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Introduction.

Let $\mathfrak{g}$ be a solvable Lie algebra and $\mathfrak{g}^{*}$ its dual vector space. Given $f\in \mathfrak{g}^{*}$ ,
we set

$\mathfrak{g}(f)=$ { $x\in \mathfrak{g};f([x,$ $y])=0$ for all $y\in \mathfrak{g}$ }.

Then, $\mathfrak{g}(f)$ acts naturally on $\mathfrak{g}/\mathfrak{g}(f)$ . We say that $f$ is inductive if for every
$x\in \mathfrak{g}(f)$ , the operator $ad_{\mathfrak{g}/\mathfrak{g}(f)}x$ is nilpotent. So, if $f$ is inductive, the linear Lie
algebra $ad_{\mathfrak{g}/\mathfrak{g}(f)}\mathfrak{g}(f)$ is nilpotent by Engel’s theorem. We refer the reader to
the papers Poguntke [6, Lemma 2] and Tauvel [10, Lemme 3.1] for various
equivalent conditions for the inductivity of linear forms (we note that although
the base field $k$ is assumed to be algebraically closed throughout [10], the proof
of Lemme 3.1 in that paper still works for $k=R$).

Now let $\mathfrak{g}$ be exponential and $G=\exp \mathfrak{g}$ the corresponding connected and
simply connected Lie group. Denote by $\hat{G}$ the equivalence classes of irreducible
unitary representations of $G$ with the Fell topology. We equip the finite dimen-
sional vector space $\mathfrak{g}^{*}$ with the natural topology and the coadjoint orbit space
$\mathfrak{g}^{*}/G$ with the quotient topology. Then, one knows that the Kirillov-Bernat
mapping $\rho:\mathfrak{g}^{*}/Garrow\hat{G}$ is a continuous bijection and it is a long-standing conjec-
ture that $\rho$ is a homeomorPhism. Among several works toward this conjecture
(cf. Fujiwara [2] and its Introduction), Boidol [1] made inductive linear forms
play a significant role as follows.

THEOREM (Boidol). Let $G=\exp \mathfrak{g}$ be an exponential Lie group. If every
linear form on $\mathfrak{g}$ is inductive, $\rho$ is a homeomorphism.

Thus there arises a natural question: to what extent does the above Boidol’s
theorem cover the exponential Lie groups? This motivated the present work
and the purpose of this note is to provide a class of completely solvable (hence

exponential) Lie algebras 9 on which there is always a non-inductive linear
form. So, the Boidol’s theorem is not applicable for the solvable Lie groups
$S=\exp 5$ . Furthermore, by a theorem of Poguntke [6, Theorem 10] (for our $S$ ,
Theorem 3 in [5] suffices), the involutory Banach algebra $L^{1}(S)$ is not sym-
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metric (we refer the reader to $e$ . $g$ . $[5]$ for the definition of the symmetry of $L^{1}-$

algebras).

We organize this note as follows. In \S 1 are given sufficient conditions for
the existence of a non-inductive linear form on certain completely solvable Lie
algebras. \S 2 is devoted to the study of the case of Iwasawa subalgebras of
semisimple Lie algebras. Our result (Theorem 2.7) says that there is a non-
inductive linear form on an Iwasawa subalgebra $\mathfrak{s}$ of a semisimple Lie algebra
$\mathfrak{g}$ if and only if the real rank of some simple component of $\mathfrak{g}$ is at least two.
A similar result for normal j-algebras introduced by Pyatetskii-Shapiro [7] will
be established in \S 3. In \S 4, we give an example common to \S \S 2 and 3.

This work grew out of discussions with Professor Hid\’enori Fujiwara, to
whom I wish to express my thanks for evoking an interest in the present topic.
I also thank Professors Pierre Eymard, Michel Duflo and Michihiko Hashizume
for instructive conversations.

\S 1. Sufficient conditions for the existence of a non-inductive linear form.

Let $\mathfrak{s}$ be a completely solvable Lie algebra. We assume that 9 can be de-
composed as a semidirect product $5=\mathfrak{n}$ ) $\triangleleft \mathfrak{a}$ , where $\mathfrak{n}$ is a nilpotent ideal of $\mathfrak{s},$ $\mathfrak{a}$

an abelian subalgebra of 6 and $\mathfrak{a}$ acts on $\mathfrak{n}$ by diagonalizable derivations. For
$\alpha\in \mathfrak{a}^{*}$ , we set

(1.1) $\mathfrak{n}_{\alpha}=$ { $x\in \mathfrak{n};[a,$ $x]=\alpha(a)x$ for all $a\in \mathfrak{a}$ }.

Then, there is a finite subset $\Delta$ in $\mathfrak{a}^{*}$ such that $\mathfrak{n}_{\alpha}\neq\{0\}$ for $a\in\Delta$ and $\mathfrak{n}=\Sigma_{a\in\Delta}\mathfrak{n}_{\alpha}$ .
By the decomposition $\mathfrak{s}=\mathfrak{a}+\sum_{\alpha\in\Delta}\mathfrak{n}_{a},$ $\mathfrak{s}*is$ naturally identified with $\mathfrak{a}^{*}+\sum_{\alpha\in\Delta}\mathfrak{n}_{\alpha}^{*}$ .

THEOREM 1.1. SuPpose that there exzst $\alpha,$ $\beta\in\Delta$ such that the following three
conditions are satisfied:

(i) $\alpha+\beta\in\Delta$ .
(ii) $[\mathfrak{n}_{\alpha}, \mathfrak{n}_{\beta}]=\mathfrak{n}_{\alpha+\beta}$ .
(iii) There is $a_{0}\in \mathfrak{a}$ such that $\alpha(a_{0})\neq 0,$ $(\alpha+\beta)(a_{0})=0$ .

Then, any non-zero linear form $f\in \mathfrak{n}_{\alpha+\beta}^{*}c\mathfrak{s}*is$ non-inductive.

EXAMPLE 1.2. Let $\mathfrak{s}_{4}$ denote the four dimensional Lie algebra usually called
the split oscillator. $5_{4}$ has the basis $a,$ $x,$ $y,$ $z$ such that

$[a, x]=-x$ , $[a, y]=y$ , $[x, y]=z$ ,

other brackets being zero or deduced by skew-symmetry. Then, with $\mathfrak{a}=Ra$

and $\mathfrak{n}=Rx+Ry+Rz$, we obtain $\mathfrak{s}_{4}=\mathfrak{n}$ ) $\triangleleft \mathfrak{a}$ . Define $\alpha\in \mathfrak{a}^{*}$ by $\alpha(a)=1$ . Clearly we
have $\Delta=\{-\alpha, \alpha, 0\}$ . The three conditions $(i)\sim(iii)$ in Theorem 1.1 are satisfied
with $\beta=-\alpha$ . So, denoting by $a^{*},$ $x^{*},$ $y^{*},$ $z^{*}$ the dual basis, we see that $z^{*}$ is
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non-inductive.

COROLLARY 1.3. SuppOse that there exzst linearly independent $a,$ $\beta\in\Delta$ such
that the conditions (i), (ii) in Theorem 1.1 are satisfied. Then, any non-zero
linear form $f\in \mathfrak{n}_{a+\beta}^{*}$ is non-inductive.

PROOF OF THEOREM 1.1. Let $y\in \mathfrak{s}$ be arbitrary and express $y$ as $y=$

$a+\Sigma_{\gamma\in\Delta}y_{\gamma}$ , where $a\in \mathfrak{a}$ and $y_{\gamma}\in \mathfrak{n}_{\gamma}$ . Let $a_{0}\in \mathfrak{a}$ be as in (iii) of the statement of
the theorem. Then, $[a_{0}, y]=\Sigma\gamma(a_{0})y_{\gamma}$ , so that

$f([a_{0}, y])=(a+\beta)(a_{0})f(y_{\alpha+\beta})=0$ .
This implies $a_{0}\in 5(f)$ . Furthermore, if n\alpha \subset \S (f), then we would have $f([x, z])$

$=0$ for all $x\in \mathfrak{n}_{\alpha}$ and $z\in \mathfrak{n}_{\beta}$ . By (ii), this contradicts the assumption that $f\neq 0$

on $\mathfrak{n}_{a+\beta}$ . Hence $\mathfrak{n}_{\alpha}\not\subset 5(f)$ . Therefore, the operator $ad_{8/5(f)}a_{0}$ is not nilpotent,
because $\alpha(a_{0})\neq 0$ . Q. E. D.

\S 2. The case of Iwasawa subalgebras of semisimple Lie algebras.

Let $\mathfrak{g}$ be a semisimple Lie algebra and $\mathfrak{g}=f+\mathfrak{p}$ a Cartan decomposition with
the associated Cartan involution $\theta$ . Here $f$ (resp. p) is the +1 (resp. $-1$ ) $-$

eigenspace of $\theta$ . Let $\mathfrak{a}$ be a maximal abelian subspace of $\mathfrak{p}$ . We denote by $\Lambda$ the
restricted root system of $(\mathfrak{g}, \mathfrak{a})$ . For every $a\in\Lambda$ , the restricted root subspace
corresponding to $a$ is written as $\mathfrak{g}_{\alpha}$ . Fix an order in $\Lambda$ and let $\Lambda^{+}$ be the
positive system. Let $\mathfrak{n}=\Sigma_{\alpha\in\Lambda}+\mathfrak{g}_{\alpha}$ . Then, we have an Iwasawa decomposition
$g=f+0+n$ . Put $5=\mathfrak{a}+\mathfrak{n}$ . By an Iwasawa subalgebra of $\mathfrak{g}$ , we mean this sub-
algebra $\mathfrak{s}$ , which is completely solvable. In the case of Iwasawa subalgebras,
the condition for the existence of a non-inductive linear form is simpliPed by
the following lemma.

LEMMA 2.1. Let $a,$ $\beta\in\Lambda^{+}$ be linearly indePendent. SuppOse $a+\beta\in\Lambda^{+}$ .
Then, one has $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}]=\mathfrak{g}_{\alpha+\beta}$ .

For a proof, see Keene [3, Theorem 2]. Thus we have the following prop-
osition by virtue of Corollary 1.3.

PROPOSITION 2.2. Let $\mathfrak{s}$ be an Iwasawa subalgebra of a semisimple Lie alge-
bra $\mathfrak{g}$ . If there are linearly independmt $a,$ $\beta\in\Lambda^{+}$ such that $a+\beta\in\Lambda^{+}$ , then one
can find a non-inductive linear form on B.

COROLLARY 2.3. SuPpose that $\mathfrak{g}$ is a real $\alpha mple$ Lie algebra of real rank
strictly greater than one. Then, there is a non-inductive linear form on \S .

PROOF. A glance at the table given in the book [11, p. $30\sim p$ . $32$] convinces
us that if $\mathfrak{g}$ is real simple and of real rank strictly greater than one, there are
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always two simple restricted roots $a,$ $\beta$ such that $a+\beta\in\Lambda^{+}$ . Q. E. D.

On the other hand, if the real rank of a semisimple Lie algebra $\mathfrak{g}$ is equal
to one, the matters are quite different. Let us begin with the following well-
known lemma.

LEMMA 2.4. Let $\mathfrak{g}$ be a semisimple Lie algebra. Let $a\in\Lambda^{+}$ and assume that
$a/2\in\Lambda^{+}$ . Then, for any non-zero $u\in \mathfrak{g}_{\alpha/2}$ , ad $u$ maps $\mathfrak{g}_{\alpha/2}$ onto $\mathfrak{g}_{\alpha}$ .

PROOF. We include here a proof for reader’s convenience. Let $H_{a}\in \mathfrak{a}$ be
the element such that $a(H)=B(H_{\alpha}, H)$ holds for any $H\in \mathfrak{a}$ , where $B$ is the
Killing form of $\mathfrak{g}$ . Put $y=\theta u$ . Then, $y\in \mathfrak{g}_{-\alpha/2}$ . Let $h=[u, y]$ . Then, $h$ be-
longs to the centralizer of $\mathfrak{a}$ as well as to $\mathfrak{p}$ . Hence $h\in \mathfrak{a}$ . Now, for any $H\in \mathfrak{a}$ ,

we have
$B(h, H)=B([u, y], H)=B(y, [H, u])$

$= \frac{1}{2}a(H)B(\theta u, u)=\frac{1}{2}B(B(u, \theta u)H_{a},$ $H$ ).

Hence we get $h=B(u, \theta u)H_{\alpha}/2$ , so that for any $z\in \mathfrak{g}_{\alpha}$ ,

$[u, [z, y]]=[z, [u, y]]$ (because $[u,$ $z]=0$ )

$=-a(h)z=- \frac{1}{2}B(u, \theta u)a(H_{a})z$ .
Since $B(u, \theta u)\neq 0$ and $a(H_{\alpha})\neq 0$ , we conclude that $z\in(adu)(\mathfrak{g}_{\alpha/2})$ , because
$[z, y]\in \mathfrak{g}_{\alpha/2}$ . Q. E. D.

COROLLARY 2.5. Under the same assumption as Lemma 2.4, $\dim \mathfrak{g}_{\alpha/2}$ is even.

PROOF. Let $f\in \mathfrak{g}_{\alpha}^{*}$ be non-zero. Then, $x,$ $yarrow f([x, y])$ is a non-degenerate
skew-symmetric bilinear form on $\mathfrak{g}_{\alpha/2}\cross \mathfrak{g}_{\alpha/2}$ by virtue of Lemma 2.4. Hence
$\dim \mathfrak{g}_{\alpha/2}$ is even. Q. E. D.

PROPOSITION 2.6. Let $\mathfrak{g}$ be a $semi\alpha mple$ Lie algebra of real rank one and
$\mathfrak{s}=\mathfrak{a}+\mathfrak{n}$ an Iwasawa subalgebra of $\mathfrak{g}$ . Then, every linear form on $\mathfrak{s}$ is inductive.

PROOF. First of all, we note that $f\in \mathfrak{s}*is$ inductive if and only if so is
$(ad^{*}s)f$ for any $s\in S:=\exp \mathfrak{s}$ . Therefore, it suffices to show that each repre-
sentative of the coadjoint orbits in 5* is inductive.

Since $\mathfrak{g}$ is of real rank one, $\mathfrak{n}$ is written as $\mathfrak{n}=\mathfrak{g}_{\alpha/2}+\mathfrak{g}_{\alpha}$ for some positive
restricted root $a$ , where $\mathfrak{g}_{\alpha/2}=\{0\}$ possibly. Let us see the coadjoint action of
$S$ on $\mathfrak{s}*$ . Express every element $s\in S$ as $s=\exp H\exp u$ expx with $H\in \mathfrak{a},$ $u\in \mathfrak{g}_{\alpha’ 2}$

and $x\in \mathfrak{g}_{\alpha}$ , then a simple computation yields
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$($ad $s)^{-1}(a+b+c)=a+(e^{-\alpha(H)/2}b+ \frac{1}{2}a(a)_{\mathcal{U}})$

$+(e^{-\alpha(H)}c-e^{-\alpha(H)/2}[u, b]+\alpha(a)x)$ ,

where $a\in \mathfrak{a},$ $b\in \mathfrak{g}_{\alpha/2}$ and $c\in g_{\alpha}$ . Let $f\in \mathfrak{s}*$ and set $f=f_{0}+f_{1/2}+f_{1},$ $(ad^{*}s)f=$

$g_{0}+g_{1/2}+g_{1}$ with $f_{k},$ $g_{k}\in \mathfrak{g}_{k\alpha}^{*}$ (understanding $\mathfrak{g}_{0a}=\mathfrak{a}$). Then, we get from the
above

$g_{0}(a)=f_{0}(a)+ \frac{1}{2}f_{1/2}(u)\alpha(a)+f_{1}(x)a(a)$ ,

(2.1) $g_{1/2}(b)=e^{-\alpha(H)/2}f_{1/2}(b)-e^{-a(H)/2}f_{1}([u, b])$ ,

$g_{1}(c)=e^{-a(H)}f_{1}(c)$ .
When $\mathfrak{g}_{\alpha/2}=\{0\}$ , it should be understood that the middle formula in (2.1) is
missing and that $fi/2=0$ in the first of (2.1). Fixing a norm on $6^{*}$ , we let $\mathfrak{S}_{k}$

$(k=1/2,1)$ be the unit sphere in $\mathfrak{g}_{ka}^{*}$ . The coadjoint orbits in $\mathfrak{s}*are$ described
as follows:

Case 1, $\mathfrak{g}_{\alpha/2}=\{0\}$ .
(i) $\mathfrak{a}^{*}+\{r\sigma;r>0\}$ $(\sigma\in \mathfrak{S}_{1})$ ,
(ii) singleton $\{\gamma\}$ $(\gamma\in \mathfrak{a}^{*})$ ,

Case 2, $\mathfrak{g}_{\alpha/2}\neq\{0\}$ .
(iii) $\mathfrak{a}^{*}+\mathfrak{g}_{\alpha/2}^{*}+\{r\sigma ; r>0\}$ $(\sigma\in \mathfrak{S}_{1})$ ,
(iv) $\mathfrak{a}^{*}+\{r\tau jr>0\}$ $(\tau\in \mathfrak{S}_{1/2})$ ,
(v) singleton $\{\gamma\}$ $(\gamma\in \mathfrak{a}^{*})$ ,

where we have used Lemma 2.4 to derive (iii). We pick, as representatives,
$\sigma\in \mathfrak{S}_{1}$ in (i), $\gamma\in \mathfrak{a}^{*}$ in (ii), $\sigma\in \mathfrak{S}_{1}$ in (iii), $\tau\in \mathfrak{S}_{1/2}$ in (iv) and $\gamma\in \mathfrak{a}^{*}$ in (v). If
$f=\gamma$ (cases (ii) and $(v)$ ), then $5(f)=\mathfrak{s}$ . Hence $f$ is inductive. If $f=\sigma\in \mathfrak{S}_{1}$

(cases (i) and (iii)), then $e(f)=Ker\sigma\subset \mathfrak{g}_{\alpha}$ , which says that $f$ is inductive. For
the case (iv), $f=\tau$ , we have $\mathfrak{s}(f)=Ker\tau+\mathfrak{g}_{\alpha}$ . Hence $f$ is inductive. Con-
sequently, any linear form on $\mathfrak{s}$ is inductive. Q. E. D.

THEOREM 2.7. Let $\mathfrak{g}$ be a $semi\alpha mple$ Lie algebra and $\mathfrak{s}$ an Iwasawa sub-
algebra of $\mathfrak{g}$ . Then, there is a non-inductive linear form on 9 if and only if
some $\alpha mple$ comPonent of $\mathfrak{g}$ is of real rank at least two.

PROOF. The if part is clear from the proof of Corollary 2.3 combined with
Proposition 2.2. So, suppose that every simple component $\mathfrak{g}_{k}(1\leqq k\leqq l)$ of $\mathfrak{g}$ is
of real rank one. Let $\mathfrak{s}_{k}$ be an Iwasawa subalgebra of $\mathfrak{g}_{k}$ . Then, $@=\mathfrak{s}_{1}\cross\cdots\cross \mathfrak{s}_{l}$

(direct product of Lie algebras) is an Iwasawa subalgebra of $\mathfrak{g}$ . By Proposition
2.5, every linear form on $5_{k}(1\leqq k\leqq l)$ is inductive. From this it is easy to see
that every linear form on $\mathfrak{s}$ is inductive. Q. E. D.
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\S 3. The case of normal j-algebras.

For normal j-algebras, we have a similar result as in the case of Iwasawa
subalgebras of semisimple Lie algebras. Let us start with the definition of
normal j-algebras.

Let $\mathfrak{s}$ be a Lie algebra, $j$ a linear operator on $\mathfrak{s}$ such that $j^{2}=-1_{8}$ and
$\omega\in \mathfrak{s}*$ . Then, the triplet $(\mathfrak{s}, j, \omega)$ is termed a normal j-algebra if the following
$(i)\sim(iii)$ are satisfied:

(i) \S is completely solvable.
(ii) Extend $j$ to @c by complex linearity and let $\mathfrak{s}^{-}$ be the -i-eigenspace

of $j$ in $\mathfrak{s}_{c}$ . Then, $5^{-}$ is a complex subalgebra of $s_{c}$ .
(iii) (a) $\omega([x, jx])>0$ for all non-zero $x\in \mathfrak{s}$ .

(b) $\omega(Dx, jy$]) $=\omega([x, y])$ for all $x$ , y\in \S .

We summarize here a requisite fundamental structure of 9 following Rossi
and Vergne [9, Theorem 4.3]. For proofs, we refer the reader to Pyatetskii-
Shapiro [7, Theorem 2, p. 61] or Rossi [8, Theorem 5.13]. Given a normal j-
algebra $(\mathfrak{s}, j, \omega)$ , we define a real inner product $\langle\cdot, \cdot\rangle$ on $\mathfrak{s}$ by $\langle x, y\rangle=\omega([x, jy])$ .
Let $\mathfrak{n}=[@, \mathfrak{s}]$ . Denote by $\mathfrak{a}$ the orthogonal complement to $\mathfrak{n}$ . Then, @=a+n.
We know that $\mathfrak{a}$ is an abelian subalgebra of 9 and the representation of $\mathfrak{a}$ on $\mathfrak{n}$

by the adjoint action is diagonalizable. Define $\mathfrak{n}_{\alpha}$ as in (1.1) and take all $a\in \mathfrak{a}^{*}$

such that $\mathfrak{n}_{\alpha}\neq\{0\}$ and $j\mathfrak{n}_{\alpha}\subset \mathfrak{a}$ . Number these $a$ as $a_{1},$ $\cdots$ , $a_{l}$ . We have $l=\dim \mathfrak{a}$

and $dimn_{\alpha_{k}}=1(1\leqq k\leqq l)$ . The number $l$ is called the rank of the normal j-
algebra $(@, j, \omega)$ . If we order $a_{1},$ $\cdots$ , $a_{l}$ in a suitable way, then all $a\in \mathfrak{a}^{*}$ such
that $\mathfrak{n}_{\alpha}\neq\{0\}$ are of the following form (not all possibilities need occur):

$\frac{1}{2}(\alpha_{m}+a_{k})$ $(1\leqq k<m\leqq l)$ ,

(3.1)
$\frac{1}{2}a_{k}$ $(1\leqq k\leqq l)$ ,

Moreover, we have

$\frac{1}{2}(\alpha_{m}-a_{k})$ $(1\leqq k<m\leqq l)$ ,

$a_{k}$ $(1\leqq k\leqq l)$ .

(3.2) $j\iota\iota_{(\alpha_{m}-\alpha_{k)/2}}=\mathfrak{n}_{(a_{m}+\alpha_{k}}$ ) $/2$ $(m>k)$ ,

(3.3) $j\mathfrak{n}_{\alpha_{m}/2}=\mathfrak{n}_{\alpha_{m}/2}$ $(1\leqq m\leqq l)$ .
Finally, we can choose non-zero $u_{i}\in n_{\alpha_{i}}$ such that $Du_{i},$ $u_{i}$] $=u_{i}$ . Then we have
$a_{k}(ju_{m})=\delta_{km}$ (the Kronecker’s symbol). The following lemma is a counterpart
of Lemma 2.1 in the case of normal j-algebras.

LEMMA 3.1. If $\mathfrak{n}_{(\alpha_{m}-\alpha_{k/2}}$) $\neq\{0\}(m>k)$ , then one has

$[\mathfrak{n}_{\mathfrak{c}_{\alpha_{m}-\alpha_{k}})/2}, \mathfrak{n}_{\mathfrak{c}_{\alpha_{m}+\alpha_{k}})/2}]=\mathfrak{n}_{\alpha_{m}}$ .

PROOF. Clearly it suffices to prove $\mathfrak{n}_{\alpha_{m}}\subset[n_{(\alpha_{m}-\alpha_{k}}$ ) $/2, \mathfrak{n}_{(\alpha_{m}+)/2}\alpha_{k}$]. We fix a
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non-ze] $ox\in \mathfrak{n}_{(\alpha_{m}-\alpha_{k}}$ ) $/2$ . Then, by (3.2), we have $jx\in \mathfrak{n}_{(\alpha_{m}+\alpha_{k)/2}}$ and $[x, jx]\in \mathfrak{n}_{\alpha_{m}}$ .
Since $\dim \mathfrak{n}_{a_{m}}=1$ , we have only to prove $[x, jx]\neq 0$ . Suppose then $[x, jx]=0$ .
This implies $\omega([x, jx])=0$ , so that $x=0$ , because $(5, j, \omega)$ is a normal j-algebra.
Thus we arrive at a contradiction. Q. E. D.

If the normal J-algebra $(\S, j, \omega)$ is of rank one, then @ is of the form
$\mathfrak{s}=\mathfrak{a}+\mathfrak{n}_{\alpha/2}+\mathfrak{n}_{\alpha}$ for some non-zero $a\in \mathfrak{a}^{*}$ with $\mathfrak{n}_{\alpha/2}=\{0\}$ possibly. Note that (3.3)

implies that $\dim \mathfrak{n}_{\alpha/2}$ is even. We put $2n=\dim \mathfrak{n}_{\alpha/2}$ . Then, since $\dim \mathfrak{n}_{\alpha}=1$ , it
is easy to see that 6 is isomorphic to an Iwasawa subalgebra of $5u(n+1,1)$

$(n=0,1, 2, )$ . So, Proposition 2.6 leads us to the following proposition.

PROPOSITION 3.2. Let $(5, j, \omega)$ be a normal j-algebra of rank one. Then,
every linear form on $\mathfrak{s}$ is inductive.

THEOREM 3.3. Let $(\S, j, \omega)$ be a normal j-algebra. Then, there is a non-
inductive linear form on $\mathfrak{s}$ if and only if $\mathfrak{n}_{(a_{m}-\alpha_{k/2}}$) $\neq\{0\}$ for some $m,$ $k(m>k)$ .

PROOF. Suppose first that $\mathfrak{n}_{(\alpha_{m}-\alpha_{k)/2}}\neq\{0\}$ for some $m,$ $k(m>k)$ . We note
that (3.2) implies $\mathfrak{n}_{(\alpha_{m}+\alpha_{k}}$ ) $/2\neq\{0\}$ . Put $a=(a_{m}-a_{k})/2$ and $\beta=(a_{m}+a_{k})/2$ . Clearly
$a,$ $\beta$ are linearly independent and the condition (i) in Theorem 1.1 is satisfied.
Condition (ii) is guaranteed by Lemma 3.1, so there is a non-inductive linear
form on $\mathfrak{s}$ by Corollary 1.3.

Conversely, suppose $\mathfrak{n}_{(\alpha_{m}-\alpha_{k}}$ ) $/2^{=}\{0\}$ for all $m,$ $k(m>k)$ . By (3.2), we have
also $\mathfrak{n}_{(\alpha_{m}+\alpha_{k)/2}}=\{0\}$ for all $m,$ $k(m>k)$ . Therefore (3.1) implies that $\mathfrak{s}$ is de-
composed as $e=\Sigma_{1\leq k\leq l}\mathfrak{s}_{k}$ , where $s_{k}=Rju_{k}+\mathfrak{n}_{\alpha_{k/2}}+\mathfrak{n}_{\alpha_{k}}$ with $\mathfrak{n}_{\alpha_{k}/2}=\{0\}$ possibly.
Thus 6 is a direct product (as Lie algebra) of $8_{k}’ s$ . By Proposition 3.2, every
linear form on $\mathfrak{s}_{k}$ is inductive. From this, we can conclude easily that each
linear form on $\mathfrak{s}$ is inductive. Q. E. D.

\S 4. An example.

A typical example of solvable Lie algebra treated in this note is supplied
by an Iwasawa subalgebra 9 of $\mathfrak{s}\mathfrak{p}(2, R)$ . We realize $\mathfrak{s}$ by a Lie algebra of
$4\cross 4$ real matrices (with the usual bracket operation of matrices) as follows:

$e=\{[a, b, c;x, y, z]$ $:=(\begin{array}{llll}a c x z0 b z y0 0 -a 00 0 -c -b\end{array})$ ;
$x,y,$
$z\in Ra,b,c\in R\}$ .

$Sp(2, R)$ has a maximal compact subgroup $K$ isomorphic to the unitary group
$U(2)$ . Since $Sp(2, R)/K$ is a hermitian symmetric space, one can introduce in $\mathfrak{s}$

a structure of normal j-algebra (cf. Rossi and Vergne [9, p. 372]). Let $\mathfrak{n}_{1}=$
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$R[0,0,1;0,0,0]$ and $\mathfrak{n}_{2}=R[0,0,0;0,0,1]$ . We see easily that $[n_{1}, n_{2}]=n_{3}$ $:=$

$R[0,0,0;1,0,0]$ . Then, by Theorem 2.7 or Theorem 3.3, there is a non-
inductive linear form on 9.

On the other hand, we say after Poguntke [4] that a Lie algebra $\mathfrak{g}$ is sym-
metric if the involutory Banach algebra $L^{1}(G)$ , where $G$ is the corresponding
connected and simply connected Lie group, is symmetric. Poguntke gave a list
[4, p. 162] of non-symmetric solvable Lie algebras of dimension at most six. By
Satz 2 of that paper, if $\mathfrak{g}$ is a six dimensional non-symmetric Lie algebra, then
either $\mathfrak{g}$ is contained in that list or some proper quotient of $\mathfrak{g}$ is isomorphic to
one of the Lie algebras in the list.

Let us return to our example 6 above. We have seen that there is a non-
inductive linear form on $\mathfrak{s}$ . Then, by [6, Theorem 10] or [5, Theorem 3], $\mathfrak{s}$

is not symmetric. Clearly the dimension of $\mathfrak{s}$ is six, but it is not isomorphic
to any six dimensional Lie algebra in the Poguntke’s list. So, some proper
quotient of $\mathfrak{s}$ should be isomorphic to one of four or five dimensional Lie alge-
bras in that list. Let us identify it. First, we note that $\mathfrak{n}_{3}$ is an ideal of $\mathfrak{s}$ .
Then the quotient $\mathfrak{s}/\mathfrak{n}_{3}$ is isomorphic to $\mathfrak{b}_{5}$ in the Poguntke’s list, where $\mathfrak{b}_{5}$ is
the five dimensional Lie algebra with the basis $e_{k}(0\leqq k\leqq 4)$ such that

$[e_{2}, e_{3}]=e_{4}$ , $[e_{1}, e_{2}]=-e_{2}$ , $[e_{1}, e_{3}]=e_{3}$ ,

$[e_{0}, e_{2}]=e_{2}$ , $[e_{0}, e_{4}]=e_{4}$ ,

other brackets being zero or deduced by skew-symmetry. The isomorphism of
$\mathfrak{s}/\mathfrak{n}_{3}$ onto $\mathfrak{b}_{5}$ is given by

$[1, 0,0;0,0,0]+\mathfrak{n}_{3}-e_{0}$ , $[-1/2,1/2,0;0,0,0]+\mathfrak{n}_{3}arrow e_{1}$ ,

$[0,0,1 ; 0,0,0]+\mathfrak{n}_{3}arrow e_{2}$ , $[0,0,0;0,1,0]+\mathfrak{n}_{3}arrowarrow e_{3}$ ,

$[0,0,0;0,0,1]+\mathfrak{n}_{3}-e_{4}$ .
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