary condition $L$ satisfy (1.2) and be transversal on $\partial D$ . Then for any $\alpha>0$

we have

$\{\Rightarrow u\leqq 0u\in C^{2}(D),$ $on\overline{D}(A-\alpha)u\geqq 0$

in $D$ , $Lu\geqq 0$ on $\partial D$

PROOF. If $u$ is constant in $D$ , then

$0$ ;El $(A-\alpha)u=(c-\alpha)u$

and hence $u$ is go in $D$ , since $c\leqq 0$ in $D$ and $\alpha>0$ .
Thus we may assume that $u$ is not constant in D. Suppose that $\max_{x\in\overline{D}}u(x)$

$>0$ . Then it follows from the weak maximum principle for $A-\alpha$ (cf. [14,

Theorem 2.7]) that there exists a point $x_{0}’$ of $\partial D$ such that

$\{$

$u(x_{0}’)= \max_{x\in\overline{D}}u(x)>0$ , $u(x)<u(x_{0}’)$ in $D$

$\frac{\partial u}{\partial\nu}(x_{0}’)<0$ .

Further note that

$\frac{\partial u}{\partial x_{i}}(x_{0}’)=0$ $(1\leqq i\leqq N-1)$ , Au $(x_{0}’)\geqq\alpha u(x_{0}’)>0$

and that $\Sigma_{i.j=1}^{N-1}\alpha^{ij}(x_{0}’)(\partial^{2}u/\partial x_{i}\partial x_{j})(x_{0}’)\leqq 0$, since the matrices $(\alpha^{ij}(x_{0}’))$ and
$(-(\partial^{2}u/\partial x_{i}\partial x_{j})(x_{0}’))$ are nonnegative definite.

In the expression

$Lu(x_{0}’)= \sum_{ji.=1}^{N-1}\alpha^{ij}(x_{0}’)\frac{\partial^{2}u}{\partial x_{i}\partial x_{j}}(x_{0}’)+\gamma(x_{0}’)u(x_{0}’)$

$+s(x_{0}’) \int_{\partial D}[u(y’)-u(x_{0}’)]\frac{dy’}{||y’-x_{0}’||^{N}}+\mu(x_{0}’)\frac{\partial u}{\partial\nu}(x_{0}’)$

$- \delta(x_{0}’)Au(x_{0}’)+\lambda(x_{0}’)\int_{D}[u(y)-u(x_{0}’)]\frac{dy}{|y-x_{0}’|^{N+\beta}}$ ,

the first and second terms are 50, since $\gamma(x_{\acute{0}})\leqq 0$ . The third term is SO since
$u(y’)-u(x_{0}’)\leqq 0$ for $y’\in\partial D$ and $s(x_{0}’)\geqq 0$ . For the fourth, fifth and sixth terms,

we note that $(\partial u/\partial\nu)(x_{0}’)<0,$ $-Au(x_{0}’)<0$ , and $\int_{D}([u(y)-u(x_{0}’)]/|y-x_{0}’|^{N+\beta})dy<0$ .
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Hence we have that the $fourth+fifth+sixth$ term $<0$ since $\mu(x’)+\delta(x’)>0$ on
$\partial D$ , and hence $Lu(x_{0}’)<0$ . This contradicts the assumption $Lu\geqq 0$ on $\partial D$ .

The uniqueness [II] follows immediately from this proposition.

3.2. Next we prove the existence [I].

Let $S=R/2\pi Z$ . We consider the following boundary value problem

$(\sim*)$ $\{$

$(A+ \frac{\partial^{2}}{\partial y^{2}})\tilde{u}=0$ in $D\cross S$

$L\tilde{u}=\tilde{\varphi}$ on $\partial D\cross S$ .
Put $\Lambda=A+\partial^{2}/\partial y^{2}$ . As before we define a harmonic operator $\tilde{H}_{\alpha}$ as follows;

The Dirichlet problem

$\{\Lambda\tilde{w}_{\partial D}=0\tilde{w}|=\tilde{\varphi}$ $inD\cross Son\partial D\cross S$

has a unique solution $\tilde{w}\in H^{t}(D\cross S)$ for any $\tilde{\varphi}\in H^{t-1/2}(\partial D\cross S)$ . Define $H_{\alpha}$ :
$H^{t-1/2}(\partial D\cross S)arrow H^{t}(D\cross S)$ by $\tilde{w}=\tilde{H}_{\alpha}\tilde{\varphi}$ . Then $E7_{a}$ is an isomorphism $H^{t-1/2}(\partial D\cross S)$

$arrow\{u\in H^{t}(D\cross S);\Lambda\tilde{u}=0\}$ and its inverse is the trace operator on $\partial D\cross S$ .
We put the operator

$\mathcal{T}(\alpha):C^{\infty}(\partial D\cross S)arrow C^{\infty}(\partial D\cross S)$ by $\tilde{\varphi}\mapsto(L-K_{2})\tilde{H}_{a}\tilde{\varphi}$

AS in Section 2, $\mathcal{I}(\alpha)$ is a pseudodifferential operator on $\partial D\cross S$ of second order
with symbol $\sigma(\tilde{T}(\alpha))$ given by

$\sigma(\tilde{T}(\alpha))=\sigma(\tilde{Q})+\mu\sigma(\tilde{\Pi})+s\sigma(_{-1}^{\underline{\sim}})+\lambda\sigma(_{-2}^{\underline{\sim}})$ .
Here

$\sigma(\tilde{Q})=-\sum_{i.j=1}^{N-1}\alpha^{ij}(x’)\xi_{i}\xi_{j}-\delta(x’)\eta^{2}+\sqrt{-1}\sum_{i=1}^{N-1}\beta^{i}(x’)\xi_{i}+terms$ of $order\leqq 0$ ,

$\sigma(\tilde{\Pi})=[\tilde{p}_{1}(x’, \xi’, y, \eta)+\sqrt{-1}\tilde{q}_{1}(x’, \xi’, y, \eta)]+terms$ of orderSO,

where
$\tilde{p}_{1}(x’, \xi’, y, \eta)=\frac{(4A_{2}(x’)(a_{0}(x’,\xi’)-\eta^{2})-a_{1}(x’,\xi’)^{2})^{1/2}}{2A_{2}(x)}$

and
$\tilde{q}_{1}(x’, \xi’, y, \eta)=-a_{1}(x’, \xi’)/2A_{2}(x’)$ ,

$\sigma(_{1}^{\frac{\sim}{\underline.}})=-C(|\xi’|\otimes 1)$ ,

$\sigma(_{2}^{\underline{\sim}}\underline{-})=-C_{\beta}[\phi(x’, \xi’)\otimes 1]+terms$ of order $\leqq 0$ .
We observe $\tilde{p}_{1}(x’, \xi’, y, \eta)<0,$ $\sigma(_{-1}^{\underline{\sim}})<0$ and $-C_{\beta}[\phi(x’, \xi’)\otimes 1]<0$ on $T^{*}((\partial D\cross S)$

$-\{0\})$ .
AS before we extend $iT(\alpha)$ to $\tilde{\tau}:H^{s-5/2+\kappa}(\partial D\cross S)arrow H^{s- 5/2}(\partial D\cross S)$ as follows:

$\{\tilde{\tau}\tilde{\varphi}=\tilde{T}(\alpha)\tilde{\varphi},\tilde{\varphi}\in 9(\tilde{\tau})9(\tilde{\tau})=\{\tilde{\varphi}\in H^{s-5/2+\kappa}(\partial D\cross S);T(\alpha)\tilde{\varphi}\in H^{s-5/2}(\partial D\cross S)\}$
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AS in Section 1, we put $\tilde{L}^{0}=\Sigma_{i.j=1}^{N-1}\alpha^{ij}(\partial^{2}/\partial x_{i}\partial x_{f})+\delta(\partial^{2}/\partial y^{2})$ and $\tilde{M}=\{(x’, y)$

$\in\partial D\cross S;\mu(x’)=0$ and $s(x’)=0\}=M\cross S$ . Since $\delta(x’)>0$ on $M=\{x’\in\partial D;\mu(x’)$

$=0$ and $s(x’)=0\}$ , we observe that if the con\‘oition (A) holds then the condition

(A) There exists a constant $\tilde{C}>0$ such that for all sufficiently small $\rho>0$ we have

$B_{E}((x’, y),$ $\rho)\subset B_{Lo}((x’, y),\tilde{C}\rho^{\epsilon})$ , $(x’, y)\in\tilde{M}$

holds.

Then just as that Proposition 2.1 follows under the assumption (A), we
have the following

PROPOSITION 3.2. Let $A$ and $L$ be as in Theorem 2 and suPPose that hyPo-
thests (A) is satisfied. Let $\kappa$ be the same constant as in ProPosition 2.1. Then
for any $s\in R$ we have:

$\tilde{\varphi}\in 9’(\partial D\cross S),$ $T_{\tilde{\varphi}}\in H^{S- 5/2}(\partial D\cross S)\supset\tilde{\varphi}\in H^{S-5/2+\iota}(\partial D\cross S)$ .
Furthermore, for any $t<s-5/2+\kappa$ there exists a constant $C_{s,t}>0$ such that

$|\tilde{\varphi}|_{H^{S-5/2+\kappa_{(\partial D\cross S)}}}\leqq\tilde{C}_{s.t}(|\tilde{T}(\alpha)\tilde{\varphi}|_{H^{\theta-5/2_{(\partial D\cross S)}}}+|\tilde{\varphi}|_{H^{t}(\partial DxS)})$

holds.

Hence, since the injection $H^{s-5/2+\kappa}(\partial D\cross S)cH^{t}(\partial D\cross S)(t<s-5/2+\kappa)$ is com-
pact, it follows from a version of Peetre’s lemma (cf. [14, Lemma 4.8]) that
the dimension of the kernel $\Re(\tilde{\tau})$ of $\tilde{\tau}$ is finite and that the range $R(\tau\sim)$ of $\tilde{\tau}$ is
closed in $H^{S-5/2}(\partial D\cross S)$ .

The codimension $co\dim R(\tilde{\tau})=\dim\Re(\tilde{\tau}^{*})$ of the range of $\tilde{\tau}$ is calculated to
be finite by considering the adjoint $\tilde{\tau}^{*}$ of $\tilde{\tau}$ and use the similar estimate.

Hence we conclude that the index ind $(\tilde{\tau})\equiv\dim\Re(\tilde{\tau})-co\dim R(^{\sim})$ of $\tilde{\tau}$ is finite.
It is known (cf. [14]) that;

If the index of $\tilde{\tau}$ is finite, then for any $\alpha\geqq 0$ the index of $\tau(\alpha)$ is equal to zero.
Hence we have ind $(\tau(\alpha))=0$ . And so ind $(\sigma(\alpha))=0$ by the stability theorem

of index, where $\sigma(\alpha)=\tau(\alpha)+\Xi_{3}(\alpha)$ . By the uniqueness [II] we observe that
$\dim\Re(\sigma(\alpha))=0$ for any $\alpha>0$, and this implies $co\dim R(\sigma(\alpha))=\dim 5U(\sigma^{*}(\alpha))=0$ .
Combining this with the regularity result (Proposition 2.1) and the remark
given at the end of Section 2, we have the existence result [I]. The proof of
Theorem 2 is now complete.

\S 4. Proof of Proposition 2.1.

Consider again the pseudodifferential operator $T(\alpha)$ . Its principal symbol is
$- \sum_{i.j=1}^{N-1}\alpha^{ij}(x’)\xi_{i}\xi_{j}$ and the subPrinciPal symbol on the characteristic set
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$\Sigma=\{(x’, \xi’)\in T^{*}(\partial D)-\{0\};\sum_{i.j=1}^{N-1}\alpha^{\ell j}(x’)\xi_{i}\xi_{j}=0\}$

is equal to
$\mu(x’)p_{1}(x’, \xi’)-s(x’)C|\xi’|$

$+ \sqrt{-1}(\mu(x’)q_{1}(x’, \xi’)+\sum_{=i1}^{N-1}\beta^{i}(x’)\xi_{\ell}-(1/2)\sum_{i,j=1}^{N-1}\frac{\partial\alpha^{ij}}{\partial x_{j}}(x’)\xi_{t)}$ .

The reason for the appearance of the $term-\sqrt{-1}(1/2)\Sigma_{i.j=1}^{N-1}(\partial\alpha^{ij}/\partial x_{j})(x’)\xi_{l}$ in
the subprincipal part is deeply related to the theory of Weyl calculus of pseudo-
differential operators. See [8], pages 83, 161; see also [15], p. 213.

For a pseudodifferential operator $P$ with symbol $p(x’, \xi’)$ , we shall denote
by $P^{(j)}$ and $P_{(!)}$ (l$i$N--l) pseudodifferential operators with symbols
$(\partial p/\partial\xi_{j})(x’, \xi’)$ and $D_{j}p(x’, \xi’)$ respectively. Here $D_{j}=(1/\sqrt{-1})\partial/\partial x_{j}$ .

We first prove a localized version of Proposition 2.1.

PROPOSITION 4.1. Let $A$ and $L$ be as in Theorem 2 and suppose that hypo-
thesis (A) is satisfied. Then for any Point $x_{0}’$ of $\partial D$ , we can find a nutghborhood
$U(x_{0}’)$ of $x_{0}’$ such that for every compact set $K\subset U(x_{0}’)$ there is a constant $\kappa=\kappa(K)$,
O<\kappa (K)$1, such that for any $s\in R$ and $t<s+\kappa$ we have

(4.1) $\sum_{j=1}^{N-1}(|T(\alpha)^{(j)}\psi|_{H^{S+\kappa/z_{(\partial D)}}}^{2}+|T(\alpha)_{(j)}\psi|_{H^{S-1+\kappa/2_{(\partial D)}}}^{2})+|\psi|_{H^{S+\kappa_{(\partial D)}}}^{2}$

$\leqq C_{K.\iota.\iota}(|T(\alpha)\psi|_{H^{S}(\partial D)}^{2}+|\psi|_{H^{t}(\partial D)}^{2})$ , $\psi\in C_{0}^{\infty}(K)$

with a constant $C_{K,.,t}>0$ .

PROOF OF PROPOSITION 4.1.
1o Let $x_{0}’$ be a point of $M=$ { $x’\in\partial D;\mu(x’)=0$ and $s(x’)=0$ }. Then the

assumption (A) implies that one can find a neighborhood $U(x_{0}’)$ of $x_{0}’$ such that
for sufficiently small $\rho>0$ we have $B_{E}(x’, \rho)\subset B_{L0}(x’, 2C\rho^{\epsilon}),$ $x’\in U(x_{0}’)$ .

In view of the form of the boundary condition $L$ , we see that we are in
just the same situation on $K$ as in [15, Proposition 10.2.4], provided the estimate

(4.2) $\sum_{j^{=1}}^{N-1}(|\sum_{i=1}^{N-1}\alpha^{\ell j}D_{i}\psi|_{H^{S}(\partial D)}^{2}+|\sum_{k.m=1}^{N-1}\frac{\partial\alpha^{km}}{\partial x_{j}}D_{k}D_{m}\psi|_{H^{S-1_{(\partial D)}}}^{2})$

$ $C_{K.s}(|T(\alpha)\psi|_{L^{2}(\partial D)}^{2}+|\psi|_{H^{2S}(\partial D)}^{2})$ , $\psi\in C_{0}^{\infty}(K)$

for some constant $C_{K,s}>0$ , where $s\geqq 0$ . This estimate (4.2) follows as in the
proof of [15, Proposition 10.2.3], if we note that non-local terms $\mu^{\Pi(}\alpha$ ), $s\Xi_{1}$

and $\lambda\Xi_{2}$ are pseudodifferential operators of order 1, 1 and $\beta$ respectively whose
real parts of principal symbols are all nonpositive, and use Garding inequality.
And so (4.1) follows with $\kappa(K)=\epsilon$ .

2 Secondly we prove Proposition 4.1 in case that $x_{0}’\not\in M$ by using the fol-
lowing result due to H\"ormander.
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THEOREM 4.2 ($H6rmander[8$ , Theorem 22.3.4]). Assume that $P$ is a pro-
Perly supported, polyhomogeneous (cf. [8, Definition 18.1.5]) pseudodifferential
operator in $X\subset R^{N^{-1}}$ of order $m$ , and that the principal symbol $p_{m}$ is nonnegative
in a conic neighborhood of $(x_{0}, \xi_{0})\in T^{*}(X)-\{0\}$ but vanishes at $(x_{0}, \xi_{0})$ . Let $Q$

be the Hesstan of $p_{m}/2$ at $(x_{0}, \xi_{0})$ , and assume that the subPrinciPal symbol $p_{m-1}^{s}$

satisfies $p_{m-1}^{s}(x_{0}, \xi_{0})+Tr^{+}Q\not\in\{t\in R;t\leqq 0\}$ .
Then $u\in 9’(X),$ $Pu\in H^{S}$ at $(x_{0}, \xi_{0})$ implies $u\in H^{s+m-1}$ at $(x_{0}, \xi_{0})$ . Here $Tr^{+}$

stands for the trace with respect to positive eigenvalues.

Let us apply this theorem to $P=-T(\alpha)$ . It is seen that the principal symbol
$p_{2}(x’, \xi’)=\Sigma_{i.j=1}^{N-1}\alpha^{ij}(x’)\xi_{t}\xi_{j}$ satisfies $p_{2}(x’, \xi’)\geqq 0$ on $T^{*}(\partial D)-\{0\}$ .

On the other hand, the subprincipal symbol $p_{1}^{s}(x’, \xi’)$ on $\Sigma$ is equal to

$-\mu(x’)p_{1}(x’, \xi’)+s(x’)C|\xi’|$

$- \sqrt{-1}(\mu(x’)q_{1}(x’, \xi’)+\sum_{i=1}^{N-1}\beta^{i}(x’)\xi_{i}-(1/2)\sum_{i.j\Rightarrow 1}^{N-1}\frac{\partial\alpha^{ij}}{\partial x_{j}}(x’)\xi_{i})$ .

Here we observe that the condition of Theorem 4.2 is satisfied, since
$-\mu(x’)p_{1}(x’, \xi’)+s(x’)C|\xi’|\geqq 0$ on $T^{*}(\partial D)-\{0\}$ . Furthermore, if $x_{0}’\not\in M$ we can
find a neighborhood $U(x_{0}’)$ of $x_{0}’$ such that $\mu(x’)+s(x’)>0$ on $U(x_{0}’)$ , and hence

${\rm Re} p_{1}^{s}(x’, \xi’)>0$ in $U(x_{0}’)\cross(R^{N-1}-\{0\})$ .
Therefore applying Theorem 4.2 to $-T(a)$ , we obtain that for every com-

pact $K\subset U(x_{0}’)$

(4.3) $|\psi|_{H^{s+1(\partial D)}}^{2}\leqq C(|T(\alpha)\psi|_{H^{S}(\partial D)}^{2}+|\psi|_{H^{t}(\partial D)}^{2})$ ,

$\psi\in C_{0}^{\infty}(K)$ holds $(t<s+1)$ .
Consequently, in case $\mu(x_{0})+s(x_{0})>0$ , the estimate (4.1) with $\kappa(K)=1$ follows

from (4.2) and (4.3) in the same way as in case $\mu(x_{0}’)=s(x_{0}’)=0$ . This completes
the proof of Proposition 4.1.

The argument to lead Proposition 2.1 from the estimate (4.1) is the same
as in [15, Section 2-3)] and so we omit the proof. This completes the proof
of Proposition 2.1.

\S 5. Concluding remarks.

In Section 1 we confined ourselves to the case when the fractional order $\beta$

of the last term of $L$ to the rational numbers in $(0,1)$ , so as that the sum of
their symbols are of polyhomogeneous type. The reason is that when it is
irrational we do not know whether the conclusion of Theorem 4.2 applied to
$-T(\alpha)$ holds or not.

The arguments above can be applied if we replace the boundary condition
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$L$ with $W=P+sT_{1}+\lambda T_{\beta}$ , where $P$ is a second order differential operator, $T_{1}$

and $T_{\beta}$ are polyhomogeneous pseudodifferential operators of order 1, $\beta(\beta<1)$

respectively.
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