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\S 0. Introduction.

Let $X$ be a locally compact group with a left invariant Haar measure $\mu$ .
Let $f_{a}=af:X\supset$ be a continuous affine map where $f$ is a continuous group
automorphism of $X$ and $a\in X$. $f_{a}$ is said to be ergodic under $\mu$ if it is meas-
urable and whenever $E\subset X$ is a Borel set such that $f_{a}(E)=E$ we have either
$\mu(E)=0$ or $\mu(X\backslash E)=0$ . The shift map $\sigma$ of $Z$ is a translation defined on the
discrete group $Z$ of integers by $\sigma(n)=n+1$ .

Recently N. Aoki [1] has answered the problem of Halmos (p. 29 of [7])

negatively, $i.e.$ , if $X$ is a locally compact totally disconnected group which has
an ergodic continuous automorphism with respect to a Haar measure $\mu$ , then $X$

is compact. For the affine maps, the problem of Halmos remains an open
question when $X$ is totally disconnected.

The purpose of this paper is to prove the following:

THEOREM. Let $X$ be a locally compact group with a left invariant Haar
measure $\mu$ and $f_{a}$ : $X\supset be$ a continuous affine map. Let $\sigma$ : $Z\supset be$ the shift map.
If (X, $f_{a},$

$\mu$ ) is ergodic, then either $X$ is compact or (X, $f_{a}$ ) is homeomorphic to
$(Z, \sigma)$ .

In N. Aoki’s proof, concepts of the pseudo-orbit tracing property and topol-
ogical mixing for topological dynamics play an important role. We shall apply
his techniques for the proof of Theorem.

REMARK 1. Let $X,$ $f_{a}$ and $\mu$ be as in Theorem. If (X, $f_{a},$
$\mu$ ) is ergodic

and if $X$ is discrete, either $X$ is compact or (X, $f_{a}$ ) is homeomorphic to $(Z, \sigma)$ .
Indeed, if $X$ is finite then $X$ is compact. If $X$ is infinite, then $X=\{f_{a}^{n}(x);n\in Z\}$

for each $x\in X$ by ergodicity of (X, $f_{a},$
$\mu$ ). We define a homeomorphism $\varphi$ of $Z$

onto $X$ by $\varphi(n)=f_{a}^{n}(x)(n\in Z)$ , and then we get $\varphi\circ\sigma=f_{a}\circ\varphi$ on $Z$ .
For the subclasses of abelian groups and connected groups, the following

results are known.

THEOREM A (N. Aoki and Y. Ito [2]). Let $X$ be a locally compact abelian
group with a left invariant Haar measure $\mu$ . If on $X$ there exists an affine map
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$f_{a}(x)=af(x)(x\in X)$ which is $totally_{-}^{v}ergodic$ , then $X$ must be compact.

THEOREM $B$ (S. G. Dani [6]). Let $X$ be a connected locally compact group.
SupPose that there exists an affine automorphism $f_{a}$ of $X$ and $x_{0}\in X$ such that the
orbit $\{f_{a}^{n}(x_{0});n\in Z\}$ is dense in X. Then $X$ is compact.

For the proof of Theorem we shall use the definitions and the results in
topological groups and topological dynamics for locally compact spaces. If $X$ is
a $\sigma$-compact group and $f:X\supset$ is a bicontinuous automorphism, then there is an
f-invariant compact normal subgroup $H$ of $X$ such that $X/H$ is separable and
metrizable (see [1]). When $X/H$ is compact, so is $X$. If (X, $f_{a},$

$\mu$ ) is ergodic
then $f_{a}$ is bicontinuous and $\mu$ -measure preserving (Appendix 1) and moreover $X$

is $\sigma$-compact. Let $V$ be a compact symmetric neighborhood of the identity $e$ in
X. The set $H= \bigcup_{n\geqq 1}V^{n}$ is a $\sigma$ -compact open subgroup of $X$. Since $f_{a}$ is
bicontinuous, the set $K= \bigcup_{j\in Z}f_{a}^{f}(H)$ is open $\sigma$ -compact and $f_{a}^{-1}(K)=K$. Since
$\mu(X\backslash K)=0,$ $K$ is dense in $X$. Put $F= \bigcup_{n\geq 1}(K\cup K^{-1})^{n}$ , then $F$ is a $\sigma$-compact
open subgroup of $X$ such that $K\subset F$. Since $F$ is a closed subgroup of $X$, we
have $F=X$ and so $X$ is $\sigma$-compact.

Let $Y$ be a locally compact metric space with a metric function $d$ and $g$ be
a homeomorphism from $Y$ onto itself. We recall that $(Y, g)$ is topologically
mixing iff there is an $M>0$ for any nonempty open sets $U$ and $V$ of $Y$ such
that $U\cap g^{n}(V)\neq\emptyset$ for all $n\geqq M$. If $(Y, d)$ is complete and if $(Y, g)$ is topolog-
ically mixing, then $(Y, g)$ has a dense orbit. We say that $g$ is expansive under
$d$ if there is an $\epsilon>0$ such that $x\neq y$ implies the existence of $n\in Z$ such that
$d(g^{n}(x), g^{n}(y))>\epsilon$ and that $\epsilon$ is an expansive constant for $g$ . For $\delta>0$ , a sequence
$\{x_{i}\}_{i\in(\alpha,\beta)}(-\infty\leqq\alpha<\beta\leqq\infty)$ of points of $Y$ is called a $\delta$-pseudo-orbit under $d$ for
$g$ if $d(g(x_{i}), x_{i+1})<\delta$ for $i\in(\alpha, \beta)$ . Given $\epsilon>0$ , a pseudo-orbit $\{x_{i}\}$ is called to
be $\epsilon$ -traced under $d$ by a point $x\in Y$ if $d(g^{i}(x), x_{i})<\epsilon$ for $i\in(\alpha, \beta)$ . We say $g$

to have the pseudo-orbit tracing Property (abbrev. P. O. T. P.) under $d$ if for
every $\epsilon>0$ there is a $\delta>0$ such that every $\delta$-pseudo-orbit under $d$ for $g$ can be
$\epsilon$ -traced by some point in $Y$ . Note that P. $0$ . T. P. is defined for continuous
maps. Let $X$ be a metric space and $\varphi$ : $Yarrow X$ be a homeomorphism for which

$\varphi^{-1}$ is uniformly continuous. If $g$ is expansive then so is $\varphi\circ g\circ\varphi^{-1}$ . If in partic-
ular $\varphi$ and $\varphi^{-1}$ are uniformly continuous and $g$ has P. $0$ . T. P., then $\varphi\circ g\circ\varphi^{-1}$ has
P. $0$ . T. P.

Our result will be reduced to the case when $X$ is metrizable and separable
and $f_{a}$ is bicontinuous. Since $X$ has a countable base, the assumption for
(X, $f_{a},$

$\mu$ ) to be ergodic will be changed by the assumption that (X, $f_{a}$ ) has a
dense orbit (see p. 26 [7]).

The conclugion of Theorem will be obtained in proving the following two
propositions.
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PROPOSITION 1. Let $X$ be a locally compact group with a left invariant Haar
measure $\mu$ and $X_{0}$ be the connected comp0nent of the identity $e$ in X. Let $f_{a}$ : $X\supset$

be a bicontinuous affine map. If (X, $f_{a},$
$\mu$ ) is ergodic and $X/X_{0}$ is compact, then

$X$ is compact.

PROPOSITION 2. Let $X$ be a locally compact totally disconnected metric group
with a left invariant metric function $d_{0}$ and $f_{a}$ : $X\supset be$ a bicontinuous affine map.
If $X$ is not discrete and (X, $f_{a}$ ) has a dense orbit, then there exist an f-invariant
compact subgroup $B$ of $X$ and an f-invariant open subgroup $Y$ of $X$ with $B\subset Y$ such
that $X/Y$ is compact, $(Y/B, h)$ is topologjcally mixing and $(Y/B, h)$ has P. $0$ . T. $P$.
Here $h$ denotes a homeomorphjsm on $X/B$ defined by $h(xB)=f(x)B(x\in X)$ .

\S 1. Proof of Proposition 1.

It is enough to show that $X_{0}$ is compact. To do this, assuming $X_{0}$ is not
compact. We see (p. 175, [10]) that there exists the maximal compact normal
subgroup $N$ of $X_{0}$ such that $X_{0}/N$ is a Lie group. It is easy to see that $N$ is
normal in $X$ and invariant under $f$ . Put $Y=X/N$ and $Y_{0}=X_{0}/N$. Since $Y/Y_{0}$

is homeomorphic to $X/X_{0},$ $Y/Y_{0}$ is totally disconnected. Since $Y_{0}$ is connected
and $Y/Y_{0}$ is compact, there is a compact normal subgroup $K$ of $Y$ such that
$Y/K$ is a Lie group. Let $\overline{f}:Y\supset$ be the automorphism induced by $f:X\supset$ and
put

$K_{n}=K\overline{f}(K)\overline{f}^{2}(K)\cdots\overline{f}^{n}(K)$ for $n\geqq 0$ .
Since $K_{n}$ is a compact normal subgroup of $Y,$ $Y/K_{n}$ is a Lie group. For $n\geqq 0$ ,
$Y_{0}K_{n}/K_{n}$ is open in $Y/K_{n}$ because the connected component of the identity of a
Lie group is open. Therefore $Y_{0}K_{n}$ is open and closed in Y. $H= \bigcup_{n\geqq 0}Y_{0}K_{n}$ is
an open-closed subset of $Y$ and $\overline{f}(H)\subset H$ holds. Since $\overline{f}$ is measure preserving,
we have $\overline{f}(H)=H$. Denote by $\overline{f}_{a}$ : $Y\supset$ the affine map induced by $f_{a}$ : $X\supset$ and
by $\tilde{f}_{a}$ : $Y/H\supset$ the map induced by $\overline{f}_{a}$ : $Y\supset$ . Since (X, $f_{a},$

$\mu$ ) is ergodic, $(Y,\overline{f}_{a})$

is ergodic with respect to the induced Haar measure $\overline{\mu}=\mu\circ\pi^{-1}$ where $\pi$ : $Xarrow X/N$

is the projection. Since $H$ is open in $Y,$ $Y/H$ is discrete. By Remark 1, either
$(Y/H,\tilde{f}_{a})$ is homeomorphic to $(Z, \sigma)$ or $Y/H$ is compact. If $(Y/H,\tilde{f}_{a})$ is homeo-
morphic to $(Z, \sigma)$ , then we can Pnd an element $\overline{x}\in Y$ such that $Y/H=\{f_{a}^{n}(\overline{x}H)$

$n\in Z\}$ since $(Y/H,\tilde{f}_{a})$ has a dense orbit. Hence $\overline{x}H$ is a wandering set of $Y$

for $\overline{f}_{a}$ . Since $\overline{x}H$ is open and closed in $Y$ , we have $\overline{x}H=\{\overline{x}\}$ ; $i.e$ . $H=\{\overline{e}\}$ .
Therefore $(X/N,\overline{f}_{a})$ is homeomorphic to $(Z, \sigma)$ , hence $X/N$ is discrete and $N$ is
open and closed. We conclude that $N=X_{0}$ . This contradicts that $X_{0}$ is not
compact. We now give a proof for the case when $Y/H$ is compact. Since $Y/H$

is discrete, $Y/H$ is finite. Since $\overline{f}^{-1}(K)$ is compact in $Y$ and $\overline{f}^{-1}(K)\subset H=\bigcup_{n\geq 0}Y_{0}K_{n}$ ,
there is an $m>0$ such that $f^{-1}(K)\subset Y_{0}K_{m- 1}$ . Hence
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$K\subset\overline{f}(Y_{0}K_{m-1})\subset Y_{0}K_{m}$ and so $Y_{0}K_{m}\subset\overline{f}(Y_{0}K_{m})$ .
Since $Y_{0}K_{m}$ is open and closed, $\overline{f}(Y_{0}K_{m})=Y_{0}K_{m}$ . Hence we get $H=Y_{0}K_{m}$ .
Since $K_{m}$ is a compact normal subgroup of $Y$ , we get $K_{m}\cap Y_{0}=\{\overline{e}\}$ because
$N=\overline{e}$ and $Y_{0}$ contains no compact normal subgroups of $Y$ . We have $H=K_{m}\cross Y_{0}$ .
Since the projections of $\overline{f}(K_{m})$ and $\overline{f}^{-1}(K_{m})$ to $Y_{0}$ are compact normal subgroups
of $Y_{0}$ , they must be the trivial subgroup $\{\overline{e}\}$ . Therefore we get $\overline{f}(K_{m})\subset K_{m}$

and $\overline{f}^{-1}(K_{m})\subset K_{m}$ so that $K_{m}$ is invariant under $\overline{f}$ . Therefore $\overline{f}(\overline{k},\overline{y})=(\overline{f}(\overline{k}),\overline{f}(\overline{y}))$

for $(\overline{k},\overline{y})\in K_{m}\cross Y_{0}$ . We note that $(Y/H,\overline{f}_{a})$ is ergodic with respect to the
induced Haar measure $\tilde{\mu}=\overline{\mu}^{o}\pi^{-1}$ where $\pi$ : $Yarrow Y/H$ is the projection. Since $Y/H$

is finite and $(Y/H,\tilde{f}_{a})$ has a dense orbit, there exists a natural number $n$ such
that $\overline{f}_{a}^{n}(H)=f_{a}^{n}(H)=H$ and $Y/H=\{H,\tilde{f}_{a}(H), \cdots , f_{a}^{n- 1}(H)\}$ . Since $Y$ is the dis-
joint sum of cosets $\overline{f}_{a}^{i}(H)$ , $0\leqq i\leqq n-1$ , and since $(Y,\overline{f}_{a})$ has a dense orbit,
$(H,\overline{f}_{a}^{n})$ has also a dense orbit. Since $\overline{f}_{a}^{n}=a\overline{f}(a)\cdots\overline{f}^{n-1}(a)f^{n}$ , there exists a
$(b, c)\in K_{m}\cross Y_{0}$ such that

$f_{a}^{n}=(b, c)\overline{f}^{n}$ : $(\overline{k},\overline{y})arrow(b\overline{f}^{n}(\overline{k}), c\overline{f}^{n}(5^{i}))$ for $(5, \overline{y})\in K_{m}\cross Y_{0}$ ,

then $b\overline{f}^{n}$ : $K_{m}arrow K_{m}$ and $c\overline{f}^{n}$ : $Y_{0}arrow Y_{0}$ are affine maps and $(c\overline{f}^{n})(Y_{0})=Y_{0}$ . Since
$(H,\overline{f}_{a}^{n})$ has a dense orbit, $(Y_{0}, c\overline{f}^{n})$ has a dense orbit. Since $Y_{0}$ is connected,
$Y_{0}$ is compact (Theorem B). This contradicts that $Y_{0}$ is not compact. The
proof is completed.

\S 2. Proof of Proposition 2.

Since $X$ is totally disconnected and not discrete, there is a compact open
subgroup $B_{0}$ of $X$. Put $B= \bigcap_{i\in Z}f^{i}(B_{0})$ , then $B$ is a compact subgroup of $X$ and
$f(B)=B$ holds. Now define a compatible metric function $d$ of the left coset
space $X/B$ by

$d(xB, yB)= \inf\{d_{0}(xb, yb’);b, b’\in B\}$ $(x, y\in X)$ .

Define the maps $h:X/BD$) and $h_{a}$ : $X/B\supset byh(xB)=f(x)B$ and $h_{a}(xB)=af(x)B$

$(x\in X)$ respectively. Then $(X/B, d)$ is a complete metric space and $h$ is a
bicontinuous map on $X/B$ . Since $B_{0}/B$ is a compact open set of $X/B$ and
$\overline{e}=B\in B_{0}/B$ , there exists an $\epsilon_{0}>0$ such that $U_{\epsilon_{0}}(\overline{e})\subset B_{0}/B$ , where $U_{\epsilon_{0}}(\overline{e})=$

$\{\overline{x}\in X/B;d(\overline{x},\overline{e})<\epsilon_{0}\}$ . Then $\epsilon_{0}$ is its expansive constant for $(X/B, h_{a})$ . Indeed,
for $\overline{x}=xB,\overline{y}=yB\in X/B$ , if $d(h_{a}^{n}(\overline{x}), h_{a}^{n}(\overline{y}))<\epsilon_{0}$ for all $n\in Z$ , then

$d(f^{n}(y^{-1}x)B, B)=d(f^{n}(x)B, f^{n}(y)B)=d(f_{a}^{n}(x)B, f_{a}^{n}(y)B)<\epsilon_{0}$

for all $n\in Z$ . This implies that $f^{n}(y^{-1}x)\in B_{0}$ for all $n\in Z$ , hence $\overline{x}=\overline{y}$ . If
$X/B$ is not discrete then $(X/B, h)$ has P. $0$ . T. P. (see \S 2, [1]), hence $(X/B, h_{a})$

has P. O. T. P. (Appendix 2). We now consider the case when $X/B$ is discrete.
Then $(X/B, h_{a})$ is homeomorphic to $(Z, \sigma)$ or $X/B$ is compact (by Remark 1). If
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$(X/B, h_{a})$ is homeomorphic to $(Z, \sigma)$ , then $B=\{e\}$ since $B$ is open and (X, $f_{a}$)

has a dense orbit. Hence (X, $f_{a}$ ) is homeomorphic to $(Z, \sigma)$ , but this contradicts
nondiscreteness of $X$. If $X/B$ is compact, $X$ is compact since $B$ is compact.
Since $f$ is a continuous automorphism of $X,$ $(X, f)$ has P. $0$ . T. P. (N. Aoki [4]).

Hence (X, $f_{a}$ ) has P. $0$ . T. P. (Appendix 2). This is enough to give a proof for
$(X/B, h_{a})$ .

Let Per $(h_{a})$ be the set of all periodic points of $h_{a}$ .

LEMMA 1. Per $(h_{a})$ is dense in $X/B$ .
PROOF. Take $\overline{x}\in X/B$ and $\lambda$ with $0<\lambda<\epsilon_{0}$ . For this $\lambda$ , let $\delta(0<\delta<\lambda)$ be

the number in the definition of P. $0$ . T. P. for $(X/B, h_{a})$ . Since $(X/B, h_{a})$ has
a dense orbit, there are $\overline{x}_{0}\in X/B$ and $m,$ $n\in Z(m>n)$ such that

$d(h_{a}^{n}(\overline{x}_{0}),\overline{x})<\delta/2$ and $d(h_{a}^{m}(\overline{x}_{0}), h_{a}^{n}(\overline{x}_{0}))<\delta/2$ .
Put $\overline{z}_{i}=h_{a}^{n+k}(\overline{x}_{0})$ for $i\equiv k$ mod $(m-n)(0\leqq k<m-n)$ , then $\{\overline{z}_{i}\}_{i\in Z}$ is a $\delta$-pseudo-
orbit for $(X/B, h_{a})$ . Since $(X/B, h_{a})$ has $P0$ . T. P., there exists $\overline{z}\in X/B$ such
that $d(h_{a}^{j}(\overline{z}),\overline{z}_{j})<\lambda/2$ for all $j\in Z$ . Hence

$d(h_{a}^{j}(\overline{z}), h_{a}^{j+(m-n)}(\overline{z}))\leqq d(h_{a}^{j}(\overline{z}),\overline{z}_{j})+d(\overline{z}_{j}, h_{a}^{j+(m- n)}(\overline{z}))<\lambda$

for all $j\in Z$ . By expansiveness of $(X/B, h_{a})$ , we have $\overline{z}=h_{a}^{m- n}(\overline{z})$ : $i.e$ .
$\overline{z}\in Per(h_{a})$ , and

$d(\overline{z},\overline{x})\leqq d(\overline{z}, h_{a}^{n}(\overline{x}_{0}))+d(h_{a}^{n}(\overline{x}_{0}),\overline{x})<\lambda$ .
For $\epsilon$ with $0<\epsilon<\epsilon_{0}$ and $\overline{x}=xB\in X/B$ , let $W_{\epsilon}^{s}(\overline{x}, h_{a})$ and $W_{\epsilon}^{u}(\overline{x}, h_{a})$ be the

local stable and unstable sets dePned by

$W_{\epsilon}^{s}(\overline{x}, h_{a})=\{\overline{y}\in X/B;d(h_{a}^{j}(\overline{y}), h_{a}^{j}(\overline{x}))<\epsilon, j\geqq 0\}$ ,

$W_{\epsilon}^{u}(\overline{x}, h_{a})=\{\overline{y}\in X/B ; d(h_{a}^{-j}(\overline{y}), h_{a}^{-j}(\overline{x}))<\epsilon, j\geqq 0\}$ .

Now define the stable and unstable sets $W^{S}(X, h_{a})$ and $W^{u}(\overline{x}, h_{a})$ as
$W^{s}( \overline{x}, h_{a})=\bigcup_{n\geqq 0}h_{a}^{-n}(W_{\epsilon}^{s}(h_{a}^{n}(\overline{x}), h_{a}))$ ,

$W^{u}( \overline{x}, h_{a})=\bigcup_{n\geqq 0}h_{a}^{n}(W_{\epsilon}^{u}(h_{a}^{-n}(\overline{x}), h_{a}))$ .

Then for every $\overline{x}\in X/B$ we obtain (see [1]) that

$W^{s}( \overline{x}, h_{a})=\{\overline{y}\in X/B;\lim_{nr}d(h_{a}^{n}(\overline{x}), h_{a}^{n}(\overline{y}))=0\}$ ,

$W^{u}(\overline{x}, h_{a})=\{j^{7}\in X/B;\varliminf_{n}d(h_{a}^{-n}(\overline{x}), h_{a}^{-n}(\overline{y}))=0\}$ .

REMARK 2. Since $d$ is left invariant for $X/B$ , we have that

$W^{s}(\overline{x}, h_{a})=W^{s}(\overline{x}, h)=\{5^{i}\in X/B ; \varliminf_{n}d(h^{n}(\overline{x}), h^{n}(\overline{y}))=0\}$ ,

$W^{u}( \overline{x}, h_{a})=W^{u}(\overline{x}, h)=\{\overline{y}\in X/B;\lim_{narrow\infty}d(h^{-n}(\overline{x}), h^{-n}(j^{I}))=0\}$ .
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Hereafter we denote by $\overline{E}$ the closure of a subset $E$ .

LEMMA 2. For $\overline{p}\in Per(h_{a})$ , put $W_{\overline{p}}^{s}(h_{a})=\overline{W^{s}(\overline{p},h_{a})}$ and $W_{\Phi}^{u}(h_{a})=\overline{W^{u}(}\overline{p}\overline{h_{a}},)$ .
Then $W_{\Phi}^{s}(h_{a})$ and $W \frac{u}{p}(h_{a})$ are open in $X/B$ .

PROOF. For $\lambda>0$ with $0<\lambda<\epsilon_{0}$ , let $\delta>0$ be the number in the definition of
P. $0$ . T. P. for $(X/B, h_{a})$ . Put

$U_{\delta/2}(W_{\overline{p}}^{s}(h_{a}))= \{\overline{y}\in X/B;d(\overline{y}, W\frac{s}{p}(h_{a}))<\delta/2\}$ .
Since Per $(h_{a})$ is dense in $X/B$ , it is enough to see that if $\overline{q}\in Per(h_{a})\cap U_{\delta/2}(W_{\overline{p}}^{s}(h_{a}))$

then $\overline{q}\in W\frac{s}{p}(h_{a})$ . Now take $\overline{x}=xB\in W^{s}(\overline{p}, h_{a})$ with $d(\overline{x},\overline{q})<\delta$ and put $\overline{y}_{j}=h_{a}^{j}(\overline{x})$

for $j\geqq 0$ and $\overline{y}_{j}=h_{a}^{j}(\overline{q})$ for $j\leqq-1$ . Then $\{\overline{y}_{j}\}_{j\in Z}$ is a $\delta$-pseudo-orbit for $(X/B, /\iota_{a})$ .
Hence there is $\overline{y}\in X/B$ such that

$d(h_{a}^{j}(\overline{x}), h_{a}^{j}(5^{i}))<\lambda$ for $j\geqq 0$ and $d(h_{a}^{j}(\overline{q}), h_{a}^{j}(\overline{y}))<\lambda$ for $j\leqq-1$ .
This implies that $5^{i}\in W^{s}(\overline{x}, h_{a})\cap W^{u}(\overline{q}, h_{a})$ . Since $\overline{p}$ and $\overline{q}$ are periodic points
of $h_{a}$ , let $h_{a}^{m}(\overline{p})=\overline{p}$ and $h_{a}^{n}(q)=\overline{q}$. Since $\overline{x}\in W^{s}(\overline{p}, h_{a}),$ $W^{s}(\overline{x}, h_{a})=W^{s}(\overline{p}, h_{a})$ and
$h_{a}^{-kmn}(\overline{y})\in h_{a}^{-kmn}(W^{s}(\overline{x}, h_{a}))=h_{a}^{-kmn}(W^{s}(\overline{p}, h_{a}))=W^{s}(\overline{p}, h_{a})$ for all $k>0$ . Hence

$\varliminf_{k}d(h_{a}^{-kmn}(\overline{y}),\overline{q})=\lim_{karrow}d(h_{a}^{-kmn}(\overline{y}), h_{a}^{-kmn}(\overline{q}))=0$ .

Therefore $\overline{q}\in\overline{W^{s}(\overline{p},h_{a}}$ ) $=W_{\overline{p}}^{s}(h_{a})$ and $W_{\overline{p}}^{s}(h_{a})$ is open in $X/B$ . Similarly, $W \frac{u}{p}(h_{a})$

is open in $X/B$ .
Since $h_{a}^{m}(\overline{p})=\overline{p}$ and $h_{a}(W \frac{s}{p}(h_{a}))=W_{h_{a}(j’)}^{s}(h_{a})$ , we have $h_{a}^{m}(W_{\Phi}^{s}(h_{a}))=W_{j}^{s},(h_{a})$ .

Since $(X/B, h_{a})$ has a dense orbit, there is $m’(1\leqq m’\leqq m)$ such that

$X/B=W_{\overline{p}}^{s}(h_{a})\cup h_{a}(W_{\Phi}^{s}(h_{a}))\cup\cdots\cup h_{a}^{m}$
‘

$- 1(W_{\Phi}^{s}(h_{a}))$

is a disjoint union. Similarly,

$X/B=W \frac{u}{p}(h_{a})\cup h_{a}(W\frac{u}{p}(h_{a}))\cup\cdots\cup h_{a}^{m’- 1}(W_{\Phi}^{u}(/l_{a}))$

is a disjoint union. Since $W \frac{s}{p}(h_{a})$ and $W \frac{u}{p}(h_{a})$ are open in $X/B$ and $\overline{p}\in$

$W \frac{s}{p}(h_{a})\cap W\frac{u}{p}(h_{a})$ holds, there is a $\delta(0<\delta<\epsilon_{0})$ such that

$U_{\delta}(\overline{p})\subset W_{\Phi}^{s}(h_{a})\cap W_{I^{j}}^{u}(h_{a})$

where $U_{\delta}(\overline{p})=\{\overline{x}\in X/B;d(\overline{x},\overline{p})<\delta\}$ . We note that

$W_{\delta}^{u}(\overline{p}, h_{a})\subset U_{\delta}(\overline{p})$ and $W_{\Phi}^{u}(h_{a})= \bigcup_{j\geqq 0}h_{a}^{jm}(W^{u}(\overline{p}, /\iota_{a}))$ .

Then every $h_{a}^{m}$-invariant closed set which contains $U_{\lambda}(\overline{p})$ coincides with $W_{\Phi}^{u}(/l_{a})$ .
Similarly, each $h_{a}^{-m}$-invariant closed set which contains $U_{\lambda}(\overline{p})$ coincides with
$W \frac{s}{p}(h_{a})$ . Hence $W_{\overline{p}}^{s}(/l_{a})=W \frac{u}{p}(h_{a})$ . We write

$W_{\epsilon}(h)=W_{\delta}^{s}(h)=W_{\overline{e}}^{u}(h)$ .

LEMMA 3. $(W_{e}(h), h)$ has P. $0$ . T. $P$.
PROOF. Since $W_{\overline{e}}(h)$ is open in $X/B$ , there is a $\lambda>0$ such that $U_{\lambda}(\overline{e})=$

$\{\overline{x}\in X/B;d(\overline{x},\overline{e})<\lambda\}\subset W_{\overline{e}}(h)$ . For $\lambda/2$ , let $\delta(0<\delta<\lambda/2)$ be the number in the
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definition of P. O. T. P. for $(X/B, h)$ . If $\{\overline{x}_{i}\}_{i\in(a,b)}$ is a $\delta$-pseudo-orbit for
$(W_{\overline{e}}(h), h)$ , then there exist $\overline{z}_{a}\in W^{u}(\overline{e}, h)$ and $n>0$ such that $d(h(\overline{z}_{a}),\overline{x}_{a+1})<\delta$

and $d(h^{-n}(\overline{z}_{a}),\overline{e})<\delta$ . Put $\overline{y}_{k}=h^{-n+k}(\overline{z}_{a})$ for $0\leqq k\leqq n$ and $\overline{y}_{k}=\overline{x}_{a+(k- n)}$ for
$n+1\leqq k\leqq b-a+1$ . Then $\{\overline{y}_{k}\}_{k\in(-1,b-a+n)}$ is a $\delta$-pseudo-orbit for $(X/B, h)$ . Since
$(X/B, h)$ has P. O. T. P., there is an $\overline{x}\in X/B$ such that $d(h^{j}(\overline{x}),\overline{y}_{j})<\lambda/2$ for
$0\leqq j\leqq b-a+n$ and in particular, $d(\overline{x},\overline{e})<\lambda$ . Hence $\overline{x}\in W_{\overline{e}}(h)$ . Put $\overline{z}=h^{n-a}(\overline{x})$ .
Since $W_{\overline{e}}(h)$ is h-invariant, $\overline{z}=h^{n- a}(\overline{x})\in W_{\overline{e}}(h)$ and $\overline{z}$ is a $\lambda$-tracing point for
$\{\overline{x}_{i}\}_{t\in(a.b)}$ . Therefore $(W_{\overline{e}}(h), h)$ has P. O. T. P.

LEMMA 4. $(W_{\overline{e}}(h), h)$ is topologically mixing.
PROOF. Let $U$ and $V$ be nonempty open sets of $W_{\overline{e}}(h)$ . Then there exist

$\overline{x}\in W^{u}(\overline{e}, h)\cap U$ and $\overline{y}\in W^{s}(\overline{e}, h)\cap V$ and $\lambda>0$ such that $U_{\lambda}(\overline{x})\subset U$ and $U_{\lambda}(\overline{y})\subset V$ .
For $\lambda$ , let $\delta(0<\delta<\lambda)$ be the number in the definition of P. O. T. P. for $(W_{\overline{e}}(h), h)$ .
Then there exists an $n_{0}>0$ such that $d(\overline{e}, h^{-n}(\overline{x}))<\delta/2$ and $d(\overline{e}, h^{n}(\overline{y}))<\delta/2$ for
$n\geqq n_{0}$ . For $n\geqq n_{0}$ and $j\geqq 0$ , since the finite sequence

$\{\overline{y}, h(\overline{y}), \cdots h^{n+j}(\overline{y}),\overline{e}, h^{-n}(\overline{x}), \cdots h^{-1}(\overline{x}),\overline{x}\}$

is a $\delta$-pseudo-orbit for $(W_{\overline{e}}(h), h)$ , there is a $\overline{z}\in W_{\overline{e}}(h)$ such that $d(\overline{y},\overline{z})<\delta$ and
$d(h^{2(n+1)+j}(\overline{z}),\overline{x})<\delta$ . Put $M=2(n_{0}+1)$ , then $\overline{z}\in U_{\lambda}(\overline{y})\subset V$ and $h^{n}(\overline{z})\in U_{\lambda}(\overline{x})\subset U$

for $n\geqq M$. This implies that $h^{n}(V)\cap U\neq\emptyset$ for all $n\geqq M$.
LEMMA 5 (N. Aoki [1]). Let $Y$ be a locally compact totally disconnected

metric group with a left invariant metric function $d$ and $g$ be a bicontinuous
automorphism of Y. If $(Y, g)$ is topol0gically mixing and has P. O. T. P. under
$d$ , then $Y$ is compact.

Let $\pi$ : $Xarrow X/B$ be the projection. Put $Y=\pi^{-1}(W_{\overline{e}}(h))$ . Then $Y$ is open in
$X$ since $W_{\overline{e}}(h)$ is open in $X/B$ . It is easy to see that $Y$ is a subgroup of $X$.
Indeed, for $xB$ and $yB\in W^{u}(\overline{e}, h)$ , since $d(h^{-j}(xB),\overline{e})arrow 0$ and $d(h^{-j}(yB),\overline{e})arrow 0$

as $jarrow\infty$ , we have

$d(h^{-j}(y^{-1}xB),\overline{e})=d(f^{-j}(x)B, f^{-j}(y)B)$

$\leqq d(h^{-j}(xB),\overline{e})+d(h^{-j}(yB),\overline{e})arrow 0$ as $jarrow\infty$

and so $y^{-1}xB\in W^{u}(\overline{e}, h)$ . This implies that $Y$ is a group since $W^{u}(\overline{e}, h)$ is
dense in $W_{\overline{e}}(h)$ and $Y=\pi^{-1}(W_{\overline{e}}(h))$ . It is easy to see that the left coset space
$X/Y$ is compact. Indeed, since $\#(X/Y)=\#((X/B)/W_{e}(h))\leqq m’$ (the notation $\#(E)$

means the cardinality of a set $E$ ), $X/Y$ is finite. Moreover, since $Y/B=W_{\overline{e}}(h)$ ,
$(Y, f)$ is topologically mixing and it has P. $0$ . T. P. (see \S 2, [1]). Therefore the
conclusion of Theorem is obtained by Proposition 2 and Lemma 5.
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\S 3. Appendices.

In this section, we prove some properties of ergodic affine maps of locally
compact groups.

APPENDIX 1. Let $X$ be a locally compact group with a left invariant Haar
measure $\mu$ and $f_{a}$ : $X\supset be$ a continuous affine map. If (X, $f_{a},$

$\mu$ ) is ergodic, then
(1) $f_{a}$ is bicontinuous, and
(2) $f_{a}$ is $\mu$-measure preserving.
PROOF OF (1). As the assertion is obvious if $X$ is discrete, we assume that

$X$ is not discrete. If $f_{a}$ is not bicontinuous, then $f$ is not bicontinuous. Thus
there exists an open $\sigma$-compact subgroup $H$ of $X$ such that $f(H)\subset H$ and $f^{-1}(H)$

is not $\sigma$-compact. Let $F$ be the subgroup of $X$ generated by the a-compact set
$H\cup f_{a}(H)$ . Since $f$ is continuous, the sets $f^{j}(F)(j=0,1, 2, )$ are $\sigma$ -compact.
The subgroup $K$ of $X$ generated by $\bigcup_{j\geqq 0}f^{j}(F)$ is open and $\sigma$ -compact. Clearly
$f(K)\subset K$. Since $a\in f_{a}(H)\subset K$, we see that $f_{a}^{-1}(K)=f^{-1}(a^{-1})f^{-1}(K)=f^{-1}(a^{-1}K)$

$=f^{-1}(K)$ . Put $P=f^{-1}(K)\backslash K$. Since $f^{-1}(K)$ is not $\sigma$-compact, $P$ is a nonempty
open-closed subset of $X$ and $f_{a}^{k}(P)\cap f_{a}^{j}(P)=\emptyset$ whenever $k\neq j$ . Since $X$ is not
discrete, there is a compact subset $C$ such that $\mu(C)>0$ and $\mu(P\backslash C)>0$ . The
set $W= \bigcup_{j\in Z}f_{a}^{j}(C)$ is a Borel set of $X$ satisfying $f_{a}^{-1}(W)=W$ . However, $\mu(W)>0$

and $\mu(X\backslash W)\geqq\mu(P\backslash C)>0$ because $P$ is a wandering set. This contradicts the
ergodicity of $f_{a}$ .

PROOF OF (2). Since $f_{a}$ is bicontinuous and $\mu$ is a left invariant Haar
measure, there is a $\delta>0$ such that $\mu(f_{a}(E))=\mu(af(E))=\mu(f(E))=\delta\mu(E)$ and
$\mu(f_{a}^{-1}(E))=\mu(f^{-1}(a^{-1})f^{-1}(E))=\mu(f^{-1}(E))=\delta^{-1}\mu(E)$ for all Borel sets $E\subset X$. If $f_{a}$

is not $\mu$-measure preserving, then $\delta\neq 1$ and $X$ is not compact. If $\delta>1$ , then we
show that the ergodicity of $f_{a}$ does not hold. For $\lambda>0$, there is a nonempty open
subset $U$ such that $\mu(U)<\lambda$ . Now let $V$ be a compact neighborhood of the
identity $e$ of $X$. Put $W= \bigcup_{n\geqq 1}f_{a}^{-n}(V)$ . Then $\mu(W)\leqq\Sigma_{1}^{\infty}\mu(f_{a}^{-n}(V))=\Sigma_{1}^{\infty}(\delta^{-n})\mu(V)$

$=(1/(\delta-1))\mu(V)<\infty$ . Clearly, $f_{a}(W)\supset W$ and $f_{a}^{n}(X\backslash W)\cap W=\emptyset$ for $n=0,1,2,$ $\cdots$ .
Since $W$ is open and $\sigma$-compact, there is a $\sigma$ -compact open subgroup $H$ of $X$

such that $W\subset H$. Therefore there exists a Borel subset $E$ of $X$ such that
$E\subset X\backslash W$ and $0<\mu(E)<((\delta-1)/2)\mu(V)$ . Then

$\mu(Uf_{a}^{-n}(E))\leqq n\geqq 1\sum_{1}^{\infty}(\delta^{-n})\mu(E)<\mu(V)/2$ .

Put $F= \bigcup_{n\in Z}f_{a}^{n}(E)$ . Then $f_{a}^{-1}(F)=F$ and $\mu(F)>0$ . Since $f_{a}^{n}(E)\cap V=\emptyset$ for
$n=0,1,2,3,$ $\cdots$

$\mu(X\backslash F)\geqq\mu(V\backslash n(\in)zf_{a}^{n}(E))=\mu(V\backslash \bigcup_{n\geqq 1}f_{a}^{-n}(E))\geqq\frac{1}{2}\mu(V)>0$ .

This contradicts the ergodicity of $f_{a}$ . For the case when $\delta<1,$ $f_{a}^{-1}$ is not ergodic
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since $\delta^{-1}>1$ . In any case $f_{a}$ must be $\mu$-measure preserving.

APPENDIX 2. Let $X$ be a locally compact metric group with a left invariant
metric function $d$ and $f:X\supset be$ a bicontinuous automorphism. Let $f_{a}$ : $X\supset be$ a
bicontinuous affine map defined by $f_{a}(x)=af(x)(x\in X)$ . If (X, f) has P. $0$ . T. P.,
then (X, $f_{a}$ ) has P. $0$ . T. $P$.

PROOF. For $\epsilon>0$ , let $\delta>0$ be the number in the dePnition of P. $0$ . T. P. for
\langle X, $f$). Let $\{x_{i}\}_{i\in Z}$ be a $\delta$-pseudo-orbit for (X, $f_{a}$). Now put

$z_{n}=f^{n- 1}(a^{-1})f^{n-2}(a^{-1})\cdots f(a^{-1})a^{-1}x_{n}$ $(n\in Z)$ ,
then

$d(f(z_{n}), z_{n+1})=d(f^{n}(a^{-1})\cdots f(a^{-1})f(x_{n}), f^{n}(a^{-1})\cdots f(a^{-1})a^{-1}x_{n+1})$

$=d(f(x_{n}), a^{-1}x_{n+1})=d(f_{a}(x_{n}), x_{n+1})<\delta$ $(n\in Z)$ .

Hence $\{z_{n}\}_{n\in Z}$ is a $\delta$-pseudo-orbit for (X, $f$). Since (X, f) has P. $0$ . T. P., there
exists a $z\in X$ such that $d(f^{n}(z), z_{n})<\epsilon(n\in Z)$ . Hence

$d(f_{a}^{n}(z), x_{n})=d(f_{a}^{n}(z), af(a)\cdots f^{n-1}(a)z_{n})=d(f^{n}(z), z_{n})<\epsilon$

for all $n\in Z$ . The proof is completed.
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