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The Teichm\"uller space $T(\Gamma)$ of a Fuchsian group $\Gamma$ can be embedded, as a
bounded domain, into the Banach space $B(\Gamma)$ of bounded quadratic differentials
for $\Gamma$ Hence the boundary $\partial T(\Gamma)$ of $T(\Gamma)$ can be defined naturally. The
boundary $\partial T(\Gamma)$ was investigated by Bers [Ber], Maskit $[M_{3}]$ , Abikoff [A] and
others. However, most of them were done under the restriction that $\Gamma$ is a finitely
generated Fuchsian group of the first kind, that is, $T(\Gamma)$ is finitely dimensional.
In this paper we investigate the boundaries of Teichm\"uller spaces of finitely
generated Fuchsian group of the second kind. In this case the dimension of
$T(\Gamma)$ is infinite. For each $\phi\in T(\Gamma)\cup\partial T(\Gamma)$ the meromorphic homeomorphism
$W_{\phi}$ of the lower half plane $L$ can be defined, and induces an isomorphism
$\chi_{\phi}$ ; $\Gammaarrow W_{\phi}\Gamma W_{\phi}^{-1}$ . A point $\phi\in\partial T(\Gamma)$ is called a cusp if a hyperbolic element is
mapped to a parabolic one under $\chi_{\phi}$ . The existence of cusps was proved by

Bers [Ber] if $\Gamma$ is a finitely generated Fuchsian group of the first kind. In
section 2 we prove the existence of cusps even if $\Gamma$ is a finitely generated
Fuchsian group of the second kind. As usual we can prove the above state-
ment by obtaining cusps as limits of sequences in $T(\Gamma)$ obtained by squeezing
deformations, the definition of which and necessary preliminaries are exhibited
in \S 1. In \S 3 we prove that if $\phi\in\partial T(\Gamma)$ is not a cusp, then $\chi_{\phi}(\Gamma)$ is a quasi-
Fuchsian group, which never exists on the boundaries of the Teichm\"uller spaces
of finitely generated Fuchsian groups of the first kind. By using the method
in the proof of this theorem, we also give an alternative proof of the existence
of cusps and of the estimate of outradii of the Teichm\"uller spaces of parabolic
or finite cyclic groups, which are due to Sekigawa $[Se_{1}],$ $[Se_{2}]$ . Finally, in \S 4
we prove the existence of geometrically infinite cusps.

The author expresses his hearty thanks to the referee for his pointing out
many ambiguities and unsuitable expressions in the original manuscript. Without
his devoted help, this manuscript shall never attained readable form.

This research was partially supported by Grant-in-Aids for Scientific Research (No.

56540055 and No. 56540056) , Ministry of Education.



308 H. YAMAMOTO

\S 1. Preliminaries.

A Moebius transformation $g$ is a conformal automorphism of the Riemann
sphere $\hat{C}=C\cup\{\infty\}$ , which is of the form $g(z)=(az+b)/(cz+d)$ , where $a,$ $b,$ $c$

and $d$ are complex numbers satisfying the equation ad–bc $=1$ . In this paper $g$

is sometimes denoted by $(a, b;c, d)$ . Let $G$ be a discrete group of Moebius
transformations. The ordinary set $\Omega(G)$ of $G$ is the maximal subset of $\hat{C}$ where
$G$ acts discontinuously. The set $\Lambda(G)=\hat{C}-\Omega(G)$ is called the limit set of $G$ . If
$\Lambda(G)$ consists of finitely many points, then $G$ is said to be elementary. If $\Lambda(G)$

contains infinitely many points, then $G$ is said to be Kleinian. A quasi-Fuchsian
group is a Kleinian group keeping an oriented quasi-circle invariant. A totally
degenerate group is a Kleinian group whose ordinary set is connected and simply
connected.

For a Kleinian group $G$ the quotient space $S=\Omega(G)/G$ has a natural complex
structure so that the canonical projection $\pi$ is holomorphic. Let $\Omega’(G)$ be $\Omega(G)$

with elliptic fixed points of $G$ removed. A connected subsurface $M$ of $S$ is of
type $(g, m, n)$ if $M’=M\cap(\Omega’(G)/G)$ is a compact Riemann surface of genus $g$

with $m$ discs and $n$ points removed. If $\pi$ is locally $\nu_{J}- to- 1$ in a punctured
neighborhood of a point $P_{j}\in M-M’$ in $M’$ , then $M$ is said to have the signature
$(g, m, n;\nu_{1}, \cdots , \nu_{n})$ . Throughout this paper, we assume that $\nu_{1}\leqq\ldots\leqq\nu_{n}$ . Note
that $2\leqq\nu_{1}$ and $\nu_{n}\leqq\infty$ . If $M-M’$ consists of $n_{1}$ points, then $\nu_{j}<\infty$ for $j=1,$ $\cdots$ , $n_{1}$

and $\nu_{j}=\infty$ for $j=n_{1}+1,$ $\cdots$ , $n$ .
From now on $\Gamma$ denotes a finitely generated Fuchsian group of the second

kind keeping the upper half plane $U$ invariant, that is, $\gamma(U)=U$ for each $\gamma\in\Gamma$

and $(R\cup\{\infty\})\cap\Omega(\Gamma)\neq\emptyset$ .
A measurable function $\mu$ defined on $\hat{C}$ whose $L^{\infty}$-norm is less than one is

called a Beltrami differentials for $\Gamma$ if $\mu^{\circ}\gamma(z)\overline{\gamma’(z})/\gamma’(z)=\mu(z)$ for almost all $z\in\hat{C}$

and all $\gamma\in\Gamma$ Denote by $M(\Gamma)$ the set of all Beltrami differentials for $\Gamma$ which
vanishes in the lower half plane $L$ .

Now we review well known results on Teichm\"uller spaces (see [Ber]). For
each $\mu\in M(\Gamma)$ , there exists a unique quasi-conformal automorphism $w^{\mu}$ of $\hat{C}$

keeping the three points $0,1$ and $\infty$ invariant with the complex dilatation $\mu$ .
Set $\phi^{\mu}=[w^{\mu}|L]$ , where $w^{\mu}|L$ is the restriction of $w^{\mu}$ to $L$ and $[f]=(f’/f’)’$

$-(1/2)(f’/f’)^{2}$ is the Schwarzian derivative of $f$. Then $\phi^{\mu}$ belongs to the Banach
space $B(\Gamma)$ of bounded quadratic differentials for $\Gamma$, that is, the holomorphic
function $\phi^{\mu}$ defined on $L$ satisfies the equation $\phi^{\mu}\circ\gamma(z)\gamma’(z)^{2}=\phi^{\mu}(z)$ for each $\gamma\in\Gamma$

and each $z=x+\sqrt{-1}y$ , and the norm $\Vert\phi^{\mu}\Vert=\sup_{z\in L}y^{2}|\phi^{\mu}(z)|$ is finite. The map-

ping $\Phi:M(\Gamma)\ni\mu-,\phi^{\mu}\in B(\Gamma)$ is continuous and open. The Teichm\"uller space
$T(\Gamma)$ of $\Gamma$ is the image of $M(\Gamma)$ under $\Phi$ . The space $T(\Gamma)$ is a bounded domain
of $B(\Gamma)$ , and the boundary of $T(\Gamma)$ is denoted by $\partial T(\Gamma)$ . For each $\phi\in B(\Gamma)$ the
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Schwarzian differential equation $2\eta’’+\phi\eta=0$ has two linearly independent solu-
tions, which are determined uniquely under the normalized conditions $\eta_{1}’=\eta_{2}=0$

and $\eta_{1}=\eta_{2}’=1$ at $z=-\sqrt{-1}$ . If $\phi$ is in the closure $C1T(\Gamma)(=T(\Gamma)\cup\partial T(\Gamma))$ of
$T(\Gamma)$ , then $W_{\phi}=\eta_{1}/\eta_{2}$ is meromorphic and univalent, and the isomorphism
$\chi_{\phi}$ ; $\gamma\vdasharrow W_{\phi^{\circ}}\gamma\circ W_{\overline{\phi}^{1}}$ takes $\Gamma$ into the Kleinian group $\chi_{\phi}(\Gamma)=W_{\phi}\Gamma W_{\overline{\phi}^{1}}$ . A point
$\phi\in\partial T(\Gamma)$ is called a cusp if there exists a hyperbolic $\gamma\in\Gamma$ such that $\chi_{\phi}(\gamma)$ is
parabolic. For a cusp $\phi$, the Kleinian group $\chi_{\phi}(\gamma)$ is also called a cusp. Let $E$

be a non-empty subset of $\Omega(G)$ invariant under a Kleinian or elementary group
$G$ . A set $R\subset E$ is called a fundamental set for $G$ in $E$ if $g(R)\cap R=\emptyset$ for each
$g\in G-\{id.\}$ and if $\bigcup_{g\in G}g(R)=E$ . A connected set $P\subset R$ is called a cusped region

if $\pi(P)$ is a doubly connected neighborhood of a puncture of $\Omega(G)/G$ .
LEMMA 1.1. There is a subset $S$ of $L$ included compactly in $\Omega(\Gamma)$ with $\Vert\phi||$

$= \sup_{z\in S}y^{2}|\phi(z)|$ for each $\phi\in B(\Gamma)$ .

PROOF. Let $R$ be a fundamental set for $\Gamma$ in $L$ . Note that $\Vert\phi\Vert=\sup_{z\in R}y^{2}|\phi(z)|$ .
Without loss of generality, we may assume that $R$ consists of one cusped region
$P=\{z=x+\sqrt{-1}y;0\leqq x<1, y<-2\}$ ([Sh]) and a set $R_{0}$ included compactly in
$\Omega(\Gamma)$ . In $P,$ $\phi$ can be expanded in the form $\sum_{j=1}^{\infty}a_{j}\exp(-2\pi\sqrt{-1}jz)$ . Set $\lambda_{1}(z)$

$=y^{2}|\exp(-2\pi\sqrt{-1}z)|=y^{2}|\exp(2\pi y)|$ . Then it holds that $\lambda_{1}(z)\leqq\lambda_{1}(-2)$ for each

$y\leqq-2$ . Since $\lambda_{2}(z)=\sum_{j=1}^{\infty}a_{j}\exp(-2\pi\sqrt{-1}(]-1)z)$ is holomorphic, we can find a
point $z_{1}=x_{1}-2\sqrt{-1}$ with $|\lambda_{2}(z)|\leqq|\lambda_{2}(z_{1})|$ for each $z\in P$. Suming up the above,
we have $\sup_{\in}y^{2}|\phi(z)|=(-2)^{2}|\phi(z_{1})|$ . Clearly the set $R-P$ has the desired prop-
erty.

For each $\mu\in M(\Gamma)$ there exists a unique quasi-conformal automorphism $F^{\mu}$

of $\hat{C}$ satisfying the equation $F_{\frac{\mu}{z}}=\mu F_{z}^{\mu}$ and keeping the three points $-\sqrt{-1}$ ,
$-2\wedge-1$ and $-3\sqrt{-1}$ invariant. As is well known, $W_{\Phi(\mu)^{\circ}}(F^{\mu})^{-1}$ is a Moebius
transformation. Let $\{\mu_{t}\}_{t\in R}$ be a family of Beltrami differentials for $\Gamma$ Then
for the sake of simplicity, we write $F_{t}$ for $F^{\mu\iota}$ . The automorphism $F_{t}$ takes $\Gamma$

into a Kleinian group $F_{t}\Gamma F_{t}^{-1}$ and there is a quasi-conformaI homeomorphism $f_{t}$

of $S$ such that the following diagram

$\Omega(\Gamma)\Omega(F_{\ell}\Gamma F_{t}^{-1})\underline{F_{t}}$

$S=\Omega(\Gamma)f\Gamma S_{t}=\Omega\downarrow\underline{f_{t}}\downarrow$

$(F_{t}\Gamma F_{t}^{arrow 1})/F_{t}\Gamma F_{t}^{-1}$

is commutative, where the vertical arrows represent the canonical projections.
We can define the Poincar\’e metric $\rho_{t}(z)|dz|$ with the negative constant curvature
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on $\Omega(F_{t}\Gamma F_{t}^{-1})$ since the boundary $\Lambda(F_{t}\Gamma F_{t}^{-1})$ of $\Omega(F_{t}\Gamma F_{t}^{-1})$ consists of more than
two points. So $S_{t}$ has the natural hyperbolic metric $\overline{\rho}_{t}(\zeta)|d\zeta|$ , where $\zeta=\pi(z)$ is
a local parameter and $\overline{\rho}_{t}(\zeta)|d\zeta|=\rho_{t}(z)|dz|$ . The length of a curve $\sigma$ on $S_{t}$

measured by $\overline{\rho}_{t}(\zeta)|d\zeta|$ is denoted by $1(\sigma, S_{t})$ .
A sequence $\{g_{n}=(a_{n}, b_{n} ; c_{n}, d_{n})\}_{n=1}^{\infty}$ of Moebius transformations is said to

converge to a Moebius transformation $g=(a, b;c, d)$ if there exists a sequence
$\{\epsilon_{n}\}_{n=1}^{\infty}$ , where $\epsilon_{n}$ is either 1 or $-1$ , such that $\epsilon_{n}a_{n},$

$\epsilon_{n}b_{n},$
$\epsilon_{n}c_{n}$ and $\epsilon_{n}d_{n}$ converge

to $a,$ $b,$ $c$ and $d$ , respectively. A sequence $\{G_{n}\}_{n=1}^{\infty}$ of Kleinian groups, where
$G_{n}$ is generated by $g_{1.n},$ $\cdots$ , $g_{k.n}$, is said to converge to a Kleinian group $G$

generated by $g_{1},$
$\cdots$ , $g_{k}$ if $g_{j,n}$ converges to $g_{j},$ $j=1,$ $\cdots$ , $k$ .

LEMMA 1.2. Let $\{\Phi(\mu_{j})\}_{j=1}^{\infty}\subset T(\Gamma)$ be a sequence converging to a Point
$\psi\in T(\Gamma)\cup\partial T(\Gamma)$ . Then there exists a Moebius transformation $g$ such that the
Kleinian group $F_{j}\Gamma F_{j}^{-1}$ converges to $g^{-1}\chi_{\psi}(\Gamma)g$ .

PROOF. Since $[F_{j}|L]=[W_{\Phi(\mu_{j})}]$ , there exists a Moebius transformation $g_{j}$

which is identical with $W_{\Phi(\mu_{j})}\circ F_{j}^{-1}$ in $F_{j}(L)$ . Since the sequences $\{g_{j}(-’-1)\}_{n=1}^{\infty}=$

$\{W_{\Phi(\mu_{j})}(-\sqrt{-1})\}_{n=1}^{\infty},$ $\{g_{2}(-2\sqrt{-1})\}_{n=1}^{\infty}=\{W_{\Phi(\mu_{j})}(-2’-1)\}_{n=1}^{\infty}$ and $\{g_{j}(-3\sqrt{-1})\}_{n=1}^{\infty}$

$=\{W_{\Phi(\mu_{j})}(-3\sqrt{-1})\}_{n=1}^{\infty}$ converge to points which are different from one another,
$\{g_{j}\}_{j=1}^{\infty}$ converges to a Moebius transformation. Therefore so does $\{F_{j}|L\}_{j=1}^{\infty}=$

$\{g_{j}^{-1}\circ W_{\Phi(\mu_{j})}\}_{j=1}^{\infty}$ . Now the proof of Lemma 1.2 is clear.
A set of simple loops $\{\alpha_{i}\}_{i=1}^{q}$ on a Riemann surface $M$ is said to be homo-

topically independent if the following holds:
(i) $\alpha_{i}\cap\alpha_{j}=\emptyset,$ $1\leqq i<j\leqq q$ ,
(ii) $\alpha_{i}$ is not freely homotopic to $\alpha_{j},$ $1\leqq i<j\leqq q$ , and
(iii) $\alpha_{i}$ bounds neither a disc nor a punctured disc, $1\leqq i\leqq q$ .

Let $\{\alpha_{i}\}_{i=1}^{q}$ be a homotopically independent set of loops on $(U\cap\Omega’(\Gamma))/\Gamma$ For
every $i$, we can find a doubly connected domain $D_{i}$ of $(U\cap\Omega’(\Gamma))/\Gamma$ containing
$\alpha_{i}$ with Cl $D_{i}$ is compact in $(U\cap\Omega’(\Gamma))/\Gamma$ and Cl $D_{i\cap}C1D_{j}=\emptyset,$ $1\leqq i<j\leqq q$ . Let
$\{\mu_{t}\}_{t\in\subset 0,1)}$ be a set of Beltrami differentials for $\Gamma$ satisfying

(i) $\mu_{t}$ vanishes in $\hat{c}_{-\pi^{-1}}(\bigcup_{i=1}^{q}D_{i})$ ,

(ii) there exists a simple loop $\overline{\alpha}_{i}\subset D_{i}$ freely homotopic to $\alpha_{i}$ with
$\lim_{tarrow 1}l(f_{t}(\overline{\alpha}_{i}), S_{t})=0$,

(iii) on any compact subset of $\hat{C}-\pi^{-1}(\bigcup_{i=1}^{q}\alpha_{i}),$
$\mu_{t}$ converges to a measurable

function whose $L^{\infty}$-norm is less than one as $tarrow 1$ , and
(iv) each component of $f_{t}(D_{i}-\overline{\alpha}_{i})$ is conformally equivalent to the annulus

$1-t<|z|<2$ .
Then we say that $\Gamma$ is squeezed with respect to $\{\alpha_{i}\}3_{=1}$ if $t$ tends to 1.

We note that $\{\overline{\alpha}_{i}\}_{i=1}^{q}$ is homotopically independent and that, though neither
$\{D_{i}\}_{t=1}^{q}$ nor $\{\overline{\alpha}_{i}\}_{t\Rightarrow 1}^{q}$ can be determined uniquely by $\{\alpha_{i}\}_{t=1}^{q}$ , this is not essential
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for our later argument. By abuse of language, we write merely $\alpha_{i}$ for $\overline{\alpha}_{i}$ .
The existence of squeezing deformations was shown in $[Y_{1}]$ .

\S 2. Geometrically finite cusps.

The purpose of this section is to investigate properties of groups obtained
by squeezing deformations.

Kleinian groups can be naturally regarded as discontinuous groups acting in
the Euclidean upper half space $\{(z, t);z\in\hat{C}, t>0\}=\{(x_{1}, X_{2}, x_{3})\in R^{3} ; x_{3}>0\}$ . A
Kleinian group $G$ is said to be geometrically finite if $G$ has a Dirichlet funda-
mental region in the upper half space surrounded by a finite number of hyper-
bolic planes, that is, Euclidean half planes or hemispheres orthogonal to $C$

( $[G_{2}$ , p. 245]). Quasi-Fuchsian groups and elementary groups are geometrically
finite, and totally degenerate groups are not $([G_{1}])$ .

Let $\delta^{*}$ be the union of all components $\delta’ s$ of $\Omega(\Gamma)-\pi^{-1}(\bigcup_{i=1}^{q}\alpha_{i})$ such that

$\delta/\Gamma_{\delta}$ has the signature $(0,1,2;2,2)$ , where $\Gamma_{\delta}$ is the stabilizer subgroup

$\{\gamma\in\Gamma;\gamma(\delta)=\delta\}$ of $\delta$ in $\Gamma$ Denote $\Omega(\Gamma)-\pi^{-1}(iU^{q}=1\alpha_{i})-\delta^{*}$ by $\hat{\delta}$ .
THEOREM 2.1. If a finitely generated Fuchstan group $\Gamma$ of the second kind

is squeezed with respeci to a homotolncally independent set $\{\alpha_{i}\}3=1$ of loops on
$(\Omega’(\Gamma)\cap U)/\Gamma$, then the following holds.

(i) The point $\Phi(\mu_{t})$ converges to a cusp $\psi\in\partial T(\Gamma)$ .
(ii) The Kleinian group $\chi_{\psi}(\Gamma)$ is a geometrically finite Kleinian group with

an invanant component $\Delta_{0}$ .
(iii) There exists a homeomorphism $F$ of $\hat{\delta}$ onto $\Omega(\chi_{\psi}(\Gamma))$ such that if for a

compOnent $\delta$ of $\delta$ , the Riemann surface $\delta/\Gamma_{\delta}$ has the szgnature $(g, m, n;\nu_{1}, \cdots , \nu_{n})$ ,

then $F(\delta)/\chi_{\psi}(\Gamma)_{F(\delta)}$ has the signature $(g, 0, m+n;\nu_{1}, \cdots , \nu_{m+n})$ , where $\nu_{n+1}=\cdots=$

$\nu_{m+n}=\infty$ .
The proof of Theorem 2.1 is divided into several lemmas. First, we will

show the existence of a cusp $\psi$ to which a sequence $\{\Phi(\mu_{t_{j}})\}_{j=1}^{\infty}\subset\{\Phi(\mu_{t})\}_{t\in I0.1)}$

converges. Secondly, we will show the Kleinian group $\hat{\chi}_{\psi}(\Gamma)=\lim_{jarrow\infty}F_{t_{j}}\Gamma F_{t_{j}}^{-1}$

satisfies (ii) and (iii), which means that $\chi_{\psi}(\Gamma)$ also does by Lemma 1.2. Finally,
the uniqueness of the limit $\lim_{tarrow 1}\Phi(\mu_{t})$ will be shown.

Let $\delta_{0}$ be the component of $\hat{\delta}$ including $L$ .
LEMMA 2.2. There exists a sequence $\{F_{t_{j}}\}_{j=1}^{\infty}\subset\{F_{t}\}_{t\in\zeta 0,1)}$ such that $F_{t_{j}}|\delta_{0}$

converges to a homeomorphjsm $F_{\delta_{0}}$ of $\delta_{0}$ , and the convergence is uniform on every
compact subset of $\delta_{0}$ .

PROOF. Let $\{E_{k}\}_{k=1}^{\infty}$ be a sequence of compact subset of $\delta_{0}$ with $E_{k}\subset E_{k+1}^{O}$
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and $k=1UE_{k}^{O}=\delta_{0}\infty$, where $E_{k}^{o}$ is the interior of $E_{k}$ . By the definition of squeezing

deformations, $F_{t}|E_{2}^{o}$ is a $K_{2^{-}}quasi$-conformal homeomorphism keeping the three
points $-\sqrt{-1},$ $-2\sqrt{-1}$ and $-3\sqrt{-1}$ invariant, where $K_{2}=(1+ ess\sup|\mu(z)|)/$

$(1- ess\sup_{z\in E_{2}^{o}}|\mu(z)|)$
. So the family $\{F_{t}|E_{2}^{O}\}_{t\in\zeta\overline{t1}.1)}$ of $K_{2^{-}}quasi- conforma1z\in E_{2}^{o}$ homeo-

morphism of $E_{2}^{o}$ is normal ([LV, p. 73]). Therefore we can find a sequence
$\{F_{2,j}\}_{j=1}^{\infty}$ in $\{F_{t}\}_{t\in\zeta 0.1)}$ such that $F_{2.j}|E_{1}^{O}$ converges to a $K_{2}$-quasiconformal homeo-
morphism of $E_{2}^{O}$ and the convergence is uniform on $E_{1}$ ([LV, p. 74]). By the
same reasoning as above we can find a subsequence $\{F_{k+1.j}\}_{j=1}^{\infty}$ of $\{F_{k.j}\}_{j\Rightarrow 1}^{\infty}$ such
that $F_{k+1.j}|E_{\mathring{k}+1}$ converges to a $K_{k+1^{-}}quasi$-conformal homeomorphism of $E_{\mathring{k}+1}$

and the convergence is uniform on $E_{k}$ . The mapping $F_{\delta_{0}}= \lim_{jarrow\infty}F_{j.j}|E_{\mathring{j}}$ is a

homeomorphism of $\delta_{0}$ . Set $F_{t_{j}}|E_{\mathring{j}}=F_{j,j}|E_{\mathring{j}}$ . Then $\{F_{t_{j}}\}_{j=1}^{\infty}\subset\{F_{t}\}_{t\in\zeta 0.1)}$ is the
desired sequence.

Denote by $\tau(\alpha_{i})$ the set consisting of elements of $\Gamma$ which keep a component
of $\pi^{-1}(\alpha_{\ell})$ .

LEMMA 2.3. There exists a sequence $\{\phi_{j}\}_{j=1}^{\infty}\subset\{\Phi(\mu_{t})\}_{t\in\zeta 0,1)}$ converpng to a
$cusP\psi$ .

PROOF. Set $\phi_{j}=[F_{t_{j}}|L]=\Phi(\mu_{t_{j}})\in\{\Phi(\mu_{t})\}_{t\in\subset 0.1)}$ , where $\{F_{t_{f}}\}_{j=1}^{\infty}$ is the se-
quence obtained in Lemma 2.2. Since by Lemma 2.2 the sequence $\{F_{t_{j}}|L\}_{j=1}^{\infty}$ of
meromorphic homeomorphism of $L$ converges to $F_{\delta_{0}}$ uniformly on the closure of
the set $S$ obtained in Lemma 1.1, so do $\{(F_{t_{j}}|L)’\}_{j=1}^{\infty}$ , $\{(F_{t_{j}}|L)’’\}_{j=1}^{\infty}$ and
$\{(F_{t_{j}}|L)^{m}\}_{j=1}^{\infty}$ . Therefore $\phi_{j}$ converges to $\psi=[F_{\delta_{0}}|L]$ . Let $\gamma$ be a hyperbolic
element of $\tau(\alpha_{i})$ . Then $\hat{\chi}_{\psi}(\gamma)$ is parabolic $([Y_{1}])$ . Therefore we see that
$\psi\in\partial T(\Gamma)$ is a cusp.

Since $F_{\delta_{0}}( \delta_{0})\subset\Omega(\lim_{jarrow\infty}F_{t_{j}}\Gamma F_{t_{j}}^{-1})$ , we can define the isomorphism $\hat{\chi}_{\psi}$ of $\Gamma$ mapping
$\gamma$ to lim $F_{t_{j}}\circ\gamma\circ F_{t_{j}}^{-1}$ .

$jarrow\infty$

LEMMA 2.4. The homeomorphism $F_{\delta_{0}}$ obtained in Lemma 2.2 maps $\delta_{0}$ onto
an invariant component $\Delta_{0}$ of $\hat{\chi}_{\psi}(\Gamma)$ .

PROOF. It is clear that $F_{\delta_{0}}(\delta_{0})\subset\Omega(\hat{\chi}_{\psi}(\Gamma))$ . Let $\Delta_{0}$ be the component of $\hat{\chi}_{\psi}(\Gamma)$

including $F_{\delta_{0}}(\delta_{0})$ . Since $F_{\delta_{0}}(\delta_{0})$ is invariant under $\hat{\chi}_{\psi}(\Gamma)$ , so is $\Delta_{0}$ . By Ahlfors’
finiteness theorem ([Ah]) and the dePnition of squeezing deformations, both
$\Delta_{0}’/\hat{\chi}_{\psi}(\Gamma)$ and $F_{\delta_{0}}(\delta_{0})’/\hat{\chi}_{\psi}(\Gamma)$ are compact Riemann surfaces with finitely many
points removed. So the set $X=\Delta_{0}’/\hat{\chi}_{\psi}(\Gamma)-F_{\delta_{0}}(\delta_{0})’/\hat{\chi}_{\psi}(\Gamma)$ either is empty or
consists of finitely many points. Assume that $X$ is not empty. Let $\sigma$ be a
simple closed loop which bounds a disc on $\Delta_{0}’/\hat{\chi}_{\psi}(\Gamma)$ containing exactly one point
of $X$. Then a component $\overline{\sigma}$ of $\pi^{-1}(\sigma)$ is invariant only under the trivial element
in $\hat{\chi}_{\psi}(\Gamma)$ . On the other hand, by the definition of the squeezing deformations
$F_{\delta_{0}}^{-1}(\overline{\sigma})$ is invariant under a non-trivial element $\gamma$ so that $\overline{\sigma}$ is invariant under a
non-trivial element $\hat{\chi}_{\psi}(\gamma)$ . This contradiction means that $X$ is empty, and hence
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$F_{\delta_{0}}(\delta_{0})=\Delta_{0}$ .
Here we recall some classical results on Fuchsian groups. Let $\delta$ be a com-

ponent of $\Omega(\Gamma)/\Gamma_{-\pi^{-1}}(qU\alpha_{i})$ . Then a stabilizer subgroup $\Gamma_{\delta}$ of $\delta$ in $\Gamma$ is ele-

mentary if and only if $\delta/\Gamma_{\delta}$ has the signature $(0,1,2;2,2)$ ( $[F$, Chapter VI]).

In this case, $\Gamma_{\delta}$ is generated by two elliptic elements $e_{1}$ and $e_{2}$ with the relations
$e_{1}^{2}=e_{2}^{2}=id.$ , and $\Gamma_{\delta}$ consists of elements $e_{1}^{m_{\circ}}(e_{2}\circ e_{1})^{n},$ $n\in Z,$ $m=0,1$ . Therefore
any hyperbolic element $\gamma\in\Gamma_{\delta}$ is of the form $(e_{2}\circ e_{1})^{n},$ $n\in Z-\{0\}$ . Note that $\pi(\delta)$

is surrounded by one loop $\alpha^{*}\in\{\alpha_{i} ; i=1, \cdots , q\}$ , which divides $\Omega(\Gamma)/\Gamma$ into the
component $\delta/\Gamma_{\delta}$ and another one. Let $\overline{\alpha}$ be a component of $\pi^{-1}(\alpha^{*})\cap\partial\delta$ . Then,
since $\overline{\alpha}$ is invariant under $e_{2}\circ e_{1},$

$\partial\delta\cap\Omega(\Gamma)$ consists of $\overline{\alpha}=(e_{2}\circ e_{1})^{n}(\overline{\alpha})$ and $e_{1}(\overline{\alpha})=$

$e_{1^{\circ}}(e_{2}\circ e_{1})^{n}(\overline{\alpha}),$ $n\in Z$. Note that both $\overline{\alpha}$ and $e_{1}(\overline{\alpha})$ are kept invariant under all
hyperbolic elements.

LEMMA 2.5. There exists a subsequence, again denoted by $\{F_{t_{j}}\}_{j=1}^{\infty}$ , of $\{F_{t_{j}}\}_{j=1}^{\infty}$

obtained in Lemma 2.2 such that $F_{t_{j}}$ converges to a homeomorPhism $F$ of $\hat{\delta}$ which
maps each component of $\hat{\delta}$ onto a compOnent of $\hat{\chi}_{\psi}(\Gamma)$ .

PROOF. Let $\delta_{0},$ $\cdots$ , $\delta_{p}$ be a complete non-conjugate list of components of $\hat{\delta}$ .
Set $\epsilon_{m}=\delta_{m}\cap(\hat{C}-\pi^{-1}(D_{i})),$ $m=1,$ $\cdots$ , $p$ . Since $F_{\iota_{j}}|\epsilon_{m}$ is meromorphic and does
not take the value $-\sqrt{-1},$ $-2\sqrt{-1}$ and $-3\sqrt{-1}$, the sequence $\{F_{t_{j}}|\epsilon_{m}\}_{j=1}^{\infty}$ is a
normal family and a subsequence, again denoted by $\{F_{t_{j}}|\epsilon_{m}\}_{j=1}^{\infty}$ , of $\{F_{t_{j}}|\epsilon_{m}\}_{j\Rightarrow 1}^{\infty}$

converges to a mapping $F_{\epsilon_{m}}$ of $\epsilon_{m}$ which is either a meromorphic homeomorphism
of $\epsilon_{m}$ or a constant map. If $F_{\epsilon_{m}}(\epsilon_{m})$ is a point $\zeta$, then $\zeta$ is kept invariant under
$\hat{\chi}_{\psi}(\Gamma_{\epsilon_{m}})$ . Therefore any pair of non-elliptic elements $g_{1}$ and $g_{2}$ of the discrete
group $\hat{\chi}_{\psi}(\Gamma_{e_{m}})$ are commutative ( $[L$ , p. 94]), and so are $\hat{\chi}_{\psi}^{-1}(g_{1})$ and $\hat{\chi}_{\psi}^{-1}(g_{2})$ . On
the other hand, there exists a pair of hyperbolic elements in $\Gamma_{\epsilon_{m}}$ which are not
commutative each other since $\Gamma_{\epsilon_{m}}$ is non-elementary. This contradiction implies
that $F_{t_{j}}|\epsilon_{m}$ converges to a meromorphic homeomorphism of $\epsilon_{m}$ . By the same
reasoning as in the proof of Lemma 2.4, we can Pnd a subsequence, again denoted

by $\{F_{t_{j}}\}_{J=1}^{\infty}$ , of $\{F_{t_{j}}\}_{j=1}^{\infty}$ such that $F_{t_{j}}|k\Rightarrow U_{0}^{p}\delta_{k}$ converges to a homeomorphism of

$k=0U\delta_{k}p$ which maps $\delta_{k}$ onto a component of $\hat{\chi}_{\psi}(\Gamma)$ . Since $(F_{t_{j}}\circ\gamma\circ F_{t_{j}}^{-1})(F_{t_{j}}(z))=$

$F_{t_{j}}(\gamma(z))$ for each $j$, each $\gamma\in\Gamma$, and each $z\in k=0U\delta_{k}pF_{t_{j}}|\hat{\delta}$ converges to a homeo-

morphism of $\hat{\delta}$, which has the desired property.
LEMMA 2.6. Let $\delta$ be a component of $\delta^{*}$ and $\{F_{t_{j}}\}_{j=1}^{\infty}$ the sequence obtained

in Lemma 2.5. Then $F_{t_{j}}(\delta)$ converges to the fixed Point of $\hat{\chi}_{\psi}(\gamma)$ , where $\gamma$ is a
hyperbolic element of the elementary group Stab $\delta$ .

PROOF. Let $\epsilon$ be any compact subset of $\delta$ . Then, since $\{F_{t_{j}}|\epsilon\}_{j=1}^{\infty}$ is a
normal family ([LV, p. 73]), a subsequence, again denoted by $\{F_{t_{j}}|\epsilon\}_{j=1}^{\infty}$ , con-
verges to either a quasi-conformal homeomorphism of $\epsilon$ , or a mapping of $\epsilon$ onto
two points or a constant map ([LV, p. 74]). If $\{F_{t_{j}}|\epsilon\}_{j=1}^{\infty}$ converges to a
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quasi-conformal homeomorphism, then by the same reasoning as in the proof of
Lemma 2.4 and by the definition of squeezing deformations, the component
$\lim_{jarrow\infty}F_{t_{j}}(\delta)/\hat{\chi}_{\psi}(Stab\delta)$ of $\Omega(\hat{\chi}_{\psi}(\Gamma))/\hat{\chi}_{\psi}(\Gamma)$ has the signature $(0,0,3;2,2, \infty)$ . This

contradiction implies that the set $\lim_{jarrow\infty}F_{t_{j}}(\delta)$ consists of at most two points.

Assume the existence of a point in $\overline{\delta}=\lim_{jarrow\infty}F_{t_{j}}(\delta)$ which is distinct from the fixed

point $\xi$ of $\hat{\chi}_{\psi}(e_{2}\circ e_{1})$ . Then, since $\overline{\delta}$ is invariant under $\hat{\chi}_{\psi}(\Gamma),\overline{\delta}$ includes infinitely
many points. Because of this contradiction, $\overline{\delta}$ is identical with the point $\xi$ .

LEMMA 2.7. Let $g\in\hat{\chi}_{\psi}(\Gamma)$ be loxodromic. Then there is a $\alpha mple$ arc $\sigma$ in
$F(\hat{\delta}-L)\cup$ {$z\in\hat{C};\xi(z)=z$ for some $\hat{g}\in\hat{\chi}_{\psi}(U^{q}\tau(\alpha_{i}))$ }$\cup i=1\{\xi(g), \xi’(g)\}$ joining $\xi(g)$ to

$\xi’(g)$ such that $(\sigma-\{\xi(g), \xi’(g)\})\cap\Lambda(\hat{\chi}_{\psi}(\Gamma))$ is discrete on $\sigma-\{\xi(g), \xi’(g)\}$ , where
$\xi(g)$ and $\xi’(g)$ are the attracting and repelljng fixed Points of $g$ , respectjvely.

PROOF. If $g$ belongs to the stabilizer subgroup of a component $\Delta$ of $F(\hat{\delta}-L)$ ,
then we can easily find an arc in $\Delta$ with the desired property.

In the other case, the element $\gamma=\hat{\chi}_{\psi}^{-1}(g)$ does not keep any component of
$\hat{\delta}-L$ invariant. Let $z$ be a point of $U\cap\hat{\delta},$ $\sigma’$ a simple arc joining $z$ to $\gamma(z)$ and
$\delta_{1},$ $\cdots$ , $\delta_{r}$ components of $\hat{\delta}\cup\delta^{*}$ such that $\bigcup_{k=1}^{r}C1\delta_{k}\supset\sigma’$ and such that $\delta_{k}\cap\sigma’$ is

non-empty and connected, $k=1,$ $\cdots$ , $r$ . Let $\gamma_{k}$ be a hyperbolic element of
Stab $(C1\delta_{k}\cap C1\delta_{k+1})$ . Since by Lemmas 2.5 and 2.6 the arc $\sigma’’=F(\sigma’\cap(\hat{\delta}\cup\delta^{*}))\cup$

$( \overline{U}\lim\xi(F_{t_{j^{\circ}}}\gamma_{k}\circ F_{t_{j}}^{-1}))r1$ is a simple one included in $F(\hat{\delta}-L)\cup\{z\in\hat{C}$ ; $g(z)=z$ for
$k=1jarrow\infty$

some $\hat{g}\in\hat{\chi}_{\psi}(U\tau(\alpha_{i}))$ }$i=1q$ so is $(Ug^{k}(\sigma’’))\cup k=-\infty\infty\{\xi(g), \xi’(g)\}$ , which has the desired

properties. Using this lemma, we prove the following, which together with the
dePnition of squeezing deformations completes the proof of (iii) in Theorem 2.1.

LEMMA 2.8. The homeomorphism $F$ obtained in Lemma 2.5 maps $\delta$ onto
$\Omega(\hat{\chi}_{\psi}(\Gamma))$ .

PROOF. Assume that our assertion is false. Then Lemma 2.5 implies the
existence of another component $\Delta$ of $\hat{\chi}_{\psi}(\Gamma)$ than the invariant component $\Delta_{0}$

bounded by a quasi-circle $([M_{4}])$ with $\Delta\cap F(\hat{\delta})=\emptyset$ . Let $g\in\hat{\chi}_{\psi}(\Gamma)$ be a loxodromic
element keeping $\Delta$ invariant. Then there exists a simple arc $\sigma’$ in $C1\Delta\subset\hat{C}-F(L)$

joining the attracting fixed point $\xi$ of $g$ to the repelling one $\xi’$ . Lemma 2.7
shows the existence of another simple arc $\sigma’’$ than $\sigma’$ in $\hat{C}-\Delta-F(L)$ joining $\xi$

to $\xi’$ such that $(\sigma’-\{\xi, \xi’\})\cap\Lambda(\chi_{\psi}(\Gamma))$ is discrete on $\sigma’-\{\xi, \xi’\}$ . So both regions
$E_{1}$ and $E_{2}$ surrounded by the simple loop $\sigma=\sigma’\cup\sigma’’$ contain a point of $\Lambda(\hat{\chi}_{\psi}(\Gamma))$ .
Since the closed set $C1F(L)$ is invariant under $\hat{\chi}_{\psi}(\Gamma),$ $C1F(L)$ includes $\Lambda(\hat{\chi}_{\psi}(\Gamma))$

( $[L$ , p. 105]). Therefore the set $E_{m}$ contains a point $z_{m}$ of $F(L),$ $m=1,2$ . Join
$z_{1}$ to $z_{2}$ by an arc $\sigma^{*}$ in $F(L)$ . Since $\sigma^{*}$ is included in $F(L)$ , so is a point
$z^{*}\in\sigma^{*}\cap\sigma$ . On the other hand, the point $z^{*}$ is not included in $F(L)$ since
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$\sigma\cap F(L)=\emptyset$ . This contradiction completes the proof of our lemma.
In the next lemma we determine parabolic elements of $\hat{\chi}_{\psi}(\Gamma)$ .
LEMMA 2.9. Let $g$ be a paraboljc element of $\hat{\chi}_{\psi}(\Gamma)$ . Then $\hat{\chi}_{\psi}^{-1}(g)$ either is

parabolic or is in $\bigcup_{i=1}^{q}\tau(\alpha_{i})$ .

PROOF. First we consider the case where $g$ is in the stabilizer subgroup
$\hat{\chi}_{\psi}(\Gamma)_{\Delta}$ of a component $\Delta(\neq\Delta_{0})$ in $\hat{\chi}_{\psi}(\Gamma)$ . Since $\hat{\chi}_{\psi}(\Gamma)$ is a Kleinian group with
an invariant component $\Delta_{0},\hat{\chi}_{\psi}(\Gamma)_{\Delta}$ is quasi-Fuchsian $([M_{4}])$ . Therefore we can
find a disc invariant under $g$ , the image of which under the natural projection
$\pi$ is a punctured disc $D^{*}$ on $\Omega(\hat{\chi}_{\psi}(\Gamma))/\hat{\chi}_{\psi}(\Gamma)$ . Lemma 2.8 and the definition of
squeezing deformations show that $\pi\circ F\circ\pi^{-1}(D^{*})$ is either a punctured disc on
$\Omega(\Gamma)/\Gamma$ or a doubly connected domain surrcunded by some $\alpha_{i}$ and another simple
loop. This implies the desired conclusion.

Next, consider the other case where, apart from $\Delta_{0}$ , no component of $\hat{\chi}_{\psi}(\Gamma)$

is kept invariant by $g$ . Assume that our assertion is not true. Then there

exists a hyperbolic $\gamma\in\Gamma-i=1U^{q}\tau(\alpha_{i})$ such that $g=\hat{x}_{\psi}(\gamma)$ is parabolic. Let $\sigma$ be a

simple loop in $\Omega(\Gamma)$ separating one of the fixed point of $\gamma$ from the other such
that, for each component $\delta$ of $\hat{\delta}\cup\delta^{*},$ $\sigma\cap\delta$ is either connected or empty. We

may assume that $\sigma\cap\pi^{-1}(U\alpha_{i})i=1q$ consists of finitely many points since $\sigma\subset\Omega(\Gamma)$ .

So $F(\sigma\cap(\hat{\delta}\cup\delta^{*}))$ and the fixed points of finitely many parabolic elements

$g_{1},$
$\cdot$ . , $g_{k}$ of $\hat{x}_{\psi}(U\tau(\alpha_{i}))i=1q$ make a simple loop $\sigma^{*}$ by Lemmas 2.5 and 2.6. Since

the fixed point $\xi$ of $g$ is on $\sigma^{*}\cap\{\xi_{1}, \cdots , \xi_{k}\}$ , where $\xi_{m}$ is the fixed point of the
parabolic $g_{m},$

$\xi$ is identical with some $\xi_{m}$ . Therefore $g$ and $g_{m}$ are commuta-

tive, and so are the hyperbolic $\hat{\chi}_{\psi}^{-1}(g)\not\in i=1U\tau(\alpha_{i})q$ and the hyperbolic $\hat{\chi}_{\psi}^{-1}(g_{m})\in$

$i=1U^{q}\tau(\alpha_{i})$ This contradiction completes the proof of our lemma.

Let $H$ be a subgroup of a Kleinian group $G$ . A Jordan domain on $\hat{C}$ is called
a precisely invariant disc for $H$ in $G$ , if $h(E)=E$ for $h\in H$ and $g(E)\cap E=\emptyset$

for each $g\in G-H$ and if (Cl $E-\Lambda(H)$ ) $\subset\Omega(G)$ .
LEMMA 2.10. For each maximal parabolic cyclic subgroup $H$ of $\hat{\chi}_{\psi}(\Gamma)$ , there

exist two precjsely invariant discs for $H$ in $\hat{\chi}_{\psi}(\Gamma)$ mutually disjoint to each other.
PROOF. Let $h$ be an element of $H$. Then by Lemma 2.9 $\hat{\chi}_{\psi}^{-1}(h)$ either is

parabolic or is in $i\Rightarrow 1U^{q}\tau(\alpha_{i})$ . If $\hat{\chi}_{\psi}^{-1}(h)$ is parabolic, then there exist two precisely

invariant discs $E_{1}$ and $E_{2}$ for $\hat{\chi}_{\psi}^{-1}(H)$ in the quasi-Fuchsian group $\Gamma$ contained in
$\hat{\delta}$ which are mutually disjoint to each otber. So $F(E_{1})$ and $F(E_{2})$ are the desired

discs. $l f\hat{\chi}_{\psi}^{-1}(h)\in\bigcup_{i=1}^{q}\tau(\alpha_{i})$ , then by the definition of squeezing deformations $F(E_{1})$
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and $F(E_{2})$ are the desired discs, where $E_{1}$ and $E_{2}$ are two components of
$( \bigcup_{i=1}^{q}\pi^{-1}(D_{i}-\alpha_{i}))\cap\hat{\delta}$ invariant under $\hat{\chi}_{\psi}^{-1}(h)$ .

Using this lemma, we will prove the following, which together with Lemma
2.4 completes the proof of (ii) in Theorem 2.1.

LEMMA 2.11. The Kleinian group $\hat{\chi}_{\psi}(T)$ is geomefrically finite.
PROOF. Since $\hat{\chi}_{\psi}(\Gamma)$ has an invariant component, $\hat{\chi}_{\psi}(\Gamma)$ is formed from

$G_{1},$ $\cdots$ , $G_{r}$ and from $g_{1},$
$\cdots$ , $g_{s}$ by finitely many applications of Maskit’s com-

bination theorems, where $G_{m}$ is quasi-Fuchsian, totally degenerate or elementary,
and $g_{m}$ is a Moebius transformation. For terminologies and a proof, see $[M_{1}]$ ,
[M2], $[M_{3}],$ $[M_{4}]$ . Assume that some $G_{m}$ is totally degenerate. If $G_{m}$ contains
a parabolic element $h$ , then there exists exactly one precisely invariant disc for
the maximal subgroup $H$ containing $h$ in $G_{m}$ . Since $\Omega(G_{m})\supset\Omega(\hat{\chi}_{\psi}(\Gamma))$ , there
exists at most one precisely invariant disc for $H$ in $\hat{\chi}_{\psi}(\Gamma)$ , which contradicts
Lemma 2.10. If $G_{m}$ does not contain a parabolic element, then $G_{m}$ contains
purely loxodromic subgroup $G_{m}’$ which is isomorphic to the fundamental group
of a compact Riemann surface. On the other hand, since $\chi_{\psi}^{-1}(G_{m}’)$ is a purely
hyperbolic subgroup of a Fuchsian group of the second kind, $\chi_{\psi}^{-1}(G_{m}’)$ is free,
and so is $G_{m}’$ . This is a contradiction. Now we have seen that no $G_{m}$ is totally
degenerate. Therefore $\hat{\chi}_{\psi}(\Gamma)$ is geometrically finite ( $[M_{5}]$ , [Y2]).

To complete the proof of Theorem 2.1, we need only to prove the following.
LEMMA 2.12. The limit $\lim_{tarrow 1}\Phi(\mu_{t})$ exists.

PROOF. Let $\{\Phi(\mu_{t_{j}})\}_{j=1}^{\infty}$ and $\{\Phi(\mu_{t_{j}}^{*})\}_{j=1}^{\infty}$ be sequences in $\{\Phi(\mu_{t})\}_{t\in\ddagger 0.1)}$ con-
verging to $\psi$ and $\psi*$, respectively. Since both $\hat{\chi}_{\psi}(\Gamma)$ and $\hat{\chi}_{\psi*}(\Gamma)$ are geometri-
cally finite, the conformal homeomorphism $F^{*}\circ F^{-1}$ of $F(\hat{\delta})=\Omega(\hat{\chi}_{\psi}(\Gamma))$ onto $F^{*}(\hat{\delta})$

$=\Omega(\hat{\chi}_{\psi*}(\Gamma))$ is the restriction of a Moebius transformation to $\Omega(\hat{\chi}_{\phi}(\Gamma))([M_{5}])$ .
Therefore it holds that $\psi^{*}=[F^{*}|L]=[F|L]=\psi$ .

\S 3. Quasi-Fuchsian groups on the boundaries of Teichm\"uller spaces.

The main purpose of this section is to prove the following.
THEOREM 3.1. Let $\Gamma$ be a finitely generated Fuchstan group of the second

kind. If $\psi\in\partial T(\Gamma)$ is not a cusp, then $\chi_{\psi}(\Gamma)$ is quasz-Fuchsian, so that $\chi_{\psi}(\Gamma)$ is
geometncally finite.

Recall the following theorem on Kleinian groups on the boundaries of
Teichm\"uller spaces of finitely generated Fuchsian groups of the first kind. Then
we recognize a clear difference between the following theorem and ours.

THEOREM (Bers [Ber] and Greenberg $[G_{1}]$ ). Let $\Gamma*be$ a finitely generated
Fuchstan group of the first kind. If $\psi\in\partial T(\Gamma^{*})$ is not a cusp, then $\chi_{\psi}(\Gamma^{*})$ is
totally degenerate, so that $\chi_{\psi}(\Gamma^{*})$ is geomefncally infinite.
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Now we prove Theorem 3.1 by showing the existence of a quasi-Fuchsian
group of the first kind including $\chi_{\psi}(\Gamma)=W_{\psi}\Gamma W_{\psi}^{-1}$ as a subgroup, where $W_{\psi}$ is
the meromorphic homeomorphism of the lower half plane $L$ defined in \S 1. For
the sake of simplicity, we assume that the Riemann surface $L/\Gamma$ is of type
$(g, l, n)$ .

First we construct a group $G^{*}$ including $\chi_{\psi}(\Gamma)$ . Let $\omega$ be a fundamental
polygon for $\Gamma$ in $L$ . Here we may assume that the boundary of $\omega$ is connected
and consists of finitely many circular arcs called sides which are pairwise iden-
tified by elements $\gamma_{1},$

$\cdots$ , $\gamma_{l}$ of $\Gamma$ (which generate $\Gamma$), and $\gamma_{1}$ corresponds to the
single boundary component of $\Omega(\Gamma)/\Gamma$ (cf. $[G_{2}]1.2$). We denote by $s$ and $s’$ the
sides of $\omega$ identified by $\gamma_{1}$ , namely $\gamma_{1}(s)=s’$ . Let $V_{0}$ be a point on $W_{\psi}(s)$ . Let
$C_{1},$ $\cdots$ , $C_{2r}$ be circles in $W_{\psi}(\omega)\cup W_{\psi}(s)\cup W_{\psi}(s’)$ satisfying the following:

(i) $C_{1}$ meets Cl $(\hat{C}-W_{\psi}(\omega))$ only at $V_{0}$ , and $C_{2r}$ does Cl $(\hat{C}-W_{\psi}(\omega))$ only at
the point $V_{2r}=W_{\psi}\circ\gamma\circ W_{\psi}^{-1}(V_{0})$ ,

(ii) $C_{j}$ is tangent to $C_{j+1},1\leqq j\leqq 2r-1$ , and
(iii) $C_{j}\cap C_{k}=\emptyset,$ $k-j\geqq 2,1\leqq j<k\leqq 2r$ .

Set $V_{j}=C_{j}\cap C_{j+1},$ $j=1,$ $\cdots$ , $2r-1$ . Let $g_{t+j}$ be the parabolic transformation with
the fixed point $V_{2j-1}$ which maps $V_{2j-2}$ onto $V_{2j},$ $1\leqq j\leqq r$ . Let $\hat{\Omega}$ be the com-

ponent of $W_{\psi}( \omega)\cap(\bigcap_{i=1}^{2r}$ ext $C_{j})$ not containing the image of a point near $(C1\omega)\cap R$

under $W_{\psi}$ . Let $c*$ be the group generated by $g_{1},$
$\cdots$ , $g_{t+r}$, where $g_{j}=x_{\psi}(\gamma_{j})$ ,

$1\leqq j\leqq l$.
A Kleinian group with a simply connected invariant component is called B-

group.
LEMMA 3.2. The Kleinian group $G^{*}$ is a $B$-group.
PROOF. Let $c_{1},$ $\cdots,$ $c_{2r}$ be circles in $C1\omega U\{x-\sqrt{-1}y;x+\sqrt{-1}y\in\omega\}$ satisfy-

ing the following:
(i) $c_{1}$ (resp. $c_{2r}$) is tangent to $s$ (resp. $s’$ ) at the point $v_{0}$ (resp. $v_{2r}$) on $R$ ,

so that $c_{1}$ and $c_{2r}$ are orthogonal to $R$,
(ii) $c_{j}\cap c_{k}=\emptyset,$ $k-j\geqq 2,1\leqq j<k\leqq 2r$, and
(iii) $c_{f}$ is tangent to $c_{j+1}$ at a point on $R,$ $1\leqq\gamma\leqq 2r-1$ .

Set $v_{j}=c_{j} \cap c_{j+1},1\leqq\int\leqq 2r-1$ . Let $\gamma_{t+j}$ be the parabolic transformation with the
fixed point $v_{2j-1}$ which maps $v_{2j-2}$ onto $v_{2j}$ . Then the group $\Gamma*generated$ by

$\cup\gamma_{f}t+r$ is a Fuchsian group of the first kind keeping $L$ invariant. Note that $\hat{\omega}=$

$j=1$

$\omega\cap((\bigcap_{j=1}^{2r}extc_{j})\cup(\bigcap_{j=1}^{r}c_{2j- 1}))$ is a connected fundamental set for $\Gamma*inL$ .

Let $\Psi_{1}$ be a homeomorphism of the boundary $\partial\hat{\omega}$ of $\hat{\omega}$ onto $\partial\hat{\Omega}$ satisfying the
following:

(i) $\Psi_{1}=W_{\psi\cap}$ ,
(ii) $\Psi_{1}(s’)=W_{\psi}(s’)\cap\partial\hat{\Omega}$ ,

(iii) $\Psi_{1}(c_{j}\cap L)=C_{j}\cap\partial\hat{\Omega},$ $j=1,$ $\cdots$ , $2r$ , and
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(iv) $\Psi_{1}(z)=W_{\psi}(z)$ for $z\in\partial\omega-(s\cup s’)-(Uc_{j})$ .

Then we can construct a homeomorphism $\Psi_{2}$ of $C1\hat{\omega}$ onto $C1\hat{\Omega}$ which is identical
with $\Psi_{1}$ on $\partial\hat{\omega}$ . The correspondence $\gamma_{j}-g_{j},$ $1\leqq$ ] $\leqq l+r$, can be naturally extended
to an isomorphism $\chi*:\Gamma^{*}arrow G^{*}$ , which is identical with $\chi_{\psi}$ on $\Gamma$, because $\Gamma*(resp$ .
$G^{*})$ is the free product of $\Gamma$ (resp. $\chi_{\psi}(\Gamma)$ ) and $\langle\gamma_{t+1}\rangle,$ $\cdots$ , and $\langle\gamma_{l+r}\rangle$ (resp.
$\langle g_{t+1}\rangle,$ $\cdots$ , and $\langle g_{l+r}\rangle$ ), where $\langle\gamma_{j}\rangle$ is the cyclic group generated by $\gamma_{j}$ . Let $\Psi_{3}$

be the restriction of $\Psi_{2}$ to $\omega^{*}=C1\hat{\omega}\cap L$ . Now we can construct a homeomorphism
$\Psi$ of $L$ onto $\{g(z);g\in G^{*}, z\in\Psi_{3}(\omega^{*})\}$ by setting $\Psi(\gamma(z))=x*(\gamma)(\Psi_{3}(z))$ for $z\in\omega^{*}$

and $\gamma\in\Gamma*$ . Clearly $L$ is simply connected, so is $\Psi(L)$ . Note that $c*$ is dis-
continuous in $\Psi(L)$ and that $c*$ keeps $\Psi(L)$ invariant. To complete the proof
of our lemma, we must prove that $\Psi(L)$ is identical with the component $\Delta_{1}$ of
$c*$ including $\Psi(L)$ . By Ahlfors finiteness theorem [Ah] and by the construc-
tion of $c*$ both $\Delta_{1}’/c*$ and $\Psi(L)’/c*$ are compact Riemann surfaces with finitely
many points removed. The rest of the proof of our lemma is the same as that
of Lemma 2.4.

LEMMA 3.3. Let $\gamma$ be an element of $\Gamma^{*}$ . Then, if $\chi^{*}(\gamma)$ is parabolic, so is $\gamma$ .
PROOF. First we consider the case of $\chi*(\gamma)\in\chi*(\Gamma)$ . Then, since $\psi$ is not a

cusp, $\chi^{*}(\gamma)=x_{\psi}(\gamma)$ is parabolic if and only if so is $\gamma$ .
Secondly, assume that $\chi*(\gamma)$ is an element of the group $\chi*(\Gamma_{1})$ , where $\Gamma_{1}$ is

the group generated by $\gamma_{l+1},$ $\cdots$ , $\gamma_{l+r}$ . Note that $\Gamma_{1}$ (resp. $\chi*(\Gamma_{1})$ ) is a Kleinian
group with an invariant component formed from parabolic cyclic groups via
Maskit’s combination theorem I, where all amalgamated subgroups are trivial.
For terminologies and a proof, see $[M_{1}],$ $[M_{4}]$ . So an element $\gamma$ of $\Gamma_{1}$ (resp.
$\chi*(\gamma)$ of $\chi*(\Gamma_{1}))$ is parabolic if and only if $\gamma$ (resp. $\chi^{*}(\gamma)$ ) is conjugate to an

element of $j=U_{1}^{r}\langle\gamma_{l+j}\rangle$ in $\Gamma_{1}$ (resp. $j=U_{1}^{r}\langle\chi*(\gamma_{l+j})\rangle$ in $\chi^{*}(\Gamma_{1})$). Now it is clear that our

assertion is true.
Finally, if $\chi^{*}(\gamma)$ is in $G-\chi(\Gamma)-\chi*(\Gamma_{1})$ , then $\chi^{*}(\gamma)$ can be represented as the

free product of elements of $\chi*(\Gamma)$ and $\chi*(\Gamma_{1})$ . Recall an elementary fact that
$\gamma,$

$\gamma^{-1}$ and $g\circ\gamma\circ g^{-1}$ for each $g\in G^{*}$ are parabolic simultaneously. This permits us
to assume that $\chi*(\gamma)$ is of the form $\overline{\gamma}_{k}\circ\overline{g}_{k^{\circ}}\ldots\circ\overline{\gamma}_{1}\circ\overline{g}_{1}$ , where $\overline{g}_{j}\in\chi*(\Gamma_{1})-\{id.\}$ and
$\overline{\gamma}_{j}\in\chi*(\Gamma)-\{id.\}$ . Let $\sigma\subset\{W_{\psi}(\omega)\bigcap_{j=1}^{2r}$ ext $C_{j}\}\cup\{V_{0}, V_{2r}\}$ be a Jordan loop separating

the set $\bigcup_{j=1}^{2r}intC_{j}$ from the point $\infty$ . Recall that $\chi^{*}(\Gamma)$ is the free product of

cyclic groups $\langle g_{l+1}\rangle,$ $\cdots$ , $\langle g_{l+r}\rangle$ . Since $\overline{g}_{1}$ is an element of $\chi*(\Gamma_{1})-\{id.\}$ , $\overline{g}_{1}$ maps
ext $\sigma$ onto int $\overline{g}_{1}(\sigma)$ included in int $\sigma$ . Note that $\overline{g}_{1}(\sigma)\cap\sigma$ is empty or $\{V_{0}\}$ or
$\{V_{2},\}$ . Since $\overline{\gamma}_{1}$ is an element of $\chi*(\Gamma)-\{id.\}$ and since int $\overline{g}_{1}(\sigma)$ is included in a
fundamental domain $W_{\psi}(\omega)$ for $\chi*(\Gamma)$ in $W_{\psi}(L),\overline{\gamma}_{1}$ maps int $\overline{g}_{1}(\sigma)$ onto $\overline{\gamma}_{1}(intg_{1}(\sigma))$

$=int\overline{\gamma}_{1}\circ\overline{g}_{1}(\sigma)$ included in $W_{\psi}(L)-C1W_{\psi}(\omega)(\subset ext\sigma)$ . Note that the set $\overline{\gamma}_{1}\circ\overline{g}_{1}(\sigma)\cap\sigma$

is empty or $\{V_{0}\}$ or $\{V_{2r}\}$ . Inductively we can show that the transformation
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$\chi*(\gamma)$ maps ext $\sigma$ onto int $\chi^{*}(\gamma)(\sigma)$ included in $W_{\psi}(L)-C1W_{\psi}(\omega)(\subset ext\sigma)$ , and that
$\chi^{*}(\gamma)(\sigma)\cap\sigma$ is empty or $\{V_{0}\}$ or $\{V_{2r}\}$ . On the other hand, since $\chi*(\gamma)$ is parabolic,
$\chi^{*}(\gamma)(\sigma)\cap\sigma$ is not empty, so that $\chi*(\gamma)(\sigma)\cap\sigma$ is either $\{V_{0}\}$ or $\{V_{2r}\}$ . Therefore
$\overline{\gamma}_{j}\circ\cdots\circ\overline{g}_{1}(\sigma)\cap\sigma$ is either $\{V_{0}\}$ or $\{V_{2r}\},$ $1\leqq j\leqq k$ and $\chi^{*}(\gamma)$ is one of the following
forms or its power: $\chi^{*}(\gamma_{1}^{-1})\circ g_{l+r^{\circ}}\ldots\circ g_{l+1}$ or $\chi*(\gamma_{1})\circ g_{l+1^{\circ}}^{-1}\ldots\circ g_{l+r}^{-1}$ . In any case,
obviously $\gamma$ is a parabolic element whose fixed point is either $v_{0}$ or $v_{2r}$ . Now we
complete the proof of our lemma.

The following lemma completes the proof of Theorem 3.1.
LEMMA 3.4. The B-group $c*$ is quasi-Fuchsian, and so is $\chi_{\psi}(\Gamma)$ .
PROOF. By a classification theorem on B-groups $([M_{3}])$ , Lemma 3.3 implies

that $c*$ is quasi-Fuchsian or totally degenerate. The latter cannot occur because
$c*$ has another component containing a point of $W_{\psi}(L)-C1\Psi(L)$ than $\Psi(L)$ .
Therefore $c*$ is quasi-Fuchsian, and so is the subgroup $\chi_{\psi}(\Gamma)$ of $c*$ .

In the above proof, we constructed a Kleinian group containing the original
group as a subgroup. In general, this method is sometimes valid for our solving
problem on (quasi-) Fuchsian group of the second kind. Here we show two ap-
plications of this method.

The first one is a direct answer to the problem stated in Introduction, which
is a corollary to Theorem 2.1.

PROPOSITION 3.5. Let $\Gamma$ be a finitely generated Fuchsian group of the second
kind. Then there exists a cusp on $\partial T(\Gamma)$ .

PROOF. Let $\Gamma*be$ a finitely generated Fuchsian group of the first kind in-
cluding $\Gamma$ as a subgroup. Then $T(\Gamma^{*})\subset T(\Gamma)$ . Bers [Ber] showed the existence
of a sequence $\{\phi_{j}\}_{j=1}^{\infty}\subset T(\Gamma^{*})$ converging to a cusp $\psi\in\partial T(\Gamma^{*})(\subset C1T(\Gamma))$ such
that $W_{\psi}\circ\gamma\circ W_{\psi}^{-1}$ is parabolic for a hyperbolic $\gamma\in\Gamma(\subset\Gamma^{*})$ . This means that $\psi\in$

$\partial T(\Gamma)$ is a cusp.
The next application is to give an estimate of the outradii of the Teichm\"uller

spaces of some cyclic groups.
PROPOSITION 3.6 $([Se_{1}], [Se_{2}])$ . Let $\Gamma$ be the trivial, or an elliptic or a para-

bolic cyclic group keepng the upper half plane invariant. Then the outradius
$o(\Gamma)=$ sup $\Vert\phi\Vert$ of $T(\Gamma)$ is equal to 3/2.

$\phi\in T(\Gamma)$

PROOF. We prove our proposition only in the case where $\Gamma$ is generated by

a parabolic transformation $\gamma$ . In the other case, the proof can be given in the
same way. For any $\epsilon>0$, there exists a finitely generated Fuchsian group $\Gamma*$

of the first kind which contains a parabolic element $r^{*}$ with $o(\Gamma^{*})>3/2-\epsilon$ ([C]).

Then we have $3/2-\epsilon<0(\Gamma^{*})\leqq o(\langle\gamma^{*}\rangle)=o(\langle\gamma\rangle)\leqq 3/2$, where $\langle\gamma^{*}\rangle$ denotes the group
generated by $r^{*}$ The equality was pointed out by Sekigawa $[Se_{1}]$ and the last
inequality is due to Nehari [N]. Since $\epsilon$ is arbitrarily small, we have the desired
conclusion.
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\S 4. Geometrically infinite cusps.

In this section we prove the following.
THEOREM 4.1. Let $\psi$ be a cusp obtained in Theorem 2.1 such that $\Omega(G)/G$

$=S_{0}\dashv-S_{1}+\cdots+S_{k}$ , where $G=\hat{x}_{\psi}(\Gamma)$ and $S_{0}$ is the component of $\Omega(G)/G$ including
$F(L)/G$ . Then for any Proper subset $J=\{j_{1}, \cdots , j_{s}\}$ of $K=\{1, \cdots , k\}$ such that
no $S_{u}$ is of type $(0,0,3)$ for $u\in K-J$, there exists a geometrically infinite cusp
$\phi\in\partial T(\Gamma)$ such that $\Omega(\hat{\chi}_{\phi}(\Gamma))/\hat{\chi}_{\phi}(\Gamma)=S_{0}+S_{J_{1}}+$ $+S_{j_{S}}$ .

PROOF. The following proof of Theorem 4.1 is merely a copy of that of
Theorem 7 in [A]. Therefore we state only an outline of the proof. For details,
see [A]. For each $r\in K-J$, let $\Delta_{r}$ be a component of $\pi^{-1}(S_{r})$ . Since $\Delta_{r}/G_{\Delta_{r}}$ is
not of type $(0,0,3)$ , a sequence $\{\nu_{r.n}\}_{n=1}^{\infty}$ of Beltrami differentials for $G_{\Delta_{r}}$ with
the supports on $\Delta_{r}$ such that $F^{\nu_{r.n}}G_{\Delta_{r}}(F^{\nu_{r.n}})^{-1}$ converges to a totally degenerate
group $H_{r}$ . Let $\nu_{n}$ be the Beltrami differential for $G$ with the support on
$\bigcup_{r\in K-J}\bigcup_{g\in G}g(\Delta_{r})$ which is identical with $\nu_{n.r}$ on $\Delta_{r}$ . Then, since $F^{\nu_{n}}\circ F\circ\Gamma\circ(F^{\nu_{n}}\circ F)^{-1}$

is geometrically finite ([Y2]), there exists a sequence $\{\mu_{j.n}\}_{j=1}^{\infty}\subset M(\Gamma)$ with
$\lim_{jarrow\infty}[F^{\mu j.n}|L]=[F^{\nu_{n}}\circ F|L]$ . Note that $[F^{\mu j,n}|L]\in T(\Gamma)$ and that there exists a

hyperbolic $\gamma\in\Gamma$ such that $F^{\nu_{n}}\circ F\circ r^{\circ}(F^{\nu_{n}}\circ F)^{-1}$ is parabolic, so that $\phi_{n}=[F^{\nu_{n}}\circ F|L]$

$\in\partial T(\Gamma)$ is a cusp. As in the proof of Lemma 2.3, a subsequence, again denoted
by $\{\phi_{n}\}_{n=1}^{\infty}$ , of $\{\phi_{n}\}_{n=1}^{\infty}$ converges to a cusp $\phi$ . For each $n$ and each $r\in K$ we
can find a K-quasi-conformal automorphism $F(n, r)$ of $\hat{C}$ with $F^{\nu_{n}}G_{\Delta_{r}}(F^{\nu_{n}})^{-1}=$

$F(n, r)G_{\Delta_{r}}F(n, r)^{-1}$ ( $[A$, Lemma 5]). So we can find a K-quasi-conformal auto-
morphism $F(r)$ of $\hat{C}$ and a subsequence, again denoted by $\{F^{\nu_{n}}\}_{n=1}^{\infty}$ , of $\{F^{\nu_{n}}\}_{n=1}^{\infty}$

such that $\lim_{narrow\infty}F^{\nu_{n}}G_{\Delta_{r}}(F^{\nu_{n}})^{-1}=\lim_{narrow\infty}F(n, r)G_{\Delta_{r}}F(n, r)^{-1}=F(r)H_{r}F(r)^{-1}$ . Since the

Kleinian group $\hat{\chi}_{\phi}(\Gamma)$ with an invariant component has the totally degenerate
group $F(r)H_{r}F(r)^{-1}$ as a factor subgroup, $\hat{\chi}_{\phi}(\Gamma)$ is geometrically infinite $([M_{5}]$ ,
$[Y_{2}])$ . Thus we complete the proof of our theorem.
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