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1. Introduction.

There are some facts which suggest the relation between cohomological G-
functors and Hecke rings. In cohomology theory of finite groups, Cline, Parshall
and Scott showed that Hecke algebras act on cohomology groups of finite groups
and described the stability theorem of Cartan-Eilenberg (a generalization of the
focal subgroup theorem for finite groups) by the use of the language of fixed
points (=common eigenvectors) for an action of the Hecke algebra ([1, Section
6]). They pointed out also an example that there is no corresponding Hecke
algebra action for algebraic K-theory. It is stated also in [3], [4, Section 8.3],
etc. that Hecke algebras act on cohomology groups of groups.

The purpose of this paper is to study the relation between cohomological G-
functors and representation of Hecke rings. In Section 2, we define G-functors.
In Section 3, we introduce the concept of Hecke category which is the category
of permutation modules. In application, Hecke rings appear frequently as com-
ponents of additive functors from the Hecke category. In Section 4, it is proved
that the concepts of cohomological G-functors and representations of the Hecke
category (that is, additive functors from there) are equivalent. The main theorem
of this paper is the following:

THEOREM 4.3. Let M (G)° be the category of cohomological G-functors over
k and let I ,¢ be the category of permutation modules k[G/H], H<G. Then

Mi(G)=Adds (K kg, M) .

In general, if @ be a cohomological G-functor, then the action of the Hecke
ring R{H\G/H] on a(H) is given by

a-(HxH) :=a®yena®, acalH), x€G.

NOTATION. G denotes a finite group except for Section 5. “H<G” means
that H is a subgroup of G. For a subset or an element X of G and an element
g of G, we set X¢:=g'Xg:={g'xg|x=X}. The index of a subgroup H of
G is denoted by |G: H|. The cardinality of a set X is denoted by |X|. The
notation H\G/K means the set of double cosets HgK and sometimes a complete
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set of representatives of the set of double cosets. The notation % denotes a
commutative ring with unit.

Group and ring operations, homomorphisms and functors are usually on the
right. Thus the composition

f g
X > Y Z

is denoted as fg. The category of R-modules is denoted by %p.

2. G-functors.

In this section, we introduce some concept about G-functors. More details
are found in Green [2] and Yoshida [5] Let G be a finite group and % a com-
mutative ring with unit.

DEFINITION 2.1. A G-functor a=(a, 7, p, o) over %k consists of k-modules
a(H) for subgroups H of G and k-maps of three kinds:

tE=ck: a(H) — a(K): a— a¥,
pr=pk: a(K)—> a(H): — By,
ocf=c%:.:a(H) — a(H®): a— af,

where g is an element of G and H and K are subgroups of G with HES K. These
families must satisfy the following axioms:

AXIOMS FOR G-FUNCTORS. (Inthese axioms, D, H, K, L<G; g, g'€G; ac
a(H), fea(K)).

(G.1) a=a, (@¥)t=al if HEKSL;

(G.2) Bx=8, Bawp=Bp if DEHCSK;

(G.3) (a®)¢ =a®?, a*=a for heH;

(G.4) (@®)=(a®)X?, (Bu)¥=P%ye if HSK;

(G.5) (Mackey axiom). If H and K are subgroups of L, then

atg= afrenk”,
8EH\L/K
where g runs over a complete set of representatives of H\L/K.

DEFINITION 2.2. A G-functor (a, 7, p, o) is called cohomological if it satisfies
the following axiom :

(C) If HEK=<G and fea(K), then Bpg¥=|K: H|-j.
DEeFINITION 2.3. A pairing aXb—c of G-functors is a family of k-bilinear
maps

a(H)Xb(H) —> ¢(H): (a, p)—> a8

for all subgroups H of G which satisfies that if H<K<G, a=a(H), o’ =a(K),
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Beb(H), B’eb(K) and g=G, then
(@B p=a'gB'u, (a-p)é=at B¢,
CYK"B,:((X"B,H)K, a’-,BKZ(a’H-,B)K.

If each a(H) becomes a k-algebra through a pairing aXa—a, then a is called a
“ring”. “Modules” over a “ring” are defined by the similar method.

DEFINITION 2.4. A morphism 6: a—b between G-functors over & is a family
of k-linear maps 0(H): a(H)—b(H) for H<G which commute with z, p,s. We
denote the category of G-functors over 2 by H,(G). The full subcategory of
cohomological G-functors in H,(G) is denoted by H.(G)".

ExaAMPLE 2.1. Let V be a right £G-module and n an integer. Then a G-
functor h}=(h}, 7, p, o) is defined by hy(H):=H"(G, V), the n-th cohomology
group of the subgroup H of G. The maps 7, p, ¢ are corestrictions, restrictions,
conjugations, respectively. Then A} is a cohomological G-functor over k2. We
set cy:=hp. Then we have that for H<K<G and geG,

(P)

cy(H)={veV|vh=v for all h in H},
& cy(H) —> ¢p(K): v H——»ze%)\Kvx ,
pk:ey(K) —> ¢y(H): v—>v,
o%:cy(H) —> cy(H®): v—>vg.

If,U, V, W are kG-modules and UXV—W is a k-bilinear map compatible with
the action of G, then we have a pairing A} X hp—hjp*™.

3. Hecke operators.

The free k-module with basis X is denoted by 2X or 2[X]. Let G be a
finite group. If X is a G-set, then £X becomes a kG-module.
LEMMA 3.1. Let H and K be a subgroup of G. Then

@: k[H\G/K]=Hom,s(k[G/H], k[G/K]),
@’ : k[H\G/K]=Hom,s (k[ K\G], k[H\G]).
By these isomorphisms, (HxK)=k[H\G/K7] is mapped to
OHxK): gH —> Xy guxK=2>u gu'K,

where u (resp. w') runs over a complete set of representatives of H/HNxKx™*
(resp. HxK/K), and

O'(HxK): Kg — Xy Hxvg=X, H'g,
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where v (resp. v’) runs over a complete set of representatives of H*N\K\K (resp.
H\HxK).

PROOF. Direct verification ([4, Prop. 3.4]).

Let H, K, L be subgroups of G. Then by the above lemma, we see that
the composition

a-B: k[G/H] kLG/K] kLG/L],

or

a-B: R[I\G] RLK\G] ELL\G]

induces a k-bilinear map
ELH\G/K1Xk[K\G/L] — E[H\G/L] : (a, B)—>a- .

Then the following holds:

LEMMA 3.2. (HxK)-(KyL)= GH%)}/Lm(x, v;2)(HzL), where m(x,y;z)=
|(HxKNnzLy*K)/K].

ProoOF. By [Lemma 3.1, we have that

O(HxK)-(KyL)) : H——>u§_,; uvL:Zz}m(x, y;2z)zL,

where u (resp. v) runs over H\HxK (resp. K\KyL) and z runs over H\G/L.
Thus m(x, y; z) equals to the number of pairs (uK, vL) such that uKe HxK/K,
vLeKyL/L, uwwL=zL, and so we have that

m(x, y; Z):ueH§K/K#{11LIuvL:zL, vLeKyL/L}

:gl(u“lszKyL)/Ll.
Since the term |(u~'zLN\KyL)/L|=1 if u€zLy 'K and =0 otherwise, we have
that
m(x, y; z)=4{uKeHxK/K|lucszLy 'K}
=|(HxKnzLy'K)/K],

as required. The lemma is proved.
By the above bilinear map, 2[H\G/H] becomes an associated k-algebra with
unit (H1H) which is called a Hecke ring and isomorphic to End,s (R[G/H]).
DEFINITION 3.1. Let 4 ,; be the category of which objects are k[G/HJ,
H<G, and of which hom-sets are defined by

hom (k[G/H], k[G/K]):=k[H\G/K].

The compositions are defined by the above bilinear maps. We call 4 ;s the Hecke
category of G.



G-functors and Hecke operators 183

In the remainder of this section, we state some formulas about Hecke rings
which we associate with the axioms for cohomological G-functors. We define
some morphisms of the Hecke category as follows:

T :.=TE:=(H-1-K) for H<K=<G,
Ry:=RE:=(K-1-H) for H<K<G,
S€:=S5§:=(H-g-H®) for H<G, geG,
I:=Iy:=(H-1-H) for H<G.

LEMMA 3.3. Let H and K be subgroups of G and g an element of G. Set
D=H¢~K. Then
(HgK)=(HgH*)(H?-1-D)(D-1-K)
:S%'RD'TK .

PROOF. Direct verification.

LEMMA 34. Let D, H, K, L be subgroups of G and let g, g’ be elements of
G. Then the following hold:

(H.1) TE=I, TETY=T% if H<XK<L;

(H.2) R%=I, RERE=RE if D<H<K;

(H.3) SgS¢ =8, Sk=I1 if heH;

(H.4) TESe=S§Tx%, RES¢=S%Rye: if H<K;

(H.5) (Mackey decomposition). If H and K are subgroups of L, then

TiRk= 2 SERuenxT.

8€H\L/K
(H.C) (Cohomologicality). If H is a subgroup of K, then
RETE=|K: H|I.

ProoF. These equalities are easy conclusion from Lemma 3.2. We will show
only (H.5). Let H and K be subgroups of L. Then by we have that

TERLY= X m(z)(HzK),
z2EH\G/K

where
m(z)=|(HLNzKL)/L|

=|(LnzL)/L|,
and so m(z)=1 if z is in L and m(z)=0 if z is not in L. Thus (H.5) holds.

4. Hecke operators and G-functors.

In this section, we prove the main theorem of this paper which states that
cohomological G-functors and additive functors from the Hecke category are the
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same concepts (LTheorem 4.3).
THEOREM 4.1. Let a be a cohomological G-functor over k. Then a k-additive
functor A: Hpg— My is defined by

A: R[G/H]— a(H);
A: R[H\G/K] —> Hom, (a(H), a(K)) : 1— 2,

where
(HxK) : a(H) —> a(K) : a—> a®gz x%.

PrOOF. We must show that Au=2 7 for any morphisms 4, ¢ in %, with
composition Ag. Define a set 4 of morphisms in 4 as follows:

I={p|Ap=2j for any 2 with dom p=cod 1} .

Then 4 is a subcategory of ... We will show that I=4% ¢ For any sub-
groups HXK<L<G and g=G, morphisms RE=(K1H), T%=(K1L), S{=(HgH*®)
in 4,; are called morphisms of type 7, t, s, respectively. By Lemma 2.2, we
have that for any subgroups H, K, L of G,
¢)) (HxK)-(KyL)=H§m(x, y; z)(HzL), where
m(x, v; 2)=|(HxKnzLy'K)/K]| .

We shall first show the following:

(2) 25=2S for S of type s, that is, S€d.
In fact, let aca(H), A=(HxK) and S=(HyHY). Then by the axioms for G-
functors

(aZ)S-:(X”HanKy=a”yyzynKyKy:a'(nyKy).
On the other hand, (1) implies that
AS=(HxK)-(KyK¥)=(HxyK"),

and so (@ad)S=a(4S), proving (2). Next we have the following:

(38) AT =T for T of type ¢, that is, T €d9.
In fact, let aca(H), A=(HxK) and T=T%=(K1L) with K<L, and set D=H*NK,
E=H*~L. Then by the cohomologicality of the G-functor @, we have that

(@) T=(a"p*)r=a"p*
=(@®p)p")*=|E: D|a*g"
=|E: D|a-(HxL).

On the other hand, by (1),
AT=(H=xK) (K1L)=|(HxKnxL)/K|(HxL)
=|E:D|(HxL),
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and so (@aA)T=w«a(AT), proving (3). By the similar way, we can prove the dual
statements as follows:

2 Sp=Sg for S of type s.

(3") Rp=Rj for R of type r.
Furthermore Mackey axiom (G.5) for G-functors and Mackey decomposition ((H.5)
in for the Hecke category yield the following:

(4) TR=TR for T of type t and R of type .
Finally we will show the following:

(5) AR’=AR’ for R’ of type r, that is, R’€4.
To prove this, present 2 as A=SRT, where S, R, T are morphisms of type s,7,¢,
respectively, by Then

AR’=(SRYTR)=SRTR’ by (2", 3

=SRT)F by (4)
=SSR K by @)
=1R’,

proving (5). Hence we see that 4 contains morphisms of type », s, . Since any
morphisms in 4 ,; is presented as the compositions of morphisms of type 7, s, ¢
by all morphisms of 4, is contained in the subcategory , and
hence J=H ¢, as required. The theorem is proved.

COROLLARY 4.2. Let a be a cohomological G-functor and H a subgroup of G.
Then a(H) is a kLH\G/HJ-module by

a-(HxHY=a® gz g for acsa(H), x=G.

PrRoOOF. This is an obvious conclusion of [Theorem 4.1

We can now prove which is the main theorem of this paper.
Let M (G)° be the category of cohomological G-functors (Definition 2.4). Let
Add (I g, M) be the category of k-additive functors from 4. to M. (the
category of k-modules).

THEOREM 4.3. M (G)°=Add, (I re, Me).

PRrROOF. We shall first define an additive functor

U: Uw(G)° —> Addy (K g, M) .
For any cohomological G-functor a, define ¥(a): 4 ro— M, by
Y(@a): k[G/H]— a(H),

: k([H\G/K] —> Hom, (a(H), a(K)): A— 1,
where
(HxK): a(H) — a(K): a —> a®gz xX
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By [Theorem 41, ¥'(a) is actually a k-additive functor. Let 6 : a—b be a morphism
between cohomological G-functor. We define a natural transformation ¥'(8): ¥(a)
—Tb) by U(0)([G/H]):=60(H): a(H)—b(H) for each H. Clearly 8 is compatible
with Hecke operations, and so ¥'(#) is a natural transformation. Thus ¥ is a k-
additive functor.

We shall next define a k-additive functor

Q: Add, (K g, M) —> ML (G)°.

Let A: K e— M, be a k-additive functor. Define a cohomological G-functor a=
(a, 7, p, o) as follows:

a(H):=ARLG/H]), tf:=ATE), phi:=ARE), of:=ASE).

By Lemma 3.4 a=(a, , p, o) satisfies the axioms for G-functors. Let ©: A—B
be a morphism in Add; (4 e, M) and set a:=@(A4), b:=D(B). Then a
morphism @(O): a—b is defined by O(K[G/H]): a(H)—b(H). Thus we have a
k-additive functor @. Clearly @ is the inverse of ¥. The theorem is proved.

ExaMPLE 4.1. Let D be a subgroup of G. Set A(E[G/HJ):=k[D\G/H].
Then multiplications on the right make A into a functor A: X e—H,: By
there is a cohomological G-functor (a, z, p, 6) which corresponds
to A. We have that a(H)=k[D\G/H] and

&: (DxH)— (DxK),
ok: (DxK)— 2> (DxuH),
uEK/H

o%:(DxH)— (DxgH?).

ol

Now we can construct a cohomological G-functor cp\e; from the permutation
module 2[D\G] (Example 2.1). Then a is isomorphic to ¢4 p¢. The isomorphism
of a(H) to cupei(H) is given by

DxH)y— 2, (Du).

uED\DxH

EXAMPLE 4.2. Let %2 be a field of characteristic p>0 and P a subgroup of
G of index prime to p. Let A be a k-additive functor from % ¢ to M,. Then
A(R[G/G]) is isomorphic to the common eigenvector space of

{A(A)€End, (A(R[G/P])) | A=sk[P\G/P]}
with respect to the algebra homomorphism
ind: k[(P\G/P] — k: (PgP)— |P: PNn\P#|,
that is,

1) ARLG/GD={ve A(RLG/P]) | v- AQQ)=ind (1) v for all 2}.
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Let a be the cohomological G-functor corresponding to A. Then (1) is re-
written as

(2) a(G)EImpgz {aEa(P) I agpgin:apgin for all g}.

This isomorphism is a kind of the “stable element theorem” (or the “focal sub-
group theorem” for finite groups). The proof of (2)is found in [5, Theorem 3.2].

In general it is impossible that defining suitable z, p, o, we make a G-functor
from the correspondence H— 2[H\G/H]. But by this idea we have a “ring”
that all cohomological G-functors are “modules” over. The finite group G acts
on the k-algebra £G by conjugation, and so we have a cohomological G-functor
Ccrg=(Crg, T, p, ) as in Example 2.1 with

cro(H)={r€kG | y"=7 for all h in H}.

Furthermore, since the multiplication in 2G is compatible with G-conjugation,
cr¢ becomes a “ring”. Clearly the set of the class sums [x#]:=3,c,y<EkG
of the H-conjugate classes x¥={x"|heH} in G is the basis of e¢,;(H). For
H<K<G and g=G, we have the following:

Cra(H) —> cre(K)

K.
[x#]— |Cx(x): Cu(x)|[x*],

. Crg(K) —> cre(H)

pir [xX]—— [x®¥]=3,.[x%%], where u runs over Cx(x)\K/H,
Cre(H) —> cre(H®)

a%:

[x#]— [x¥]e=[xeH"].

THEOREM 4.4. Let a be a cohomological G-functor. Then a is a “ce-medule”

by
a-[x]i=a®c = HNH*: Cx(x)|a®gara™,

where « is an element of a(H) and x% is the H-conjugate class in G.
PrROOF. Let H be a subgroup of G. Let

- Cr(H) —> RLH\G/H]
U ) [HAH®: Culx) | (HxH)
be the k-linear map. We will first show that
() O is a k-algebra homomorphism.
To prove this we first define a k-linear map

¢ epe(H) —> Endee (R[G/HT)
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O gH—> grH,  r<cie(H).
Then ¢ is a k-algebra homomorphism. If x&G and C=Cg(x), then
H . hpry—
2) o([x?D: gH*——+hE§\ng H—ne§/cghx}[’
By Lemma 2.1, we have the algebra isomorphism

¢: kEH\G/H] I Endko(k[G/H])
such that

(3) ¢p(HxH): gH— %} guxH,
where u runs over H/HnxHx™'. By (2) and (3),
[x"])=|HNH*: Cy(x)|¢p(HxH).

Thus @x=¢ ¢ is an algebra homomorphism, proving (1). Now, since a(H) is
a k[H\G/H]-module by [Corollary 4.2, a(H) is also a ¢.q(H)-module by

“) a-[x¥]:=|HNH": CH(X)!axHanHZCYxcHu)H-
We must show that the k-bilinear maps
a(H)X ere(H) —> a(H): (a, [x"]) —> a-[x¥]

satisfy the axioms for pairing (Definition 2.3). Let H<K<G, g=G, aca(H),
Bea(K), 2€ce(H), pEcie(K). Then axioms that we must verify are

(P.1) (,B'H)H:ﬁy'/lm

(P.2) (x-A)é=a®-25,

(P.3) a¥-p=(a-pm)¥,

(P.4) B-AE=(Ba- D%
Using notation RE=(K1H), S§=(HgH?), TE¥=(H1K) in Section 3, we can re-
write the above statement as follows:

(P.1) B-p RE=B-RE -,

(P.2) a-A2-S&=a-S%-15,

(P.3) aTk-p=a pyg-TE,

(P.4") B-2X=p-RE-2-TE.
To prove these statements, it will suffice to show that the following equalities
in the Hecke category 4 ,; hold:

Q.1 6(u)-RE=RE-0(un),

Q.2) 6(A)-SE=S§-6(2%),

Q.3) TE-0()=6(ux)-TE,

(Q.4) 60QA%)=RE-0(0)-TE.
Thus it will suffice to show that (P.1)~(P.4) hold for the G-functor H— k[ G/H]
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defined in Example 4.1. But this G-functor is isomorphic to the G-functor cy,
where V=FkG is the right regular 2G-module. It is easily proved that a=c,
satisfies (P.1)-(P.4). The resulting pairing ¢y Xc.s—¢y is one induced from the
G-invariant bilinear map VX kG—V : (v, g)—vg. We proved the theorem.

By this theorem, the set of indecomposable cohomological G-functors is divided
to blocks.

5. Infinite groups.

We can extend many definitions and results in previous sections to the
infinite-group-case. Let G be a finite or infinite group (or more generally a sub-
semigroup of a group). Let & be a family of subgroups of G such that

(%) if A, B€g and g<=G, then ANB, A%€4.

Then a G-functor (a, z, p, o) over k with respect to F consists of k-modules a(H)
and k-maps %, p%, 04, where H, K&9, g&G, and 7§ is defined only when
|K : H| is finite, and these families satisfy axioms as in Definition 3.1. Further-
more, we can similarly define cohomological G-functors, pairings, the category
M(G; F)° of cohomological G-functors with respect to &, etc.

In the present case, is generalized as follows:

LEMMA 3.1". Let H and K be subgroups of G. Then

Hom,q(k[G/H], k[G/K)=k[H\G/K]T,

the free k-module with basis {HxKeH\G/K | |HxK/K]| <oo}.

By this lemma, we can define the Hecke category 4 is(&) as in Definition 3.1
Thus the objects of it are k[G/H], H= %, and the hom-sets are A[H\G/K7,
H, K=<. Now the main theorem of this paper becomes as follows:

THEOREM 4.3". M (G ; F)°=Add, (Hie(F), Hp).

Unfortunately it seems that is not extended to infinite groups.

REMARK. We can define the dense subcategory H{:(F) of Hie(F) of which
hom-sets are k[ H\G/K]”"< k[H\G/K] generated by (HxK) with |H\HxK|<oo,
|HxK/K|<co. If we redefine G-functors as pk also exists only when |K: H|
< oo, then the analogy of [Theorem 4.3 holds for such G-functors and /().

ExAMPLE 5.1. Let G be the group GLE(R) (or a subsemigroup of GL¥(R))
and let 9 be the set of all Fuchsian groups of the first kind contained in G.
For each Fuchsian group H of the first kind, we denoted by A,(H) (resp. G,(H),
S,(H)) the set of all automorphic forms (resp. integral forms, cusp forms) of
weight n. Then A,, G,, and S,, together with double coset actions defined by
Shimura, become additive functors of 4;e(F) to Mo, where 2 is the C-algebra
of all meromorphic functions on the upper half plane ([4, Propositions 3.37, 3.38]).
Now, GL%(R) acts on 2 by f°=f|[o], ([10, Section 2.17]), we have a G-functor
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w,=cg With respect to F. Let a,, g., s, be the cohomological G-functors which
correspond to the functors A,, G, S,, respectively. Then s,<¢,<a,<w,, Where
“<” means to be a subfunctor. Of course, s,(H)=S,(H), etc. In general, these
G-functors are different. A pairing wn X @, —®n4, i defined by 2,(H)X 2,(H)
—2nn(H): (f, g)—f-g. This pairing induces pairings @, Xa@,—@mnin, GnXGrn
—Gmin, InXSn—8min. Take the direct sums a=2,a,, g=>,.9., S=2.8a,
where n is an integer. Then a and g are “rings” and s is an “ideal” of g.

References

[1] E. Cline, B. Parshall and L. Scott, Cohomology of finite groups of Lie type I,
Publ. Math. . H.E.S., 45 (1975), 169-191.

[2] J. A. Green, Axiomatic representation theory of finite groups, J. Pure Appl. Alge-
bra, 1 (1971), 41-77.

[ 3] Y.H. Rhie and G. Whaples, Hecke operators in cohomology of groups, J. Math.
Soc. Japan, 22 (1970), 431-442.

[4] G. Shimura, Introduction to the arithmetic theory of automorphic functions,
Princeton Univ. Press, 1971.

[5]7 T. Yoshida, On G-functors I, HokkaidozMath. J., 9 (1980), 222-257.

Tomoyuki YOSHIDA
Department of Mathematics
Hokkaido University
Sapporo 060, Japan



	1. Introduction.
	THEOREM 4.3. ...

	2. G-functors.
	3. Hecke operators.
	4. Hecke operators and ...
	THEOREM 4.1. ...
	THEOREM 4.3. ...
	THEOREM 4.4. ...

	5. Infinite groups.
	THEOREM 4.3'. ...

	References

