
J. Math. Soc. Japan
Vol. 40, No. 4, 1988

On some Properties on span

Dedicated to Professor Yukihiro Kodama on his 60th birthday

By Kazuhiro KAWAMURA

(Received March 16, 1987)

1. Introduction.

A compact metric space is called a compactum and a continuum means a
connected compactum. All maps in this paper are continuous. Lelek $[L_{1}]$ de-
fined the span of compactum $X$ as the following formula.

$\sigma(X)=Sup\{\begin{array}{llllllll}c\geqq 0|there exists a continuum Zin X\cross X such thatp_{1}(Z)=p_{2}(Z)and d(x, y)\geqq c for each(x y)\in Z \end{array}\}$

$=Sup\{\begin{array}{llllllll}c\geqq 0|there exista acontinuumnd C maps f,g Carrow X suchthat f(C)=g(C)and d(f(p),g(p))\geqq c for peach\in C \end{array}\}$

,

where $p_{i}$ denotes the projection $X\cross Xarrow X$ to the i-th factor, $i=1,2$ . A con-
tinuum is called chainable, if it is represented as an inverse limit of closed
intervals. Each chainable continuum has span zero, but it is not known whether
the converse implication holds or not. So it is natural to study the following
general question due to Duda and Lelek (Continuum theory problems edited by
Lewis [Lw], Problem 162).

QUESTION. To what extent does span zero parallel chainability.$\rho$

Several results in this direction has been obtained by several authors. In
particular, Duda asked, in the above question, whether any open image of a
continuum of span zero has span zero. Oversteegen has proved that open maps
between hereditarily indecomposable continua preserve span zero $[0]$ .

The purpose of Section 2 of this paper is to answer the above question in
the affirmative. Our main tool is ‘Whyburn’s section theorem’ and (the method
of proof of) an extension theorem of open maps due to Ma\v{c}kowiak and Tym-
chatyn [M-T].

In Section 3, we will define two properties of continua, using span, which
are weaker than the property of having span zero. After some simple results,
we will study whether these properties are preserved by maps which preserve
span zero.
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2. Open maps preserve span zero.

The theorem which we are going to prove is as follows.

THEOREM 1. Let $f:Xarrow Y$ be an open map from a compactum $X$ onto a
compactum Y. If $\sigma(X)=0$ , then $\sigma(Y)=0$ .

REMARK. Rosenholtz showed that open images of chainable continua are
chainable [R].

We need some preparations for the proof. The following observation is
useful later. Let $X$ be a compactum, then $\sigma(X)=0$ if and only if each com-
ponent of $X$ has span zero.

An onto map $f:Xarrow Y$ between continua $X$ and $Y$ is called confluent if for
each subcontinuum $K$ of $Y$ and each component $C$ of $f^{-1}(K),$ $f(C)=K$. In this
case, $f|C:Carrow>K$ is also confluent [Ch]. Each open map is confluent.

THEOREM 2 $([L_{1}, L_{3}])$ . a) Let $(X_{t})_{i=1}^{\infty}$ be a sequence of compacta in a metric
space S. Then lim sup $\sigma(X_{i})\leqq\sigma$ ( $\lim$ sup $X_{i}$ ).

b) Let $X$ and $X_{t}’ s$ be compacta in a metric space S. SuppOse that lim $X_{i}=X$

and there exists an onto $\epsilon_{i}$-translation $p_{t}$ : $Xarrow X_{i}$ (that is, $d(p_{t}(x), x)<\epsilon_{t}$ for each
$x\in X)$ for each $i$ , where $\epsilon_{t}arrow 0$ as $iarrow\infty$ . Then $\sigma(X)=\lim\sigma(X_{t})$ .

THEOREM 3 ([W], p. 188). Let $f:Xarrow Y$ be an onto light $oPen$ $nwP$ between
compacta $X$ and Y. For each dendnte $D$ in $Y$ (a dendn $te$ is a Peano continuum
wh2ch does not contain any $\alpha mple$ closed curves), there exzsts a dendnte $D_{1}$ in $X$

such that $f(D_{1})=D$ and $f|D_{1}$ : $D_{1}arrow D$ is a homeomorphjsm onto $D$ .

LEMMA 4. Let $f:Xarrow Y$ be a map between compacta. There exist metncs
$d_{X}$ and $d_{Y}$ on $X$ and $Y$ respectjvely, which are compatjble with the topOlOgjes of
$X$ and $Y$ and satisfy

$(*)$ $d_{Y}(f(p), f(q))\leqq d_{X}(p, q)$ for each $P,$ $q$ in $X$.

PROOF. Let $D_{X}$ and $D_{Y}$ be some metrics of $X$ and $Y$ respectively. Then
$d_{X}$ and $d_{Y}$ are simply defined by

$d_{Y}=D_{Y}$ , $d_{X}(p, q)=D_{X}(p, q)+D_{Y}(f(p), f(q))$ .
We say that an onto map $f:Xarrow\succ Y$ is apprOxjmatjvely right invertible (ab-

breviated to $ARI$), if for each $\epsilon>0$ , there exists a map $g:Yarrow X$ which satisfies
$d(fg(P), p)<\epsilon$ for each $p\in Y$.

PROPOSITION 5. Let $f:Xarrow Y$ be an ARI map between compacta. Suppose
metrics $d_{X}$ and $d_{Y}$ on $X$ and $Y$ satisfy con&tion $(*)$ in Lemma 4. Then $\sigma(X. d_{X})$

$\geqq\sigma(Y, d_{Y})$ .
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The proof of this proposition is direct from the definitions of span and ARI
map.

LEMMA 6. Let $f$ : $Xarrow\neq Y$ be an open onto map from a comPactum $X$ to a
continuum $Y$ both of which are contained in $Q$ , the Hilbert cube. Suppose that $Y$

is tree-like, then there exist sequences of graphs $X_{n}’ s$ and $Y_{n}’ s$ in $Q\cross Q$ and onto
open maps $f_{n}$ : $X_{n}arrow Y_{n}$ which satisfy the following con&tions.

1) $X \bigcup_{\cup n=1}^{\infty}X_{n},$ $Y \cup\bigcup_{n=1}^{\infty}Y_{n}$ (&mted by $A$ and $B$ respectively) are compact.
$X\cap X_{n}=\emptyset=X_{m}\cap X_{n}$ for each distinct $m$ and $n$ , $Y\cap Y_{n}=\emptyset=Y_{m}\cap Y_{n}$ for each
distinct $m$ and $n$ .

2) lim $X_{n}=X$, lim $Y_{n}=Y$ .
3) All $Y_{n}’ s$ are trees. There exists an $\epsilon_{n}$ -translation (not necessarily onto)

$p_{n}$ : $Yarrow Y_{n}$ for each $n$ , where $\epsilon_{n}arrow 0$ as $narrow\infty$ .
4) If we define $F:Aarrow B$ by $F|X=f,$ $F|X_{n}=f_{n}$ , then $F$ is well defined and

continuous.

The proof of Lemma 6 is almost the same as ([M-T], Theorem 1), so we
will omit it.

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. Let $f:Xarrow Y$ be an open map from a compactum
$X$ onto a compactum $Y$ and assume that $\sigma(X)=0$. To prove that $\sigma(Y)=0$, we
only have to show that each component $C$ of $Y$ has span zero. The restriction
$f|f^{-1}(C)$ is also an open map onto $C$ , so we may assume that $Y$ is a continuum.

As $\sigma(X)=0$ , each component $K$ of $X$ has span zero and hence is tree-like
by [L2, O-T2]. From openess of $f$ and the remark before Theorem 2,
$f|K:K\cdotarrow\succ Y$ is confluent. By ([Mc], Cor. 2.2), $Y$ is tree-like.

We take graphs $X_{n}’ s,$ $Y_{n}’ s$ and open maps $f_{n}$ : $X_{n}arrow>Y_{n}$ as in Lemma 6 and
let $T_{n}$ be $p_{n}(Y)$ . Then clearly $T_{n}$ is a tree. Note that any open map from a
graph onto a graph is light.

From Lemma 4 and Condition 4) of Lemma 6, we may assume that the
metrics $d_{A}$ and $d_{B}$ on $A$ and $B$ (see Lemma 6) satisfy

$(*)$ $d_{B}(F(p), F(q))\leqq d_{A}(p, q)$ for each $P,$ $q\in A$ .
Applying Theorem 3 to $f_{n}$ : $X_{n}arrow Y_{n}$ and $T_{n}\subset Y_{n}$ , there exists a dendrite

(hence a tree) $D_{n}\subset X_{n}$ such that $f_{n}(D_{n})=T_{n}$ and $f|D_{n}$ ; $D_{n}arrow T_{n}$ is a homeo-
morphism. Let $g_{n}=(f_{n}|D_{n})^{-1}$ , then $f_{n}g_{n}=Id_{\tau_{n}}$ . Applying Proposition 5, we
have $\sigma(D_{n})\geqq\sigma(T_{n})$ . We may assume, taking a subsequence if necessary, $D_{n}$

converges to a continuum $D$ and lim $\sigma(D_{n})$ exists. By the condition 2) of Lemma
6, $D\subset X$ and hence $\sigma(D)\leqq\sigma(X)=0$ .

Applying Theorem 2. a), b) and Condition 3) of Lemma 6, we have
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$\sigma(Y)=\lim\sigma(T_{n})\leqq\lim\sigma(D_{n})\leqq\sigma(D)=0$ ,

as desired.

3. Two properties concerning span.

In this section, we will consider the following properties of a continuum $X$.
(A) Each proper subcontinuum of $X$ has span zero.
(B) There exists a positive number $a>0$ such that each subcontinuum $Y$

of $X$ whose diameter is less than $a$ has span zero.

PROPOSITION 7. 1) For continua,

span $zero\underline{arrow}$ Property $(A)rightarrowarrow Property(B)$ g2 dim $=1$ .
$\downarrow\uparrow$

atnodic
2) SuPpose that $X$ is a Peano continuum. Then,

$X$ has ProPerty $(A)-X$ has ProPerty $(B)$

$-X$ is an arc or a $\alpha mple$ closed curve.

PROOF. 1) We show first: Property $(B)arrow\dim=1$ . Suppose $X$ has (B) and
let $a$ be a positive number determined by (B). Take a finite open cover
$\{U_{1}, \cdots , U_{n}\}$ of $X$ whose mesh is less than $a/2$ . It suffices to prove $\dim c1U_{i}$

$\leqq 1$ . If dim cl $U_{i}\geqq 2$ , there exist a continuum $C\subset c1U_{i}$ and a map $f:Carrow S^{1}$

which is essential. Since $\sigma(C)=0,$ $C$ is tree-like. This is a contradiction.
The simple closed curve has Property (A) but does not have zero span.
Let $X=A_{1}\cup A_{2}\cup A_{3}$ be a triod such that each $A_{i}$ is sin $(1/x)$-curve and

$A_{1}\cap A_{2}\cap A_{3}$ is exactly the limit arc. $X$ has Property (B) but does not have
Property (A).

There exists a 2-dimensional atriodic continuum. It does not have Prop-
erty (A).

Other implications are trivial.
2) It can be shown that any Peano continuum which does not contain sim-

ple triods is an arc or a simple closed curve. Using this fact, 2) is easily
proved.

REMARK. The following theorem completely determines the difference be-
tween zero span and Property (A).

THEOREM 8 ([O-T2], Theorem 15). Let $X$ be a weakly chainable continuum
which is in class W. Then,

$\sigma(X)=0$ if and only if $X$ has ProPerty $(A)$ .
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Having span zero is equivalent to having semispan zero, for continua [D]. So the
above statement is the same as the original one.

Several classes of mappings are known to preserve span zero. They are
the classes of: local homeomorphisms, open maps, monotone maps, refinable maps
and ARI maps. See [I], [K] and Theorem 1.

Here we consider whether these classes of maps preserve Property (A) and
$(B)$ . The list is as follows. $+means$ the statement holds and –means it does
not hold.

List. Let $f:Xarrow Y$ be an onto map between continua.

In the rest of this section, we will give proofs, comments and examples to
the above list.

1 and 5 easily follow from Theorem 1. 3, 4 and 9 are trivial.

6, 8, 10, 12, 18, 20. The projection $p:S^{1}\cross S^{1}arrow S^{1}$ gives a counterexample.

7 and 11. Let $A$ be the arc of pseudo-arcs by Bing and Jones [B-J]. It
is a chainable continuum such that

a) There exists a monotone open map $p:Aarrow+[0,1]$ such that each fibre is
homeomorphic to a pseudo-arc.

b) Let $B$ be another chainable continuum satisfying a) and $q:Barrow[0,1]$ be
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the required map. For each homeomorphism $h:p^{-1}(0)\cup p^{-1}(1)arrow q^{-1}(0)\cup q^{-1}(1)$

with $h(p^{-1}(i))=q^{-1}(i),$ $i=0,1$ , there exists a fibre preserving homeomorphic ex-
tension $H:Aarrow B$ of $h$ .

Let $X_{1},$ $X_{2},$ $X_{3}$ be three topological copies of the arc of pseudo-arcs and
$p_{i}$ : $X_{i}arrow[0,1]$ be the required maps and $P$ be the Pseudo-arc. Let $X$ be the
continuum obtained from the sum $X_{1}\oplus X_{2}\oplus X_{3}$ identifying $p_{i}^{-1}(0)$ with $P$ by
homeomorphisms $h_{i}$ , and $T$ be a simple triod obtained from the sum of three
$[0,1]s$ identifying $O’ s$ . $p_{i}(i=1,2,3)$ induce a natural map $p;Xarrow T$ .

It can be proved that $P$ is monotone and open, and that $P=p_{1}^{-1}(0)=p_{2}^{-1}(0)$

$=p_{3}^{-1}(0)$ is terminal in $X(i.e$ . each subcontinuum of $X$ which meets both $P$ and
$X-P$ contains $P$). Notice that each $p_{i}^{-1}(0)$ is terminal in $X_{i}$ . From this fact,
$X$ has Property $(B)$ (take $a<(diamP)/2$), but $T$ does not.

Using Theorem 1, it is easy to see that light open maps preserve Property
$(B)$ .

15. Assume that $r;Xarrow Y$ is a light refinable map and $X$ has Property
$(B)$ . Suppose that there exists a sequence of proper subcontinua $(Y_{n})$ of $Y$ such
that $Y_{n}$ converges to a point $p\in Y$ and $\sigma(Y_{n})>0$ for each $n$ . Let $r_{i}$ : $Xarrow Y$ be
a $1/i$-refinement of $r(i=1, 2, )$ . For each $n$ , taking a subsequence if neces-
sary, we assume $K_{n}= \lim_{t}r_{i}^{-1}(Y_{n})$ exists. It is easy to see that $\sigma(K_{n})>0$ and
$r(K_{n})=Y_{n}$ . By taking a subsequence, $K_{n}$ converges to a continuum $K$. But
$r(K)=P$ , so $K$ is a point. This is a contradiction.

The general case of 15 is not known. See also 19.

We will omit the proofs of 13, 14, 16 and 17, because they are similar to 15.
19. The proof that light ARI maps preserve Property $(B)$ is the same as

17 and 15.
Finally, we will give an example which indicates that ARI maps do not

always preserve Property $(B)$ . We need some notation below.
Let $A$ be the continuum of ‘double sin $(1/x)$-curve’ as in Figure 1. We call

each of the two segments of $A$ a ‘limit arc’. Let $B$ be the continuum as drawn in
Figure 2. Countably many $A’ s$ converge to a point $p$ . We call this point the
’limit point of $B’$ . The segment at the right end of Figure 2 is called the “initial
arc of $B$ ’ and the segments which are limit arcs of $A’ s$ are called ’internal
arcs”. Let $C$ be the continuum as in Figure 3. Countably many $A’ s$ converge
to an arc. We call this arc the “limit arc of $C’$ . We also use the terminology
“initial arc” and “internal arc” in the same meaning as in $B$ .

First we describe a continuum $X\subset R^{3}$ . It looks like Figure 4. All $x_{n}’ s$

$(-\infty\leqq n\leqq\infty)$ are arcs, and all $p_{n}’ s(-\infty\leqq n\leqq\infty)$ are points. $[x_{n}, x_{n+1}](=the$

irreducible continuum which contains both $x_{n}$ and $x_{n+1}$ ) and $[x_{-n}, x_{-n-1}]$ are
homeomorphic copies of A. $x_{n}$ and $x_{n+1}$ , $x_{-n}$ and $x_{-n-1}$ are limit arcs of
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them. $x_{\infty} \cup\bigcup_{n}[x_{n}, x_{n+1}]$ and $x_{-\infty}\cup U_{n}[x_{-n}, x_{-n-1}]$ are homeomorphic copies of
C. $[x_{n}, p_{n}]$ and $[x_{-n}, p_{n}]$ are also copies of $B(n\leqq\infty)$ . $p_{n}’ s$ are their limit
points and $x_{n},$ $x_{-n}$ are their initial arcs. We can construct so that the union
of them is compact.

Next we define a continuum $Y$ as in Figure 5. All $y_{n}’ s(-\infty\leqq n\leqq\infty)$ are arcs
and all $q_{n}’ s(-\infty\leqq n\leqq\infty)$ are points. $[y_{-1}, q_{\infty}]$ and $[q_{\infty}, y_{1}]$ are homeomorphic
copies of $B’ s$ . $q_{\infty}$ is their limit point and $y_{-1},$ $y_{1}$ are initial arcs and other $y_{n}’ s$

are internal arcs. $[y_{-n}, q_{n}]$ and $[q_{n}, y_{n}]$ are also homeomorphic copies of $B’ s$ .
$q_{n}’ s$ are limit points of them and $y_{n}’ s$ are initial arcs. We can construct so
that the union of them is compact.

A map $f:Xarrow\succ Y$ is defined by “shrinking $[x_{-\infty}, p_{\infty}]\cup[p_{\infty}, x_{\infty}]$ to the point
$q_{\infty}’$ . It can be verified that $f$ is certainly ARI. By the construction, $X$ has
Property $(B)$ but $Y$ does not.

REMARK TO 15. We can easily construct into maps $f_{n}$ : $Xarrow Y$ which are l/n-

near to $f$ and $diamf_{n}^{-1}f_{n}(x)<1/n$ for each $x\in X(n=1, 2, )$ .

$1$

limit point

Figure 1. A. Figure 2. B.

Figure 3. C.
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Figure 4. Continuum $X$ .

Figure 5. Continuum $Y$ .
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