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Propagation of chaos for the Burgers equation
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§0. Introduction.

In [5] H.P.McKean considered systems of many particles obeying stochastic
differential equations :

0.1) dX”——Ee(X X1dB; + Zf(X Xhdt  (G=1, 2, -, n).

n—1 j#

Under the conditions of smoothness and boundedness of the coefficients, he
proved that if the initial values X7?(0) are i.i.d. random variables then any fixed
finite particles converge to independent copies of a one-dimensional diffusion
process determined by an equation

(0.2) dX()=e[X(), pJdBWO)+fLX®), p.ldt,

where e[ x, p]:SRe(x, y)p(dy) and p, is a distribution of X(t). A point of the

proof is in studying the processes {X?(t)} in the infinite product probability
space II7-:{g¢:, P;} of identically and independently distributed initial distribution
and Brownian motions, and applying Hewitt-Savage’s 0-1 law to these diffusion
processes on this probability space. There is another approach to this problem
employed by H. Tanaka and A.S. Sznitman [9], [8]. They discussed probability
measure-valued processes (1/#7)>7-,0 x?« from the point of view of a martingale
problem. In these arguments the smoothness of the coefficients ¢, f is crucial.
However an interesting case of e¢(x)=1 and f(x)=(4/2)d(x) is excluded. In this
case the expected limit process satisfies

03) dZO=dBO+ 4 pZ0)dr,
and p.(x) is a solution of the Burgers equation

o, 1_, 0
0.4) b= —v p——Vp ( —W)'

is uniquely solvable for any initial distribution in the following way :

0 1 2
p(x)__). 5 {IOgS gt(x y)e“s u(dz)dy} gt(x):We—x /2,
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If the measure v is smooth enough, then the above formula turns to
v
SRgz(x—y)exp(—lg_MV(dZ))v(dy)
y .
SRgt(x—y)exp(——lg_wu(dz))dy

Therefore it is easily seen that p,(x)<e'#'/(2xt)'/? holds, which assures the
uniqueness and existence for the equation [0.3). This diffusion process will be
called Burgers diffusion process {Z(t)}. The generator of the diffusion process
with e(x)=1 and f(x)=(4/2)d(x) is at least formally given by

pelx)=

1 A n
(05) Ln—~§A—}—m#§_‘35(m—x]W] B
where A=37%,V% and V,=0/0x;, However if we set
1
(—2—)1, £>0
Hif(x)=H(x;—x;), H&)= 0, §=0
1
(-p)n <0,
then can be written as
1 1
Ln=g a4t gy 5 THWT
=lar 1 s
T2 20n—1) &5 W

Since the last representation of L, is of the divergence form, one can define the
diffusion process {X,()} with generator L, employing a result from theory of
partial differential equations, which will be seen in § 1.

Our purpose of this paper is to establish “propagation of chaos” for the
above diffusion process. This terminology is used as the propagation of being
chaotic in the following sense: Let S be a separable metric space. Let {u,}
be a family of symmetric probability measures on S™ and g be a probability
measure on S. Then a sequence {g¢,} is p-chaotic if for any bounded continuous
functions fi, -+, fm on S, {tty, Qi[> —TITL g, fi> as n—oo,

Set w(d&)=(1/2x)?)e~*2d¢ and =(dx)=n(dx,) - w(dx,) (x=(xy, -, Xp)).

THEOREM. Suppose {X,t)=(X%r({®), -+, X2(t))} to be the diffusion process on
R™ with generator L,, whose initial distribution is of the form @,(x)n(dx). Assume
the sequence {py(x)z(dx)} is P(&)n(dE)-chaotic and @, is a symmetric function in
LER™ =) satisfying

SRm{SRn—m¢n(x)”(dxm+l) W(dx")}zﬂ(dxl) v wldxm) = Cp™
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with positive constants C and p for any m=n. Let T=(Ay)*—1. Then a sequence
of the distributions of {X,(:)} in C([0, T)—»R™)={C([0, T)—R)}™ is Z(-)-chaotic,
where {Z(-)} is the Burgers diffusion process with initial distribution ¢(d&)m(d§)
defined in the above.

We sketch the story of the proof of Since it seems difficult to
show in some probabilistic method, we approach by estimating
marginal distributions of {X,(-)} analytically. Because of the homogeneity of H
our process {X,(-)} has the same space-time invariance as Brownian motion.
Therefore a new process Y, (t)=e ‘X,(e**—1) turns to be a diffusion process
with generator

L,=2L,— > x;V;

n 1 n
=A— 3 2 Vit+—— 3 VH; V;.
=1 n—1i,j=1

Since the first two terms is the generator of Ornstein-Uhlenbeck process, we can
write the dual semi-group T%() of {YV.®)} in L*R", x) as

N 1 n (t .
0.6) T’,‘f(t)go:T%(t)(p—mi;}ZlgodsT‘,’,(t—s)V;"HijV}‘T,";(s)(p

=T+ GC.Txt)p, (Vi=—x+Y),

where T9(t) is the semi-group of the generator A—X%, x,V; and * denotes the
dual operation in L*R", z). Therefore T%() can be expanded in a Neumann
series

Tt p= iOGgTz(wgo in LAR™ 7).
pl
If we denote the projection from L*R®™ =) to L*R™, n) by P, (1=m=n), then
©0.7) P, T50= 3 P,G2T30).
=0

If we choose ¢ as any function satisfying those assumptions of then
it is easy to see that for each fixed p=0, PmGgT%(t)go,, converges weakly in
L¥R™, ) as n—oo. Therefore if we dominate IIPmG,’;T"n‘(t)gonH by some con-
vergent series uniformly with respect to n, (which shall be done in §2), then
one can compute the limit of P,T%*(®¢, as n—co. If we denote the limit by

fa(t, x), then from they satisfy
Fult, £)=T%)(P(x) - P(xm))

m ot
- l;l SOPmT?n+l(t_s)v>1!<Hi,m+1v¥r<t+1fm+1(s, x)ds .

In §3 it will be shown that this infinite system equations can be solved uniquely
up to T'=—21log(|A| ) and they coincide with products of the solutions for a
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transformed Burgers equation. In this way we can prove the theorem.
Our thanks are due to Professor H. Tanaka who led our interest to this
problem.

§1. Definition of the diffusion process with generator L,.

Since our diffusion process has singular drifts, the construction is not easy.
The key point is to notice its divergence form, that is, the generator L, can be
written as

1 1

L,= —Q-A+——2(n—l) i’él(viHij)vj

Ry W—

5 3 VdHT)

2("'_“1) 1, j=1

using the skew symmetry of H;; Let {a;;(x), 1=¢, j=<n} be real valued bounded
functions satisfying

for some y>0 and any é=(§, -, §&,)R". We do not assume that {a;;} is
symmetric.

DEFINITION 1.1. A continuous function p(t, x, y) on (0, o) x R* X R™ is said
to be a fundamental solution of 9/0t—37 ,_,V;a;,V; if it satisfies the following
conditions ;

(i) bt x, 920 and [ p, x, ydy=1

for any (¢, x, y)=(0, co) X R*"X R"™.
(i) Let ¢ be a continuous function on R"™ with compact support, and set

u(l, x):SRnp(t, %, ¥)e(»dy. Then u(t, x)—e(x) uniformly on R* as t—0 and

ésngnlviu(t’ x)|*dxdt< oo,

S:SRn{u_g—tgb— ﬁ) aijviungb}dx dt=0

i, j=1

for all 0<a<b<oco and continuously differentiable function ¢(¢, x) on (0, c0) X R®
with compact support.
Following D.G. Aronson ([1], [2]), J. Nash ([6]), ---, we have

LEMMA 1.1. The fundamental solution p(t, x, v) exists uniquely and satisfies

(1) Smp(t, x, Mps, v, 2)dz=p(s+t, x, 2)
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(ii) 61(2751‘)(‘”2’ ne—02iz—y|2/2£§p<ty X, y)§c3<2m)<—1/2>ne—c4m—y 12/2¢

for all (¢, x, )E(0, c0) X R*X R™ with some positive constants cy, -+, ¢,. Therefore
it 1s possible to define a Markov process {X,(t); t=0} with generator L, in the
sense of Definition 1.1. It should be noted that this Markov process has continuous
sample paths a.s. by virtue of (ii) of Lemma 1.1.

Next we show the tightness of the marginal processes

{(X5®), X5@, -, X3@)}, m=n<oo.

LEMMA 1.2. Let pt, x, v) be a fundamental solution of 0/0t—X% ;-1V:a:,9;.
Suppose a;i(x)=(1/2)0:;+bi;(x), where {0;;} s the Kronecker symbol and {b;;(x)}
are skew symmetric matrices satisfying |b;i(x)|=M/n for some positive constant
M. Then

K3 . /2
Sm{glxz yzlp}zb(t, x, y)dy=Ct?"*n

for any x=R™, t>0 and n with some positive constant C depending only on M
and non-negative integers p.

If we apply this result to our diffusion processes X, (1)=(X5(#), X%(@), -+, X(¥))
starting with any symmetric initial distribution, we can show

E{ 3 1 X450~ X}(5)°} =mClt—s]7,

which implies the tightness of the marginal processes {(XL(t), X3(), -, X %)},
m=n. The above estimates will be published elsewhere [7].

§2. Uniform estimates of the solutions.

Let S(c)f(x)=f(cx) for ¢>0. Then it is easy to see L,S(c)=c%S(c)L,,
therefore the corresponding semi-group 7 ,(t) also satisfies T ,(#)S(c)=S(c)T »(c%).
Taking Ornstein-Uhlenbeck process into consideration, set 7,#)=T,(¢**—1)S(e™?).
Then the above invariance implies the semi-group property of 7',() and its
generator becomes

L,=2L,— Zl‘, x4V

L sy,

=A— 23 x VT
[ n—1iz;

at least formally. Let {X,(t)} be a sample path of our diffusion process with

generator L,. Then the diffusion process {Y,(t)} with generator L, is Y, ()=

e"'X,(e**—1) or conversely X,(t)=(1-+1)"*Y ,(log(¢+1)/2). Hence to prove the

convergence of the marginal processes of {X,(t)} as n—oco it is sufficient to show

that of {Y,(@)}.

One-dimensional Hermite polynomials are defined by



280 H. Osapa and S. KoTaNI

(_l)n z2/2 dn
(n)/? dx™

Then the following relations are known :

H,(x)= e %2 (n=0).

(i) H(x)=n"*H,_(x)
(ii) — Hi()+ x Ho(2)=(n 4+ 1) Hyr(x)
(iif) SRHnu)Hm(x)n(dx):an, -

Multi-dimensional Hermite polynomials are defined by
Ho(x)=Ha(x)Hay(x2) -+ Hop(x7)  for a=(ay, as, -, a,) €LY,

where Z,=1{0, 1, 2, ---}. The above relations immediately imply

i

(iv) ViHo (x)=a}H, o (x),  e;=(0, -+, 1, -, 0)
(v) ViHo(x)=(a;i+1)"?Hase,(x),  VE=—Vitx;-
(vi) SRnHa(x)Hﬁ(x)ﬂ(dx)=5a,,s , mldx)=rn(dx)w(dx,) - w(dx,) .

{Hu(x); a=Z?} forms a complete orthonormal system in L*WR™, n). Moreover
if we set Lo=—X7%,V*V,, then H, satisfies LoH,=—|a|H, (|a|=2%, a;).
Therefore the semi-group 79() of L% has a kernel g.(x, y) with respect to
n{dx) represented by

gix, y)= Za) eV Hy(x)Ha(y) .

Let u.(x)x(dx) be a distribution of Y ,(¢). Then u, satisfies (8/0t)u=L%u, where
L¥ is dual for L, in L*R* =). If u takes an initial distribution ¢(x)z(dx),
then it is easy to see that u; can be determined by

L3 [\ rac—swem, vpuas,

n—1 iz;

u?:T%(t)go .

(2.1) Ug=ud—

Denote the norm in L*R", =) by |-]. We consider this equation in a Hilbert
space

T n
Hy(R?, m)={u: [0, TIXR'-R; [ulp=] 3 1V¢uts, )|rds<oo}.
Applying (iv), (v) and (vi) we easily see

@2 lullt= 2 (al+m| (e, Hords

T n (T
=nl dsluts, 1+ 2 | dsiTaucs, I~
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For ue Hy(R", 7) define

1

2.3) Gpuy=— 1

- ES Tt —s)V¥EH, V¥ uds
1 n
= E Fo(, us .

on—11

LEMMA 2.1. For o L*R", ) IIT Melr=m(T+D)1 2 ol.
PrOOF. Since (T'9(s)p, Ho)=e"*'%'(p, H,), we see from (2.2)

175 )ell3= 2 (|} +n)STds e % o, H,)?

=X (la[+m) 5+ —e M) o, Ho)*

l |
=n(T-+Del®

LEMMA 2.2. (i) F,@, ) is a bounded operator on Hy(R", 7).
(ii) Gy, is a bounded operator on Hr(R", ©) satisfying

(P N A e

—1
i) For ucHy(R™ 2) |Guud= 2" Jul,.
(i) 1Grud e (Yt gor p=1,2, .

PROOF. Introduce an operator f,u=e™’*y on HyR" =) and set G, .=
0G0, Then
@.4) G lp= 120
n—1

holds. In fact, applying (2.2), we have for ue Hr(R", )

S IVEG . el *= 3 (Gaonitiy Hol(lat] +1)

— E (Ial+n){ S g~ (ni2+ial) (- 8)(ZV*H1;V*Z{3, a)ds}z.

By Schwarz inequality we see

< 1 2(|a|+n)g ds g~ (Hian - s)S ds g-'ai - s><EV*H v u H.>2
( 1)2 ij 8y e

1
= el (t=3) e
"o fats e BB H T o)

n n 9
—lai(t=9 Bvi
= 1)2 T IaIS dse 5 (3 HiWus, Ha-e).-
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Therefore

T 7
1Guntllt=|, dt 319G e
0 k=1

< 1 ZSOTds 3 (3 HTru, Hoel)

(n——l)2 a t=1 \i#]
1 n (T| n % 2
é*m—_l)?ggo ;jHijVjus ds.

Since f}l(ﬁllHij fj>§n222 f}l f3, the above is dominated by
i= j= j=

2,2 o,
< 3 i
i=1Jo

This proves [2.4). Since G3=60,G2 .0,' we have (ii). (iii) can be shown
similarly as (ii) and (iv) is a direct consequence of (ii) and (iii). The boundedness
of F,(, j) is already shown implicitly in the above process of the proof.

This lemma shows us that the equation [2.1) can be solved uniquely by a
Neumann series u=>75-,G5u’ in Hp(R", #) and the solution is in L*R", =) for
each fixed t=[0, T] if the initial value u°= Hy(R™, z). Obviously the estimate
(if) is not sufficient to prove the theorem because the bound goes to oo expo-
nentially fast as n—oco. However if we take projections onto fixed subspaces
L*R™, =), then it is possible to obtain a bound independent of n. This will be
shown through a number of lemmas.

Now we introduce two new spaces. For 1=<r=<n let

LR, m)={p<s L*(R", 7); ¢ is symmetric
with respect to the last n—# variables},
Hr(R", 7)={us Hr(R", 7); ut, -)=,L R", )
for a.e. t<T}.

Then it is easy to see that 7%(¥) and T%*() map ,L*R" z) into itself and G,
maps Hr(R™ x) into itself. Let P, be the projection operator from L%R", x)
to LAR™, ) 0=m=n), namely

PMf(xl’ oy Xy Xt 00, Xn)
:SRn_mﬂdxmﬂ)m 7(dx)f(x1, ) Xmy Xmar, o, Xn) -

We interpret P, for m=n as the identity on L*R", n). Let 6,f=e*"*f and
G, »r=07'G,0,. Then we have



Propagation of chaos 283

LEMMA 2.3. For ue.Hr(R", ©) and r=m=mn,

(1) PaGaue="""L GuPrate— " B (s Pt — )VEPuH L mai Vs Prit
1 m
=T T u,+’; ’f;P FrasG, m+1)Portte,
(ii) if m=k, then
PG sti=""1 G, Py T $ (las a0
n— 1 —“1 1=1

~E(t-5)/2
e RO EEP L Hy mei Vi1 P Us «

PROOF. Since P, and 7%(t) are commutative, we see

~t

PmGnuz—% 3 | dsPuTo—s)VH,Tsu,
—1 3 [[ds 79— PuTEH, T,
T =1 &)
Observing
0, i=zm41
P, N¥=
;.kpm » 1§z§m,
we have

7
—1 m (¢
PoGouy= ES ds T9,(t— )V Hy,T* Py

DS Sds 7o, (t— S)VEP H T -

n—1i=1 Jj=m+1

_I._

Since u; is symmetric with respect to the last n—r variables and r=<m, we have
(i). (ii) is an immediate consequence of (i).

By virtue of the above lemma we obtain a recursive formula for P,G.u,
that is:

LEMMA 2.4. For ue Hy(R™ =) and r=m=n, m=k,

Ilm

|A](n— m)( m
n—1 m+1l—r

PrOOF. From (i) of Cemma 2.3 m we have

1/2
1PnGostellr= " [P+ ) 1Pl

HP Gn ku”T

m, kP'mu”T

m (t N
1 Z&Sods T (t—s)e 9 1¥P Hy sV s1 Pt s r
=

The norm of G, .Pru can be computed by almost the same way as (ii) of

and we obtain

lllm

—1
S 1Cm i Paule= | Pl for kzm.
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The second term turns out to be

m /
7111 7;1( Sdz‘([a]+M){Szdse—(klzﬂa')(t—”igl(PmHi,mHV;thPmHus, . e,)a‘”}z)lz
n—m T |a|+m [ | = \2
< el B
= n__]_( SO Ial+k I l g(P Hz m+1vm+1Pm+1us; Ha e,))
1/2

= 2 ([ s B 1P He o Thos Pt )

1/2
< (]} dsv8 i pmere)

Since P, ues.Hp(R™, ), the last term is equal to

=2 (s B P al?)

n—m m
<<
= (s
which proves the lemma.

o B m - (m+p—1) 172
Let 0= —1 and p(r, m, p)_((m~—r+1) (m—r-i—p)> Vi

LEMMA 2.5. For rEm=n, 1=p=n—m and us.Hr(R", 7o),

1/2
=) 1Ptz

p
|PrGRullz=e” ™2 201 2D)P0(r, m, p) 2l Prssullr

holds, where a; is a positive number satisfying 2f.,a,=1.
ProoOF. From it follows that

@5 1PaGusulrS | 216(S- Pl P —) I Pasulr)

for any 2=m. However a trivial identity
Gg:emGn,melGn,m-klal 01Gn m+p- 107n+p 1

and [|0,]r=e*"’% |07'|r=1 imply the expected estimate if we use repeat-
edly. a, is the p-th transition probability from m to m-+% of a random walk
with n X n transition matrix

_1_, n—l’ | JURTRPPRITTITS , 0
n n
0, £2=2 g .. 0
n n
0, wooereeeens .0, "‘"1,_1_
n n
0, woveremrenrerirenen, L0, 1
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Now we can estimate P,G27T3() itself.

LEMMA 2.6. Suppose ¢,=,L¥R", @) and |Pnp,||=Cp™ for m=0,1,2, -, n
with some constants C and p=1. Then

IPrGETS()enlle SOn-+pyHT +1)V2Cpme™ ™= 2p(r, m, p)(e™/%6| 2] ¢)®

for any 1=p=n—m and r=m=n.
ProOOF. From [Lemma 2.1 we see

1P T )0l r= 1 TU )Pl r S (B (T+1)Y2| Prgos |
for any 2<n. Then the above estimate follows immediately from

LEMMA 2.7. Let ¢, be that of Lemma 2.6. Then for r=m=n and
1=p=n—m,

IPnGETS(O@nl < (m+ p)2E-+1)2Cu™et ™0 2p(r, m, p)(et/25|A| )P,
PrROOF. From (i) of it follows that

n—m
n—I1

PGt S L= 1G P+ | 35 ('ds o= TP He T Pt

Applying (iii) of we have

[4]m [Al(n—m) ¢ m
g 1 Pmllet =

1/2
) 1Pmarule.

Therefore

1PnGatel £ 1218( 21 Pt i P Pl

Then substituting u,=7T3(¢)p, we see

”PmGgT%(t)gDn“ = “PmGncg_lT%(tXDnH

1/2 A
) 1PaaGE To@nll),

<|218(ZH) PuGE TS0 A+ 2= (— T
n

n m+1—r

which combined with shows the lemma.
The main lemma of this section is

LEMMA 2.8. Let ¢, be that of Lemma 2.6. Then for any g>p there exists
a positive constant C; such that

1PnGETS )| ZCilet*m)™(e 2| 2| )P

for any t€[0, T], r=m=n and p=1. C, depends only on T and the constants

C, v/g, r.
PrOOF. If p>n—m, then (iv) of Lemma 2.2 and Lemma 2.1 show
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IPnGETS N pn | S I GET () | e 231 AP TH()alle
<e™2(3|A)P(n(t+1) P Cpm
=COn+p)t 24172 )™ (e' 0] 2| )®
=Gl mmemll)?,

with some constant C;. On the other hand, if 1<p=<n—m, then from [Lemmal
2.7 we have

1PnGETS(N@all < Clm-+p)H2(1-4+1)11207 o(r, m, p)(e*/*p)™(e*/*1t] A1)7.

Since for any 0<@<1 there exists a constant C; such that p(r, m, p)8™*?<C,
for any 1=p, 0=r=m=n (C, may depend on r), we have the estimate of
the lemma.

§3. Proof of the theorem.
Recalling the definition of F,(7, /) in §2, we define for p=1

Fm+1’.m=15.§ +1PmFm+1(i1, m+1)Pm+1 m+2(i2, m+2) P.7n,+p.-1Fm+p(l.p, m—l—p)
15%: $+2

1sip<m+p

If p=0, we set Fyy+p,n=1id. Then F,., , is a bounded operator from Hp(R™*?, r)
to Hp(R™, ). Let

WT.'r: {f:(fl, f2y tt fm: )3 merHT(Rm; ) andtplfm:fl for r§l§m}.

LEmMMA 3.1, For feWr,, we have

3.1) PmGgfn—> m+p,mfm+p in Hr(R™, 7)

as n—co for any m=r.

Proor. (3.1) is trivial for p=0. Suppose that (3.1) is valid up to p. From
it follows that
; _1 e
PaGEH fy= " 1 CnPrGE fut 71 3 PuFsliy m+-1DPrGR s
As we have seen in Gn and F,,.,(i, m-+1) are bounded operators in
Hz(R™, ) and Hy(R™*!, ). Therefore together with the assumption of the
induction this shows

PmGg+1fn ';‘_: EIPmFm+1(Z.’ m+1>Fm+1,m+1+pfm+1+p

= m+p+1,mfm+p+1,
which completes the proof.
For ¢, ¢®, ... ¢, and ¢= L¥R, n) set
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Px)P(xe) - P(xm) if 1=sm=r,
PP (x )PP (x2) -+ PP (X)P(KXr41) - P(X )

it m>r.

L*R™, 7) Beb%?(X):{

Then {ng(t)gb;{)(x)};';:leWT,,. Suppose that we are given a sequence {p,}7-1
such that
on€,LAR, @), |[PrgallSCp™  (p=lgl=1¢l1er o)

Py, —> ¢F weakly in L*R™, &).

Then we obtain

LEMMA 3.2. Let T=—2 log(|A|p). Then for any m=1, 2, --- and any fixed
T<T, there exists a weak limit of PnT¥(-)p, as n—oco in Hp(R™, &), and hence
the sequence PnT¥*e, converges weakly in LXR™, =) for each fixed t<T. If
we denote this limit by fn(t, x), then they satisfy

(3.2) fn(, x)ZTﬁ’n(t)sb%)(x)nLéPmFmﬂ(z', m+Dfmarlt, x)
for m=r, r+41, ---. Moreover they have estimates
(3.3) Ifrllz<CE™2mm™,  m=1,2, -,

for any T<T and g>p, where C is a constant independent of m.

PrOOF. As we have mentioned in §0, employing the estimate in
2.2, we see T*®)=X%2_,G2T3(t) both in Hy(R" z) and L*R", z). Hence
PrTE ) pn=25-0PnGET%(t)p, is valid. However from and
2.8 it follows that if |A|u<l and T, t<T, then |PnGETS(),llr and
|P,G2T(t)¢,|| are dominated by convergent sequences uniformly with respect to .
Therefore we have only to show the existence of weak limits of each term
PmG%T%(t)gon as n—oo, For p=0, that is, PmT;{(t)gpn obviously converges weakly
to P,T%®)¢% both in Hy(R™ ) and L*R™, x). Suppose that P,G2T3(t)¢,
converges to f, both in the above spaces. Since from we have for
mz=r

m—1

PmGg—HT%(t)SDn:?':fcmpmch?L(t)gﬁn
n—m ) N
+ —1 ZleFmﬂ(l, m+1)Pr 1 GET5(Dpn ,
the boundedness of G,, and Fy,;(7, m-+1) (see Lemma 2.1 and Lemma 2.2) implies

the weak convergence of PmGﬁ“T;’,(t)gon as n—co. Thus we can prove the

convergence of PmT;'f(t)gon for each fixed m.
On the other hand, since u,=T*()¢, satisfies from Lemma 2.3 we have
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PuTE)0n=PnTot)0n+PnG,TE D¢,

PaT8Oput 21 CaPaTH g

I

T 3 PuFnli, mADPnas TE O

+

for m=r. Therefore letting n—oo, we obtain the equation [3.2). The estimate
immediately follows from

For ¢= L¥(R, x) such that ¢=0 and | gz=1, let by be the solution of
ap . "
3.4 W:—V*Vp—}—lv*(p )
f’o+:¢-
Then it is not difficult to see that p, defined by the identity py(t, x)=
Py —1, etx)m(x) e’ satisfies the Burgers equation:

ap 1 Ao
ot T AT VP
po+:¢’7f-

As we have proved in §0, since the Burgers equation is uniquely solvable for
any probability distribution ¢zdx, so is the equation for any such a ¢.

LEMMA 3.3. py satisfies
- T a
1Bollz=], I7*5,(t, Mo, mdt<oo

for any T>0.

PROOF. Suppose that the initial function ¢ is a smooth function with com-
pact support on R. Then for any compact interval I of (0, o), we can show
below that there exists a constant C; depending on I, ¢ and 2 and satisfying

(3-5) IV*ﬁgb(t) x)lécl’
for any t=I and x=R. Let
7tt, )=\ gz —yexo(=2]" gantan)ay.
Since
ft, =—2 glx—gaexp(—2|" g@r2dz)dy,

for any 6>1 there exist constants C,, C; such that

V0, DG, glx—y)dy
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=C;exp(—x*%/20t)
holds for any t=] and x=R. Similarly we have
|V2f(t, x)] =C, exp(—x?/25t).

On the other hand, we easily see f(t, x)=¢ '*'. However p, can be expressed
by f as
p¢=——§]l:~ and hence Vp,=

Therefore we have for t=] and xR

AT \l0s
i

[Vpy(t, x)] =Cs exp(—x?/20t)

with a constant C; depending on I, and ¢. In view of the relation between p,
and p;, we see

eth2 xZ
),
20(e**—1) 2
However, if we choose d>>1 sufficiently close to 1, then the coefficient of x* in
the exponent turns to be negative for any fe=J. Consequently we have the
estimate [3.5). In particular this implies

| T by(t, 1| =Cy exp(—

c1=( 19pytt, ltndn={ 15,6, »I'=0+] |50, 01w,
therefore
(3.6) [ 1784t, x)IPm@n=ct.
To obtain a uniform bound for py(t, x) itself, note first
pet, X)=e'* gfdm(x).
This inequality has already been discussed in §0. Hence
3.7 byt, x)=e' M Te(P(x) .
However

T0g0=| gx, NP=()

=([ gz, yra@n) Il

=8ulx, 2)'*|J]

holds. Moreover g.(x, y)=e'geu—y(x—e’y)x(y)~! implies g,(x, x)SC¥ 2x(x)™!
with a constant C¥ independent of t>0 and x=R. Consequently we have
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(3.8) by(t, x)*=CHPx () Pl1®

with a constant C¥ depending only on 4.
Now multiply p, to the both sides of and integrate them by dtx(dx)
on (¢, T)XR. Then we obtain

@9 2 atf a0 Thye, DI=NBye, =BT, 1
+2[ at| 2@x)@hyt, Bt xradn).

The integrants are integrable by virtue of [3.5), [3.6) and [3.8). The right-hand
side can be dominated from above as follows:

eigl2121{(" dr| xan Tage, w17 { dt| m@npy pimeo}

1/2

1/2

<2l zl e[ crrran Ig1e{{] arf =01 9By, 017}

<o(cr+cx{{ at] zan19pye 017 ) Igle

with some constants C¥ and C¥ depending only on 4 and 7. In the above
computation we have used (3.8) and the L?*(x)-contractivity of 7%(t). Com-
bining the above estimate and (3.9), we have

@10 (ol maniva,e nisspongrr (S ren)igrscagn

with a constant C¥=(3/4)C¥4-C¥. In the last inequality in (3.10) we have used
the fact that ¢= is a probability density and hence [¢||=1. Since (3.10) holds
with a constant C¥ independent of ¢ and ¢, letting ¢ | 0 and approximating an
arbitrary ¢ by smooth functions with compact support on R suitably, we can
conclude

S:dtSRJr(dx)IVﬁ¢(I, ©)2ZCE I

From [3.7) we see that the L*norm of p, itself with respect to d¢x(dx) on
(0, T)XR is dominated by T*/2¢'?'||¢|, which completes the proof.

LEMMA 3.4. Suppose F=(f1, fo, =, fm, ) E\r<eWr,» satisfies the equation
8.2). If

3.11) [fullz=C™?m™  (m=1,2, )

for any T<T and @>p with some constant C, then the equation (3.2) has exactly
one solution {fn} (fn is that of Lemma 3.2) and it coincides with
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11 ([ 690180, 3, 1, x(a) i o
3.1

11 ([ 0900600, 5, 1 xomia) T1 bott, x if m>r,

where §y(s, v, t, x) is the fundamental solution for a linear parabolic operator
(0/0t)+T*V—2p V.

PrROOF. Suppose that welhave two solutions £ and g in (N\r<p Wr,, satisfying
the equation and the condition [3.1I]. Then h=f—g satisfies

hm= ngFmﬂ(i, m+Dhny,  for m=r,

lhnlz=Cle™ @)™ .

Therefore we have

m m+1
hm= ElmemH(l', m-+1) ZIPmH m+2(Jy M+2)Amse
| i= j=

:Fm+p,mhm+p for pZO, 1, 2, R

However from [Lemma 2.9 and [Lemma 3.1l we see
[Pt mhonspllr=e™ ™2 70(, m, p)OI21) 2 s Prsslimssle
=T ™D 2o(r, m, p)OIA1)PIhnpllr
<C/(e" gym(e™| 2] )P

Here we have used the fact |Ppullr=|ulr if ue H(R", ) and m=n. Therefore
if we fix T<T=—2log(]4] p) and choose f close enough to g, then hp=
Frip mhnep—0 in Hp(R™ w) as p—oo, which implies h,=0 for m=r. Now
denote the functions in [3.12) by gn(?, x). Then[Lemma 3.3 says g, Hr(R™, x).
Moreover g, satisfies the equation because for m=r

m m t N
EIPmFm+l(i) m+1)gm+1(t, x):—i‘_é:lPmSOdST?;HJ(t_S)V;FHi,m+1v§z+1gm+1(3, *)

I

AT (t—$)THgm(s, )Dyls, 1) .

1)

1=

-

Here we have used the fact SRgt(x, y)m(dy)=1. Since SRgb‘i)(y)(j¢(0, v, t, x)r(dy)

satisfies
0 p )
5];=—v*w+zv*<mf> , SO+, =99,

we have



292 H. Osapa and S. KoTanI

25 dsTo—9)(gnts, Ibgls, -)

i=1J0

= 3 [ asTa— VT ugats, ] a5 TR0 o g5,

i=1J0

= (s D T4 = (s, Ihgalt, | T g als, s THOGP
=—T5OpR +gnlt, ),
which implies
gnlt, V=T2OD+ 2 PoFrosi, m+Dgmss -
On the other hand, it is easy to check that
lgnlr=C(sup By, Mrew )™ for m=1,2, -,

with some constant C. However, since p,(¢, -)—¢ as t—0 in L¥R, =), for any
Z2>p, we can find T7>0 such that ||g,llr=Cz™ is valid. Therefore the unique-
ness of the equation implies gn(t, -)=fn(t, ) (m=r) at least for small
enough t<T. Especially we have ||g,l:=C(e*?z)™ for all small t. Then we
can start from 0<t,<T instead of {=0 and make the same argument as before
up to some time ¢, strictly bigger than #,. Continuing this argument we can
reach any time smaller than 7" because as long as the uniqueness holds, we
have a bound ||gn,l.=C(e?#)™. This completes the proof of the lemma.

The final step of the proof of the theorem. All we have to do is to show the
following fact:

“Let hy{(x)=h{®P(xy) - h{™(x e LER™, ) (=1, 2, , k) and ¢, be that appear-
ing in the statement of the theorem. Then for any time sequence 0<t,<f,<< -
<t <T,

(3.13) Epnha(Y ) Ro(Y n(t2)) -+ ha(Y a(tr))

3

—> 11 Ey=h?(ZUDhP (Z(t:)) -+ P (Z(24))

fl

I 70 - 2yt 3085t 32, 1, 92)
< Gg(th-1, Yoy, ey YORIP (1) - R (92) "
However the first term of is equal to

(hy, P TR THE— 1) hs - Tﬁ(l‘k—l—tk—z)hkTﬁ(fk—tkq)SDn) ’



Propagation of chaos 293

where (,)=(,)z2&™ . Therefore applying inductively, we can prove
(3.13)

REMARK 1. Our method is applicable also when the generator L, has a
form of

——A+ [ T VeHY;

and H;j(x)=H(x;, x;) for a skew-symmetrlc bounded function H on R? satisfying
H@#§, rp)=H(§, 5) for any »>0. Moreover any finite dimensional distributions
of the limit process {Z(t)} can be described by using p, and g, defined by weak
solutions for

[3£¢:_Ap¢ VHLx, polpg),  Hlx, p1=| Hlx, 97,00}y

40, X)=¢(x)x(x)
17 — ?AQ_V(H[x) p¢]q¢) :

However we can not exclude the possibility of the explosion of the above p, or
q¢ in L*R, dx) after a certain time 7. Therefore it is not easy to define in
general case the limit process {Z(f)} on the whole time interval [0, oo).

REMARK 2. If the generator has the form of
= E VIV "’-“T Z VEF (x4 x)V;,
i, ]

we can prove the propagation of chaos for the corresponding diffusion processes
without any restriction on time 7. In fact L, is of the form of divergence in
L*¥R", n) and the corresponding estimate appearing in does not
contain the term e"7/%

REMARK 3. It should be remarked that a complete system of eigenfunctions
for the operator L, has been obtained by E. Gutkin and M. Kac [4].

REMARK 4. P. Calderoni and M. Pulvirenti have shown that if the
delta function appearing as the drift coefficient is approximated by smooth
functions simultaneously as the increase of the number of the particles, then
propagation of chaos is valid.
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