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Introduction.

This paper is devoted to the study of representations, ideals, weights, and
especially traces on a $c*$-crossed Product induced from those on a smaller $C^{*}-$

crossed product. The main result is the characterization of a trace on a $C^{*}-$

crossed product $C_{r}^{*}(A, G, \alpha)$ to be induced from a trace of a sub-crossed product
$C_{r}^{*}(A, N, \alpha)$ with $N$ a closed normal subgroup of $G$ .

Let $(A, G, \alpha)$ be a $C^{*}$-dynamical system. When $N$ is a closed normal sub-
group, starting from certain relatively invariant traces on $C_{r}^{*}(A, N, \alpha)$ , we have
induced traces on $C_{r}^{*}(A, G, \alpha)[16],$ $[4]$ . They have some special properties.
When $G/N$ is abelian, they are invariant under the dual action [16]. When
$G/N$ is not abelian, we have no more a convenient dual action, and we replace
the role of the dual action by coaction. As our main result it will be shown
that induced traces are characterized by the invariance under the coaction of
$G/N$ dual to the original action of $G$ . The statement established may be re-
garded as an analogue of Takesaki’s imprimitivity theorem with respect to
traces.

In the theory of ideals of $C^{*}$-crossed products, Effros and Hahn have made
a famous conjecture. A complete answer to this conjecture has been established
in [3]. A further conjecture was made by P. Green that Effros-Hahn conjecture
would hold for traces. Precisely stating, this conjecture is as follows. “Let
$\backslash A,$ $G,$ $\alpha$ ) be a $c*$-dynamical system, and the action of $G$ on Prim $(A)$ be free.
Then all the traces on $C_{r}^{*}(A, G, \alpha)$ are induced from $A’$ . When $G$ is a discrete
amenable group, this was proved in [4]. But When $G$ is not discrete, by the
absence of conditional expectations, the situation becomes difficult. We believe
that the result we obtained here makes a step toward the solution of the problem.

We are given much freedom by the $c*$-induction in the studies of induced
representations, and the imprImitivity theorem becomes a stronger weapon when
it is formulated in the $c*$-theoretic framework [18]. We use it to obtain a
duality for induced representation in non-abelian cases.
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In this paper, we only study, separable $c*$-algebras, 2nd countable locally
compact groups, separable Hilbert spaces and von Neumann algebras with
separable preduals.

Let $\mathfrak{H}$ be a Hilbert space. We denote by $\mathfrak{B}(\mathfrak{H})$ all bounded linear operators
on $\mathfrak{H}$ and by $\mathfrak{C}(\mathfrak{H})$ all compact linear operators. Let $S$ be a subset of $\mathfrak{B}(\mathfrak{H})$ .
We denote by $C^{*}(S)$ the $c*$-algebra generated by $S$ . Let $\pi$ be a unitary rep-
resentation of a locally compact group, or a $*$-representation of a $c*$-algebra.
Denote by $W^{*}(\pi)$ the von Neumann algebra generated by the range of $\pi$ .

Let $A$ and $B$ be two $C^{*}$-algebras, and $\omega$ be an element of the dual Banach
space $B^{*}$ of B. $W^{\Gamma}e$ denote by $E_{A}^{\omega}$ the slice map from $A\otimes B$ to $A$ associated
with $\omega$ . Let $\phi$ be a weight on a $c*$-algebra $A$ . Put $n_{\phi}=\{x\in A:\phi(x^{*}x)\leqq\infty\}$ ,

$m_{\phi}=n_{\phi}^{*}n_{\phi}$ and $N_{\phi}=\{x\in A:\phi(x^{*}x)=0\}$ .
For a $C^{*}$-dynamical system $(A, G, \alpha)$ (a $W^{*}$-dynamical system $(M,$ $G,$ $\beta)$ ), we

denote by $C^{*}(A, G, \alpha)$ (resp. $W^{*}(M,$ $G,$ $\beta)$ ) the corresponding $c*$-crossed product,
and by $C_{r}^{*}(A, G, \alpha)$ the corresponding reduced $c*$-crossed product.

Let $\delta$ be a coaction of a locally compact group $G$ on a $C^{*}$-algebra $A(W^{*}-$

algebra $M$ ). We denote by $\hat{C}^{*}(A, G, \delta)$ (resp. $\hat{W}^{*}(M,$ $G,$ $\delta)$ ) the corresponding
$c*$-cocrossed product (resp. $W^{*}$ -cocrossed product). Let $\delta$ be an action of a Kac
$c*$-algebra (Kac algebra) on a $C^{*}$-algebra $A$ (resp. $W^{*}$-algebra $M$ ). For $k\in A^{*}$ ,
we put $\delta_{k}(x)=E_{A}^{k}(\delta(x))$ for $x\in A$ .

Let $G$ be a locally compact group. We denote by $L(G)$ the von Neumann
algebra generated by the left regular representation of $G$ , and by $A(G)$ the
Fourier algebra of $G$ . We use only left Haar measures and denote by $\Delta_{G}$ the
modular function of $G$ . Let $N$ be a closed normal subgroup of $G$ . For $s\in G$ ,
we denote by $\dot{s}$ the quotient image of $s$ in $G/N$.

We refer to [12], [14] and [20] as general references.
The author would like to express his hearty thanks to professor Y. Katayama

for careful reading of the manuscript, to the referee for many valuable com-
ments and, in particular, to professor O. Takenouchi for his constant encourage-
ments and good advices.

1. Induction of weights.

Let $(A, G, \alpha)$ be a $c*$-dynamical system, $N$ be a closed normal subgroup of
$G$ . Let $B=C_{r}^{*}(A, N, \alpha)$ and $\pi$ be a G-invariant representation of $B$ . Put $M=$

$W^{*}(\pi)$ . Denote the action of $G$ on $M$ induced from $\alpha$ by $\beta$ . Let $C=C_{r}^{*}(A, G, \alpha)$ .
We consider the induced representation $\tilde{\pi}=Ind_{N}\uparrow G\pi$ of $C$ . Put $P=W^{*}(\tilde{\pi})$ . Put
$L^{2}(\mathfrak{H}_{\pi}, G, \pi)=\{\xi$ : $Garrow \mathfrak{H}_{\pi}$ measurable maps, $\xi(sn)=\pi(n)^{*}\xi(s)$ for $s\in G,$ $n\in N$,

and $\int_{G/N}\Vert\xi(s)\Vert^{2}d\dot{s}<\infty$ }. This is the underlying space of the induced representa-

tion $\tilde{\pi}$ . Let
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$\pi_{\beta}(x)\xi(s)=\beta_{s}^{-1}(x)\xi(s)$ ,

$\tilde{\lambda}(t)\xi(s)=\xi(t^{-1}s)$ for $x\in M,$ $s,$ $t\in G$ and $\xi\in L^{2}(\mathfrak{H}_{\pi}, G, \pi)$ .

The representation $\tilde{\pi}$ is the integrated form of the covariant representation
$(\tilde{\lambda}, \pi_{\beta})$ . We have $P=W^{*}(\tilde{\lambda}, \pi_{\beta})$ , and this algebra is a typical example of the
extended covariance algebra in [19].

Let $\phi$ be a faithful normal semifinite weight on $M$. We may assume that
$M$ is acting on the standard representation space $\mathfrak{H}_{\phi}$ of $\phi$ . Let $J,$ $\sigma^{\phi},$ $\Delta_{\phi}$ be the
modular objects of $\phi$ , and $W$ be a cone preserving unitary representation im-
plementing the action $\beta$ . Let

$K(M, G, \pi)=$ {Maps $f$ from $G$ to $M$ : (1) a-strongly $*$-continuous,
(2) $f(sn)=\pi(n)^{*}f(s)$ for $s\in G,$ $n\in N,$ (3) $\Vert f(s)\Vert$ has
a compact support as a function on $G/N$ }.

For $f,$ $g$ in $K(M, G, \pi)$ , we define $f*g$ and $f^{*}$ by

$(f*g)(s)= \int_{G/N}\beta_{s^{-1}t}(f(t))g(t^{-1}s)di$ ,

$f^{*}(s)=\Delta_{G/N}(\dot{s})^{-1}\beta_{s}^{-1}(f(s^{-1})^{*})$ .

For $f\in K(M, G, \pi)$ , we put,

$\Vert f\Vert_{2}=\{\int_{G/N}\phi(f(s)^{*}f(s))d_{\dot{S}}\}^{1\prime 2}$

DEFINITION 1. Let $\mathfrak{A}$ be the set of all functions in $K(M, G, \pi)$ satisfying

llf112 $<\infty$ and $\Vert f^{*}\Vert_{2}<\infty$ .
Then, by the estimate of the norm $\Vert\cdot\Vert_{2}$ , we can show that $\mathfrak{U}$ is $a*$-algebra.

LEMMA 2. $\mathfrak{U}$ is a left Hilbert algebra with the above algebraic structure and
the inner product inherited from $\Vert\cdot\Vert_{2}$ .

For $f\in K(M, G, \pi)$ and $\xi\in L^{2}(\mathfrak{H}_{\phi}, G, \pi)$ , we put

$\nu(f)\xi(s)=\int_{G/N}\beta_{s- 1t}(f(t))\xi(t^{-1}s)di$ .

Then, $farrow\nu(f)$ is a $*$-representation of $K(M, G, \pi)$ on $L^{2}(M, G, \pi)$ and it is an
extension of the left representation of $\mathfrak{A}$ .

DEFINITION 3. The canonical weight $\phi$ associated with $\mathfrak{A}$ on $P$ is called the
induced weight of $\phi$ .

For elements in $\mathfrak{A}$ , the value of 6 is

$\tilde{\phi}(\nu(f)^{*}\nu(f))=\int_{G/N}\phi(f(s)^{*}f(s))d\dot{s}$ . $(^{*})$
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The unitary involution $J$ and the modular automorphism $\sigma^{\tilde{\phi}}$ of $\tilde{\phi}$ are given
by the formulae in the following lemma.

LEMMA 4.

(1) $(\tilde{J}\xi)(s)=\Delta_{G/N}(\dot{s})^{-1/2}W(s)^{*}J\xi(s^{-1})$ for $\xi\in L^{2}(\mathfrak{H}_{\phi}, G, \pi)$ .
(2) $\sigma^{\phi_{t}}(\pi_{\beta}(x))=\pi_{\beta}(\sigma^{\phi_{t}}(x))$ for $x$ in $M$ .
The identity in Lemma 4 (2) determines $\sigma^{\tilde{\phi}}$ uniquely by $\sigma$-weak continuity.

LEMMA 5. Let $\phi^{J}$ be a $f$. $n$ . $s$ . weight on $W^{*}(\tilde{\pi})$ and satisfy

(1) $\phi’(\nu(f)^{*}\nu(f))=\int_{G/N}\phi(f(s)^{*}f(s))d\dot{s}$ ,

(2) $\sigma^{\tilde{\phi}}=\sigma^{\tilde{\phi}}$ .

Then, two weights $\phi’$ and $\phi$ are identical.

PROOF. Since $\sigma^{\tilde{\phi}}’=\sigma^{\tilde{\phi}}$ , by Theorem 5.9 in [15] it suffices to show that $\mathfrak{U}$

$is]\sigma^{\tilde{\phi}}$ invariant. By the KMS condition for $\tilde{\phi},\tilde{\phi}$ is $\sigma^{\tilde{\phi}}$ invariant. Since $\sigma^{\tilde{\phi}}$ is a
$*$-automorphism, it conserves the relation $\Vert f\Vert_{2}<\infty$ and $\Vert f^{*}\Vert_{2}<\infty$ . By Lemma
2-6 of [7], $sarrow(D\phi\circ\beta_{s} : D\phi)_{t}$ is $\sigma$-strongly continuous. These arguments show
the invariance of $\mathfrak{A}$ . $q$ . $e$ . $d$ .

2. Coactions and operator valued weights.

We first define the canonical coaction $\delta$ of $G/N$ on $W^{*}(\tilde{\pi})$ . Consider the
Hilbert space tensor product $L^{2}(\mathfrak{H}_{\phi}, G, \pi)\otimes L^{2}(G/N)$ . An element of this space
$can_{\grave{4}}\prime be$ considered as a function $\xi$ from $G\cross(G/N)$ to $\mathfrak{H}_{\phi}$ satisfying $\xi(sn, i)=$

$\pi(n)^{*}\xi(s, i)$ for $n\in N$, $s\in G$ , $i\in G/N$. Define a unitary operator $W$ on
$L^{2}(\mathfrak{H}_{\phi}, G, \pi)\otimes L^{2}(G/N)$ by

$(W\xi)(s, i)=\xi(s,\dot{s}i)$ .
For $x\in P$, define $\delta$ by $\delta(x)=W^{*}(x\otimes 1)W$.

LEMMA 6. The map $\delta$ is a coaction of $G/N$ on $P$.
We call $\delta$ the canonical coaction of $G/N$. According to Proposition II. 2 of

[2], we can define an operator valued weight $T$ from $P$ to the fixed point
algebra $P^{\delta}$ as follows. Let $\psi$ be the Haar weight on $L(G/N)$ . Put $F=$

$\{\phi\in L(G/N)_{*} : 0\leqq\phi\leqq\psi\}$ . Put $E(x)= \sup_{\phi\in F}E_{P}^{\phi}(x)$ for $x\in P\otimes L(G/N)^{+}$ . Then
$E$ is an operator valued weight from $P\otimes L(G/N)$ to $P$. We put, for $x\in P^{+}$ ,
$T(x)=E(\delta(x))$ .

LEMMA 7. Let $f$ be in $K(M, G, \pi)$ . Then, we have,
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$T( \nu(f)^{*}\nu(f))=\int_{G/N}\pi_{\beta}(f(s)^{*}f(s))d\dot{s}$ .
In partjcular, $T$ is semifinite.

We omit the proof.

LEMMA 8. The fixed point algebra $P^{\delta}$ is equal to $\pi_{\beta}(M)$ .

PROOF. We may assume that $P$ acts on the standard representation space
given by $\tilde{\phi}$ . For $k\in L^{\infty}(G/N)$ , we put $\rho(k)\xi(s)=k(\dot{s})\xi(s)$ for $\xi\in L^{2}(\mathfrak{H}_{\phi}, G, \pi_{\phi})$ .
Let $x$ be in $P^{\delta}$ . By the argument similar to that in Proposition 2-3 of [11], we
have $x\rho(k)=\rho(k)x$ for all $k$ in $L^{\infty}(G/N)$ . This shows that $P^{\delta}$ is in the com-
mutant of $L^{\infty}(G/N)$ . By using Lemma 4 (1), we have,

$\tilde{J}(\pi_{\beta}(M))j=JMJ=M’$ and $\tilde{J}(\rho(L^{\infty}(G/N)))\tilde{J}=\rho(L^{\infty}(G/N))$ .
By the second identity, we have $\tilde{J}(\rho(L^{\infty}(G/N)’))\tilde{J}=\rho(L^{\infty}(G/N))’$ . Since $x\in$

$\rho(L^{\infty}(G/N))’$ , we have $\tilde{J}x\tilde{J}\in\rho(L^{\infty}(G/N))’\cap P’=M’$ . This shows that $x\in\pi_{\beta}(M)$ .
$q$ . $e$ . $d$ .

By these two lemmas, $T$ is a faithfull normal semifinite operator valued
weight from $P$ to $\pi_{\beta}(M)$ . By [6], it gives a map from $f$ . $n$ . $s$ . weights on $M$

to those on $P$ by $\overline{\phi}=\phi\circ\pi_{\beta}^{-1}\circ T$ for a $f$ . $n$ . $s$ . weight $\phi$ on $M$.

PROPOSITION 9. For a $f$. $n$ . $s$ . weight $\phi$ on $M,\overline{\phi}$ is the induced weight of $\phi$

defined in \S 1.

PROOF. By the normality of $\phi,\tilde{\phi}$ and $\overline{\phi}$ are identical on $\nu(\mathfrak{A})$ . By Theorem
4.7 of [6], we get

$\sigma_{t}^{\overline{\phi}}(\pi_{\beta}(x))=\sigma\phi_{t}^{o}\pi^{-1}\beta(\pi_{\beta}(x))=\pi_{\beta}(\sigma^{\phi_{t}}(x))$ for $x\in M$ .

For a positive definite function $k$ on $G/N$, we have the identity $E_{P}^{k}(\tilde{\lambda}(s)x\tilde{\lambda}(s)^{*})$

$=\tilde{\lambda}(s)E_{P}^{k(\dot{s}\cdot\dot{s}^{-1})}(x)\tilde{\lambda}(s)^{*}$ for $x\in P$, $s\in G$ . Slnce $E$ is given by the $suPremum$ of
$E_{P}^{k}’ s$ , we have, $T(\tilde{\lambda}(s)x\tilde{\lambda}(s)^{*})=\Delta_{c/N}(\dot{s})\tilde{\lambda}(s)T(x)\tilde{\lambda}(s)^{*}$ for $x\in P,$ $s\in G$ . Using this
and by the general arguments, we have,

$\sigma_{t}^{\phi}(\tilde{\lambda}(s))=\tilde{\lambda}(s)\pi_{\beta}((D\phi\circ\beta_{s} : D\phi)_{t})$ .

By Lemma 5, we have $\overline{\phi}=\tilde{\phi}$ . $q$ . $e$ . $d$ .

SuPpose that a von Neumann algebra $M$ admits a coaction $\delta$ of a group $H$.
A $f$ . $n$ . $s$ . weight $\phi$ on $M$ is called $\delta$-invariant if $\langle\delta(x), \phi\otimes\omega\rangle=\langle x\otimes 1, \phi\otimes\omega\rangle$ for
all $x\in M^{+}$ and all $\omega\in L(H)_{*}$ . Let $j$ be the canonical involution of $L(H)$ . A
weight $\phi$ is called $(\delta, j)$ invariant if it is $\delta$-invariant and it satisfies $\langle(y^{*}\otimes 1)\delta(x)$ ,
$\phi\otimes k\rangle=\langle\delta(y^{*})(x\otimes 1), \phi\otimes(k\circ j)\rangle$ for any $x,$ $y$ in $n_{\phi}$ and $k$ in $A(H)$ . For $k\in A(H)$ ,
put $k^{0}=k^{*}\circ j$ . $A(H)$ has a natural Banach $*$-algebra structure by pointwise
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multiplication and involution $0$ Then the map $k\in A(H)arrow\delta_{k}$ is a $*$-representa-
tion in algebraic sense.

LEMMA 10 (Theorem 0-2-12 of [21]). A $f$. $n$ . $s$ . weight $\phi$ is $(\delta, j)$ invariant if
and only if $karrow\delta_{k}$ can be extended to a bounded $*$-rePresentafion of $A(H)$ on the
GNS representation space $\mathfrak{H}_{\phi}$ of $\phi$ .

Let $\delta$ be the canonical coaction of $G/N$ on $P,$ $j$ be the involution of $L(G/N)$ .

LEMMA 11. For a $f$. $n$ . $s$ . weight $\phi$ on il$l$, the induced weight $\phi$ on $P$ is
$(\delta, ])$ invariant.

PROOF. The GNS Hilbert space of $\phi$ is $L^{2}(\mathfrak{H}_{\phi}, G, \pi)$ . In this situation, $\delta_{k}$

is clearly a bounded $*$-representation. $q$ . $e$ . $d$ .

PROPOSITION 12. A $f$ . $n$ . $s$ . weight $\phi$ on $P$ is $(\delta, j)$ invariant if and only if
$\phi$ is induced from a $f$. $n$ . $s$ . weight $\phi$ on $M$.

PROOF. “If” part is already proved. Let $\tilde{\phi}$ be $(\delta, j)$ invariant. We use the
canonical argument in [7]. Take a $f$ . $n$ . $s$ . weight $\psi$ on $M$. Denote by $\tilde{\psi}$ the
induced weight of $\psi$ . By a general result of operator valued weights ([6]),
$(D\phi:D\tilde{\psi})_{t}$ is contained in $\pi_{\beta}(M)$ . Put $u_{t}=\pi_{\beta}^{-1}((D\phi:D\tilde{\psi})_{t})$ . This $u_{t}$ is a unitary
cocycle with respect to $\sigma^{\psi}$ . By the converse of Connes’ theorem, there exists
a $f$ . $n$ . $s$ . weight $\phi$ on $M$ such that $(D\phi:D\psi)_{t}=u_{t}$ . Let $\overline{\phi}$ be the induced weight
from $\phi$ . Then $(D\overline{\phi} : D\tilde{\psi})_{t}=\pi_{\beta}((D\phi:D\psi)_{t})=(D\phi, D\tilde{\psi})_{t}$ , and this shows that $\emptyset=\overline{\phi}$ .

$q$ . $e$ . $d$ .

3. Duality for induced representations.

Let $\lambda$ be the representation of $G$ on $C_{0}(G/N)$ or $L^{\infty}(G/N)$ by the left
translation.

LEMMA 13. Two $c*$-algebras $\hat{C}_{r}^{*}(C_{r}^{*}(A, G, \alpha), G/N, \delta)\iota\iota andC_{r}^{*}(A\otimes C_{0}(G/N)$ ,
$G,$ $\alpha\otimes\lambda$ ) are spatjally isomorphic.

PROOF. We assume that $A$ is represented on $\mathfrak{H}$ faithfully. The representa-
tion space of the first algebra is $L^{2}(\mathfrak{H}, G\cross(G/N))$ and that of the second is
$L^{2}(\mathfrak{H}, (G/N)\cross G)$ . We define a unitary operator $U$ from the latter to the former
as follows.

$(U\xi)(t,\dot{s})=\xi(i\dot{s}, t)$ for $\xi\in L^{2}(\mathfrak{H}, (G/N)\cross G)$ , $t\in G$ and $\dot{s}\in G/N$ .

Then Ad $U$ gives the desired spatial isomorphism between the two $c*$-algebras.
$q$ . $e$ . $d$ .

REMARK. When $(M, G, \alpha)$ is a $W^{*}$-dynamical system and $N$ is a normal
subgroup, we have a spatial isomorphism between $\hat{W}^{*}(W^{*}(M, G, \alpha), G/N, \delta)$ and
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$W^{*}(M\otimes L^{\infty}(G/N), G, \alpha\otimes\lambda)$ similarly.

By this lemma, we may consider the representation theory of $C_{r}^{*}(A\otimes C_{0}(G/N)$ ,
$G,$ $\alpha\otimes\lambda$ ) instead of $\hat{C}_{r}^{*}(C_{r}^{*}(A, G, \alpha), G/N, \delta)$ . Put $P=C_{c}(A, G\cross(G/N)),$ $Q=C_{c}(A, G)$

and $R=C_{c}(A, N\cross(G/N))$ . We shall give pre $C^{*}$-algebra structures to $P,$ $Q$ and
$R$ , by the following natural inclusions, $P\subset C^{*}(A\otimes C_{0}(G/N), G, \alpha\otimes\lambda)$ , $Q\subset$

$C^{*}(A, G, \alpha)$ and $R\subset C^{*}(A, N, \alpha)\otimes C_{0}(G/N)$ . We put,

for $\xi_{1}\in Q$ , $(T_{1}\xi_{1})(n)=\xi_{1}(n)$ for $n\in\Lambda^{\gamma}$ ,

for $\xi_{2}\in P$ , $(T_{2} \xi_{2})(t)=\int_{G/N}\xi_{2}(t,\dot{s})ds$ for $t\in G$ ,

for $\xi_{3}\in R$ , $(S_{1} \xi_{3})(n)=\int_{G/N}\xi_{3}(n,\dot{s})d\dot{s}$ for $n\in N$ ,

for $\xi_{4}\in P$ , $(S_{2}\xi_{4})(n,\dot{s})=\xi_{4}(n,\dot{s})$ for $n\in N,\dot{s}\in G/N$ .

Then we have $T_{1}\xi_{1}\in C_{c}(A, N),$ $T_{2}\xi_{2}\in Q,$ $S_{1}\xi_{3}\in C_{c}(A, N)$ and $S_{2}\xi_{4}\in R$ .
LEMMA 14. Four linear maps $T_{1},$ $T_{2},$ $S_{1}$ and $S_{2}$ are all generalized conditional

expectatjons.

PROOF. We have only to consider $T_{2}$ . For $\xi\in P$ , put $(\gamma_{t}\xi)(s,\dot{u})=\xi(s,\dot{u}i)$ .
Since the right and the left translations commute, $\gamma_{t}$ is an automorphism of $P$ .
We have $T_{2}( \xi)=\int\gamma\oint(\xi)di$ . Checking the conditions in the Definition 4-12 of [18],

we have, the conditions (1), (2), (3) and (4). Since $P^{2}$ is dense in $P$ with re-
spect to the inductive limit topology, (5) follows. (6) is trivial. $q$ . $e$ . $d$ .

LEMMA 15. These generalized conditional expectations give inductions of the
correspmdjng “reduced” crossed prOducis. (For example, $T_{1}$ gives the induction
from $C_{r}^{*}(A, N, \alpha)$ to $C_{r}^{*}(A, G, \alpha).)$

PROOF. This follows from the fact that these inductions transform each
“regular” representation of a subgroup crossed product to a “regular” representa-
tion of a total crossed product. $q$ . $e$ . $d$ .

DEFINITION 16. We call the induction given by $T_{2}$ the induction of a coac-
tion $\delta$ .

LEMMA 17. The $compo\alpha tionT_{1}T_{2}$ and $S_{1}S_{2}$ are also generalized conditional
expectatjons and they are equal.

PROOF. This is a direct consequence of the 2nd version of Theorem 5-11
of [18] (Stage theorem). $q$ . $e$ . $d$ .

By Corollary 2.8 in P. Green’s paper [5], there exists an isomorphism $U$

from $C^{*}(A\otimes C_{0}(G/N), G, \alpha\otimes\lambda)$ to $C^{*}(A, N, \alpha)\otimes \mathfrak{C}(L^{2}(G/N))$ . Let $\tau$ be a representa-
tion of $C^{*}(A, N, \alpha)$ . On the space of $Ind_{NtG}\tau$ , there exists a canonical diagonal
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representation $\eta ofC_{0}(G/N)$ . Let $\overline{\tau}bearepresentationofC^{*}(A\otimes C_{0}(G/N), G, \alpha\otimes\lambda)$

on $L^{2}(\mathfrak{H}_{\tau}, G, \tau)$ given by

$\tilde{\lambda}(t)\xi(s)=\xi(t^{-1}s)$ , $\tau_{\alpha}(x)\xi(s)=\alpha_{s}^{-1}(x)\xi(s)$ , $\eta(k)\xi(s)=k(\dot{s})\xi(s)$

for $t\in S,$ $x\in A$ and $k\in C_{0}(G/N)$ . We call $\overline{\tau}$ the combination of $Ind_{N}\uparrow cT$ and $\eta$ .
By the Remark 2-5 of [5], $\overline{\tau}\circ U^{-1}$ is transformed to $\tau\otimes Id_{\mathfrak{C}(L2(G/N))}$ on $\mathfrak{H}_{\tau}\otimes L^{2}(G/N)$ .
This is a canonical argument of Borel section. We call this correspondence
“the transfer principle” for induced representations.

LEMMA 18. $C_{r}^{*}(A\otimes C_{0}(G/N),G,\alpha\otimes\lambda)$ is isomorphic to $C_{r}^{*}(A, N, \alpha)\otimes \mathfrak{C}(L^{2}(G/N))$

and the isomorphism is given by U. (We again denote it by $U.$ )

PROOF. We apply “the transfer principle” to the regular representation of
$C^{*}(A, N, \alpha)$ which gives $C_{r}^{*}(A, N, \alpha)$ . $q$ . $e$ . $d$ .

Let $\pi$ be a G-invariant representation of $B=C_{r}^{*}(A, N, \alpha)$ . Put $\tilde{\pi}=Ind_{N}\uparrow G\pi$ .
We induce $\tilde{\pi}$ to $\hat{C}_{r}^{*}(C_{r}^{*}(A, G, \alpha), G/N, \delta)$ by $T_{2}$ , and put $\pi\approx=Ind_{T_{2}}\tilde{\pi}$ .

PROPOSITION 19. This induced representatjon $\pi\approx is$ unitarily equivalent to a
multiple of $\pi\otimes Id_{\mathfrak{C}(L^{2}(G/N))}$ as a representatjon of $C_{r}^{*}(A, N, \alpha)\otimes \mathfrak{C}(L^{2}(G/N))$ .

PROOF. Consider $\pi\approx$ by using $S_{1}$ and $S_{2}$ . Let $\pi_{\mu}$ be the canonical representa-
tion of $C_{0}(G/N)$ on $L^{2}(G/N)$ . Let $\pi$ di be the representation of $C_{0}(G/N)$ given by
$\pi_{\dot{x}}(f)=f(\dot{x})$ for $f\in C_{0}(G/N)$ . By the G-invariance of $\pi$ , there exists a unitary
representation $V$ of $G$ satisfying $\beta_{s}(\pi(x))=V_{s}\pi(x)V_{s}^{*}$ for all $s\in G$ and $x\in C_{r}^{*}(A,N,\alpha)$ .
Then, inducing $\pi$ by $S_{1}$ is simply taking the tensor product with $\pi_{\mu}$ . And so,
$Ind_{S_{2^{o}}S_{1}}\pi=Ind_{N\uparrow G}\pi\otimes\pi_{\mu}$ , and this is naturally equivalent to $\int_{G/N}^{\oplus}(Ind_{N\uparrow G}\pi\otimes\pi_{\dot{x}})d\dot{x}$ .
The representation space $\mathfrak{H}_{1}$ of the latter representation is the set
{ $\xi$ : $G\cross(G/N)arrow \mathfrak{H}_{\pi}$ measurable, $\xi(sn, i)=\pi(n)^{*}\xi(s, i)$ for $s\in G,$ $n\in N,$ $i\in G/N$,
$\int G/N\Vert\xi(s)\Vert^{2}d\dot{s}<\infty\}$ . Let $\sigma$ be a Borel section from $G/N$ to $G$ . We put $(W\xi)(s, i)$

$=V_{\sigma(i)}\xi(s\sigma(i), i)\Delta_{G/N}(i)^{-1/2}$ . Then $W$ is a unitary map from $\mathfrak{H}_{1}$ to
$L^{2}(G/N)\otimes L^{2}(\mathfrak{H}_{\pi}, G, \pi)$ and we have,

$W(Ind_{NtG}\pi\otimes\pi_{\mu})W^{*}=Ind_{N}$ , $G\pi\otimes\pi_{\dot{e}}\otimes I_{L^{2}(G/N)}$ .
This representation is obtained as the combination of $Ind_{N}\uparrow G\pi$ and the diagonal
multiplication $\eta$ . By “the transfer principle”, this representation is $\pi\otimes Id_{\mathfrak{C}(L2(G/N))}$

on $L^{2}(G/N)$ as a representation of $C_{r}^{*}(A, N, \alpha)\otimes \mathfrak{C}(L^{2}(G/N))$ . $q$ . $e$ . $d$ .
Now, we see that $Ind_{N\uparrow G}(\pi\otimes\pi_{\mu})$ is quasi equivalent to $Ind_{N}\uparrow G(\pi\otimes\pi_{\dot{e}})$ . We

denote by $\overline{W}$ the $corresponding*$-isomorphism between the von Neumann algebras
generated by them.

REMARK 20. As a corollary of this proposition, we have Imai-Takai duality
[9]. When $G/N$ is abelian, this proposition is a special case of [17].
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4. Duality for induced weights.

At first, we need one technical result. Let $M$ be a von Neumann algebra,
$(A, \delta_{A}, j_{A}, \phi_{A})$ and $(B, \delta_{B}, j_{B}, \phi_{B})$ be two Kac algebras. Suppose that there
exist actions $\delta_{1}$ and $\delta_{2}$ of $A$ and $B$ on $M$ respectively. Let $\sigma$ be the flip map
from $A\otimes B$ to $B\otimes A$ by $\sigma(x\otimes y)=y\otimes x$ .

DEFINITION 21. Two actions $\delta_{1}$ and $\delta_{2}$ are called to commute if $(\delta_{1}\otimes\iota_{B})\delta_{2}$

$=(\iota\otimes\sigma)(\delta_{2}\otimes\iota_{A})\delta_{1}$ holds, where $\iota_{A}$ and $\iota_{B}$ are the identity maps on $A$ and on $B$

respectively.

The von Neumann tensor product $A\otimes B$ has a natural Kac algebra struc-
ture by $(\iota_{A}\otimes\sigma\otimes\iota_{B})(\delta_{A}\otimes\delta_{B})=\delta,$ $j_{A}\otimes j_{B^{--1}}$ and $\phi_{A}\otimes\phi_{B^{--\phi}}$ as its Kac algebra
objects.

LEMMA 22. If two actions $\delta_{1}$ and $\delta_{2}$ commute, then $\delta_{1}\cross\delta_{2}=5=(\delta_{1}\otimes\iota_{B})\delta_{2}$ defines
an action of $A\otimes B$ on $M$.

PROOF. The linear map $\delta_{1}\cross\delta_{2}$ is a $normal*$-isomorphism. The associativity
follows from those of $\delta_{1}$ and $\delta_{2}$ , and the commutativity follows from a straight-
forward calculation. $q$ . $e$ . $d$ .

LEMMA 23. If $\delta_{1}$ and $\delta_{2}$ commute, $\delta_{1h}\delta_{2k}=\delta_{2k}\delta_{1h}$ for $h\in A_{*}$ and $k\in B_{*}$ , and
equal to $\tilde{\delta}_{h\otimes k}$ .

PROOF. We fix $\omega\in M_{*}$ . Then we have,

$\langle\delta_{1}\cross\delta_{2h\otimes k}(x), \omega\rangle=\langle\delta_{2}(x), \omega\circ\delta_{1h}\otimes k\rangle=\langle\delta_{1h}\delta_{2k}(x), \omega\rangle$ .
This shows that $\delta_{1}\chi\delta_{2h\otimes k}=\delta_{1h}\delta_{2k}$ . Similarly we have another identity.

$q$ . $e$ . $d$ .
LEMMA 24. SuppOse that $\delta_{1}$ and $\delta_{2}$ commute, and one of $A$ and $B$ is of the

form $L^{\infty}(G)$ or $L(H)$ . Then $\delta_{1}\cross\delta_{2}(x)=x\otimes 1_{A}\otimes 1_{B}$ holds if and only if $\delta_{1}(x)=x\otimes 1_{A}$

and $\delta_{2}(x)=x\otimes 1_{B}$ for $x\in M$.

PROOF. “If” part is trivial. We assume that $\tilde{\delta}(x)=x\otimes 1_{A}\otimes 1_{B}$ . This is
equivalent to $\delta_{1}\cross\delta_{2h\otimes k}(x)=\langle h, 1\rangle\langle k, 1\rangle x$ for every $h\in A_{*}$ and $k\in B_{*}$ . We have
$\delta_{1h}\delta_{2k}(x)=\langle h, 1\rangle\langle k, 1\rangle x$ . Suppose that $A$ is of the form $L^{\infty}(G)$ . Let $harrow\delta_{e}$ .
Then $\delta_{1h}(\delta_{2k}(x))arrow\delta_{2k}(x)$ and $\langle h, 1\ranglearrow 1$ , so we have $\delta_{2k}(x)=\langle k, 1\rangle x$ and $\delta_{1\hslash}(x)$

$=\langle h, 1\rangle x$ . Other cases are analogous. $q$ . $e$ . $d$ .
This lemma shows that $M^{\delta_{1}\cross\delta_{2}}=(M^{\delta_{1}})^{\delta_{2}}=(M^{\delta_{2}})^{\delta_{1}}$ . We consider three operator

valued weights $T^{\delta_{1}\cross\delta_{2}},$ $T^{\delta_{1}}$ and $T^{\delta_{2}}$ given by the actions $\delta_{1}\cross\delta_{2},$ $\delta_{1}$ and $\delta_{2}$ respec-
tively (Proposition II. 2 [2]).

LEMMA 25. $T^{\delta_{1}\cross\delta_{2}}=T^{\delta_{1}}T^{\delta_{2}}=T^{\delta_{2}}T^{\delta_{1}}$ .
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PROOF. Let $F_{A}=\{h\in A_{*}^{+} : h\leqq\phi_{A}\}$ and $F_{B^{--}}\{k\in B_{*}^{+} : k\leqq\phi_{B}\}$ . Then for every
$x\in M^{+},$ $T^{\tilde{\delta}}(x)= \sup_{h\in F_{A},k\in F_{B}}\tilde{\delta}_{h\otimes k}(x)=\sup_{\hslash\in F_{A},k\in F_{B}}\delta_{1h}(\delta_{2k}(x))=\sup_{k\in F_{B}}T^{\delta_{1}}(\delta_{2k}(x))=$

$T^{\delta_{1}}(T^{\delta_{2}}(x))$ . We used the fact that $T^{\delta_{1}}$ is normal. We get another identity
similarly. $q$ . $e$ . $d$ .

Let $(A, G, \alpha)$ be a $c*$-dynamical system, and $N$ be a closed normal subgroup
of $G$ . We chose a G-invariant representation $\pi$ of $C_{r}^{*}(A, N, \alpha)$ . Put $M=W^{*}(\pi)$ ,
and denote by $\beta$ the action of $G$ on $M$ induced from $\alpha$ . Let $\tilde{\pi}=Ind_{N\uparrow G}\pi$ and
$P=W^{*}(\tilde{\pi})$ .

Since $W^{*}(Ind_{T_{2}}\tilde{\pi})=\hat{W}^{*}(P, G/N, \delta)(=X)$ , by Lemma 13, $X$ is generated by
$Ind_{N\uparrow G}\pi\otimes\pi_{\mu}(C_{r}^{*}(A\otimes C_{0}(G/N), G, \alpha\otimes\lambda))$ . The space of this representation is
$L^{2}(G/N)\otimes L^{2}(\mathfrak{H}_{\phi}, G, \pi)$ . We show that there exists an action of $G/N$ and a
coaction of $G/N$ on $X$. For this, we define two unitary operators $W^{1}$ and $W^{2}$ .
For $\xi_{1}\in L^{2}(G/N)\otimes L^{2}(\mathfrak{H}, G, \pi)\otimes L^{2}(G/N)$ ,

$(W^{1}\xi_{1})(i, s,\dot{x})=\Delta_{G/N}(\dot{x})^{1/2}\xi_{1}(i\dot{s}, s,\dot{x})$ for $i,\dot{x}\in G/N,$ $s\in G$ .
For $\xi_{2}\in L^{2}(G/N)\otimes L^{2}(\mathfrak{H}, G, \pi)\otimes L^{2}(G/N)$ ,

$(W^{2}\xi_{2})(i, s,\dot{x})=\xi_{2}(i, s,\dot{s}\dot{x})$ for $i,\dot{x}\in G/N,$ $s\in G$ .
For $x\in X$, we put $\gamma(x)=W(x\otimes 1_{L^{2}(G/N)})W^{1*}$ and $\delta(x)=W^{2*}(x\otimes 1_{L^{2}(G/N)})W^{2}$ .

LEMMA 26. The map $\gamma$ is an action of $L^{\infty}(G/N)$ on $X$, and $\delta$ is an action of
$L(G/N)$ on X. Moreover $\gamma$ and $\delta$ commute.

PROOF. This is shown by a simple calculation. $q$ . $e$ . $d$ .

By the general theory, there exist three operator valued weights $T^{\gamma},$ $T^{\delta}$ and
$T^{\gamma\cross\delta}$ on $X$. By Lemma 26, $X^{\gamma\cross\delta}$ is equal to the image of $M$ in $X$. Let $\phi$ be a
$f$ . $n$ . $s$ . weight on $M$, and $\hat{\phi}$ be the induced weight on $P$. We induce $\phi$ to Xby
$T^{\gamma}$ , and denote it by $\phi^{\approx}$ . By definition, $\phi^{\approx}$ is induced by $T^{\delta}\circ T^{\gamma}$ . The above
lemma allows us to consider di as induced by $T^{\gamma}\circ T^{\delta}$ from $M$. Denote by $\phi_{\mu}$ the
trace on $C_{0}(G/N)$ given by a left Haar measure of $G/N$. The induced weight
$\overline{\phi}$ on $M\otimes L^{\infty}(G/N)(=X^{\delta})$ is simply $\phi\otimes\phi_{\mu}$ . By these arguments $\phi^{\approx}=Ind_{N}\uparrow G\phi\otimes\phi_{\mu}$ .
The GNS representation associated with $\overline{\phi}$ is $\pi_{\phi}\otimes\pi_{\mu}$ and that of $\phi^{\approx}$ is $Ind_{NtG}$

$(\pi_{\phi}\otimes\pi_{\mu})$ . The following proposition is the direct consequence of Proposition 19
(cf. [13]).

LEMMA 27. The $*- isomorphism\overline{W}$ defined after the prOOf of $Propo\alpha tion19$

and the canonical Borel section argument give a $*$-isomorPhism between $W^{*}(Ind_{N\uparrow G}$

$(\pi_{\phi}\otimes\pi_{\mu}))$ and $M\otimes \mathfrak{B}(L^{2}(G/N))$ .

Let Tr be the ordinary trace on $\mathfrak{B}(L^{2}(G/N))$ . By $\overline{W},$ $X$ is transferred to an
operator algebra on $L^{2}(\mathfrak{H}_{\phi}, G, \pi)$ . Let $\sigma$ be a Borel section from $G/N$ to $G$ and
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$\epsilon(s)=\sigma(\dot{s})^{\sim 1}$ . We define a unitary map $V$ from $L^{2}(\mathfrak{H}_{\phi}, G, \pi)$ to $L^{2}(\mathfrak{H}_{\phi}, G/N)$ .
This map is defined in [17]. For $\xi\in L^{2}(\mathfrak{H}_{\phi}, G, \pi),$ $(V\xi)(\dot{s})=\pi(\epsilon(s))\xi(s)$ . AdV is
the so called “canonical cross section argument”. Put $X_{0}=\overline{W}(X)$ . Let $\phi^{1}$ be the
transfer of $\dot{\phi}$ to $X_{0}$ by $\overline{W}$, and $\phi^{2}$ be the transfer of $\phi\otimes Tr$ to $X_{0}$ by Ad $V^{*}$ .

LEMMA 28. A $f.n.s$ . weight $\phi^{2}$ is induced from $M\otimes L^{\infty}(G/N)$ .

PROOF. By Proposition 12, it suffices to show that $\phi^{2}$ is $(\delta, j)$ invariant for
the canonical coaction of $G/N$. Denote by $\delta^{0}$ the natural coaction of $G/N$ on
$\mathfrak{B}(L^{2}(G/N))$ . The coaction $\delta$ is transferred to $I\otimes\delta^{0}$ on $M\otimes \mathfrak{B}(L^{2}(G/N))$ by $V$.
Since Tr on $\mathfrak{B}(L^{2}(G/N))$ is $(\delta^{0}, j^{0})$ invariant, $\phi\otimes Tr$ is $(I\otimes\delta^{0}, j^{0})$ invariant. This
shows the $(\delta, j)$ invariance of $\phi^{2}$ . $q$ . $e$ . $d$ .

We define a $f$ . $n$ . $s$ . weight $\phi_{0}^{2}$ on $M\otimes L^{\infty}(G/N)$ by $\phi^{2}=Ind_{NtG}\phi_{0}^{2}$ . For sim-
plicity, put $\Pi=\pi_{\phi}\otimes\pi_{\dot{e}}$ , and $\tilde{\Pi}=Ind_{N\uparrow G}\Pi$ .

Let $f\in K(M\otimes L^{\infty}(G/N), G, \Pi)$ and $\xi\in L^{2}(\mathfrak{H}_{\phi}. G, \Pi)$ . Then we have,

$\prod_{(f^{*}*f)\xi(t)=}\int_{G/N}\int_{G/N}\beta_{t}^{-1}(f(u,\dot{s})^{*})\beta_{\iota-1_{S}}(f(us,\dot{s}^{-1}i))\xi(\dot{s}^{-1}f)d\dot{u}d\dot{s}$ .

We realize $\tilde{\Pi}(f^{*}*f)$ as an operator on $L^{2}(\mathfrak{H}_{\phi}, (G/N),$ $\Pi$ ).

$V^{*\prod_{(f^{*}*f)V\xi(t)=}} \int_{G/N}\int_{G/N}\pi(\epsilon(t))\beta_{t}^{-1}((f(u, i)^{*})\beta_{t- 1_{S}}(f(us,\dot{s}^{-1}i))]$

$\pi(\epsilon(s^{-1}t))^{*}\xi(\dot{s}^{-1}i)d\dot{u}d\dot{s}$

$= \int_{G/N}(\int_{G/N}\Delta_{G/N}(\dot{s})^{-1}\pi(\epsilon(t))\beta_{t}^{-1}(f(u, i)^{*})\beta_{s}^{-1}(f(uts^{-1},\dot{s}))$

$\pi(\epsilon(s))^{*}d\dot{u})\xi(\dot{s})d\dot{s}$ .
Hence, $V^{*}\tilde{\Pi}(f^{*}*f)V$ is represented as an operator valued integral kernel.
Denote it by $K(\dot{s}, i)$ . Suppose that there exists a compact subset $Y$ of $G/N$ such
that $K$ is supported in $Y\cross Y$ and $K|_{YxY}$ is $\sigma$-weakly continuous. We call this
“continuity assumption”. Then, by the well known fact, we have,

$( \emptyset\otimes T_{\Gamma})(V^{*\prod_{(f^{*}*f)V)=}}\int_{G/N}\phi(K(i, i))di$

$= \int_{G/N}(\int_{G/N}\Delta_{G’ N}(i)^{-1}\phi(\beta_{\sigma(i)}^{-1}(f(u, i)^{*}f(u, i)))di)d\dot{u}$ .
Seeing this, we define a $f$ . $n$ . $s$ . weight $\phi_{0}’$ on $M\otimes L^{\infty}(G/N)$ by

$\phi_{0}’(T)=\int_{G/N}\Delta_{G/N}(\dot{x})^{-1}\phi(\beta_{\sigma(\dot{x})}^{-1}(T_{\dot{x}}))d\dot{x}$ ,

where $T= \int_{G/N}^{\oplus}T_{\dot{x}}d\dot{x}$ is in $(M\otimes L^{\infty}(G/N))^{+}$ . Let $\Delta_{\phi}$ be the modular operator of
$\phi$ , and put $\Delta_{\phi}^{tt}(s)=\pi(\epsilon(s))^{*}\Delta_{\phi}^{it}\pi(\epsilon(s))$ and $(\tilde{\Delta}_{\phi}^{it}\xi)(s)=\Delta_{\phi}^{it}(s)\xi(s)$ for $\xi\in L^{2}(\mathfrak{H}_{\phi}, G, \Pi)$ .
Then the modular automorphism group $\sigma^{\phi^{2}}$ of $\phi^{2}$ is given by Ad $\tilde{\Delta}_{\phi}^{it}$ . Then we
have
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$(\tilde{\Delta}_{\phi}^{it}\pi_{\beta\otimes\dot{\lambda}}(x\otimes k)\tilde{\Delta}_{\phi}^{-it}\xi)(s)=\beta_{s}^{-1}(\beta_{\sigma(\dot{s})}\sigma^{\phi_{t}}\beta_{\sigma(.\backslash )}^{-1}\backslash \cdot(x))k(\dot{s})\xi(\dot{s})$ .

This shows that $\sigma^{\phi_{0}^{2}}$ is given by $\int_{G/N}^{\oplus}\beta_{\sigma(\dot{s})}\sigma^{\phi_{t}}\beta_{\sigma(\dot{s})}^{-1}d\dot{s}$ . Clearly, we have $\sigma^{\phi_{t^{0}}’}=$

$\int_{G/N}^{\oplus}\beta_{\sigma(\dot{s})}\sigma^{\phi_{t}}\beta_{\sigma(\dot{s})}^{-1}d\dot{s}$ . We have $\sigma^{\phi_{0}^{2}}=\sigma^{\phi_{0}’}$ . Let $F$ be a measurable map from $G$ to

$W^{*}(\pi_{\phi})$ such that $F(sn)=\pi_{\phi}(n)^{*}F(s)$ , and $\dot{s}arrow\Vert F(s)\Vert$ is bounded and has a com-
pact support. Then,

LEMMA 29 (Lemma 3.1.3 in [17]). The map $s\in Garrow F^{*}*F(s)$ is $\sigma$-weakly
continuous.

Let $D$ be the linear span of the set { $D(\dot{x})=\beta_{\sigma(\dot{x})}(T)1_{c}(\dot{x})\Delta_{G/N}(\dot{x})$ : $T\in m_{\phi},$ $C$

is a compact subset of $G/N$ such that $\sigma|_{C}$ is continuous} in $M\otimes L^{\infty}(G/N)$ .
Then, by the $\sigma^{\phi}$-invariance of $m_{\phi},$

$D$ is a $\sigma^{\phi_{0}’}$ -invariant weakly dense sub-
algeba of $M\otimes L^{\infty}(G/N)$ .

Let $f(s,\dot{x})=\pi(\epsilon(s))^{*}k(\dot{s})\beta_{\sigma(\dot{x})}(T)1_{C}(\dot{x})\Delta_{G/N}(\dot{x})^{1/2}$ , where $k\in C_{c}(G/N),$ $T\in m_{\phi}$ .
Then $f\in K(M\otimes L^{\infty}(G/N), G, \Pi)$ . Then the integral kernel $K_{0}$ of $\tilde{\Pi}(f^{*}*f)$ is
given by

$K_{0}( \dot{s}, i)=\Delta_{G/N}(i\dot{s}^{-1})^{1/2}1_{C}(i)1_{C}(\dot{s})\pi(\epsilon(t))\beta_{t}- 1_{\sigma}(i)(T^{*})\int_{G/N}k(\dot{u})k(\dot{u}i\dot{s}^{-1})$

$\beta_{t}^{-1}(\pi(\epsilon(u))\beta_{s}^{-1}(\pi(uts^{\sim 1}))^{*})d\dot{u}\cdot\beta_{s^{-1}\sigma(\dot{s})}(T)\pi(\epsilon(s))^{*}$ .
The right hand side is well defined on $G/N$ because of the covariance relation
between $\beta$ and $\pi$ . Put $F(s)=\pi(\epsilon(s))^{*}k(\dot{s})$ . Then

$K_{0}(\dot{s}, i)=\Delta_{G/N}(i\dot{s}^{-1})^{1/2}1_{c}(\dot{r})1_{C}(\dot{s})\pi(\epsilon(t))\beta_{t^{-1}\sigma(i)}(T^{*})\beta_{s}^{-1}(F^{*}*F)(ts^{-1})$

$\beta_{s-1\sigma(\dot{s})}(T)\pi(\epsilon(s))^{*}$ .
By the condition of $C$ this integral kernel satisfies “continuity assumption”.
We have,

$\phi^{2}(\prod_{(f^{*}*f))=}\int_{G/N}|k(\dot{u})|^{2}d\dot{u}\int_{G/N}\phi(T^{*}T)1_{C}(i)di<\infty$ .
Hence for $D(x)=\beta_{\sigma(\dot{x})}(T)1_{C}(\dot{x})\Delta_{G/N}(\dot{x})$ ,

$\phi_{0}^{2}(D)=\int_{G/N}\phi(T^{*}T)1_{C}(i)di<\infty$ .

By Theorem 5.9 of [15], we have $\phi_{0}^{2}=\phi_{0}’$ .
We conclude that $\phi^{2}$ is induced from $\phi_{0}’$ . Since $(D(\phi\otimes\phi_{\mu}):D\phi_{0}^{2})_{t}=$

$\int_{G/N}^{\oplus}\Delta_{G/N}(\dot{x})^{it}(D\phi:D\phi\circ\beta_{\sigma(\dot{x})}^{-1})_{t}d\dot{x}$ and $(D\phi^{f} : D\phi^{2})_{t}=\pi_{\beta\otimes\dot{\lambda}}((D(\phi\otimes\phi_{\mu}):D\phi_{0}^{2})_{t})$ , we
have the following

PROPOSITION 30.

$(D\phi^{1} : D\phi^{2})_{t}\xi(s)=\Delta_{G/N}(\dot{s})^{it}(D\phi\circ\beta_{s} ; D\phi 0\beta_{\epsilon(s)})_{t}\xi(s)$ , for $\xi\in L^{2}(\mathfrak{H}_{\phi}, G, \pi)$ .
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REMARK 31. When $N=\{e\}$ , it reduces to the duality of Stratila-Voiculescu-
Zsido [21], and when $G/N$ is abelian, reduces to that of N. V. Pedersen [17]. We
use the technique developed there.

COROLLARY 32. When $\phi$ is a $\Delta_{G/N}$-relatively invariant $f$ . $n$ . $s$ . trace on $M,\tilde{\phi}$

is transformed to $\phi\otimes Tr$ on $M\otimes \mathfrak{B}(L^{2}(G/N))$ .

5. Induced traces on $C^{*}$-crossed products.

Let $(A, G, \alpha)$ be a $C^{*}$-dynamical system, and $N$ be a closed normal sub-
group of $G$ . Let $\phi_{0}$ be a lower semicontinuous semifinite $(1. s.)$ trace on
$C_{r}^{*}(A, N, \alpha)$ which is $\Delta_{G’ N}$-relatively invariant under the original action of $G$ .
Then the GNS representation $\pi_{\phi_{0}}$ is G-invariant, and so we can construct an
induced weight $\phi$ on $C_{r}^{*}(A, G, \alpha)$ . This is the composition of $Ind_{N\dagger G}\pi_{\phi_{0}}$ and the
induced weight on $W^{*}(Ind_{N\dagger G}\pi_{\phi_{0}})$ in $W^{*}$-sense. By $\Delta_{G/N}$-relative invariance con-
dition, $\phi$ is a $trace$ . Since $G/N$ is not necessarily abelian, we use invariance
under coaction as in $W^{*}$-case.

For the definition and simple properties of coaction in $c*$-sense, we refer to
[10]. There exists a coaction $\delta$ of $G/N$ on $C_{r}^{*}(A, G, \alpha)$ dual to $\alpha$ . The involu-
tion of the Kac $c*$-algebra $C_{r}^{*}(G/N)$ (cf. [24]) is denoted by $j$ . We define
$(\delta, j)$-invariance of 1. $s$ . weights on $C^{*}$-algebras under actions of Kac $C^{*}$-algebras
as in $W^{*}$-case.

LEMMA 33. The induced trace $\phi$ is $(\delta, j)$-invariant under the coaction $\delta$ of
$G/N$.

PROOF. The GNS representation $\pi_{\phi}$ associated with $\phi$ is the induced rep-
resentation $Ind_{N\uparrow G}\pi_{\phi_{0}}$ . This is the situation in \S 1. The von Neumann algebra
$W^{*}(\pi_{\phi})$ is acting on $L^{2}(\mathfrak{H}_{\phi}, G, \pi_{\phi_{0}})$ , and there exists a canonical coaction $\tilde{\delta}$ of
$G/N$ on $W^{*}(\pi_{\phi})$ corresponding to $\delta$ . Then, by Lemma 11, the normal extension
$\tilde{\phi}$ of $\phi$ to $W^{*}(\pi_{\phi})$ is $(\tilde{\delta},\tilde{j})$-invariant. Since $\pi_{\phi}$ is an induced representation from
$N$, there exists a coaction $\tilde{\delta}$ of $G/N$ on $\pi_{\phi}(C_{r}^{*}(A, G, \alpha))$ corresponding to $\delta$ on
$C_{r}^{*}(A, G, \alpha)$ via $\pi_{\phi}$ . The trace $\overline{\phi}$ on $\pi_{\phi}(C_{r}^{*}(A, G, \alpha))$ obtained by the restriction
from $\tilde{\phi}$ is clearly $(\overline{\delta}, j)$-invariant. By the definition of $\pi_{\phi},\overline{\delta}_{k}$ and $\delta_{k}$ , we have
$\overline{\delta}_{k}(\pi_{\phi}(x))=\pi_{\phi}(\delta_{k}(x))$ for $k\in A(G/N)$ and $x\in C_{r}^{*}(A, G, \alpha)$ . Hence, $\phi$ is $(\delta, j)$-in-
variant. $q$ . $e$ . $d$ .

Let $\phi$ be a 1. $s$ . trace on $C_{r}^{*}(A, G, \alpha)$ which is $(\delta, j)$-invariant. Let $\pi_{\phi}$ be
the GNS representation associated with $\phi$ , and $\mathfrak{H}_{\phi}$ be its representation space.
Put $B=C_{r}^{*}(A, G, \alpha)$ and $M=W^{*}(\pi_{\phi})$ .

LEMMA 34. Pointwise multiPlicatim of $C_{0}(G/N)$ on $C_{r}^{*}(A, G, \alpha)$ extends to a
bounded $*$-rePresentation of $C_{0}(G/N)m\mathfrak{H}_{j}$ .
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PROOF. By Proposition 1-7 in [1], $\phi$ is supremum of positive linear func-
tionals. Using this fact, we can conclude that $k\in A(G/N)arrow\delta_{k}$ is a bounded rep-
resentation of $A(G/N)$ on $\mathfrak{H}_{\phi}$ analogously to the $W^{*}$-situation (Lemma 0.2.3 in
[21]). $*$-preserving property of this representation follows from j-invariance of
$\phi$ . The enveloping $c*$-algebra of $A(G/N)$ is $C_{0}(G/N)$ . Hence, the above rep-
resentation extends to $C_{0}(G/N)$ . $q$ . $e$ . $d$ .

Since the range of this representation commutes with $\pi_{\phi}(C_{r}^{*}(A, N, \alpha))$ , this
representation constitutes a transitive system of imprimitivity based on $G/N$

for $\pi_{\phi}$ . By Mackey-Takesaki imprimitivity theorem [23], there exists a unique
representation $\pi$ of $C^{*}(A, N, \alpha)$ such that $\pi_{\phi}=Ind_{N\uparrow G}\pi$ . On the other hand $\pi$ is
induced from $C_{r}^{*}(A\otimes C_{0}(G/N), G, \alpha\otimes\lambda)$ in $c*$-sense, since $\pi_{j}$ is made into a repre-
sentation of $C_{r}^{*}(A\otimes C_{0}(G/N), G, \alpha\otimes\lambda)$ . By this and Lemma 18, $\pi$ is a represen-
tation of $C_{r}^{*}(A, N, \alpha)$ . Denote the action of $G$ on $C_{r}^{*}(A, N, \alpha)$ by $\beta$ . Let $s\cdot\pi(x)$

$=\pi(\beta_{s}(x))$ for $s\in G,$ $x\in C_{r}^{*}(A, N, \alpha)$ . Put $\Pi=\int_{G}^{\oplus}s\cdot\pi ds$ , where $ds$ is a left Haar
measure on $G$ . By the argument used in the proof of Proposition 19, $Ind_{N\dagger G}s\cdot\pi$

$\cong Ind_{N\uparrow G}\pi$ , and so $Ind_{N\dagger G}\Pi$ is unitarily equivalent to $(Ind_{N\uparrow G}\pi)\otimes I_{L2(G)}$ . Let
$Ind_{N\uparrow G}\Pi=\tilde{\Pi}$ . Then $W^{*}(\pi_{\phi})$ is isomorphic to $W^{*}(\tilde{\Pi})$ by the quasi equivalence
between $\pi_{\phi}$ and 11. We identify these two algebras.

Since $\tilde{\Pi}$ is $G$ invariant, $W^{*}(\tilde{\Pi})$ can be considered as an extended covariance
algebra. Let $\tilde{\phi}$ be the normal extension of $\phi$ to $W^{*}(\pi_{\phi})$ . We consider $\tilde{\phi}$ as a
$f$ . $n$ . $s$ . weight on $W^{*}(\tilde{\Pi})$ by the above isomorphism. Since $W^{*}(\tilde{\Pi})$ is as in \S 2,

there exists a canonical coaction $\tilde{\delta}$ of $G/N$ on $W^{*}(\tilde{\prod})$ , and this corresponds to
the original $\delta$ on $C_{r}^{*}(A, G, \alpha)$ by $\tilde{\Pi}$ . Since the GNS representation spaces $\mathfrak{H}_{\pi_{\phi}}$

and $\mathfrak{H}_{\pi_{\overline{\phi}}}$ are the same, the pointwise multiplication of $A(G/N)$ on $W^{*}(\tilde{\Pi})$ (con-

sider this algebra in induced representation sense) gives a bounded $*$-representa-
tion of $A(G/N)$ . By Lemma 10, $\phi$ is $(\tilde{\phi},\tilde{j})$-invariant. By Proposition 12, $\tilde{\phi}$

is induced from a $f$ . $n$ . $s$ . weight $\tilde{\phi}_{0}$ on $W^{*}(\Pi)$ . And by Lemma 4 (2), $\tilde{\phi}_{0}$ is a
trace, and $\tilde{\phi}_{0}$ is $\Delta_{G/N}$-relatively invariant under the action $\alpha$ of $G$ .

The next problem is whether $\phi_{0}$ is semifinite or not. For this purpose, we
consider the cocrossed products $\hat{C}_{r}^{*}(\tilde{\Pi}(B), G/N, \delta)\Leftarrow$ and $\hat{W}^{*}(M, G/N,\tilde{\delta})$ , where $\overline{\overline{\delta}}$

is the coaction on $\tilde{\Pi}(B)$ given by $\tilde{\delta}$. By Proposition 19 and Lemma 27,
$\hat{C}_{r}^{*}(\tilde{\Pi}(B), G/N,\overline{\overline{\delta}})\cong\tilde{\Pi}(C_{r}^{*}(A, N, \alpha))\otimes \mathfrak{C}(L^{2}(G/N))$ , and $\hat{W}^{*}(M, G/N,\tilde{\delta})=W^{*}(\tilde{\Pi})\otimes$

$\mathfrak{B}(L^{2}(G/N))$ , and moreover, these two decompositions are given by the same
unitary operator.

Let $\overline{\phi}$ be $\tilde{\phi}|_{\Pi(B)}^{\sim}$ . We consider the induced weight $\phi_{1}$ on $\hat{W}^{*}(M, G/N,\tilde{\delta})$ by
the operator valued weight given by the coaction $\tilde{\delta}$ . Let $\overline{\phi}_{1}$ be the restriction
of $\phi_{1}$ to $\hat{C}_{r}^{*}(\tilde{\Pi}(B), G/N,\overline{\overline{\delta}})$ .

LEMMA 35. Thts restriction $\overline{\phi}_{1}$ is semifinite. If $\phi$ is densely defined, so is $\overline{\phi}_{1}$ .
PROOF. Let $y=\overline{\overline{\delta}}(x)(1\otimes h)$ , where $x\in m_{\phi_{1}}$ and $h\in C_{c}(G/N)$ . Let $T$ be the
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operator valued weight which gives the induction from $W^{*}(\tilde{\Pi})$ to $\hat{W}^{*}(M, G/N,\tilde{\delta})$ .
Then, $y$ is $T$ integrable in the sense of [13] and $T(y)=( \int_{G/N}h(\dot{s})d\dot{s})\cdot x$ . This
shows that the above $y$ is contained in $m_{\overline{\phi}_{1}}$ . Since $\hat{C}_{r}^{*}(\tilde{\Pi}(B), G/N,\overline{\overline{\delta}})$ is generated
by the linear combinations of the products $\overline{\delta}(x)(1\otimes h)$ or $(1\otimes h)\overline{\overline{\delta}}(x)$ , and $m_{\overline{\phi}}$ is
weakly dense in $\hat{W}^{*}(M, G/N,\tilde{\delta}),$

$m_{\overline{\phi}_{1}}$ is weakly dense. Densely defined case is
similar. $q$ . $e$ . $d$ .

LEMMA 36. The trace $\tilde{\phi}_{1}$ is transformed to $\hat{\phi}_{0}\otimes Tr$ on $W^{*}(\Pi)\otimes \mathfrak{B}(L^{2}(G/N))$ .

PROOF. This is just Corollary 32. $q$ . $e$ . $d$ .
LEMMA 37. The restriction $\overline{\phi}$ of $\phi_{0}$ to $\Pi(C_{r}^{*}(A, N, \alpha))$ is semifimte. If $\phi$ is

densely defined, so is $\overline{\phi}$ .
PROOF. Denote the norm closure of { $x\in\Pi(C_{r}^{*}(A, N, \alpha))\otimes \mathfrak{C}(L^{2}(G/N))$ :

$\tilde{\phi}_{0}\otimes Tr(x^{*}x)<\infty\}$ by $C$ . Then $C$ is of the form of $D\otimes \mathfrak{C}(L^{2}(G/N))$ , where $D$ is a
closed ideal of $\Pi(C_{r}^{*}(A, N, \alpha))$ . By Lemma 4-2 of [16], $\tilde{\phi}_{0}|_{D}$ is densely defined.
Since $D\otimes \mathfrak{C}(L^{2}(G/N))$ is weakly dense in $W^{*}(\Pi)\otimes \mathfrak{B}(L^{2}(G/N))$ , this shows that
$m_{\overline{\phi}}\cap\Pi(C_{r}^{*}(A, N, a))$ is weakly dense in $W^{*}(\Pi)$ . $q$ . $e$ . $d$ .

Let $\phi_{0}$ be $\tilde{\phi}_{0^{Q}}\Pi$ . It is a 1. $s$ . trace on $C_{r}^{*}(A, N, \alpha)$ , and $\tilde{\phi}_{0}$ is the canonical
normal extension of $\phi_{0}$ to $W^{*}(\Pi)$ . The trace $\tilde{\phi}_{0}$ is clearly $\Delta_{G/N}$-relatively in-
variant. From these arguments we have,

LEMMA 38. The $0\dot{n}\ovalbox{\tt\small REJECT} nal$ trace $\phi$ is induced from a $l.s$ . trace $\phi_{0}$ of $C_{r}^{*}(A, N, \alpha)$ .
Now we have the following theorem.

THEOREM. A lower semicmtinuous semifimte trace on $C_{r}^{*}(A, G, \alpha)$ is induced
from $C_{r}^{*}(A, N, \alpha)$ if and only if it is $(\delta,$])-invariant under the canonzcal coaction
$\delta$ of $G/N$ on $C_{r}^{*}(A, G, \alpha)$ .

REMARK 39. When $N=\{e\}$ and $G$ is abelian, Theorem reduces to the special
case of Theorem 5.1 of [16].
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