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1. Introduction.

Let A(u) be a C! function on R such that A(0)=0,

(H1) In(wl=clul**, VueR,
and
(H2) Hu={"hs)ds20  VueR
where p>1.
Consider the nonlinear Klein-Gordon equation (the “perturbed” equation)
(NLKG) gTZu—Au+m2u+h(u):0 (xR teR)

together with the “free” equation
2

(KG) Wv—Av%—mgv:O, (xeR? teR)

where m is a positive constant.

In [10]-[137 W. Strauss developed the theory of nonlinear scattering at low
energy, in which one looks for conditions under which solutions » of (NLKG)
are related to free solutions u. of (KG) by the asymptotic condition ||u(?)—u.(®)|.
— 0 as t — oo, where |-|. denotes the energy norm:

fwoot={[(29) 19w mew|ax (=] (. 220)

' ot e> )

It has been shown that under the least regularity assumption on solutions, that
is, under the assumption that solutions are of finite energy, the theory of non-

linear scattering at low energy holds in case of 1+%§p§3. If we require

more regularity of solutions, the theory holds for 2<p<5. In Glassey showed
that the theory does not hold if l<]5<1+-§—.
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Our aim of this paper is to show that in case of 3<p<5 the theory holds
valid under the assumption that solutions are of finite energy. Thus we have

. . . 4 .
the nonlinear scattering theory at low energy in the range 1+§§ p<5, which

is the conjectured optimal one (see [11], [12]). Although our argument relies
deeply on Strauss, our approach to construct solutions is different from his and
does not seem to fit his abstract framework in which the contraction mapping
theorem plays an important role. In order to develop the theory in the range
3<p<5, we make use of Besov space estimates of free solutions and of non-
linearity, which has been used by Brenner and von Wahl [2], Pecher [6], and

Tsutsumi [15].

In a forthcoming paper the case of higher space dimension will be considered.
Let u-(t) be a free solution of finite energy:

d
u_(t)=EE(t)f-+E(t)g-
for some f-e HY(R® and g-< L*R®), where

E@)=g* sint v/ [E[2+mEF

1
vV |E]2+m?
where & and ! denote Fourier transform and inverse Fourier transform, re-
spectively.

Our main result is the following

THEOREM. Let 3<p<5.

(@) If u. is any solution of (KG) of finite energy, there exists a unique solu-
tion u of (NLKG) in some time interval (—oo, T such that

ue L*((—oo, T]: H(R))NC((—o0, T]; L¥R?)
A L#PD((—00, TIXRY) A L¥(—o0, TIXR?)

with u,s L>((—co, T]: L¥R?), and |ult)—u_(t)|l,— 0 as a.e. t — —co,

(b) If llu-lle is sufficiently small, then u exists for all time, us L*? V(R X
RIONLYRIXRE), and there exists a unique solution u, of (KG) such that
lu®)—uy@lle— 0 as a.e. t - o0, and

e z=lu-ti=lult+2{Hudx.

2. Preliminaries.

Let seR and 1=p=<co. H"?(R?®) is the usual Sobolev space of fractional
order s of all L?-functions u such that
lulls, p=I1F A+ E15)**Full ,<oo.
We denote H*2(R®) by H*(R®. Let 1<p, g<oo and write for s>0, s=[s]+o
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where [s] denotes the largest integer less than s and 0<¢<1. The Besov
space B§9(R®) is the completion of S(R?®) in the norm

”u”s,p,q=lluIIP—}—(S:t—aqsup 3 “D“(uk—u)ll‘g,itt—)uq

|k1St |al1S[8]

where u,(x)=u(x+k) (see [T].
In the following constants will be denoted by C, and will change from line
to line. If necessary, we indicate dependence of constants on the quantities a,

‘B’ by C(a) ﬁ, '")-
We now consider the free equation (KG) with Cauchy data v(x, 0)=f(x);

%v(x, 0)=g(x). The solution v of (KG) with the above Cauchy data is given

by v:vdf?E(t)f +E()g. The following two lemmas concerning LP-estimates of
solutions of (KG) are essential tools for the study.
LemMa 1 ([3], [5], [6]). Let s, s'=0, 1=g=co, 1=p’'=2, l—Fl,~1 and
5—i——-—1— Then Pt
=55

o)) IE®gls,p.e=KO)lgls prg =0
where

Ct-%, t=1

K=
Ci+s-s-83 = 0<t<1,

provided 40=1+s—s’.
We may replace |- |5, p.q and |*ls.pr.q by |*ls.p and |- |s, pr, vespectively.
LEMMA 2 ([147). Assume (f, g) H(R*)X LXR®). Then

(@) 1ol zr o, o xr® =CU fll1 2+ gll) =CI(f, @)l

provided 139 =r=8.

1 (p—3)3p—T)

L 3. Let 3 5, pr=2 1, =1, 0= and p=
s R N TR T )
P—Z— . Then for every ueHl(R"‘)mLpl(R3) we have
3) IRl o +e,ny e =Cllullf llullB?
where ¢ is a positive number so small that c+e<p, provided qz—})—z%g

PROOF. Note that ¢<p for 3<p<5.
We have

H h(u)H o+e Dy g

:]]h(u)l!plr—l—(S 1 (0+s>qsup ||/’L uk)—h(u)ﬂpl, (:Z‘)
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The first term of the right hand side is dominated by

Clllul? ullp =Clulgllulpre =Clulf,lulpr®

since

p—p  p_1
b 2T

IA(ue)—hG)lpy CIurl P+ {ul P ur—ulllpy

Analogously we have

<CIusl 2+ 1w |70 up—ul?]
=Clull 3P lur—uls .
Hence the second term is estimated above by
Clulbr?lulltorer .0 pa=Cllulfrelul,.

since 0<(o-+¢)/p<1 and H"*(R®)C B{7*9/? *4R?®) provided pg=l.
Therefore we obtain

[ o4 py o =Cllullf ollullBe. Q.E.D.
For s R define

() ()= S:E(t—‘:)h(u(z‘))df .

LEMMA 4. Suppose that all the hypotheses of Lemma 3 hold. Then for any
ue L°(R; HY(R») N LP1((—oo, TIXR)(s<T) we have

@ <ST Hﬂ(su(t)ilg}dt)l/plé Csup lluli‘i,z(ST Hu@”g%dt)@_p),pl

Tl Tl
for any Ty with T, =s=T.
ProOOF. By virtue of we have

IOl =C[ {121 o,y de

+S12 lt—7| 2| h(u()|,, pl,df]

where I,=[s, t1N\[t—1, t+1] and I,=[s, t1N\[t—1, t+17. Since 26=—(1+0—60)
>0 and |[t—7|=1 on [, we have

IO, C | 1121~ A, oy

Since B‘;“:f-qc Ho?{ for any ¢>0 and 1=¢=oo, we get

R ey e R TCTCo) P

By the singular integral inequality and we obtain
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1/r

(I 1oz ar) ™ =c(§" 1hu@) e, oy.0dt)

Ty Ty
T 1/r
=Csup ||u<t>nq,2(§T o)l r-» d)
1
where
1 1 _as_ DP*—3p+3
TS
Since »(p—p)=p, we have
(p-p>/
(" rorwnpar) ™ =csup g w@igas)™ "™, Q.E.D.
7y tER 7,
LEMMA 5. Let s=T, p,=2(p—1) and pl—k%:l, (p>2). Then for every
1 1

u, ve LPY(—oo, TIX RN L4{(—o0, TIX R?), we have
®  (|_lewo—sooia)”
<c([_tuenpar+ | ponzar) (| uo—von)”.
PrOOF. By virtue of we have

Ilﬂsu(t)—ﬂsv(t)llécgz [t—z [ 2| A(u(2)) = h(w(D))llassdT
<C| jt—z 21 ul7 4 0|7 u—v| lusdz

éCS:lt—rl"”2(llull£;1+llvll 20l u—vll,dz

nce 271 L 1_3
since P; +4—4.

By the singular integral inequality and Holder’s inequality, we obtain

(It staltdey

3/4

=c(|”_Gu@ugr @iz e e —voledt)

1/2 1/4

=c[["_aquoig+ponma (" ko—volda)”.  QED.

o
—c0

3. Proof of Theorem.

Consider the integral equation
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(CP)s u(t)=%E(t)f—+E(t)g-+S:E(t—f)h(u(f))dr

=u_(t)+ I (u)).
Formally u(¢) is the solution of (NLKG) with the initial values at t=s,

u©=u(s); =24

For the moment we assume that u(¢) is a smooth solution of (CP);. Then u
satisfies the standard energy equality:

®) lu@s+2 | Hou(r, 0)dx=lu(s)2+2] Hutx, 9)dx .

Since H(u)=0 YueR, SkgH(u(x, sNdx=Cllu()If3* and [u()le=1(f-, g-)l., we

have

9 lu@lle=M(I(f-, g-)lle)

where M;=M,(r) is a continuous nondecreasing function on [0, c0) such that

Taking the L?i-norm of both sides of (CP), and using we obtain
for any T,, T with T, <s<T

® (I uu<t>n§§dt)”‘”§(§ u-@lpde)

Ty

+C§1€1}z) llu(t)llﬂ,z<g ”u(t)“gidt)(p_p)/pl

Ty

=(|" hu-wipar)™

Ty
p-p)Ipy

+CM(I(f -, g-)l!e>"(ST (o) Ig1dt)

T
where p—p=(p*—3p+3)/(p—2)>1 for 3< p<5.
By virtue of we have

o0 1/p
(I e-@ngar) =i, gl
Therefore if |(f_, g-)ll¢ is sufficiently small or if T<0 and |T| is sufficiently

T
large, i.e., S_ lu-()|31dt is sufficiently small, from (8) we deduce

T 1/p4
) (" 1uolpar) ™ <a01¢r-, gl T
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where M,=M,(r, T) is a continuous nondecreasing function on [0, 7,) X (—oo, T)
for some r,<+oc0 and T,<+oco, such that

lim M,(r, T)=-4oc0, lim My(r, T)=0 for every T
-0

T=T0

and
}irrTl M,(r, T)S +oo, Tlim M,(r, T)=0 for every ».
~To o

In the former case T — M,(r, T) is bounded and we can take T=-co in (9).
In the latter case we may take 7,=-+oo.

Taking the L*norm of both sides of (CP); and using we get for
s=T

(10) (§ruoniar) = (|7 1e-wiar)™

([ nuonpa)” (7 puconzar)”
éC”(f—, g-)||e+M2(]|(f-, g_)l[e’ T)p1/2
X(gl”““)“idt)

Hence, if we choose [[(f-, g-)lle so small that M,(||(f-, g-)]l., T)?¥*<1 or if we
choose T such that T<0 and |7'| is sufficiently large so that M,(|(f-, g-)l., T)?v?
<1, we obtain

1/4

(11 (1 _tuonsde) “smacr-, gl 7,

where M;=M,(r, T) is a continuous nondecreasing function on [0, r;]X(—co, T)
for some r{<-+co and T;<-+oo, satisfying the same property as M,.

We now prove the existence of global solutions of (CP);. If f_ and g- are
sufficiently smooth, then it is well-known that (CP); has the unique global clas-
sical solution u satisfying (NLKG) in the classical sense. Therefore let {(f,, gx)}
be a sequence of functions such that (f,, g.)€C%(R*)XCF(R?*) and

(fr» gn)—(f-, g-) in H'(R®)XL¥R?
and let u, be the corresponding solution of (CP), with
d d
un(3)~—d?E(S)fn, Eun(S)—E(S)gn.

Assume that ||(f-, g-)l.<min(»,, r¢) and without loss of generality assume
that for some d>0

1, galle=N(f-, g-)e+0<min(r, 7o)
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for all n. From (7), (9) and (11) we obtain a priori estimates

(12 sup 4 (0)],+=C

d
2] & w20
14 (| _meaongar) " =c
and
(15 (" tuaoizar)“=c

for —co<T<min(T,, Ts), where C is a positive constant independent of .
Hence there exist a subsequence of {u,}(also denoted by {u,}) and a func-

tion ue L°(R: H{(R*))N\L?1((—oco, TIX RN\ L*(—c0, T]X R?®) such that u, —u

weakly star in L>(R ; H'(R?®)) and weakly in L?((—oo, TIX RN L*(—co, TIXR?);

d;"——»éi?u weakly star in L=(R: L% R?®). Moreover u satisfies the estimates

(7), (9) and (11).

To show that u solves (NLKG) in the sense of distribution is accomplished
by the standard manner. It is shown in and that u is uniquely deter-
mined by its Cauchy data. We have

u(+), ¢>=<u-(+), p>+<H(u(-)), ¢> VoeCT(RY).
By virtue of we see that 4 (u)e L{((—oo, TIX R?). Hence u satisfies
(CP); in L4((—o0, T]X R?).
Thus we have

PROPOSITION 1. Let 3<p<5. For any (f-, g-)€ H'(R®*)X L% R®) there exists
a unique solution us(t) of (CP)s satisfying

use L=(R; H'(R®)); g?usEL”(R; L*R®)).

Furthermore if s is sufficiently near —co,
us; € L*PP((—oo0, TIXR*) N L*((—o0, TIX R?)

for some T with s=<T.

We now prove (a) in Let {s,} be a sequence in R such that
Sp— —oo. Then {u,,} satisfies a priori estimates (7), (9), (11) with replacing u
by u;,. Moreover {u,,} is a Cauchy sequence in L*(—oo, T]XR?®) for some
TeR. Note that from it follows that

(16) (T o ar)“=2([™ Ju-iiar) ™
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for sufficiently large n such that M,(|(f-, g-)lle, sa)PV2<

2o =

. We have for s, <s»
Hes, @) — 1, @O a= | S s, (s, (8))— I s, (5, O
<! 1EC=a) s @) — k(@ ide
] 1B~ Db Elde
In much the same way as in the proof of we obtain for s,<T

<Si’“us“(t)—usm(t)llidt>1/4
<C(] N3 s, 1)
X (SI"‘””us”(t)_uSm<t)Hidt)m

+C(S:;IIusm(t)][gidt)uz(S::l”usm(t)”idtym

1/4

r
<2CM(I(f -, g, TP(|”_l, O Ol
+CMIC - g s TP*({7 e ) —wep(®)lt
+ " hus0nrar)”

<3CMI(F-, 801 TI([" sy = Oltar) ™

1/4

FCMf -, g s Tr7() " e 0)102)

1

Choose T so that 3CMy(|(f-, g-)l, TI"*S 5.

We have
a7) (= ltar)™

<2CMI(f -, g, TP2(( s, 1 ar) ™

1/4

<const. (| Ju-)tdr) (by

which tends to zero as s,, s, — —co. Hence there exists a ue L*(—co, T];
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HYR)) N LP1((—o0, TIXR)NL*(—o0, TIX R*) with %ue L>((—co, T1:

L*R*) such that as s, — —o0, u;, — u weakly star in L=((—oco, T]; H'(R?)),

weakly in L?1((—oco, T]XR?) and strongly in L*((—oo, TIXR?); j—{ Us, — Z—L;

weakly star in L=((—oo, T]; L% R?). Furthermore u satisfies

(18) u=u-0+|_E¢—ohtue)ds.

From it follows that

a9 (| _tuo—v@iiar) sconst. ([ ju-@ltar) 0 as s —co.
We next show that |u(®)—u_@)|.— 0 as t > —oco. First we have

@) u®lz+2| Hals )ds=lu )l3+2| Hux, shdx aet.

The first term on the right equals [[(f-, g-)|2. The second term is in
Li(—co, +c0). Indeed we have

(21) Sw S Hu (x, s))dxds=C Slu_(x, s)|Pdxds

)
éC(S glu_(X, s)| @D dxds)”z

X (S:Slu_(x, s)l‘*dxds)ll2

From (19) we get

(22) |7 | femtuatr, 0= Heutr, tnd]| e

T
=c| J(lu1z+1u1m) u—uldxds

<c{(|" puonzg-nar) (" pucorsar)”
(1" puonsggar) (" onar)”}

X (S:H ”3“)““0)1]1(11)”4

§C(T)<Siollus(t)—u(z)llidt>1/4—»0 25 5 —o00.

Let £ be a nonnegative real L* function with compact support and integral 1.
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Since u;, — u weakly star in L=((—oo, T]: H'(R®) and
star in L=((—oco, T]: L*R?), we see that

d
E?usn d E—f—u Weakly

(23) fluoizodtiming (1., 020 d

From (19), [21), and it follows that there exists a sequence s, — —oo such
that

5 H(u_(x, s)dx — 0,
R3

s, @) —u@®ll,—0 for almost every ¢,
and

SR3H(usn(x, )dx — SR3H(u(x, D)dx for almost every ¢.

Hence

[[e@ue+2lHoucs, o axlewar=ic, g,
which implies that
(24) lu@lz2{ Hutx, )dx=I(f-, gl ace. t.
Put w,@)=E(—tHu@)+E(—t)u’(#). Then w,(t) satisfies
(25) wi=f-+| E(-ohw@)de.
Lemma 1 and Holder’s inequality give

(26) lws®—filSCl el |l 2l ysdz
<c|’_lel=mul3g-o lulde
c(|_iel-dz) Swtlull%%:i%dr)m

X(S lulide)”

A

which tends to zero as ¢t —» —oo.
Put w,()=E"(—tHu®)+E'(—u’(t). Then w,() satisfies

(21) wit), =g, H+| (5 E@)hute), ¢)de
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t d
=g, ¢>+S_J;<E<f>h<u<f>>’ B
=" (B’ (u(e) 2 L @), p)de
={g-, O>+LE®I(u®)), ¢>
: d
[ (B @), §)ds
for any ¢=CG(R?). Indeed we have used the fact that

(& s ¢>|—v<h<u<f», 4 s0o9)

E(r)¢“
=C|z|-3® sup a2l Blls. 1
. d .
which means that z'—><—d?E(z')h(u(z')), ¢> is in L¥(—oo, 1) for 1<0,

(28) [KE@®)h(u(t)), ¢>|=[<h(u(t)), Et)g> |
=ClulBlE®)¢]-
éCsbgg luI2.AE®S| 1,4

=Cle[ % sup [u®)f.ll Pl ars

and

@) [ (E@rwen e, g)|
=|S‘ (w (u(z')) ), E(z>¢>dr{
=cf’ [lu@i7¢L@)| 1E@glde

éCS 12

S @) |E@plade

___<f)H S lu()lI35= Bdf) "

=Csup
tER

x(|"_1B@glade)”
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=citl=sup |2 (] _n@ig-par) g

4/3,6/5

since
|E(@)@lle=CIE®)Pll1, e =Clz|2*I|¢llass.6/5 -

From and we see that
“wz(t)——g—f|11—z,s—>0 as t— —co

since H2®/5C HL4/8 ~ H4/3 605,
On the other hand

Is®), ws)le=| (o), -5 )

e:Hu<t)He a.e. t

since %:-E(s—t)u(t)%—E(s—t)(%u(z‘):%E(s)wl(z‘)+E(s)w2(t). From [24), ||u()|.

is bounded for almost every f. Hence w,(t) converges to f- weakly in H*(R?)
and w,() converges to g- weakly in L*R°) as a.e. { » —oo,
Since
T

| Jre, mavar=c([”_juwnsgnar) (" Ju@izar)”,

there exists a sequence f, — —oco such that

SH(u(x, t0)dx — 0.

Hence
I~ g2l <Tim inf [(waten), wilta):
= timinf () [3+2{ Houx, )=, g2
Therefore
@2 B, )dx=I(f-, gl ace.t,
and

(u(t), ‘fj—l;(w)—» (f-, g) strongly in HX(R*X LR

as a.e.t — —co, Hence
lu@®)—u_-t)),—0 as a.e. t— —co.

This completes the proof of the assertion (a) in
We next prove (b) in [Theoreml
Exactly in the same manner as in we have
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PROPOSITION 2. Let 3<p<5. If |(f-, g-). is sufficiently small, there exists
a unique solution uy(t) of (CP); satisfying
use L=(R: H(R*))N\L*? (R, X R}) N LY(R; X R})
with

d o . 2 3
—EuSEL (R: LAR?).

From we have a unique solution u of such that
us L>(R: H(R*)) N L**-P(R*) n L*(R*)

with

—fii? us L*(R: L*R?).
Define
(30 fo=f-—|" E@hu@)de.

Then f,eL*R®). Indeed we have

HS:E(r)h(u(r))drH4

<| b sde+| b sde,

1 2

where I,=[—1, +1] and I,=R~[—1, +1]. The first term on the right is do-
minated by

C sup nun?fzg | B B dr
tER Il

<C sup MH%/;(S |z|-U2xap-D/ep-D dr
~  teRr ’

)(2[)—1)/4(1)—1)
I

(| Iu@isgpae

)(21)—3)/4(1)-1)

S 2p-8)/4(p-1)
=Csup IIull?.’é(S )
tER

" lu@lgEhde

oo

I

u 4/3.__—C u 2 -1

where r:6——g <6.

The second term on the right is estimated by

c({, zeae) ([, nuirigaar)”
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o 2/8 /(o0 1/3
=c(|" tu@nzgnae) (|" Iuiar)
Define
il d
@31 ge=g-—|  BE@h @)@

Then¥g,= H*%R?). Indeed we have for any ¢=C5(R?)

(" Bom @Sz, )]

Il

'S <h <“<f>> = (@), E(r>¢>dri

<c, 1u@to| S @) | Bplce

], uolsg | L2 @) |E@gldr.

In much the same way as in [29), the second term on the rightTisIdominated by

C sup

tER

o) (I uolzgnde) 16hs 0.

The first term on the right is estimated above by

com [ S0, u@nmd el omedelgle .
1/2
<Csup |40 (1 1u@lg=5de) Il oo

where 0<e<1, since

IE(@)@ll=CIE@)@l1 arare

= || OB as o0 -

Since H*¢3C HV4/®-9 ~ H4/*%/5 we conclude that g, H *°%R®). From [25)and
we have

wit)—f.=| E@h(u@)ds.
Exactly as in the proof of

Ilwl(t)—f+ll4§CS [l =2 ull 3 p-n lulldze

=c([Tie1mae) ([ putsgepae) (" puiiae)”
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which tends to zero as { — +co. From and we have
t

wz(l)—g+=E(t)h(u(t))+S E(r)h’(u(f))%(f)dr.

Then [wy(t)—gill-2.6— 0 as t — +oco exactly as in the proof of and [(29).
On the other hand

i@, wa®)le=utt, St =lule  ae.t.

Hence, [[(w,(), ws()|. is bounded for almost every ¢t. So f.e H(R?®), g.= L¥R?),

and w,(¢) converges weakly to f, in H'(R®), w,(t) converges weakly to g, in
L*R®) as a.e. t — —oo,
Since

" (re, ovaxar=c((” uousgnar) (" uwnia)™,

there exists a sequence ¢, — —+co such that

SH(u(x, t)dx — 0.

Hence

(32) 174, gl liminf ), walt )
= timint (u(t.)|2+2 | HuCx, t)dx)
=|(f-, g2

Consider the equation

(33) w=u, 0+ Et—oh(w)de

u+ t + g+ .

Exactly in the same way as in the proofs of and [Proposition 2
using we see that there exists a unique solution w(t) of satisfying

wse L*(R: H(R*))N\ L*?" (R, XRE) N LY(R; X R})
with
d

- o . 2 3
T wse L=(R: L¥(R?).
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Furthermore
(34) (S";uws(z)—ua)uzdt)l”—>o as s +oo.
Indeed we have

uliy=-3 EO)f +Elt)g-

" & BoE@huE " EOE@N 1)L @de

=u | [5 E0E@ B0 @ |aue)de

=u_(t)+S E(t—2)h(u(e)de
in H-*%R?®. Hence
ws(t)—u(t):S:E(t—f)h(w,(z-))dr—}—STE(t——r)h(u(z‘))dr

= | Be—a)Th(w o)~ hu(@)de

~{"Be—ah @)z
Exactly in the same manner as in the proof of we have

(SO;H ws(t)f-u(t)”idtyu

< const. (S‘:u ws(0) Ilidt)1/4§ const. (S‘:n u)lidr)

—0 as s— oo,

Here we used the fact that [[(fi, go)le=[(f-, g-)le. Therefore there exists a
sequence s; — +oco such that

lws (O)—u@®l.—0  almost everywhere.
We have

lwiolz2]  Hotx, D)dx=luoe+2| Hux, ydr ace.
In much the same way as in the proof of we obtain
(35) lulE+2 | Hutx, 0)dr =17, gl ae.

From and it follows that
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lu@le+2 | Hutx, )dx=1(fs, glE=1(f-, 8-l

Hence
lu@®)—u.®)],—0 as a.e. t— +oo.

This completes the proof of b) in
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