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On the Gauss map of a complete minimal surface in R”
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§1. Introduction.

Let x: M—R™ be a (connected, oriented) minimal surface immersed in R™
(m=3). We may consider M as a Riemann surface by associating a holomorphic
local coordinate z=u-+iv with each positive isothermal local coordinates u, v.
We denote by G the (generalized) Gauss map of M, which is a map of M into
P™-Y(C) defined by G==-(0x/0z), where r is the canonical projection of C™— {0}
onto P™-Y(C). It is well-known that the map f=G, the conjugate of G, is holo-
morphic and the image f(M) is contained in the complex quadric Qn-»(C) in
P™YC) (cf., [7], p. 110). Note that, when m=3, we may identify Q,(C) with
the Riemann sphere and the map f may be regarded as a meromorphic function
on M.

In [9], R. Osserman showed that the Gauss map of a complete non-flat
minimal surface in R® cannot omit a set of positive logarithmic capacity in
Q1(C). Subsequently, in [3], S.S. Chern and R. Osserman proved that the Gauss
map of a complete minimal surface M of finite total curvature can fail to inter-
sect at most (m—1)(m+2)/2 hyperplanes in general position if it is non-degener-
ate. Moreover, they showed that the Gauss map of a non-flat complete minimal
surface in R™ intersects a dense set of hyperplanes. Recently, in [14], F. Xavier
obtained a remarkable result that the Gauss map of a complete non-flat minimal
surface in R® cannot omit 7 points in Q.(C).

Relating to these results, we shall prove the following theorem in this paper.

MAIN THEOREM. Let M be a complete minimal surface in R™. If the Gauss
map of M is non-degenerate, it can fail to intersect at most m*® hyperplanes in
general position.

It is a very interesting problem to obtain the best estimate ¢(m) (=m? of
the number of hyperplanes having the property in Main Theorem. In the case
m=3, R. Osserman showed that there exists a non-flat complete minimal surface
in R* whose Gauss map omits distinct 4 points ([9], p. 72). As its consequence,
there exists a complete minimal surface in R* whose Gauss map, as a map into
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P*(C), is non-degenerate and omits 6 hyperplanes in general position. For, with
distinct 4 points ay, -, a, in Q,(C) we can associate 6 lines H,, ---, H; in

P?*(C) located in géneral position such that ( O H)NQ.(C)={ay, ---, a,}. Actually,
=1

the lines H,=ua,a;, -, Hy=0a,a,, Hi=a,a, and H,=ua,a, satisfy this condition
after suitable changes of indices, where @;a; denotes the tangent to Q,(C) at a;
if 7=; and the line containing a; and a; if /#;. This shows that 6=¢(3)=09.

The proof of Main Theorem is based on the result of S.T. Yau ([1I5]) as
in and those on the value distributions of holomorphic maps of the unit
disc into P™~*(C). After preparing some results on value distributions of holo-
morphic maps in §2 and a basic inequality in § 3, we shall give the proof of
Main Theorem in §4.

§2. Some properties of holomorphic maps into P*(C).

Let f be a holomorphic map of the unit disc 4:={z=C: |z] <1} into P*(C).
For arbitrary homogeneous coordinates (w;: - : ws4y) on P*C), f has a repre-
sentation f=(f;: --: fny1) With holomorphic functions f;, .-, fn+1 such that

LA =1 Fal2 o ] ]

vanishes nowhere. In the following sections, such a representation of f is re-
ferred to as a reduced representation of f. Set

u(z):= max log| f;(2)].
isjsn+1
The characteristic function (in the sense of H. Cartan [2]) of f is defined by
T(r f)'—igmr (re*!Hdg—u0) (0=r<1)
=) < .

For a non-zero meromorphic function ¢ on 4, the proximity function and
the counting function of ¢ are defined by

I i0
m(r, ¢)::77?S0 log*|p(ret?)|dO

r n(t)—n(0)

. ; dt+n(0) log » 0<r<l)

N(r, ¢) ::S

respectively, where logtx=max (logx, 0) for x=0 and n(t) denotes the number
of poles of ¢ in {z&C': |z| =t} counted with multiplicity. We may regard ¢ as
a holomorphic map into P¥C). We then have

@2.1) @) T, o)=m(, ¢)+N(r, ¢)+0(1),
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(i) T(r, 1/o)=T(r, o)+ 0(1).
For the proof, see and [6], p. 5.

We have also
(2.2) Let f:A4-P™C) be a holomorphic map with a reduced representation
f=(f1:: fne) and

H;: alw,+ - +a?"'w,,=0 (=1, 2)
be hyperplanes in P™(C) such that f(d)¢ H;. Then, for the meromorphic function
n+l n+l
o= alf;/ % alf,
T(r, )<T(r, H+0WD).

For the proof, see [2], p. 10.
DEFINITION 2.3. A holomorphic map f: 4—P™C) is called transcendental if

T, ) _

logy

lim sup

r—1

oo,

As a result of the second main theorem of value distribution theory, we
have

THEOREM 24. Let f: 4—P™C) be a holomorphic map. Suppose that f is
non-degenerate, namely, the image of f is not contained in any hyperplane in
P™C), and that [ omits n-+2 hyperplanes in general position. Then [ is not
transcendental.

For the proof, see [4], p. 43 and [11], p. 88.

For later use, we give the following:

PROPOSITION 2.5. Let ¢ be a nowhere zero holomorphic function on 4 which
is not transcendental. Then, for each positive integer [, there exists a positive
constant K, such that

2T
)

PROOF. By assumption, log|¢(z)| is a harmonic function on 4. Therefore,
for arbitrary z=re'®e4 and R with r<R<1,

- fﬁ i <__[&.¥ 1
—d—zﬁ(w)(m |dos =l g—  (0<r<).

1 (e . R
S i6
log 6(2)| =5, 0 1R g o G—grir 29

Choosing a branch of log ¢(z) and a real constant C properly, we have

1 or . R i¢ L
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because

R2—p? —Re ( Ret?4-rett )
R*—2R7 cos (—¢)+r* Ret?—yeit /°

Differentiating this equation / times, we get

d-1 ’ ; Ret¢
dzl- 1( >(Z)“ S log |p(Re ¢)|Wd¢’

from which we obtain

ex| gt 90 i6
= 1(5 (re)| g
IR (2= 2z . 1
i¢
=" So 46| loglg(Re N T Re# oo 49
['R 1

—TS (Iloglgo(ReW)HS [Ret¢ rez0ll+1 d0>d¢

On the other hand, we have

Szz dé _Szz dé
o [Rei¢_reiﬁll+1 - o |R_reioll+1
< 1 Szvr de '
= (R—T)l'l 0 IR-—re”olZ

. 27
- (R__r)l—l(Rz__,rZ) .

Since |log|x||=log*x+log*(1/x) for x>0, (2.1) gives

o TIoglo(Re )l lag=m(R, @)+m(R, 1/¢)

=<2T(R, ¢)+0(1).

By the assumption that ¢ is not transcendental, we can easily conclude

I [ (o] ao—e 500w ).

By taking R=(14r)/2, we obtain the desired inequality.

§3. A basic inequality.
Let f:4—P™"(C) be a non-degenerate holomorphic map and

H;: ajwy+ -+ +a} "W, =0 (I=/=9)
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be hyperplanes in general position. Taking a reduced representation f=(f;: ---:
S n41), we set

F/=aifit - +a3* fan (1S759)

and by W(f,, -+, fas1) We denote the Wronskian of the functions fy, -=-, fa+1.
The purpose of this section is to prove the following:
PROPOSITION 3.1. In the above situation, assume that ¢>(n-+1)* and f omits
q hyperplanes H,, ---, H, in general position. Then, there exists a positive constant
K, such that
2r
)

W(fl, ) fn+1)
F1F2"'Fq

re)| " et a0

K 1 2
= iy (log ) 0<r<b),

where p=n(n+1)/(g—n—1).

For the proof, we need some lemmas. The following lemma is essentially
due to H. Cartan [2].

LEMMA 3.2. Under the same assumption as in Proposition 3.1, there is a
positive constant K, such that

| u7(fb t fn+0
J }ﬁ}%"‘ﬁ}

Proor. Take an arbitrary point zed4d. Let ,, -, 7, be a permutation of

the indices 1, 2, -+, ¢ such that

W(Fiy, -, Fiy )
F, - F,

|l <

1541<Tip 1159 nt1

| Fiy(D = - S|Fi (D S Fi, ()= - S| F(2)].

n+l n+2

Since we assume that f,, -+, H, are in general position, fi, --+, f,+; are repre-
sented as linear combinations of F;, ---, F; ... Hence, we can find a positive
constant Ci,..;,,, independent of each z such that

| fa(2)] écil-.-inﬂlglgﬁl IFik(Z)I §Cil-.-in+11Fil(Z)[
for /=1, --, n+1 and /=n+2, .-, g. We then have
n+1
/2] =(Z | fo(@) = (n+1)"*Cipiy | Fiy(2) ]

for (=n+2, ---, ¢ and hence
[f@N " = K3 Fipyy(2) - Fig(2)],

where K;=((n+1)"*Cy,..i,,)*""". On the other hand, we know

W(f1, -, fas) ::(lil-..inHW(Fil, vy Finﬂ)
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for the constant ai,..,,,:=det(aj,: 1=/, k=n-+1)"". Setting

K= max C

. : iyt I Qiyoipgy [ ’
1591<<ip 415¢ !

we conclude

| Wy, oy fren)
- F

@|If @

Fl * q

-S—Cir“inﬂlail‘“inﬂI : F, +1 Fq = t (Z)l
W(Fi, -, Fi,y)

< 1’ n+1

:KZ Fl "‘Fin+1 (Z)‘

< 1’ ’ n+1 l .

“K2(1§i1<"_<imgq B h, L@ )

This completes the proof.

LEMMA 3.3. Let Fy, -, Fpy1 be non-zero holomorphic functions on the unit
disc 4 in C, and set ¢;:=F;/Fpyx 1=i=n). Then, there is a polynomial P(--,
Ugy, ) With positive real coefficients not depending on each Fi, -+, Fniq such that

<p(-, ()], ).

Movre precisely, if we associate weight | with each indeterminate uqy, P can be
chosen so as to be isobaric of weight n(n-+1)/2.
ProOOF. It is easy to see that

W(Fl’ ) Fnﬁl)

Fl Fn+1

[€2)

W, = Paes) __pn e (sz% 14, 1<n)

Fy- Fri

1 2 nt1y ol an)
= X (—1)”Sgn< n )90)1___20 .

(g lnpp) [y ls ey 1 ©On

On the other hand, each ¢{”/¢; can be represented as a polynomial of ¢;/¢;,
(©i/@s), -, (pi/e)*" which is isobaric of weight [ if we associate weight m
with each (/@)™ (cf., the proof of Lemma 4.2 in [5]). From these facts,
follows immediately.

LEMMA 34. Let @1, ,0r be nowhere zero holomorphic functions on A,
1, -+, be positive integers and t be a positive real number with kt<l. Assume
that @i, -+, @& are not transcendental. Then there exists a positive constant K,

such that
I (@ om0
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K, ¢ 1\
<
==y (log l—r) (0<r<1),
where s=t(l;+1,+ - +1p).
PrROOF. For brevity, we set ¢;:=(p}/p,) P (1=<7=<Fk). Using the Holder’s

inequality, we have

[ 160 grern)1edo

=([1gerenan)™ - (C1gutre a0
and

|, 1esren an=@ar(|Tig el o).

On the other hand, it follows from [Proposition 2.5 that

Kg -lo b
(1t B 1y

[Clgsreniao =
for a suitable constant Kj (1=7=<Fk). Therefore,

Siﬂ (s -+ Pu)ret?)] ‘dﬁé(( (l—riflé:r"'”k <1°g 1ir )k>kz>1/k

= (e )

for suitable constants K4, K:;. This completes the proof of
PROOF OF PROPOSITION 3.1. Since 2/(g—n—1)<1, gives

W , oy fa 2/(g-n-1)
l (f}rlme +1) TE
q
W(Ft y "ty Fi ) 2/(g-n-1)
SK 1 n+1
= 4(1§,£1<,,,<in+1§q Ft cee Fin-(-l )

for some constant K,. It suffices to find a constant K such that

W(Fil) Tty Fin-%-l) 00
F, - F, (re*®)

n+1

0=y \log 71—,

2/(g-n-1) K ( 1 )p

a5 |

for all 7y, =+, fp41 (1=Z4,< -+ <ip41=q). There is no harm in asssuming that 7,=1,
v+, igpr=n-+1. According to[Lemma 3.3, we can estimate |W(Fy, -+, Fui1)/Fy -+ Fpii|
from above by a positive constant multiple of the sum of some functions of type

(3.6) %)”1‘” (9;_2)”1:—”
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where 1=i,, ---, 7,=n+1 and [, ---, [, are positive integers with [;+ -+ +I,=
n(n+1)/2. By the assumption, f is not transcendental by the help of
24. So, each ¢; also is not transcendental because of (2.2). We now apply
to the functions ¢, -, ¢;, and t=2/(g—n—1). For the function
¢ given by [3.6), we have

27 i K 1 \»
i0yl2/@-n-1D < 4

Consequently, we obtain and hence complete the proof of [Proposition 3.1l

§4. Proof of Main Theorem.

For the proof of Main Theorem, we first recall the following result of S.T.
Yau ([15]), which plays an essential role in the following.

THEOREM 4.1. Let M be a complete Riemannian manifold and h a non-
negative and non-constant C=-function on M such that Alogh=0 almost every-

where. Then, SMhpda:OO for p>0, where do denotes the volume form of M.

As in Main Theorem, let M be a complete minimal surface in R™ (m=3).
For our purpose, it suffices to prove that the conjugate f of the Gauss map is
necessarily degenerate if f omits hyperplanes Hj, ---, H, in general position,
where g=m?2-+1. Take the universal covering surface @ : M—M. The Riemann
surface M is considered also as a complete minimal surface in R™. There is no
loss of generality in assuming that M=M. Then, M is biholomorphic either to
C or to the unit disc 4, because there is no compact minimal surface in R™.

We may assume M=C or M=4. For the case M=C, f: C—>P”(C)—.quHi (n=
i=1

m—1) is necessarily degenerate by the classical result of E. Borel (cf., [1], [2],
or [13]).

Now, we consider the case M=4. Assume that f is non-degenerate. It is
easily seen that the area form of the metric on M induced from the flat metric
on R™ is given by

do=2|f|2duNdv.

Taking a reduced representation f=(f;:--: fn+1), We consider the functions
Fy, -, F, defined in §3 and set

| s ey fu)
- F\F, ---Fq

Clearly, n#0 and Alog h=0 except the set {z=4: h(z)=0}. On the other hand,
4 has the infinite area with respect to the metric induced from R™ because it
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is complete, simply connected and of non-positive curvature. By the help of

[Theorem 4.1, we have

(4.2) SSAh2/<q-"-l> Ifl2dudy=oo.

We now apply [Proposition 3.1 Then

[§ praroisidudo={ rar(] neretopran-visret)an)

ror 1 y7
éKlSo (1—r)? (tog 1—r) ar

which is finite because p=n(n41)/(g—n—1)<1 by assumption. This contradicts
(42) The map f is necessarily degenerate. The proof of Main Theorem is
completed.
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